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Abstract— Convergence analysis of consensus algorithms is
revisited in the light of the Hilbert distance. The Lyapunov
function used in the early analysis by Tsitsiklis is shown to be
the Hilbert distance to consensus in log coordinates. Birkhoff
theorem, which proves contraction of the Hilbert metric for
any positive homogeneous monotone map, provides an early yet
general convergence result for consensus algorithms. Because
Birkhoff theorem holds in arbitrary cones, we extend consen-
sus algorithms to the cone of positive definite matrices. The
proposed generalization finds applications in the convergence
analysis of quantum stochastic maps, which are a generalization
of stochastic maps to non-commutative probability spaces.

I. INTRODUCTION

The convergence of consensus algorithms in linear spaces

has attracted much interest in recent years due to its many

applications in distributed computation and control. Because

the matrix defining the update of the algorithm can be given

a probabilistic interpretation as a stochastic map or a graph

interpretation as an adjacency matrix, the topic has fostered

a number of interesting connections between control theory,

probability theory, and graph theory. Our paper revisits

some of those connections in the light of a classical fixed

point result and uses this link to define a generalization of

consensus algorithms in non-commutative spaces.

A key component of our approach is a 1957 theorem

of Garrett Birkhoff. Birkhoff theorem provides a general

fixed point result for homogeneous monotone positive maps

defined on closed cones of Banach spaces. The key idea is to

use a metric introduced by Hilbert as contraction measure.

Hilbert’s metric is projective, that is, it measures distances

between homogeneous rays of the cone.

In the positive orthant, Hilbert distance between vectors

x and y is dH(x, y) = max log(xi/yi) − min log(xi/yi),
which is indeed invariant by scaling of either x or y. Taking

y = 1 = [1, . . . , 1]T , this provides a natural distance

to consensus; in probabilistic terms this corresponds to a

uniform density vector. In fact, Hilbert distance to consensus

coincides (in log coordinates) with the Lyapunov function

used by Tsitsiklis to study the convergence of consensus

algorithms. Row-stochastic matrices define linear positive

maps in the positive orthant. As a consequence, Birkhoff

theorem provides an early convergence result for consensus

algorithms.

Because Birkhoff theorem applies in arbitrary cones, it

opens the way to several generalizations of consensus theory.
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The present paper focuses on the cone of hermitian positive

definite matrices. Our motivation stems from the generaliza-

tion of probability theory in the quantum (non-commutative)

setting. While stochastic maps operate on probability vectors

(elements of the positive orthant), quantum stochastic maps

operate on probability matrices (elements of the cone of her-

mitian positive semidefinite matrices). Quantum stochastic

maps are unital maps in this cone, i.e. they map identity

on the identity. Their dual (Kraus maps) are trace-preserving

and appear frequently in the study of open quantum systems.

In the cone of hermitian positive definite matrices,

Hilbert distance from a matrix X to the identity matrix

is dH(X, I) = log(λmax) − log(λmin). As in the positive

orthant, this distance is projective, i.e. invariant by scaling (of

either X or I). For unital maps, it provides a natural distance

to the uniform probability density matrix I , which defines

“consensus” in this context. Because quantum stochastic

maps define positive linear monotone maps on the cone of

positive definite matrices, Birkhoff theorem shows that the

distance to consensus can only decrease when measured with

the Hilbert metric. The paper explores some implications of

this basic property in the context of quantum channels. The

preliminary examples discussed in this paper indicate that

the analogy between the classical consensus theory in com-

mutative spaces and the proposed consensus theory in non-

commutative spaces offers new avenues to characterize the

convergence properties of quantum channels. In particular,

Tsitsiklis approach to consensus theory proved especially

useful in asymmetric and/or time-varying settings where a

more conventional approach based on quadratic Lyapunov

functions fails. Likewise, the Hilbert distance as a measure

of distance to consensus in a quantum setting could prove

particularly useful in the context of asymmetric and/or time-

varying quantum maps.

