
Non-linear observer on Lie Groups for

left-invariant dynamics with right-left equivariant

output ⋆

Silvere Bonnabel ∗ Philippe Martin and Pierre Rouchon ∗∗

∗ Department of Electrical Engineering and Computer Science (Montefiore
Institute B28), University of Liège, Belgium
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Abstract: We consider a left-invariant dynamics on an arbitrary Lie group. We show that it is possible,
when the output map is right-left equivariant, to build non-linear observers such that the error equation
is autonomous. The theory is illustrated by an inertial navigation example.
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1. INTRODUCTION

Symmetries have been used in the design of controllers and
in optimal control theory (Fagnani and Willems [1993], Bloch
et al. [1996], Koon and Marsden [1997], Grizzle and Marcus
[1985], Jakubczyk [1998], Respondek and Tall [2002], Martin
et al. [2004]). To our knowledge far less for the design of
observers. In Mahony et al. [2005], Hamel and Mahony [2006],
Creamer [1996] some observers are developed for attitude es-
timation using in particular gyros measurements and quater-
nions. In Mahony et al. [2005], Hamel and Mahony [2006]
the authors use the group structure of SO(3) and its parame-
terizations by quaternions to derive observers. In section 2 we
make an observer for attitude estimation using gyrometers, ac-
celereometers, and magnetic measurements as in Mahony et al.
[2005]. The construction of the observer relies on symmetries
too and the construction method can be found in Aghannan
and Rouchon [2002], Bonnabel and Rouchon [2005], Bonnabel
et al. [2006] . The observer obtained is very close to the one
of Mahony et al. [2005] but it does not strictly respects the
symmetries and it is such that the error equation is autonomous.
A preliminary version of this paper in french can be found in the
proceedings of the CIFA 2005. Several modifications have been
made. The example has evolved since the observer does not rely
anymore on an algebraic inversion of the attitude quaternion
and is thus much more robust. Moreover the link between the
theory section of this paper and the general theory of invariant
observers (Bonnabel et al. [2006]) was not fully understood at
the time of the CIFA (it is now clear that we are considering a
particular case of the general theory as explained in section 3.2).
Moreover the theory developed in this paper explains why the
error equation of the velocity-aided inertial navigation example
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of Bonnabel et al. [2006] is completely autonomous in the
general case. We prove now that this result is compatible with
the general theory of Bonnabel et al. [2006].

The first contribution of the paper (section 2) is to derive an
observer (system (2)) for attitude estimation using gyros, ac-
celeros, and magnetic measurements such that the error equa-
tion is autonomous (equation (3)). Thus the state-error dynam-
ics is independent of the trajectory and of the time t. The
second contribution (section 3) is the generalization to the case
of a left-invariant dynamics with right-left equivariant output
on a Lie group. It is shown, that “mixing” left and right in-
variance one can obtain observers (equation (7)) such that the
error equation (equation (8)) is autonomous. Their construction
relies on methods relative to the construction of invariant ob-
servers Aghannan and Rouchon [2002], Bonnabel and Rouchon
[2005], Bonnabel et al. [2006].

2. EXAMPLE

2.1 Magnetic-aided inertial navigation

It is necessary in order to pilot a flying body to have at least
a good knowledge of its orientation. This holds for manual,
or semi automatic or automatic piloting. In low-cost or “strap-
down” navigation systems the measurements of angular veloc-
ity ω and acceleration a by rather cheap gyrometers and ac-
celerometers are completed by a measure of the earth magnetic
field B. These various measurements are merged (data fusion)
according to the motion equations of the system. The estima-
tion of the orientation is generally performed by an extended
Kalman filter. But the use of extended Kalman filter requires
much calculus capacity because of the matrix inversions. The
orientation can be described by an element of the group of
rotations SO(3), which is the configuration space of a body
fixed at a point. We identify the orientation to the rotation which
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maps the earth frame (frame attached to the earth) to the body
frame (frame attached to the body).

