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Abstract: In this paper we consider an atomic system with a narrow transition probed with a user-
controlled electromagnetic radiation, the basis of atomic clocks. We propose a simple feedback-loop
in order to lock automatically the probe frequency on the atomic transition, allowing continuous clock
operation without any preparation steps. The proof of the convergence of the feedback-loop is based
on averaging arguments, with approximations compatible with realistic physical parameters. Numerical
simulations illustrate the robustness of the proposed feedback-loop versus measurement noise and bias.
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1. INTRODUCTION

Dilute mono-atomic gases are very simple systems, in the sense
their constituents (atoms), are perfectly identical and interact
very weakly with each other. Atoms in such gases can be con-
sidered as perfect quantum systems, with a sequence of discrete
energy states labeled |i〉, for i ∈ N, with increasing energies
Ei = h̄ωi depending only of the atomic species considered.
Atomic clocks take advantage of the universality of these prop-
erties to deliver a stable, periodic electromagnetic signal which
frequency ω is one the frequency differences ω ji = ω j −ωi.
Compared to astronomical, mechanical and electromechanical
clocks, atomic clocks have unprecedented long-term stability
and suffer no ageing (see Audoin and Guinot [2001]).

The atomic gas interacts with electromagnetic radiation at a
frequency ω only if there is a transition i → j with ω ≈ ω ji.
Supposing that atoms are initially in the ground state |i〉, they
can get to the excited state | j〉 by absorbing a photon at
frequency ω . In a clock, absorption is measured and a feedback
loop allows to lock the radiation frequency to the absorption
peak. The width of the absorption peak δω is limited by the
natural lifetime in the upper state | j〉 : δω × τ j ≥ 1. For a
precise clock, one wants to minimize δω , and choose an excited
state with a long lifetime (typically seconds). The maximum
absorption rate is then limited by the time needed by the atom
to spontaneously fall back to the initial state, leading to a poor
continuous-operation absorption signal. To avoid that, atomic
clocks work in a pulsed regime : atoms are initially prepared
in state |i〉, then driven to the excited state | j〉 by one or two
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coherent pulses, and finally measured and replaced by new
atoms for the next sequence.

A lot of effort is now being put into the development of cheaper,
lighter and less power-consuming atomic clocks. Such devices
have direct applications in portable geopositioning receivers,
gravimeters, or magnetometers. Continuous-operation clocks,
such as those based on coherence population trapping (CPT)
resonance (see Vanier [2005]), are very desirable because they
are simpler and require less equipment, power, and room.
These clocks are based on the transmission peak (or dip)
of a probe laser which frequency ω is close to the atomic
system resonance. The laser frequency lock can be performed
using standard extremum-seeking techniques, which rely on
frequency modulation and synchronous measurement of the
transmission (see Audoin and Guinot [2001]). In this paper, we
propose a feedback scheme that allows to lock the frequency on
a very narrow atomic transition, regardless of the initial state of
the atoms. It is in principle suitable for continuous-operation
clocks.

The paper is organized as follows. In section 2, we detail
the system, its model and set the frequency lock problem
as a stabilization problem via output feedback. In section 3,
we present a simple dynamics output feedback scheme with
gain design rules. Closed-loop simulations indicate a large
convergence domain and also a good robustness versus measure
noise an bias. In section 4, we propose, in a rather informal way,
the basic step underlying a convergence proof and justify the
gain design depicted in section 3.

2. THE SYSTEM

We consider a two-state quantum system with a ground state
|g〉 and an excited state |e〉, defining a clock transition at a
frequency ωeg = ωatom. ωatom can be in the GHz range, (e.g.
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Fig. 1. Atomic states considered in the problem. Double-headed
arrows indicate frequency differences. g → e is the clock
transition, at a frequency ωeg. g → u is the measurement
transition, |u〉 decays rapidly to |g〉 with a rate Γ.

