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Abstract:
Permanent magnet machines with both magnetic saturation and saliency effects can be directly
described via Euler-Lagrangian formulation with complex currents. The Lagrangian is the sum
of a mechanical kinetic energy and a magnetic Lagrangian. This second term is expressed in
terms of rotor angle, complex stator and rotor magnetizing currents. Via simple modification
of magnetic Lagrangian we derive a non-trivial dynamical model describing permanent-magnet
machines with both saturation and saliency. We propose an experimental validation of such
models on a customized torque machine of 1.2 kW. This first validation relies on injections of
high frequency oscillations on the stator voltage. According to the proposed saturation model,
the resulting amplitudes of the current-ripples is an increasing function of the current offset.
Such dependance is effectively observed experimentally and confirmed by simulations.

Keywords: Lagrangian with complex coordinates, magnetic saturation, saliency,
permanent-magnet machine, high frequency injection.

1. INTRODUCTION

Modeling permanent magnet machines with magnitude
saturation is not a straightforward task and could lead
to complicated developments when a detailed physical de-
scription is included (see, e.g.,Chiasson [2005], Boldea and
Nasar [2002]). Even if such effects are not dominant they
play an important at low speed and/or high torque and
stator current. The contributions of this communication
are as follows :

∙ simples models (see (10)), including simultaneously
saturation and saliency and extending directly usual
models used in the literature.
∙ A first experimental validation of such magnetic sat-

uration models for a 1.2 kW machines. It relies on
high frequency voltage injection and on the measures
of the resulting ripples on the stator current.

We exploit here Basic et al. [2009] that proposes an
extension to complex electrical variable of Lagrangian
modeling of electrical machines.

In section 2 we recall the simplest model of a permanent
magnet machine and its Euler-Lagrange formulation based
on the two scalar components of the complex stator cur-
rent. We recall the complexification procedure and explain
how to derive the Euler-Lagrange equations directly with

complex stator current. Then we provide the general form
of physically consistent models (equation (5)). Finally
we obtain, just by simple modification of the magnetic
Lagrangian, physically consistent models with magnetic
saturation and saliency effects (equation (10)). We also
derive the associated magnetic energies of such non-linear
magnetic models. In section 3, we propose a simple exper-
imental validation of the nonlinear magnetic model intro-
duced in previous section (equation (10) with lambda given
by (12)). The validation is based on high frequency volt-
age injection and measurement of the associated current-
ripples. Perturbations techniques provide analytic expres-
sions of these ripples, expressions depending on the level
of permanent currents. Experimental data on a 1.2 kW
machine confirm the fact that the current ripples are an
increasing function of the current static offset. These ex-
perimental data also confirm that the injected frequencies
are not too high (less than a few kHz) and that the main
flux distribution is not altered by skin effects in magnets
and laminations and that magnetic core losses could be
neglected here. Simulations confirm that such dependance
is typical of such magnetic saturations.



2. EULER-LAGRANGE MODELLING WITH
COMPLEX CURRENTS AND VOLTAGES

2.1 The usual model and its Euler-Lagrange formulation

In the (�, �) frame (total power invariant transformation),
the dynamic equations read (see, e.g., Chiasson [2005],
Leonhard [1985]):⎧⎨⎩

d

dt

(
J�̇
)

= npℑ
((
�̄e|np�

)∗
{s

)
− �L

d

dt

(
�{s + �̄e|np�

)
= us −Rs{s

(1)

where

∙ ∗ stands for complex-conjugation, | =
√
−1 and np is

the number of pairs of poles.
∙ � is the rotor mechanical angle, J and �L are the

inertia and load torque, respectively.
∙ {s ∈ ℂ is the stator current, us ∈ ℂ the stator voltage.
∙ � = (Ld + Lq)/2 with inductances Ld = Lq > 0 (no

saliency here).
∙ The stator flux is �s = �{s+ �̄e|np� with the constant
�̄ > 0 representing to the rotor flux due to permanent
magnets.

It is well known that (1) derives from a variational prin-
ciple (see, e.g.,Ortega et al. [1998]) and thus can be
written as Euler-Lagrange equations with source terms
corresponding to energy exchange with the environment.
Consider the additional complex variable qs ∈ ℂ defined
by d

dtqs = {s. The Lagrangian associated to this system
is the sum of the mechanical kinetic Lagrangian ℒc and
magnetic one ℒm defined as follows:

ℒc =
J

2
�̇2, ℒm =

�

2

∣∣{s + Ime
|np�

∣∣2 (2)

where Im = �̄/� > 0 is the permanent magnetizing
current.