The paper is organized as follows: the convergence theory

of consensus algorithms is briefly revisited in Section 2.

Birkhoff theorem is recalled in Section 3. Its interpretation

in the framework of consensus algorithms is discussed in

Section 4. Section 5 extends the framework to the cone of

positive definite matrices. The notion of non-commutative

consensus, motivated by quantum applications, is introduced

in Section 6. Section 7 contains concluding remarks and

future perspectives.

II. CONSENSUS ALGORITHMS AND THE ASSOCIATED

NON-QUADRATIC LYAPUNOV FUNCTION

Linear consensus algorithms give rise to time-varying

systems

x(t + 1) = A(t)x(t), x(t) ∈ R
n (1)
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where for each t = 0, 1, . . . the matrix A(t) is row-

stochastic, i.e. its elements are non-negative (aij(t) ≥ 0), and

it preserves the unit element 1 = (1, . . . , 1)T (A(t)1 = 1).

The graph interpretation is that N nodes exchange informa-

tion about a scalar quantity xi(t) along communication edges

weighted by the coefficients aij(t). (aij(t) = 0 means that

no information is transferred from node j to node i at time

t). The update of a given node is a weighted average of its

own value and the values communicated by neighbors:

xi(t + 1) =

n
∑

j=1

aij(t)xj(t),

n
∑

j=1

aij(t) = 1 (2)

Remarkably, uniform convergence of the time-varying

system (1) can be characterized quite precisely. The early

analysis of Tsitsiklis [9] rests on the basic but fundamental

observation that the (time-invariant) Lyapunov function

V (x) = max
1≤i≤n

xi − min
1≤i≤n

xi (3)

is non-increasing along the solutions of (1). The proof that it

decreases strictly over a uniform horizon under appropriate

assumptions only involves elementary calculations (see e.g.

[4] for details).

An example of general convergence result for (1) is as

follows:

Theorem 1: Let A(t), t ≥ 0 be a sequence of n × n row-

stochastic matrices and suppose that the following conditions

hold:

• all nonzero aij(t) are larger than a certain α > 0.

• All diagonal elements satisfy aii(t) > 0

Then the solution of (1) converges exponentially to an

equilibrium co-linear to 1 if there exists a finite horizon

T > 0 such that for all t0 ∈ N, there exists a node connected

to all other nodes across [t0, t0 + T ].

The proof of (variants) of this result has appeared in var-

ious papers, including important contributions by Tsitsiklis

[9], Jadbabaie et al. [1], and Moreau [10].

It is also remarkable that the convergence analysis of the

linear system (1) cannot be established by means of a time-

invariant quadratic Lyapunov function. The recent paper [13]

provides the explicit construction of a sequence of eight

matrices A(t) that satisfies the assumptions of Theorem 1

but that does not admit a common time-invariant quadratic

Lyapunov function. In other words, the non-quadratic nature

of the Lyapunov function (3) is essential and a distinctive

feature of the analysis of consensus algorithms.

III. BIRKHOFF THEOREM

As will be shown in the next section, the Lyapunov func-

tion (3) is closely related to Hilbert metric. This connection

follows from a result of Birkhoff [3] that we now summarize,

following the exposition in [5].

Let X be a real Banach space and let K be a closed solid

cone in X , that is, a closed subset K with the properties: (i)

intK, the interior of K, is not empty, (ii) K + K ⊂ K, (iii)

λK ⊂ K for all λ ≥ 0, and (iv) K ∩−K = {0}. The partial

order x ¹ y means that y − x ∈ K.

For x, y ∈ K0 = K\{0}, define M(x, y) = inf{λ : x −
λy ¹ 0} and m(x, y) = sup{λ : x − λy º 0}. Then Hilbert

metric d(·, ·) is defined in K0 by

d(x, y) = log{M(x, y)/m(x, y)} (4)

Because of the invariance property d(αx, βy) = d(x, y) for

all α, β > 0, Hilbert metric is, strictly speaking, a projective

metric, i.e. a distance between the equivalence classes (rays)

[x] and [y], where [x] = {αx | α > 0}.