hyperfine transitions in caesium or rubidium, exploited by cur-
rent frequency standards), up to the 1015 Hz range (single ion
optical clocks, future optical lattice high performance clocks).
The excited state is metastable, i.e. it has a very long life-
time. This transition is probed with a coherent radiation at fre-
quency ωl and amplitude A. It induces Rabi oscillations (photon
absorption-emission cycle) at a frequency ΩR = µA, with µ a
positive unknown constant. Typically ΩR is in the kHz range is
most clocks, but can be easily increased to MHz if necessary. As
in quantum physics the measurement perturbs the system, the
actual system consists here in a population of identical systems.
The population of the ground state is continuously measured
with a laser resonant with a second transition g → u, where
|u〉 is an unstable excited state which decays rapidly towards
|g〉 with a decay rate Γ. Detection of fluorescence photons
accompanying decays determines the population in state |g〉.
Population in state |u〉 is negligible, so that the dynamics of the
system is described by a two-level Schrödinger equation :

ı
d

dt
Ψ =

(

∆

2
σz +

ΩR

2
σx

)

Ψ, Ψ =

(

Ψg

Ψe

)

∈ C
2 (1)

where we let

σx =

(

0 1
1 0

)

, σy =

(

0 −ı
ı 0

)

, σz =

(

1 0
0 −1

)

denote the Pauli matrices and where ∆ = ωatom − ωl is the
atom-probe pulsation detuning. We have the useful relations
σ2

x = 1; σxσy = ıσz (with circular permutation). Through a
weak measurement process (as already said earlier) we have
access to the populations in real-time. This means that we
can consider that y =< σzΨ,Ψ >= |Ψg|2 − |Ψe|2 = 2|Ψg|2 −
1 is the measured output of this system as the measurement
is the ground state population |Ψg|2 and the conservation of

probability implies |Ψg|2 + |Ψe|2 = 1.

It is convenient to write the dynamics with the density matrix:
let ρ = ΨΨ† denote the complex matrix associated to the
projector on the state Ψ. Supposing that the system is pure
(meaning it is not entangled to its environment) implies both

properties: tr(ρ) = Ψ†
eΨe +Ψ†

gΨg = 1 and ρ2 = ΨΨ†ΨΨ† = ρ .
Thus rewriting (1) the system becomes

d

dt
ρ = −ı

[

∆

2
σz +

ΩR

2
σx,ρ

]

y = tr(σzρ)

where [,] is the commutator. The first controlled input is ΩR,
via the probe amplitude A. The second controlled input is
associated to the probe frequency. Since we do not have access
to ωl precisely here, we cannot consider that ∆ is the second
input (∆ is not known here, only its time variation is). This

means that the second controlled input is u with d
dt

∆ = pu where
p is a positive constant not known precisely (only its magnitude
order is known) : the control input u acts on the time variation
of ∆. The goal is to use the measured output y to steer, via A and
u, the frequency detuning to 0. Of course we do not have access
to the precise value of the parameters µ and p, to the detuning ∆
and to the density matrix ρ . For a mathematical justification of
this decoherence free model despite the presence of continuous
measure, see, e.g., Mirrahimi and Rouchon [2006].

The automatic-control problem considered here is as follows:
take the following system (two-state quantum system)

d

dt
ρ = −ı

[

∆

2
σz +

µA

2
σx,ρ

]

d

dt
∆ = pu

y = tr(σzρ)

(2)

with controlled inputs A and u and with measured output y;
design an output feedback law robust to more than 50% of
relative-variation for µ and p such that ∆ always converges to
0.

3. OUTPUT FEEDBACK AND SIMULATIONS

We propose the following feedback law: set A = Ā to a positive
constant (since the probe amplitude is a controlled input) and
take

u = (K2 −K1)y−
K2K f

s+K f

y =

(

(K2 −K1)s−K1K f

s+K f

)

y (3)

where s = d
dt

is the Laplace variable, the gains K1,K2,K f are

strictly positive and satisfy ΩR ≫ K f > p(K2−K1)
ΩR

and Ω2
R ≫

pK1, pK2. The circuit realization of such simple transfert be-
tween y and u is elementary and thus can be implemented
easily in practice, y varies with a characteristic frequency ΩR.
Notice that the zero of this transfert is unstable and thus is
very different from the transfert of simple proportional/integral
regulator.

