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Bd-Saint-Michel, 75272 cedex 06, France (e-mail:

pierre.rouchon@ensmp.fr)

Abstract:

A physical nonlinear dynamical model of a laser diode is considered. We propose a feed-forward
control scheme based on differential flatness for the design of input-current modulations to
compensate diode distortions. The goal is to transform without distortion a radio-frequency
current modulation into a light modulation leaving the laser-diode and entering an optic fiber.
We prove that standard physical dynamical models based on electron and photons balance are
flat systems when the current is considered as control input, the flat output being the photon
number (proportional to the light power). We prove that input-current is an affine map of the
flat output, its logarithm and their time-derivatives up to order two. When the flat output is
an almost harmonic signal with slowly varying amplitude and phase, these derivatives admit
precise analytic approximations. It is then possible to design simple analogue electronic circuits
to approximate the nonlinear computations required by our flatness-based inversion scheme.
Simulations with the parameters of a commercial diode illustrate the practical interest of this
pre-compensation scheme and its robustness versus modelling and analogue implementation
errors.
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1. INTRODUCTION

Radio-over-Fiber is a very attractive technique for wireless
access network infrastructure, because it can transmit mi-
crowaves and millimeter-waves through optical fibers for a
long distance. Therefore, the distribution of radio signals
over optical fiber, which is of great interest for many
applications such as broad-band wireless access networks,
sensor networks, radar and satellite communications, has
been intensively studied. And there have been rapid ad-
vances in the techniques to generate and transport radio
signals over optical fiber in recent years (see, e.g., Ai-
Raweshidy and Komaki [2002]). When the wireless channel
is in series with the optical link, nonlinear distortion due
to the electrical/optical conversion is the biggest concern
(see, e.g., Maury et al. [1997]). This makes nonlinearity
compensation an attractive solution to improve link per-
formance.

The focus of this work is to investigate the standard phys-
ical model used for describing commercial laser diodes.
This model is based on rate equation for the electron
and photon populations. This allows us to propose a pre-
compensation based on differential flatness for the design
of the input current in order to cancel diode distortions.

⋆ This work has been supported by the projet INRIA STIC-Tunisie
(2006/2007).

Simulations corresponding to a commercial laser diode
illustrate the pre-compensation scheme. When the distor-
tion due to the optic fiber is negligible, our flatness-based
pre-compensation scheme can be interesting to increase
the bandwidth and transmission rate.

This paper is organized as follows. In section 2 we recall
the standard diode model and show that it is structurally
flat, with the photon number being the flat output y. We
show via elementary computations that the input current

is a linear combination of y, d
dt

y, d2

dt2
y, d

dt
(log y) and

d2

dt2
(log y) with coefficients depending via explicit formula

on the physical parameters (equation (3)). This relation is
the starting point of the flatness based pre-compensation
scheme addressed in section 3. In Section 4, we propose
natural approximations when y is quasi-harmonic with
slowly varying amplitude and phase. These approxima-
tions simplify considerably the computation burden in
such a way that a nonlinear analogue circuit can be eas-
ily design to realize our flatness-based pre-compensation
scheme. In conclusion, we propose some hint to deal with
phase influence that becomes important when fiber distor-
tions cannot be negligible.
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2. THE FLAT PHYSICAL NONLINEAR MODEL

A standard nonlinear model relating the input-current I
to the power of the emitted light P is recalled in Lee et al.
[2003] where this model is used to analyze the nonlinear
”transfer” between input-current modulation I and the
resulting output P ) (see also Agrawal [1997] for a simple
exposure on such basic models):















d

dt
P = R(P,X) −

P

τp

d

dt
X =

I

Ithτn

−
X

τn

− aR(P,X)

(1)

where

• τp and τn are photon and carrier lifetimes;
• X is the normalized carrier density;
• Ith is the threshold current and a is the constant

related to other physical parameters, a = FIthτn/τp.
• R(P,X) is the net rate of stimulated emission. Fol-

lowing Lee et al. [2003] we use

R(P,X) =

(

BτnIth(X − 1) + 1

τp

1 + FBτpτcP

)

P

where B, τn,τc are physical parameters .