Birkhoff theorem is a contraction result for positive maps

in K. A map A : K → K is said to be non-negative; a map

A : intK → intK is said to be positive. If A is positive, the

projective diameter ∆(A) of A is defined by

∆(A) = sup{d(Ax,Ay) : x, y ∈ intK} .

The contraction ration k(A) is defined by

k(A) = inf{λ : d(Ax,Ay) ≤ λd(x, y) ∀x, y,∈ intK}

Theorem 2 [Bushell, 1973, after Birkhoff, 1957]: Let A a

map in K that satisfies the following properties:

(i) A is positive, i.e. A : intK → intK.

(ii) A is homogeneous of degree p in intK, i.e. A(λx) =
λpA(x) for all λ > 0.

(iii) A is monotone, i.e. x ¹ y ⇒ A(x) ¹ A(y).

Then the contraction ratio of A does not exceed p. If A
is linear, its contraction ratio is furthermore related to its

projective diameter: k(A) = tanh 1
4∆(A).

The previous theorem statement is in fact due to Bushell

[5]. It generalizes Birkhoff theorem, which was only for-

mulated for linear maps. It should be noted that Banach

contraction map theorem applied to Birkhoff theorem pro-

vides a far-reaching generalization of Perron-Frobenius the-

orem: if ∆(A) < ∞ and if the metric projective space

E = (intK\̃ , d) is complete, then there exists a unique

eigenvector of A in E.

Hilbert metric is only one among the many met-

rics contracted by positive monotone maps. Another such

(closely related) metric is Thompson metric dT (x, y) =
log max{M(x, y),m−1(x, y)}. However, Hilbert metric typ-

ically provides the best contraction ratio, see [5] for details.

IV. BIRKHOFF THEOREM IN THE POSITIVE ORTHANT

AND CONSENSUS ALGORITHMS

The most direct application of Birkhoff theorem is in

the positive orthant. In this case, X = R
n and K =

{(x1, . . . , xn) : xi ≥ 0, 1 ≤ i ≤ n}. Then M(x, y) =
maxi(xi/yi) and m(x, y) = mini(xi/yi) and hence Hilbert

metric expresses as

d(x, y) = log
maxi(xi/yi)

mini(xi/yi)
.

By definition, stochastic matrices A(t) define positive

monotone maps in K. By linearity, they are also homoge-

neous of degree one.

Because 1 is a fixed point for all A(t), Birkhoff theorem

implies that d(x,1) ≤ tanh(1
4∆(A(t))) d(A(t)x,1) for all

6597



t. This means that for each x ∈ intK, Birkhoff theorem

provides the Lyapunov function

VB(x) = d(x,1) = log
maxi(xi)

mini(xi)
= max log(xi)−min log(xi)

(5)

This is exactly the Lyapunov function (3) in log coordinates.

Both Lyapunov functions provide a measure of the projective

distance from [x] to [1]. Tsitsiklis Lyapunov function is

translation-invariant (V (x + λ1) = V (x)) while Birkhoff

Lyapunov function is scaling-invariant (VB(λx) = V (x) for

λ > 0). They both provide a measure of the diameter of the

convex hull of (x1, . . . , xn), which is the Lyapunov function

proposed by Moreau [10].

Birkhoff theorem is thus an early contribution that points

to two important facts: (i) the natural distance to study

the convergence of consensus algorihms is not quadratic

and (ii) the convergence analysis should concentrate on the

contraction of the interval [xmin, xmax].
Birkhoff theorem also provides a contraction coefficient.