For the closed-loop numerical simulation of figures 2 and 3 we
take A = 1, µ = 2π and p = 1. The design of the 3 gains, K1, K2

and K f , is given by (6) of section 4.4 with ε1 = 1/5, ε2 = 1/10
and Ξ = 2 and ΩR = µA. The initial conditions are ρ(0) = (I−
σx)/2 and ∆(0) = Ω̄R where I is the 2×2 identity matrix. These
simulations illustrate the robustness of the proposed feedback
loop versus measurement noise and constant bias.

4. CLOSED-LOOP CONVERGENCE ANALYSIS

A geometrical interpretation is given in the appendix.
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Fig. 2. Closed-loop simulation of (2) with output feedback (3);
perfect measurement. The 4 graphics represent y, u, ∆/ΩR

and tr(σxρ).
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Fig. 3. Closed-loop simulation of (2) with output feedback (3);
measurement with an additive gaussian with noise of RMS
1/5 and a constant bias of 1/5. The 4 graphics represent
y, u, ∆/ΩR and tr(σxρ). Notice that the measurement bias
induces a bias for ∆/ΩR.

4.1 Change of variables

In order to have simpler formulas we consider some changes of
variables. Define the angles α and θ by the relations

eıα =
ΩR + ı∆
√

Ω2
R +∆2

,
d

dt
θ =

√

Ω2
R +∆2

Consider the following change of coordinates (new frame)

ρ = eı
ασy

2 e−ı θσx
2 ζ eı θσx

2 e−ı
ασy

2 .

First, in order to express the system in the new variables, we
introduce some useful formulas : for any real a we have (for
instance with σx)

eıaσx = cosa+ ısina σx and thus eıaσx σy = σye−ıaσx

which can be completed performing circular permutations on
σx,σy,σz. This proves that the output writes

y = tr

(

eı
θσy

2 e−ı ασx
2 σze

ı ασx
2 e−ı

θσy
2 ζ

)

= tr
(

(cos
θ

2
+ ısin

θ

2
σx)(cosα − ısinασy)..

..σz(cos
θ

2
− ısin

θ

2
σx)ζ

)

= tr
(

(sinα(sin2 θ

2
+ cos2 θ

2
)σx +2cosα sin

θ

2
cos

θ

2
σy

+ cosα(cos2 θ

2
− sin2 θ

2
))ζ
)

= tr((sinασx + cosα(sinθσy + cosθσz))ζ )

Another useful feature is that for any real a and 2×2 matrix M

eı a
2 σx [σy,M]e−ı a

2 σx = [eıaσx σy,e
ı a

2 σx Me−ı a
2 σx ]

eı a
2 σx [σx,M]e−ı a

2 σx = [σx,e
ı a

2 σx Me−ı a
2 σx ]

(4)

which can be completed performing circular permutations on
σx,σy,σz. Using (2) we have:

d

dt
ζ =

d

dt
(eı θσx

2 e−ı
ασy

2 ρeı
ασy

2 eı−θσx
2 )

= ı
θ̇

2
[σx,ζ ]+ eı θσx

2
(

−ı
α̇

2
[σy,e

−ı
ασy

2 ρeı
ασy

2 ]

− e−ı
ασy

2 [
∆

2
σz +

ΩR

2
σx,ρ]eı

ασy
2
)

e−ı θσx
2

Using the formula (4) we have on the one hand

−ı
α̇

2
eı θσx

2 [σy,e
−ı

ασy
2 ρeı

ασy
2 ]eı θσx

2 = −ı
α̇

2
[eıθσx σy,ζ ]

and still using (4) we have on the other hand

e−ı
ασy

2 [
∆

2
σz +

ΩR

2
σx,ρ]eı

ασy
2

= [
∆

2
(cosα σz + sinα σx)

+
ΩR

2
(cosα σx − sinα σz),e

−ı
ασy

2 ρeı
ασy

2 ]

But by definition of α we have

cosα =
ΩR

√

Ω2
R +∆2

and sinα =
∆

√

Ω2
R +∆2

Using also θ̇ =
√

Ω2
R +∆2. In the new variables the system (2)

boils down to
d

dt
ζ = −ı

α̇

2
[cosθσy − sinθσz,ζ ]

d

dt
∆ = pu

y = tr((sinασx + cosα(sinθσy + cosθσz))ζ )

where
d

dt
α = cosα

d

dt
∆/
√

∆2 +Ω2
R

since ΩR (i.e. A) is kept constant. This last equality is obtained

writing d
dt

α = −ı( d
dt

eıα)e−ıα .