2.2 Motion equations

In the appendix we recall the link between quaternions and
rotation matrices. Indeed elements of R

3 can be looked at as
quaternions. We rather use quaternions than rotation matrices
since they are more suited to computation and simulations.
Indeed quaternions whose norm is 1 provide a global param-
eterization of SO(3) and it is easier to maintain the norm of
a quaternion q equal to 1 than maintain a rotation matrix in
SO(3). The motion equations of kinematics for a flying rigid
body write thanks to quaternions H

d

dt
q =

1

2
q ·ω (1)

where

• q ∈ H is the quaternion of norm one which represents the
rotation which maps the earth frame to the body frame,

• ω(t) is the instantaneous angular velocity vector measured
by gyroscopes,

• · is the non commutative quaternion multiplication.

So the state of the system is the quaternion q. We make an
additional assumption. Indeed the accelerometers measure a =
d
dt

v + q−1 · G · q where d
dt

v is the acceleration of the center
of mass of the body and G is the gravity vector. We suppose
the acceleration of the center of mass is small with respect to
‖G ‖ (quasi-stationary flight). Thus we make the approximation

a≃ q−1 ·G ·q. The output is the specific acceleration yG = a and
the magnetic field B measured by magnetometers in the body
frame yB = q−1 ·B ·q. The measured output y are thus

y = (yG,yB) = (q−1 ·G ·q,q−1 ·B ·q)

2.3 A non-linear observer

A Luenberger observer or an extended Kalman filter is very
“linear” by construction. If q̂ denotes the estimated state, the
usual correction terms are linear functions of the output errors
(q−1 ·B · q− q̂−1 ·B · q̂,q−1 ·G · q− q̂−1 ·G · q̂). We consider a
class of non-linear observers which take into account the geo-
metric structure of the dynamics (1). They have the following
form:

d

dt
q̂ =

1

2
q̂ ·ω +

(

3

∑
i=1

Ei ei

)

· q̂ (2)

where the Ei are smooth scalar functions of the output errors
q̂ · yBq̂−1 −B and q̂ · yG · q̂−1 −G vanishing when these errors
vanish:

Ei

(

q̂ · yB · q̂
−1 −B , q̂ · yG · q̂−1 −G

)

with Ei(0,0) = 0. The ei are the quaternions associated to the

canonical basis of R
3 (see appendix).

2.4 The error system

Instead of considering linear state-errors of the type ∆q :=
q̂ − q we consider the equivalent state-errors which use the
quaternions multiplication · (instead of −):

r := q̂ ·q−1

Let

E(r) =
3

∑
i=1

Ei

(

r ·B · r−1 −B , r ·G · r−1 −G
)

ei

It is an invariant quantity by right multiplication H ∋ q 7→ q ·
h ∈ H for any h ∈ H. We have

ṙ = q̇ ·q−1 +q ·
(

−q−1 · q̇ ·q−1
)

=

(

1

2
q ·ω −E(r) · q̂−

1

2
q ·ω

)

·q−1

= E(r) · r

Thus

ṙ = E(r) · r (3)

where Ei(0,0) = 0. The error dynamics r = q̂ · q−1 does not
depend on the trajectory t 7→ q(t). This reminds linear station-
ary theory, since the error obeys an autonomous differential
equation.

2.5 First order approximation

A small error corresponds to r close to 1, where 1 is the unit
quaternion. The choice of e3 being arbitrary one can assume
e3 = G. Moreover one can suppose the earth magnetic field B
to be horizontal by considering rather B− (B.G)G than B, where
. represents here the scalar product. It is easier to prove global
convergence with Lyapunov arguments when we consider B to
be horizontal (see section 2.6). Thus one can choose e1 = B.
We write the small error r = 1+ξ with ξ small. We have up to
second order terms in ξ

d

dt
ξ = ∑

1≤i≤3 1≤ j≤6

∂Ei

∂x j

(ξ × e3,ξ × e1)
j ei

where “×” represents the usual vectorial product of R
3. ξ is

looked at as a vector and (ξ ,η) j represents the j-th coordinate

of (ξ ,η) on the canonical basis of R
3 ×R

3. Thus we have

d

dt





ξ 1

ξ 2

ξ 3



=

(

∂Ei

∂x j

)

1≤i≤3 1≤ j≤6





ξ 2 0

−ξ 1 ξ 3

0 −ξ 2





Thus it is easy to choose the Ei’s such that

d

dt





ξ 1

ξ 2

ξ 3



= −K1





ξ 1

ξ 2

0



−K2





0

ξ 2

ξ 3



 (4)

We have exponential convergence of the linearized system
around any trajectory and we have the choice of the time
constants 1/K1 and 1/K2.