It is given by the diameter of A(t)

∆(A(t)) = sup

{

log(
aij(t)apq(t)

aiq(t)apj(t)
) : 1 ≤ i, j, p, q ≤ n

}

.

When the diameter is finite, the contraction coefficient is

strictly smaller than one. Uniform convergence only requires

contraction over a uniform time-horizon. As a consequence,

if A(t) does not have a finite diameter at each instant, it

is sufficient for uniform convergence that the finite product

Ã(t) = A(t + T ) . . . A(t + 1)A(t) has a finite diameter.

In the symmetric case A(t) = AT (t), the existence of

a finite horizon over which the diameter is finite is closely

linked to the existence of a finite horizon over which the

communication graph is connected. This link is studied

in detail in [1]. It provides a close connection between

Birkhoff theorem and Theorem 1 in the symmetric setting.

Symmetric stochastic matrices are called doubly-stochastic

matrices (they are row-stochastic and column-stochastic) and

symmetric graphs appear most notably when the edges are

undirected.

In contrast, the asymmetric setting (that occurs in directed

communication graphs) includes situations where, despite a

uniform convergence to consensus, the diameter is infinite

over any finite horizon. In those situations, illustrated in

the next example, Birkhoff theorem does not provide a

strict contraction measure even though elementary explicit

calculations show the contraction of [xmin, xmax] under the

assumptions of Theorem 1.

Example 1: A consensus map with infinite diameter. The

matrix

A =

(

1 0
γ2 1 − γ2

)

with γ ∈ (0, 1) .

satisfies the assumptions of Theorem 1. For an initial

condition (x1, x2) in the positive orthant, the asymptotic

(consensus) value is (x1, x1). Nevertheless, the diameter of

A is infinite. Because A is lower-triangular, any finite power

Ak also has an infinite diameter. ¤

Quantifying the convergence rate with other coefficients

than Birkhoff diameter remains a topic of research, see e.g.

[2] and references therein.

It should be emphasized that Birkhoff theorem is not

restriced to linear maps (see [7], [10] for examples of

nonlinear consensus algorithms).

V. BIRKHOFF THEOREM IN THE CONE OF POSITIVE

DEFINITE MATRICES

We now turn to the application of Birkhoff theorem in the

cone of positive definite matrices. In this case, X = {X =
X∗ ∈ C

n×n} is the set of hermitian matrices, where ∗

denotes complex conjugate transpose, and K = {X º 0 |
X ∈ X}.

Then for X,Y ≻ 0, M(X,Y ) = λmax(XY −1) and

m(x, y) = λmin(XY −1). Hence Hilbert metric expresses

as

d(X,Y ) = log
λmax(XY −1)

λmin(XY −1)
.

The reader will note that an equivalent expression is

d(X,Y ) = log
λmax(Y

−1/2XY −1/2)

λmin(Y −1/2XY −1/2)
(6)

which shows the close connection of Hilbert metric to the

natural invariant metric

dR(X,Y ) = ‖ log(Y −1/2XY −1/2) ‖F (7)

=
∑n

i=1 log λi(Y
−1/2XY −1/2) .

In contrast to the Hilbert metric, the metric (7) is a Rie-

mannian metric. Both metrics share congruence invariance

properties: d(FXF ∗, FY F ∗) = d(X,Y ) for any invertible

linear map F in C
n×n. The Riemannian metric coincides

with the Fisher-information metric in statistics [14] and

with the self-concordant logarithmically homogeneous bar-

rier (−log detA) in optimization [11]. It makes the cone of

positive definite matrices geodesically complete.

Birkhoff theorem implies that any homogeneous monotone

positive map A on the cone of positive definite matrices

contracts the metric (6).