4.2 Closed-loop dynamics in the new variables

With the feedback (3), the closed-loop system reads

d

dt
ζ = −ı

(

pΩR(−K1y+K2(y− y f ))

2(∆2 +Ω2
R)

)

[cosθσy − sinθσz,ζ ]

d

dt
∆ = p(−K1y+K2(y− y f ))

d

dt
y f = K f (y− y f )

y = tr((sinασx + cosα(sinθσy + cosθσz))ζ ) .
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Assume that ∆ ≪ ΩR (which means the system is close to
resonance). We have up to second order terms in ∆/ΩR,

d

dt
ζ = −ı

(

p(−K1y+K2(y− y f ))

2ΩR

)

[cosθσy − sinθσz,ζ ]

d

dt
∆ = p(−K1y+K2(y− y f ))

d

dt
y f = K f (y− y f )

y = tr

(

(
∆

ΩR

σx + sinθσy + cosθσz)ζ

)

where d
dt

θ = ΩR ≫ K f ,
K1
ΩR

, K2
ΩR

. With

K̄1 =
K1

ΩR

, K̄2 =
K2

ΩR

, ∆̄ =
∆

ΩR

we have the following system

d

dt
ζ = −ı

p((K̄2 − K̄1)tr
(

(∆̄σx + sinθσy + cosθσz)ζ
)

+ K̄2y f )

2
... [cosθσy − sinθσz,ζ ]

d

dt
∆̄ = p((K̄2 − K̄1)tr

(

(∆̄σx + sinθσy + cosθσz)ζ
)

+ K̄2y f

d

dt
y f = K f (tr

(

(∆̄σx + sinθσy + cosθσz)ζ
)

− y f )

y = tr
(

(∆̄σx + sinθσy + cosθσz)ζ
)

4.3 Rotating wave approximation

We have d
dt

θ ≫ K f , K̄1, K̄2. Thus d
dt

θ is a high frequency. The

integration of exp(ıkθ),k ∈ N
∗ over the time t will produce

terms of small amplitude rotating with high frequency and 0
mean. We are going to neglect them and only keep the non-
rotating terms (called “secular”). Indeed the standard rotating
wave approximation consists in averaging the system over
a period and eliminate the terms rotating with frequency a

multiple of d
dt

θ and with 0 mean (see, e.g., Haroche and
Raimond [2006] for a physicist point of view or Arnold [1976],
Guckenheimer and Holmes [1983] for a more formal exposure).
The above system reads (after averaging):

d

dt
ζ = −ı

p(K̄2 − K̄1)

4
(tr(σzζ ) [σy,ζ ]− tr(σyζ ) [σz,ζ ])

d

dt
∆̄ = p((K̄2 − K̄1)∆̄tr(σxζ )+ K̄2y f )

d

dt
y f = K f (∆̄tr(σxζ )− y f )

y = ∆̄tr(σxζ )

(5)

where we used the fact that sinθ , cosθ , and (sinθ cosθ) are

equal to 0 over a period and sin2 θ and cos2 θ are equal to
1
2
. This system has a triangular structure where the evolution

of ζ is decoupled from the evolution of ∆̄ and y f . This is
due to the fact that only y is interfering with the rotating term
[cosθσy − sinθσz,ζ ] (and not y f ). Since

d

dt
tr(σxζ ) =

p(K̄2 − K̄1)