2.6 A class of non-linear asymptotic observers

Inspiring from Bonnabel and Rouchon [2005], consider the
following non-linear observer











































d

dt
q̂ =

1

2
q̂ ·ω

− [K1G× (q̂ ·q−1 ·G ·q · q̂−1 −G)

+K2B× (q̂ ·q−1 ·B ·q · q̂−1 −B)] · q̂

d

dt
q̂ =

1

2
q̂ ·ω − [K1G× (q̂ · yG · q̂−1 −G)

+K2B× (q̂ · yB · q̂
−1 −B)] · q̂

It corresponds indeed to (2). Simple computations show that its
linear approximation for r close to 1 is exactly (4). Moreover
for any K1,K2 > 0:

lim
t 7→+∞

q̂(t)−q(t) = 0 or lim
t 7→+∞

q̂(t)+q(t) = 0

for any initial condition. This results was partly shown in
Bonnabel and Rouchon [2005] and is shown in Mahony et al.
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[2005]. Notice q and −q correspond to the same rotation of
SO(3).

The proof consists in taking the following Lyapunov function
V (r) = ‖r ·B · r−1 −B‖2 +‖r ·G · r−1 −G‖2 for (3).

3. THEORY

The fact that the error dynamics obeys an autonomous differ-
ential equation can be extended in the general case where the
state space (subset of H of quaternions whose norm is 1) is
replaced by a Lie group G, the dynamics (1) by a left-invariant
vector field which can depend on t, and the output space by a
smooth manifold. In this paper we use the Lie group structure
to design observers. See Jurdevic and Sussman [1972] as one
of the pioneering papers on control systems on Lie group.

In all this section we use the same notations as in Arnold
[1976]. We suppose the real Lie group G to be of dimension n
and we consider a left-invariant dynamics on G. One will show
now that under some assumptions on the output map (equiv-
ariance versus right translations), one can build a non-linear
observer such that the error equation satisfies an autonomous
differential equation.

3.1 Left invariant dynamics and right-left equivariant output

Consider the following dynamics :

d

dt
g(t) = F(g, t) (5)

where g is an element of G, and F is a smooth vector field on
G. Let us suppose the dynamics is left-invariant, i.e:

∀g,h ∈ G F(Lh(g), t) = Lh∗F(g, t)

where Lh : g 7→ h · g is the left multiplication on G, and Lh∗

the induced map on the tangent space. Lh∗ maps the tangent
space T G|g to T G|hg. G is a group of symmetries for itself : for
all h ∈ G, the change of variables g2(t) = h · g1(t) leaves the
dynamics equations unchanged :

d

dt
g2(t) = F(g2(t), t)

As in Arnold [1976] let

ωs = Lg−1∗ġ ∈ g

ωs is an element of the Lie algebra g of G. Indeed one can
look at any left invariant dynamics on G as a motion of a
”generalized rigid body” with configuration space G. Thus one
can look at ωs(t) = F(e, t) as the ”angular velocity in the body”,
where e is the group identity element. We will systematically
write the left-invariant dynamics (5)

d

dt
g(t) = Lg∗ωs(t) (6)

Let us suppose that H : G →Y is a right-left equivariant smooth
output map. Y is a smooth manifold, it can be in particular a
Lie group or an euclidian space as in the example. Inspiring
from Aghannan and Rouchon [2002] one can define the right-
left equivariance the following way : for all h ∈ G, there exists
a smooth map ρh : Y → Y , such that for all g ∈ G, H(g ·
h) = ρh(H(g)) i,e

H(Rh(g)) = ρh(H(g))

where Rh denotes the right multiplication on G (and Rh∗ the
induced map on tangent spaces). This means the group action
on itself by right multiplication corresponds to another group

action on the output space. We consider left-invariant systems
with right-left equivariant output.