Take the complete Lagrangian ℒ = ℒc + ℒm as a real
function of the generalized coordinates q = (�, qs�, qs�)

and generalized velocities q̇ = (�̇, {s�, {s�):

ℒ(q, q̇) =
J

2
�̇2

+
�

2

(
({s� + Im cosnp�)

2 + ({s� + Im sinnp�)
2
)

(3)

with qs = qs�+|qs� , (qs� and qs� real) and q̇s = {s = {s�+
|{s� , ({s� and {s� real). Then the mechanical equation
in (1) reads

d

dt

(
∂ℒ
∂�̇

)
− ∂ℒ
∂�

= −�L

where −�L corresponds to the energy exchange through
the mechanical load torque. Similarly, the real part of
complex and electrical equation in (1) reads

d

dt

(
∂ℒ
∂q̇s�

)
− ∂ℒ
∂qs�

= us� −Rs{s�

and its imaginary part

d

dt

(
∂ℒ
∂q̇s�

)
− ∂ℒ
∂qs�

= us� −Rs{s�

since ∂ℒ
∂qs�

= ∂ℒ
∂qs�

= 0 and q̇s = {s. The energy exchanges

here are due to the power supply through the voltage us

and also to dissipation and irreversible phenomena due to
stator resistance represented by the Ohm law −Rs{s.

2.2 Euler-Lagrange equation with complex current

The drawback of such Lagrangian formulation is that we
have to split into real and imaginary parts the generalized
coordinates associated to qs and q̇s = {s. We do not
preserve the elegant formulation of the electrical part
through complex variables and equations. We will show
here that it is still possible to extend such complex
formulation to the Euler-Lagrange equations. It seems that
it has never been used for electrical machines. We recall
here below the principle of such complexification (usual
in quantum electro-dynamics) and then applied it to the
above Euler-Lagrange formulation.

Consider a Lagrangian system with two generalized coordi-
nates q1 and q2 corresponding to a point q = q1+|q2 in the
complex plane (| =

√
−1). The Lagrangian ℒ(q1, q2, q̇1, q̇2)

is a real function and the Euler-Lagrange equations are

d

dt

(
∂ℒ
∂q̇1

)
− ∂ℒ
∂q1

= 0,
d

dt

(
∂ℒ
∂q̇2

)
− ∂ℒ
∂q2

= 0.

Using the complex notation q, we have q1 = q+q∗

2 and

q2 = q−q∗
2| , thus ℒ is also a function of q, q∗, d

dtq and d
dtq
∗:

ℒ̃(q, q∗, q̇, q̇∗) ≡ ℒ
(
q + q∗

2
,
q − q∗

2|
,
q̇ + q̇∗

2
,
q̇ − q̇∗

2|

)
.

The above identity defines ℒ̃ as a function of the 4 complex
independent variables (q, q∗, q̇, q̇∗). Simple computations
show that

2
∂ℒ̃
∂q

=
∂ℒ
∂q1
− | ∂ℒ

∂q2
, 2

∂ℒ̃
∂q∗

=
∂ℒ
∂q1

+ |
∂ℒ
∂q2

and similarly

2
∂ℒ̃
∂q̇

=
∂ℒ
∂q̇1
− | ∂ℒ

∂q̇2
, 2

∂ℒ̃
∂q̇∗

=
∂ℒ
∂q̇1

+ |
∂ℒ
∂q̇2

.

Thus with this complex notation, we can gather the two
real Euler-Lagrange equations into a single complex one

d

dt

(
∂ℒ
∂q̇1

+ |
∂ℒ
∂q̇2

)
=
∂ℒ
∂q̇1

+ |
∂ℒ
∂q̇2

that reads now simply

d

dt

(
2
∂ℒ̃
∂q̇∗

)
− 2

∂ℒ̃
∂q∗

= 0.

Let us apply this complexification procedure to the La-
grangian ℒ(�, qs�, qs� , �̇, q̇s�, q̇s�) defined in (3). The com-
plexification process only applies to qs and q̇s = {s by
considering ℒ as a function of (�, qs, q

∗
s , �̇, {s, {

∗
s):

ℒ(�, �̇, {s, {
∗
s) =

J

2
�̇2+

�

2

(
{s + Ime

|np�
) (
{∗s + Ime

−|np�
)
.