VI. NON-COMMUTATIVE CONSENSUS

A. Generalizing stochastic maps to non-commutative spaces

A key feature of consensus algorithm (1) on R
n is the

stochasticity of maps A(t), i.e. (a) they have non-negative

elements and (b) A(t)1 = 1. An interesting analog of

stochastic maps on the cone K of positive semi-definite

hermitian matrices of order n is given by the dual maps of

Kraus maps describing quantum channels (see [12] chapter

8 for a tutorial presentation of quantum channels; see [8]

chapter 4 for a physical presentation of decoherence and

Kraus maps). These dual maps are unital completely positive

maps, which admit the following characterization [6]: a linear

map Φ on K is unital completely positive if and only if it

admits the expression

∀X ∈ K, Φ(X) =
∑

i

V ∗
i XVi,

∑

i

V ∗
i Vi = I (8)
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for matrices Vi ∈ C
n×n. Completely positive maps, char-

acterized by the first line of (8), map K into itself. They

are positive linear maps on K in the terminology of the

present paper. Indeed, X ≻ 0 implies that, for w ∈ C
n,

w∗Φ(X)w =
∑

i (Viw)∗X(Viw) = 0 if and only if

Viw = 0 ∀i. But then
∑

i (Viw)∗Viw = 0 and thus w = 0
since

∑

i V ∗
i Vi = I . Complete positivity of Φ generalizes

the non-negative elements property of stochastic matrices.

The additional unital property Φ(I) = I is the analog of

A(t)1 = 1 for stochastic matrices.

This suggests the following non-commutative extension of

consensus algorithms:

X(t + 1) = Φt(X(t)), X(0) = X0 ∈ intK (9)

where for each t, the map Φt is of the form (8). The linear

consensus algorithm on R
n can be obtained as a special case

of (9), see Section VI-C.

Note that, in the same way as algorithm (1) can be

extended from the positive orthant to the entire space R
n,

the non-commutative generalization (9) can be extended to

arbitary hermitian matrices in X = {X = X∗ ∈ C
n×n}.

This is a consequence of the translation invariance property

of the algorithm: the property Φt(I) = I and linearity imply

that, if X(t) is the solution of (9) with X(0) = X0 ∈ K,

then the solution of (9) with initial condition X0+α I equals

X(t) + α I , for any α ∈ R (in particular α < 0).

B. Birkhoff theorem and convergence of non-commutative

consensus

By definition, Φt is a linear monotone positive map on the

cone of positive definite matrices (i.e. satisfying conditions

(i)-(iii) of Theorem 2). The following generalizes to the non-

commutative setting (9) the basic convexity property, {xi(t+
1), i = 1, 2...n} ⊂ [max(xi(t)), min(xi(t))] for solutions

of (1).

Lemma 1: Let Φ be a map of the form (8). Then

λmin(Φ(X)) ≥ λmin(X) and λmax(Φ(X)) ≤ λmax(X) for

any X = X∗ ∈ C
n×n.

Proof: Define Y1 := X−(λmin(X)−ε) I , for any 0 < ε ≪
1. Then Y1 ∈ intK implies Φ(Y1) ∈ intK. Since Φ(Y1) :=
Φ(X)−(λmin(X)−ε) I we have the first bound when ε → 0.

The second bound is obtained analogously with Y2 := −X+
(λmax(X) + ε) I . ¤

The following result is a direct consequence of Birkhoff

theorem and applying Lemma 1 recursively at each t.

Theorem 3: Let Φt, t ≥ 0 be a sequence of maps of the

form (8). Then the Lyapunov function

V (X) = d(X, I) = log
λmax(X)

λmin(X)

is non-increasing along the solutions of (9). Denoting

Φ̃[t,t+T ] := Φt+T ◦ · · · ◦ Φt+1 ◦ Φt, the Lyapunov function

satisfies

V (X(t + T )) ≤ tanh(1
4∆(Φ̃[t,t+T ])) V (X)

In particular, if the maps Φ̃[t,t+T ] have a finite projective

diameter for some finite horizon T , then the decrease of

V is strict over T iterations of (9), and the solution of

(9) uniformly converges to a point in the set {λI | λ ∈
[λmin(X0), λmax(X0)]}.