2
(tr(σyζ )2 + tr(σzζ )2) ≥ 0

necessarily, tr(σxζ ) converges to 1 and thus ζ to (I + σx)/2. 1

Physically, it means that all the atoms of the gaz converge to the
same state. Once ζ has converged to (I +σx)/2, ∆̄ and y f obey

d

dt
∆̄ = p((K̄2 − K̄1)∆̄+ K̄2y f ),

d

dt
y f = K f (∆̄− y f )

1 See the appendix for a geometrical interpretation.

thus y f is an estimation of ∆̄. This system is stable as soon as

the Jacobian matrix

(

p(K̄2 − K̄1) pK̄2

K f −K f

)

has its eigenvalues

with negative real part, i.e. K f > p(K̄2 − K̄1). In this case, the
averaged system admits an exponentially stable steady-state
that is also an equilibrium of the original system, thus the
steady-state is also exponentially stable for the original system
(cf. Khalil [1992], Theorem 8.3).

We proved (using averaging arguments) that with the feedback
control law (3) and a suitable choice of the gains K f ,K1,K2,
the system (2) is such that the laser de-tuning ∆ converges
to 0 indeed. By the way we also proved that the variable

eı θσx
2 e−ı

ασy
2 ρeı

ασy
2 e−ı θσx

2 converges to (I +σx)/2.

4.4 First-order approximation and tuning of the gains

The convergence analysis is local and based on averaging
arguments. It suggests the following design for the gain K1, K2,
K f based on the tangent linear system around ζ = (I + σx)/2.
Let Y = tr(σyζ ) and Z = tr(σzζ ). (They are the coordinates
of ζ on the Bloch sphere, see the appendix). The first-order
approximation of the system around ζ = (I +σx)/2 writes:

d

dt
Y = − p(K̄2 − K̄1)

2
Y,

d

dt
Z = − p(K̄2 − K̄1)

2
Z,

d

dt
∆̄ = p((K̄2 − K̄1)∆̄+ K̄2y f ),

d

dt
y f = K f (∆̄− y f )

Take ε1 and ε2 two small parameters 0 < ε1,ε2 ≪ 1, and Ξ > 0
and set

K1 =
(ε2ΩR)2

p(ε1 +2Ξε2)
, K2 = K1 +

ε1Ω2
R

p
, K f =(ε1 +2Ξε2)ΩR.

(6)
Then the tangent linear system around the final state (I +σx)/2
reads

d

dt
Y = −ε1ΩR

2
Y,

d

dt
Z = −ε1ΩR

2
Z,

d2

dt2
∆̄+2Ξε2ΩR

d

dt
∆̄+(ε2ΩR)2∆̄ = 0.

It implies that the system converges to (I +σx)/2 indeed, since

Y,Z tend to 0, and X2 +Y 2 + Z2 = 1 (see the appendix). The
probe detuning ∆ tends to 0. Eventually all the atoms are in the
same state and the probe is in resonance with the system.

5. CONCLUSION

We proposed a controller which allows to continuously tune
a probe radiation to the transition frequency of a two-state
quantum system. The feedback law is very simple and can be
performed by a low-cost electronic circuit.

In order to obtain convergence (as it is done in this paper), it
is necessary that the initial detuning ∆(0) is smaller than ΩR,
otherwise the transition is not probed. In the case of optical
clocks, this can be difficult, so we can increase (temporary) ΩR

to the MHz range, making it easier to find the transition . ΩR

is also the characteristic frequency for the modulation of the
probe frequency and the response of the electronic circuit to
ensure the key resonance conditions highlighted by the closed-
loop convergence analysis. For optical clocks, the probe is
typically a diode laser, which current can easily be modulated
at such frequencies. Electronic circuits routinely work at these
frequencies.
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Fig. 4. The density matrix ρ is “mirrored” by ξ on the
Bloch sphere. It is rotating around the axis (cosα,0,sinα)

(dashed line) where (ΩR
2

,0, ∆
2
) = θ̇(cosα,0,sinα) with

angular velocity θ̇ .