Then the usual equations (1) read

d

dt

(
∂ℒ
∂�̇

)
=
∂ℒ
∂�
− �L, 2

d

dt

(
∂ℒ
∂{∗s

)
= us −Rs{s

since ∂ℒ
∂q∗s

= 0 and ∂ℒ
∂q̇∗s

= ∂ℒ
∂{∗s

.

More generally, the magnetic Lagrangian ℒm is a real value
function of �, {s and {∗s that is 2�

np
periodic versus �. Thus



any Lagrangian ℒPM representing a 3-phases permanent
magnet machine admits the following form

ℒPM =
J

2
�̇2 + ℒm (�, {s, {

∗
s) (4)

Consequently, any model (with saliency, saturation, space-
harmonics, ...) of permanent magnet machines admits the
following structure:

d

dt

(
J�̇
)

=
∂ℒm
∂�
− �L,

d

dt

(
2
∂ℒm
∂{∗s

)
= us −Rs{s (5)

and we recover the usual equation with �s = 2∂ℒm∂{∗s
corresponding to the stator flux. The model considered
here above derives from a magnetic Lagrangian of the form

ℒm =
�

2

∣∣{s + Ime
|np�

∣∣2
with � and Im are two positive parameters.

Many other formulations of ℒm are possible and depend
on particular modeling issues. Usually, the dominant part

of ℒm will be of the form �̄
2

∣∣{s + Ime
|np�

∣∣2 (�̄, Im positive
constants) to which is added corrections terms that are
”small” scalar functions of (�, {s, {

∗
s).

The magnetic energy Hm does not coincides with ℒm. It
is given by the Hamiltonian, Hm, defined via a Legendre
transform on ℒm. Following the complex formulation used
in quantum electro-dynamics (see [Cohen-Tannoudji et al.,
1989, page 88, equation (A.30)]) we have:

Hm (�, {s, {
∗
s) = {s

∂ℒm
∂{s

(�, {s, {
∗
s) + {∗s

∂ℒm
∂{∗s

(�, {s, {
∗
s)−ℒm (�, {s, {

∗
s) .

(6)

Notice that, when ℒm = �
2

∣∣{s + Ime
|np�

∣∣2 with � and

Im constant, we get Hm = �
2

(
∣{s∣2 − I2

m

)
and we recover

the usual magnetic energy �
2 ∣{s∣

2 up to the constant

magnetizing energy �
2 I

2
m. In next two sub-sections, we

introduce some modifications to this standard Lagrangian
ℒm to take into account saliency and saturation effects
and derive the corresponding magnetic energy Hm.

2.3 Saliency models

Adding to ℒm the correction −�2ℜ
(
{2se
−2|np�

)
with ∣�∣ < �

(ℜ means real part) provides a simple way to represent
saliency phenomena while the dominant part of the mag-
netic Lagrangian (and thus of the dynamics) remains at-

tached to �
2

∣∣{s + Ime
|np�

∣∣2. With magnetic Lagrangian of
the form

ℒm =
�

2

(
{s + Ime

|np�
) (
{∗s + Ime

−|np�
)

− �

4

((
{∗se

|np�
)2

+
(
{se
−|np�

)2)
(7)

where � = (Ld +Lq)/2 and � = (Lq −Ld)/2 (inductances
Ld > 0 and Lq > 0), equations (5) become (�Im = �̄)⎧⎨⎩

d

dt

(
J�̇
)

= npℑ
(
(�{∗s + �̄e−|np� − �{se−2|np�){s

)
− �L

d

dt

(
�{s + �̄e|np� − �{∗se2|np�

)
= us −Rs{s

(8)
and we recover the usual model with saliency effect. In this
case the magnetic energy Hm = {s

∂ℒm
∂{s

+ {∗s
∂ℒm
∂{∗s
− ℒm is

given by:

Hm =
�

2

(
∣{s∣2 − I2

m

)
− �

4

((
{∗se

|np�
)2

+
(
{se
−|np�

)2)

2.4 Saturation and saliency models

We can also take into account magnetic saturation effects,
i.e., the fact that inductances depend on the currents.
Let us assume that only the mean inductance � in (7)
depends on the modulus of {s+Ime

|np� and that � remains
constant:

� = �(∣{s + Ime
|np�∣) = �

(√
({s + Ime|np�)({∗s + Ime−|np�)

)
.