Since the input-current appears only in the second differ-
ential equation of (1) (the electron balance equation), the
first state, P , is a flat output. More precisely, this means
that, if we consider (1) as a control system with input I and
output y = P , we have a nonlinear input/output system
such that its inverse admits no dynamics. This system is
differentially flat (see Fliess et al. [1992, 1995], Martin
et al. [2003], Sira-Ramirez and Agarwal [2004]) with P
as flat output: the input I is a nonlinear function of P ,
d
dt

P , d2

dt2
P . Notice that this property is independent of the

precise form of R(P,X) when it depends effectively on X.
This is always the case for physical reasons.

Let us detail now the computations with the precise form
of R given here above. The first equation of (1) yields

X = 1 +
P

Pl

+ τp

d

dt

(

P

Pl

)

+ τl

d

dt
log

(

P

Pl

)

where Pl = Ithτn

Fτc
and τl = 1

BτnIth
are constant parameters.

Thus we can derive this expression versus t to get d
dt

X as

a function of P , d
dt

P and d2

dt2
P :

d

dt
X =

d

dt

(

P

Pl

)

+ τp

d2

dt2

(

P

Pl

)

+ τl

d2

dt2
log

(

P

Pl

)

A linear combination of the two equations of (1) gives I
explicitly:

I

Ith

= X + τnẊ +
Fτp

τnIth

(Ṗ + P/τp).

Thus we have the explicit formula relating I to the
derivatives of P :

I

Ith

= 1+

(

1 +
τn

τc

)(

P

Pl

)

+

(

τn + τp +
τnτp

τc

)

d

dt

(

P

Pl

)

+τnτp

d2

dt2

(

P

Pl

)

+τl

(

d

dt
log

(

P

Pl

)

+ τn

d2

dt2
log

(

P

Pl

))

With the normalized input/ouput variables

u =
I

Ith

, y =
P

Pl

=
P

Ithτn

Fτc

(2)

we have the following simple but nonlinear input/output
relationships that is equivalent to the physical model (1):

u = 1 +

(

1 +
τn

τc

)

y +

(

τn + τp +
τnτp

τc

)

d

dt
y

+ τnτp

d2

dt2
y + τl

(

d

dt
(log y) + τn

d2

dt2
(log y)

)

(3)

where the four parameters τn, τp, τc and τl = 1

BτnIth

are positive time-scales. Remember that the normalized
electron density X is a combination of y and d

dt
y:

X = 1 + y + τp

d

dt
y + τl

d

dt
(log y).

3. FLATNESS-BASED PRE-COMPENSATION

We can now use (3) for deriving feed-forward strategy in
order to compensate the non-linear distortion due to the
diode. Assume that our goal is to transfer the amplitude
and phase modulated signal ǫ(t) cos(ωt + φ(t)) from the
current to the light leaving the diode. Here ω is the carriage
pulsation, typically around a few Ghz for radio frequencies,
and ǫ(t) and φ(t) are slowly varying amplitude and phase
where the bits are encoded. This means that

∣

∣

d
dt

ǫ
∣

∣ ≪ ωǫ

and
∣

∣

d
dt

φ
∣

∣ ≪ ω. Without lost a generality, we can assume
that ǫ < 1. Assume finally that this modulated signal has
to be converted in photons y > 0 according to y = ȳ(1 +
ǫ(t) cos(ωt+φ(t))) where ȳ is some positive constant. This
means that our goal is to find the current u leading to
such y. If one knows the diode parameters we can use (3)
to compute u.

We have tested in simulation this simple pre-compensation
scheme for the commercial diode considered in Lee et al.
[2003]. For this diode, we have

τn = 179 ps, τp = 4.33 ps, τc = 3.18 ps, τl = 1.81 ps.