In this paper we supposed that the two-state system was pure
(i.e, it is not entangled to its environment), and we did not take
into account the decoherence due to the environment. In this
case the system does not stay on the boundary of the Bloch
sphere. This issue will be addressed in future work and can be
treated adding Lindblad terms in the differential equations of ρ .

6. APPENDIX

6.1 Geometrical interpretation : the Bloch sphere

The Bloch sphere is a geometrical representation of the state
space of a (pure) two-level quantum mechanical system. An
important property is that any density matrix ρ of such a system
is a projector with unit trace and can be written

ρ =
1+Xσx +Y σy +Zσz

2
, with ξ =

(

X
Y
Z

)

∈ S
2

where 1 denotes the identity 2× 2 matrix. Thus we have the
useful formulas:

tr(σxρ) = X , tr(σyρ) = Y, tr(σzρ) = Z

The output of the system is the Z-coordinate on the Bloch
sphere. The commutation operation −ı[σx,ρ] corresponds to
the wedge product ex ∧ ξ (circular permutations allow to com-
plete the correspondences).

6.2 Interpretation of the convergence analysis

The dynamics of ξ is

d

dt
ξ = (

ΩR

2
,0,

∆

2
)∧ξ

This is a rotation with angular velocity d
dt

θ around an axis lying

in the (x,z)-plane (see fig 4). The angle between the rotation
axis and the x-axis is α . This explains the change of variables of

section 4.1 since we took eıα = ΩR+ı∆√
Ω2

R+∆2
, d

dt
θ =

√

Ω2
R +∆2.

After having made this change of variables the dynamics is
written in a new frame linked to the rotation axis. ζ is the
density matrix in this new frame. The dynamics in the new
frame is easier to compute with density matrix than directly
in the Bloch sphere. Our main hypothesis is that ∆ ≪ ΩR. Up
to second order terms in ∆/ΩR, we have α = ∆/ΩR, sinα = α
and cosα = 1. As proved previously, the system writes

x

y

z

η

dη

dt

O

Fig. 5. The density matrix in the new frame ζ is “mirrored” by
η on the Bloch sphere. The averaged dynamics of η is a

gradient dynamics such that X converges to 1. Indeed d
dt

η
is always pointing “north”.

d

dt
ζ = −ı

(

pu

2ΩR

)

[cosθσy − sinθσz,ζ ]

d

dt
∆ = pu

d

dt
y f = K f (tr

(

(
∆

ΩR

σx + sinθσy + cosθσz)ζ

)

− y f )

y = tr

(

(
∆

ΩR

σx + sinθσy + cosθσz)ζ

)

y f filters the high frequencies (since K f ≪ ΩR) and provides

an estimation of ∆
ΩR

tr(σxζ ). We took u = (K2 −K1)y−K2y f .

Thus u is made of a high frequency rotating term (K2 −K1)y
and of a slowly-varying term K2y f which does not provide

any secular term. Indeed in the secular approximation of d
dt

ζ
(closed-loop) only the oscillating part (K2 −K1)y plays a role
since the averaged equation writes (see eq (5))

d

dt
ζ = −ı

p(K̄2 − K̄1)

4
(tr(σzζ ) [σy,ζ ]− tr(σyζ ) [σz,ζ ])

We are going to prove it is a gradient dynamics. Indeed let us
write it in the Bloch sphere :

Set ζ =
1+Xσx +Y σy +Zσz

2
, and η =

(

X
Y
Z

)

∈ S
2

η has the following dynamics :

d

dt
η = p

K̄2 − K̄1

2
(η ∧ ex)∧η

d
dt

η is a vector pointing towards ex on the sphere (see fig 5). It

is equal to zero only when η = ex. It implies that d
dt

tr(σxρ) =
d
dt

X is positive and X converges to 1. Since η belongs to a

unit sphere, it means that Y and Z converge to 0 and thus ζ
converges to (I +σx)/2.

This is true only if K2 −K1 ≥ 0. But the averaged dynamics (eq

(5)) for ∆ writes d
dt

∆ = p((K2−K1)∆tr(σxζ )+K2y f ). And thus
the filtered output y f must be part of the feedback law otherwise
∆ can not converge to zero.
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