The following proposition is useful to characterize the

diameter of the application.

Proposition 1: Let Φ̃ an abbreviated notation for the map

Φ̃[t,t+T ] corresponding to a finite number of iterates of (9)

as in Theorem 3.

(a) Define R(Φ̃) = sup{log λmax(Φ̃(X))

λmin(Φ̃(X))
| X ∈ intK}. Then

R(Φ̃) ≤ ∆(Φ̃) ≤ 2R(Φ̃).
(b) If Φ̃(P ) has full rank for all rank-1 projectors P ∈ P =
{xx∗ | x ∈ C

n, ‖x‖2 = 1}, then the superior value in R(Φ̃)
is obtained for X ∈ P and R(Φ̃) = R̄ < ∞.

Proof: (a) ∆(Φ̃) ≥ R(Φ̃) follows by choosing Y = I
in the definition of ∆. ∆(Φ̃) ≤ 2R(Φ̃) follows from the

triangle inequality on the Hilbert metric.

(b) If Φ̃(P ) has full rank for all P ∈ P , then RP (Φ̃) :=

sup{log λmax(Φ̃(P ))

λmin(Φ̃(P ))
| P ∈ intP} takes a finite value,

since P is compact and P 7→ log λmax(Φ̃(P ))

λmin(Φ̃(P ))
is continuous.

Every X ∈ K can be expressed as a sum of positively

weighted rank-1 projectors. Since λmax(X) and λmin(X)
are respectively convex and concave functions of X ∈ K
and d(X, I) is invariant by scaling of X , we directly have

RP (Φ̃) = R(Φ̃). ¤

Note that a finite diameter for the finitely iterated map

is only a sufficient condition to prove strict contraction.

Very much as in the classical consensus setting, there are

situations where the strict decay of the Lyapunov function

will be established by direct computations despite an infinite

diameter over any finite horizon.

C. Consensus in R
n as a special case of non-commutative

consensus

There is an obvious bijection between the positive orthant

of R
n and the set of diagonal positive semidefinite matrices

D = {X ∈ R
n×n | X º 0, xij = 0 if i 6= j}. In this

section we show how consensus in R
n can be recovered as

a special case of the non-commutative generalization, when

the state is restricted to diagonal matrices in some fixed basis.

These diagonal matrices do all commute with each other; this

justifies the appellation “non-commutative” consensus for the

generalized case of non-diagonal matrices.

Denote by S the set of all permutation matrices, i.e.

matrices with exactly one element equal to 1 on each row

and column, and all other entries 0. Note that S∗S = I for

any S ∈ S. Hence a map

X → ΦS(X) =
∑

i

Wi S∗
i XSiWi (10)

with Si ∈ S , Wi ∈ D ∀i

and
∑

i

W 2
i = I

is of the form (8). Moreover, ΦS defined by (10) maps D
into itself. Indeed, the map X → S∗

i XSi permutes in the
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same way both the rows and columns of X; for X ∈ D this

amounts to permuting its diagonal elements. The Wi further

scale each element. This suggests a way to write the classical

linear consensus (1) in the form of (9) on D where xi of (1)

is identified with xii of (9). For instance, take Si to be the

permutation sending xjj to position (j ⊕ i, j ⊕ i) for all j,

where ⊕ denotes addition modulo n. Further take element

(j ⊕ i, j ⊕ i) of Wi equal to
√

aj⊕i, i. Then (10) with this

setting is equal to (1); in particular,
∑

i (W 2
i )jj =

∑

i aji =
1. (This construction is not unique.)

D. Birkhoff theorem on dual and convergence of iterated

Kraus maps

For simplicity, we consider a fixed (time-invariant) map Φ
for the rest of the paper. The adaptation to the time-varying

case is straightforward but left for an extended version of

the paper.