In the example the dynamics is left invariant indeed d
dt

q(t) = q ·

ω = Lq∗ω(t) and the output H(q) = q−1 ·B ·q is right invariant

H(Rp(q)) = ((q · p)−1 ·G · (q · p),(q · p)−1 ·B · (q · p))

= (p−1 · yG · p, p−1 · yB · p) = ρp(H(q))

3.2 The dynamics is right-invariant for a different definition of
the group action

Consider the dynamics (5). It can be viewed as a right-invariant
dynamics on G! Indeed let us look at ωs(t) as an input :
u(t) = ωs(t) ∈ U , where U ⊂ R

n is the input space. Let us
define the action of G on U via the diffeormorphisms ψg for
all g:

ψg = DLg−1DRg

It means ψg is the differential of the interior automorphism of
G. It is a group action indeed since for all g,h ∈ G we have
ψg ◦ψh = ψgh. And the dynamics (5) writes

d

dt
x = F(x,u) = DLxu

and can be seen as a right-invariant dynamics . For all x,g we
have indeed:

d

dt
Rg(x) = DRgDLxωs(t) = DLxDLgDLg−1DRgωs(t)

= DLRg(x)ψg(ωs(t))

= F(Rg(x),ψg(u))

3.3 Observability

If the dimension of the output space is strictly smaller than
the dimension of the state space (dimy < dimg) the system is
necessarily not observable. This comes from the fact that, in
this case, there exists two distinct elements g1 and g2 of G such
that H(g1) = H(g2). If g(t) is a trajectory of the system, we
have

d

dt
g(t) = Lg∗ωs(t)

and because of the left-invariance, g1g(t) and g2g(t) are also
trajectories of the system:

d

dt
(g1 ·g(t)) = Lg1g∗ωs(t),

d

dt
(g2 ·g(t)) = Lg2g∗ωs(t).

But since H is right-left equivariant:

H(g1 ·g(t)) = ρg(t)H(g1) = ρg(t)H(g2) = H(g2g(t)).

The trajectories g1 · g(t) and g2 · g(t) are distinct and for all t
they correspond to the same output. The system is unobserv-
able.

3.4 Construction of the observer

The dynamics is right-invariant, and the output is right-
left equivariant, so we follow the method of bonnabel-et-
al:Arxiv06. Let (W1, ...,Wn) be a right-invariant frame (see
Olver [1995]). An invariant frame is a set of n point-wise
linearly independent invariant vector fields forming a basis of
the tangent space at any g ∈ G. The vector fields verify

Wi(g) = DRgWi(e)
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(by definition). Moreover we know how to build invariant
output errors ,i.e, smooth scalar functions Ei of ĝ and H(g),
which verify :

∀h,g Ei(Rh(ĝ),H(Rh(g))) = Ei(ĝ,H(g))

Ei(g,H(g)) = 0

It suffices to take

Ei(ĝ,y) = Li(ρĝ−1(y)) = Li(H(gĝ−1))

with Li(H(e)) = 0. Consider the class of observers of the form

d

dt
ĝ = DLĝωs(t)+

n

∑
i=1

Ei(ĝ,y)Wi(x̂)

= DLĝωs(t)+DRĝ(
n

∑
i=1

Ei(ĝ,y)Wi(e)) (7)

where the Ei are output errors (for right multiplication), and
(W1, ...,Wn) is an invariant frame (for right multiplication) and
y = h(x) is the output. These are invariant observers when ωs is
viewed as an input on which G acts via ψg.