The derivative of � versus the modulus of {s + Ime
|np� is

denoted by �′. The magnetic Lagrangian now reads

ℒm =
�
(∣∣{s + Ime

|np�
∣∣)

2

∣∣{s + Ime
|np�

∣∣2
− �

4

((
{∗se

|np�
)2

+
(
{se
−|np�

)2)
. (9)

The dynamics is given by (5) with such ℒm. Since

∂�

∂�
= np

ℑ
(
Ime

−|np�{s
)

∣{s + Ime|np�∣
�′,

∂�

∂{∗s
=

{s + Ime
|np�

2 ∣{s + Ime|np�∣
�′

we get the following model structure with both saliency
and magnetic saturation effects:⎧⎨⎩

d

dt

(
J�̇
)

= npℑ
((

Λ
(
{∗s + Ime

−|np�
)
− �{se−2|np�

)
{s
)
− �L

d

dt

(
Λ
(
{s + Ime

|np�
)
− �{∗se2|np�

)
= us −Rs{s

(10)

where Λ = �+
∣{s+Ime|np�∣

2 �′. It is interesting to compute
the magnetic energy Hm from general formula (6):

Hm =
�+

∣∣{s + Ime
|np�

∣∣�′
2

∣{s∣2

+

∣∣{s + Ime
|np�

∣∣�′
2

Imℜ
(
{se
−|np�

)
− �

2
I2
m −

�

4

((
{∗se

|np�
)2

+
(
{se
−|np�

)2)
. (11)

Such magnetic energy formulae are not straightforward
but there are a direct consequence of such variational
formulation of the dynamics and its setting with complex
electrical variables.

We will assume now and in the sequel that � admits the
following parametric form:

�({) = 2�0

√
1 +

(
{
{sat

)2

− 1(
{
{sat

)2 (12)

with two positive parameters �0 > 0 and {sat > 0. It yields
for Λ to the following simple expression:

Λ({) =
�0√

1 + ({/{sat)
2

(13)

Thus with (13), the model (10) describes simultaneously
saliency and saturation with 4 physically meaning positive
parameters �, �0, Im and {sat. We will see that such
expressions are well adapted for saturation modelling.



3. A FIRST EXPERIMENTAL VALIDATION

3.1 Description of the test

Assume that the rotor is blocked via a mechanical brake
at position � = 0. Consider the following voltage inputs

us(t) = urs + uasf(Ωt) (14)

where

∙ the complex quantities urs and uas are constant;
∙ the real-value function  7→ f() is 2� periodic with

a zero mean,
∫ 2�

0
f() d = 0;

∙ the pulsation Ω is large (typically around 1kHz).

In the sequel F denotes the primitive of f , dF
d = f , that

admits a zero mean,
∫ 2�

0
F () d = 0. Then the electrical

dynamics obey to the following differential implicit equa-
tion:

d

dt
(Λ ({s + Im)− �{∗s) = urs + uasf(Ωt)−Rs{s (15)

where Λ is given by (13). Set {rs = urs/Rs its asymptotically
and hyperbolically stable solution when uas = 0. For
Ω large enough, the solution of (15) converges towards
a small periodic orbits around {rs: {s(t) = {rs + �{s(Ωt)
where the complex-value function  7→ �{s() is 2�-
periodic with zero mean. �{s(Ωt) corresponds to the so-
called current ripples resulting from the high frequency
injection uasf(Ωt). The above statement can be rigorously
proved by averaging theorem (see, e.g., [Guckenheimer
and Holmes, 1983, theorem 4.1.1, page 168]) since the
unperturbed system is asymptotically stable (for ∣�∣ small
enough, it is in fact a strict contraction in the sense
of Lohmiler and Slotine [1998] for the Euclidian metric
on the stator flux in ℂ).