The dual map Ψ of Φ defined by (8) is the usual framework

to describe the evolution of the density matrix characterizing

a state in a quantum channel, see e.g. [12]. It is called a Kraus

map and it admits the form

∀Z ∈ K, Ψ(Z) =
∑

i

ViZV ∗
i (11)

with still
∑

i V ∗
i Vi = I . The unital property of Φ becomes

a trace-preserving property for the dual map Ψ. Kraus

maps are thus trace preserving completely positive maps. In

quantum applications, the density matrix typically evolves

according to

Z(t + 1) = Ψ(Z(t)), Z(t) ∈ K1 := {X ∈ K | tr(X) = 1}
(12)

where the Vi defining Ψ are matrices in C
n×n. From

Theorem 3 and Proposition 1, we can deduce the following

convergence result for Ψ.

Theorem 4: Let Ψ defined by (11). Assume that N -iteration

of its dual map Φ defined by (8) admits a finite projective

diameter ∆(ΦN ) < ∞, for some integer N . Then, there

exists a unique fixed point Z̄ of Ψ in K1, and for any Z0 ∈
K1, we have limt→+∞ Z(t) = Z̄. For any initial X0 ∈ X of

X(t) defined by (9), we have limt→+∞ X(t) = tr(Z̄X0)I .

Moreover the convergence is exponential.

Proof: Φ̃t satisfies assumptions of Theorem 3. Thus for any

initial hermitian matrix X0, X(t) converges exponentially to-

wards f(X0)I where f(X0) ∈ [λmin(X0), λmax(X0)] is the

consensus value, which depends on X0. Since Φ̃t is a linear

map on X , f is also a linear map on X . Therefore there exists

a unique hermitian matrix Z̄ such that f(X0) = tr(Z̄X0)
∀X0 ∈ X . For all t we have, by duality, tr(Z(t)X0) =
tr(Z0 X(t)). Thus for any X0 ∈ X , tr(Z(t)X0) converges

exponentially towards tr(Z0 f(X0)I) = f(X0) tr(Z0) =
f(X0) = tr(Z̄X0). Thus Z(t) converges exponentially

towards Z̄, which is positive semidefinite since K is closed.

tr(Z̄) = 1 since tr(Z(t)) ≡ 1. ¤

The relation between primal and dual maps can also be

made for the classical consensus in R
n. Indeed, viewing (1)

as the dual, the primal is

z(t + 1) = A∗z(t), z(t) ∈ R
n (13)

where A∗ is now column stochastic. This implies that
∑

i zi(t) is conserved. Analogously to Theorem 4, the scalar

z∗Ax can be expressed as evolving either on the primal or

on the dual; thus if (1) converges to consensus for all x0,

then (13) converges to some z̄ (not necessarily consensus).

E. Illustration on quantum channel applications

Example 2: spin rotations. We consider an open quantum

channel where a stochastic environment influences a system

with density matrix ρ ∈ C
2×2 — that is a two-level system

like e.g. a spin or qbit (see [8], [12]). Generalizing [12], we

assume that at each iteration, two different “spin-rotations”

can be applied to the system with probabilities p and 1 − p
depending on the stochastic environment. The expectation

Z ∈ C
2×2 of all stochastic (Monte-Carlo) trajectories for ρ

is then characterized by

Z(t + 1) = V0ZV ∗
0 + V1ZV ∗

1 with (14)

V0 := rz =
√

p

(

eiα 0
0 e−iα

)

V1 := rx =
√

1 − p

(

cos(β) i sin(β)
i sin(β) cos(β)

)

.

Note that
∑

k V ∗
k Vk =

∑

k Vk V ∗
k = I . This implies that the

quantum stochastic map is both trace-preserving and unital.

In fact the Kraus map Φ and its dual Ψ are equal, modulo

inversion of the angles α and β.