3.5 The error system

Let us define the error (invariant by right multiplication) G ∋
r = (ĝg−1) = Lĝ(g

−1). The error dynamics verifies

ṙ = Rr∗(
n

∑
i=1

Ei(e,H(r−1))Wi(e)) (8)

Indeed we have

ṙ = Lĝ∗( ˙g−1)+DgLĝ(g
−1) ˙̂g

We have

DgLĝ(g
−1) ˙̂g = Rg−1∗( ˙̂g)

= Rg−1∗(F(ĝ, t)+
n

∑
i=1

Ei(ĝ,y)Wi(ĝ))

= Rg−1∗Lĝ∗ F(e, t)+Rg−1∗Rĝ∗

n

∑
i=1

Ei(ĝ,y)Wi(e)

= Rg−1∗Lĝ∗ ωs +Rr∗

n

∑
i=1

Ei(ĝ,y)Wi(e)

But invariance implies

Ei(ĝ,y) = Ei(ĝ,H(g)) = Ei(e,H(r−1))

And we have also

Lĝ∗(ġ
−1) = −Lĝ∗Rg−1∗Lg−1∗ġ = −Lĝ∗Rg−1∗ωs

= −Rg−1∗Lĝ∗ωs

So we have an autonomous differential equation independent
from the trajectory t 7→ g(t):

ṙ = Rr∗(
n

∑
i=1

Ei(e,H(r−1))Wi(e)).

3.6 First order approximation

We suppose that r is close to e . Let ξ be the small element
of the Lie algebra g such that r = exp ξ . Let p = dimy be the
dimension of the output, we have

d

dt
ξ = −DyE |e,H(e) DH |e (ξ )

where we call E = (E1, ...,En).

Let us define a scalar product on the tangent space g at e , and
let us consider the adjoint operator of DH |e in the sense of the

metrics associated to the scalar product. The adjoint operator is
denoted by (DH |e)

T and we take for all η ∈ g close to zero

E(e,expη) = K(DH |e)
T η .

Thanks to right invariance of E it is possible to define E without
ambiguity for all (ĝ,g) with ĝg−1 close to 0.

The first order approximation writes

ξ̇ = −K DHT DH ξ (9)

and for K > 0, admits as Lyapunov function ‖ξ‖2 which the
length of ξ in the sense of the scalar product.

3.7 A class of non-linear first-order convergent observers

Consider the following observers :

d

dt
ĝ = Lĝ∗ωs(t)+Rĝ∗[

n

∑
i=1

[Ei(ρ
−1
ĝ (H(g))−Ei(H(e))]Wi(e)]

where the Ei’s are smooth scalar functions. Using the first
order approximation design, take E = (E1, ...,En) such that the
symmetric part (in the sense of the scalar product chosen on
T Ge) of the linear map

ξ 7→
∂E

∂y
|H(e)

∂H

∂g
|e ξ

is negative. When it is negative definite, we get locally expo-
nentially convergent non-linear observers around any system
trajectory.

4. CONCLUSION

We show in this article that when a group of symmetries acts
on itself and when the dynamics is left invariant and the output
map is right-left equivariant, we can build non-linear observers
for which the error equation follows an autonomous differential
equation. The construction is based on the notion of invariant
output error (Aghannan and Rouchon [2002], Martin et al.
[2004]).

If the output is left-invariant one can show the error equation
only depends on the error r and is still independent on the
trajectory but in this case it can depend on the time t if ω(t)
depends on time t.(see Bonnabel et al. [2006])

5. APPENDIX: QUATERNIONS

A quaternion p can be looked at a set of a scalar p0 ∈ R and a
vector p ∈ R

3,

p =

(

p0

p

)

.

The quaternion multiplication · writes

p ·q :=

(

p0q0 − p ·q
p0q+q0 p+ p×q

)

.

The unit element is

e :=

(

1
0

)

,

and (p ·q)−1 = q−1 · p−1.

Any vector p ∈ R
3 can be looked at as a quaternion

p :=

(

0
p

)

,
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For instance the quaternions associated to the canonical basis of

R
3 are







0
1
0
0






,







0
0
1
0






,







0
0
0
1






and we have the following formulas

p×q := p×q =
1

2
(p ·q−q · p)

(p ·q)r = −
1

2
(p ·q+q · p) · r.

To any quaternion q whose norm is 1 one can associate a
rotations matrix Rq ∈ SO(3) the following way

q−1 · p ·q = Rq · p for all p.
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