We choose a modulation frequency ω of 10 Ghz (ω =
2π1010 s−1), φ = 0 and

ǫ(t) =
1

5

(

1 − cos

(

ωt

10

))

. (4)

The average normalized light power is ȳ = 0.0175 corre-
sponds physically to P̄ = 1.4 mW since Pl = 78.5 mW.
The simulations of figure 1 illustrate the interest of taking
into account the derivative terms in (3) to modulate the
input current u.

4. ANALOGUE IMPLEMENTATION ISSUES

For such high carrier frequency ω ∼ 10 GHz, it is
difficult and almost impossible to use real-time numerical
computations. Let us now propose two approximations
such that the above pre-compensation scheme can be
applied in real-time via a specific electronic circuit.

The first approximation is relative to the computation
of derivative of y. Since we are looking for u such that
y = ȳ(1 + ǫ(t) cos(ωt + φ(t)) with ǫ and φ slowly varying
quantities, we have
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Fig. 1. Input current modulations with ǫ(t) given by (4):
the solid curve corresponds to the response of the
diode when u is related to y = ȳ(1 + ǫ(t) cos(ωt))
via (3); dashed line corresponds to the response of

the diode when u = 1 +
(

1 + τn

τc

)

ȳ(1 + ǫ(t) cos(ωt))

(static model).

d

dt
y ≈ −ȳǫω sin(ωt + φ),

d2

dt2
y ≈ −ȳǫω2 cos(ωt + φ).

(5)

The second approximation is relative to the nonlinearity
attached to the log-terms in (3). Now we will use ǫ ≪ 1
and propose an approximation up to second order terms:

d

dt
(log y) ≈ −ǫω sin(ωt + φ)(1 − ǫ cos(ωt + φ))

d2

dt2
(log y) ≈ −ǫω2(cos(ωt + φ) + ǫ(2 sin2(ωt + φ) − 1))

(6)

Plugging these approximations into (3) shows that u can
be expressed approximatively as a polynomial of degree
2 in ǫ sin(ωt + φ) and ǫ cos(ωt + φ). Such polynomial
computations can be easily done by a nonlinear analogue
circuit. Figure 2 shows that the diode response remains
almost the same when such polynomial approximations
are used. Other simulations displayed on figure 3 show
that such pre-compensation scheme are also robust to
parameters uncertainties.

5. CONCLUSION

We have shown that it is possible to compute, via flatness-
based motion planing techniques, adapted input current
modulations in order to generate, in real-time and via
analogue nonlinear circuits, a given modulation of the
light entering the optic fiber. If the distortion along the
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Fig. 2. Input current modulations with ǫ(t) given by (4):
the solid curve corresponds to the response of the
diode when u is perfectly related to y = ȳ(1 +
ǫ(t) cos(ωt)) via (3); dashed line corresponds to the re-
sponse of the diode when approximations (5) and (6)
are used in (3).

fiber is not negligible (long fiber and/or refractive index
strongly dependent versus optic frequency), we have to
consider also the phase dynamic of the light emitted by the
diode (see, e.g., Agrawal [1997] for more details about the
spectrum widening due to phase/amplitude variations).
Following Lee et al. [2003] we have to complete (1) by

d

dt
ϕ =

αBτnIth

2
(X − 1)

where ϕ is the phase of the emitted light and α a pos-
itive constant. Thus the emitted light entering the optic
fiber is represented by the classical electric field (complex
notations)

E(t) ∝
√

P (t) exp(−ıϕ(t)) exp(−ıω0t)

where ω0 is the optical frequency (around 1015 Hz). It is
interesting to notice that the diode dynamics (described
by three states (P,X, ϕ)) and one input I) is still flat with
z = log P +FBτpτcP −

2

α
ϕ being the new flat output. This

results from d
dt

z = −
1+FBτpτcP

τp
. This structural property

could certainly be exploited in other pre-compensation
schemes taking into account such additional phase effect.
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Fig. 3. Input current modulations with ǫ(t) given by (4):
as for figure 2, the solid curve corresponds to the
response of the diode when u is perfectly related to
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