Therefore, we can view (14) directly (instead of its dual)

as a non-commutative consensus iteration Φ. We compute

that ∆(Φk) < ∞ for k ≥ 2, except if (a) α = 0modπ
or (b) β = 0modπ, or (c) (2α, 2β) = (0, 0)modπ. Thus

except for these special cases, we can apply Proposition 1

and Theorem 3 to conclude that Z converges to 1
2 I . The

physical interpretation is that, when stochastically alternating

between two generic rotations, the probability distribution for

the state becomes completely uniform after many iterations.

A Kraus map that is both unital and trace-preserving

can be considered as the analog of a doubly stochastic

map in classical consensus theory. The consensus value

1/2 for a trace-perserving two-dimensional quantum map

is reminiscent of the average-preserving property of doubly

stochastic maps.

For the particular value β = π
2 , the set of diagonal matrices

X is invariant under (14). In fact,

Φ(X) =

(

px11 + (1 − p)x22 0
0 px22 + (1 − p)x11

)

for a diagonal matrix X = diag{x11, x22} which can be

interpreted as a classical consensus algorithm for the doubly-

stochastic map

A =

(

p (1 − p)
(1 − p) p

)

.

¤
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Example 3: spontaneous emission. Consider a two-level

quantum system as in Example 2. The expectation trajectory

of the system undergoing the stochastic process of sponta-

neous emission is described by

V0 := Vno emission =

(

1 0

0
√

1 − γ2

)

V1 := Vphoton emission =

(

0 γ
0 0

)

(15)

with small γ equal to the quotient of the chosen time

discretization step by the expected lifetime of the unstable

excited state. The dual of the Kraus map is

Φ : X =

(

x11 x12

x∗
12 x22

)

−→

Φ(X) =

(

x11 x12

√

1 − γ2

x∗
12

√

1 − γ2 x22(1 − γ2) + x11 γ2

)

.

From the simple form of the map, it is easy to guess

asymptotic convergence to the consensus state x11I . This

property is reminiscent of the consensus property of a

directed graph where the root agent eventually imposes its

value to all others. Indeed, restricting Φ to diagonal X
results in the commutative consensus map of Example 1.

(Following the construction proposed in Section VI.C, one

has V0 = S0W0 and V1 = S1W1 with W0 = diag{0, γ} and

W1 = diag{1,
√

1 − γ2}.)

As in Example 1, this is a situation where the diameter of

the quantum stochastic map is infinite for any finite iteration,

yet the contraction of spectrum range can be computed

explicitly. The calculation gives

[λmin(Φ(X)), λmax(Φ(X))] = [λmin(X)+ρ+, λmax(X)−ρ−]

for ρ± = γ2
(
√

(x11−x22

2 )2 + |x12|2 ± (x11−x22

2 )
)

. This

shows the strict decay of the Lyapunov function V at each

iteration. ¤

VII. CONCLUSION

We studied some implications of Birkhoff theorem for

the convergence analysis of consensus algorithms in two

different cones: the positive orthant of the euclidean space

and the cone of hermitian positive definite matrices. In

the positive orthant, the application of Birkhoff theorem to

linear stochastic maps provides an interpretation of Tsitsiklis

Lyapunov function as the Hilbert distance to consensus in

log coordinates. This connection does not seem to have

been made in the literature. In the cone of positive definite

matrices, the application of Birkhoff theorem provides a

framework to study the convergence of quantum stochastic

maps. This framework suggests to study the contraction of

the interval [λmin, λmax] over finite horizons. To the authors’

knowledge, this approach is novel. The analogy with the

classical consensus problem suggests that the potential of

this approach is in situations where the stochastic map is

not self-adjoint (the analog of directed communication graph

in classical consensus theory) and/or in situations where the

stochastic map is time-dependent (the analog of time-varying

communication graphs in the classical consensus theory).

These are the situations where common quadratic Lyapunov

functions may fail to exist. The analog of Theorem 1 in the

non-commutative setting remains to be characterized.
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