Standard asymptotics for Ω tending to +∞ show that
the current ripples �{s satisfy to the following complex
equation:(

Λ +
∣{rs + Im∣Λ′

2

)
�{s +

(
({rs + Im)

2
Λ′

2 ∣{rs + Im∣
− �

)
�{∗s

=
uas
Ω
F (Ωt) +O

(
∣uas ∣2

Ω2

)
where Λ and its {-derivative Λ′ are evaluated at { = ∣{s +
Im∣. Assume urs real, then {rs = urs/Rs is real too and the
above formulae simplify a little(

Λ +
∣{rs + Im∣Λ′

2

)
�{s +

(
∣{rs + Im∣Λ′

2
− �

)
�{∗s

=
uas
Ω
F (Ωt) +O

(
∣uas ∣2

Ω2

)
. (16)

For uas real, �{s is real and given by:

(Λ + ∣{rs + Im∣Λ′ − �) �{s =
uas
Ω
F (Ωt) +O

(
∣uas ∣2

Ω2

)
.

Using (13), we have⎛⎜⎝ �0(
1 +

(irs+Im)2

{2sat

) 3
2

− �

⎞⎟⎠ �{s ≈
uas
Ω
F (Ωt). (17)

Fig. 1. Experimental data. The blue curve corresponds to
the amplitudes of the current-ripples (obtained via
a simple PLL-filter) ; the red curve to the current
measures {s (d-axis aligned with the rotor � = 0); we
observe an increasing dependance of the ripples versus
the current offset {rs.

We should observe experimentally that, for the same high
frequency voltage excitation, the amplitudes of the current
ripples depend on the current offset {rs.

3.2 Simulation vs experimental results for a 1.2 kW
machine

We take a permanent magnet synchronous motor of
1.2 kW from the manufacturer Bernecker+Rainer, Industrie-
Elektonik Ges. M.b.h, Eggelsberg, Austria (reference:
8YS-H0004R0.029-0). For this motor, we have np = 6,
the nominal current In = 2.4 A and Rs = 6.7 Ohms. The
magnetizing current Im is around 2.6In, the saturation
current {sat is about 5In, the main inductance �0 is equal
to 92.6mH and the saliency � almost vanishes. Thus, for
this motor and according to (17), the amplitude of the
current-ripples should be an increasing function of {rs when
{rs + Im > 0.

The parameters of the high frequency voltage injection are

Ω/2� = 500Hz, ∣uas ∣ = 100 V and f() = sign(sin()).

We use five real values for the constant voltage injections
urs leading to five levels for {rs ∈ {2In, In, 0,−In,−2In}. For
each value of {rs, we estimate the amplitude of the current-
ripples via a simple PLL-filter. The experimental results
are reported on figure 1.

We observe, as predicted via the theory, that this am-
plitude decreases when {rs decreases. The simulation re-
sults are shown in figure 2. This dependance cannot be
explained via the standard model (8) with linear induc-
tances and results from non-negligible magnetic saturation
effects. Indeed, the simulation results in figure 3, obtained
with linear inductances, show constant ripples indepen-
dently of the total magnetizing current ∣{s + Im∣. In the
case of the standard model, we define the value of the
inductance � by

� =
�0√

1 + (Im/{sat)
2

equals to 82.2mH.
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Fig. 2. Simulation data with saturation model. The first
curve (up) corresponds to the amplitudes of the
current-ripples ; the red curve to the current measures
{s (d-axis aligned with the rotor � = 0); as predicted
by theory, we observe in simulation an increasing
dependance of the ripples versus the current offset {rs.
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Fig. 3. Simulation data with standard model without
saturation. The first curve (up) corresponds to the
amplitudes of the current-ripples ; the red curve
to the current measures {s (d-axis aligned with the
rotor � = 0); as predicted by theory, we observe in
simulation that ripples stay constant independently
of the current offset {rs.

We chose here a particular context with � = 0 in order
to get the simplest computation and experimental test of
such modelling. The above developments remain also valid
when � is no more fixed to 0 and when saliency (level
and position) induced by saturation depends on the load
torque.

4. CONCLUSION

The saturation models (10) for permanent-magnet ma-
chine with � given by (12) are based on variational prin-

ciples and Lagrangian formulation of the dynamics. Ex-
perimental data provide a first validation of such mod-
elling procedures that preserve the physical insight while
maintaining a synthetic view without describing all the
technological and material details.

More complete validations could be done: at non zero
rotor velocity, the proposed computations of the current
ripples are still possible since they are obtained via usual
perturbations techniques. More complex models can be
developed with � depending also on ∣{s+Im∣. Such models
can also be used for control purposes: adaptation of usual
control schemes to take into account saturation effects are
under study.
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