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Abstract

A Lyapunov-based approach for trajectory tracking of the Schrédinger equation is proposed. In the finite dimensional case, convergence
is precisely analyzed. Connection between the controllability of the linearized system around the reference trajectory and asymptotic
tracking is studied. When the linearized system is controllable, such a feedback ensures almost global asymptotic convergence. When the
linearized system is not controllable, the stability of the closed-loop system is not asymptotic. To overcome such lack of convergence, we
propose, when the reference trajectory is an eigenstate, a modification based on adiabatic invariance. Simulations illustrate the simplicity
and also the interest for trajectory generation.
© 2005 Elsevier Ltd. All rights reserved.

Keywords:Quantum systems; Stabilization; Control Lyapunov function; Adiabatic invariant; Tracking; Trajectory generation

1. Introduction open-loop steering control. The original references on such
feedback strategy to find open-loop control @teen, Gross,
Controllability of a finite dimensional quantum system, Ramakrishna, Rabitz, and Mease (1995)oss, Singh, Ra-
WW = (Ho + u(t)H1) ¥, where Ho and Hy aren x n Hermi- bit, Mease, and Huang (1993osloff, Rice, Gaspard, Ter-
tian matrices with coefficients iff, can be studied via the  signi, and Tannor (1989More recent results can be found
general accessibility criteria proposed Brockett (1973) in Rabitz and anf Zhu (2003for decoupling techniques,
Sussmann and Jurdjevic (1972)d based on Lie brackets. in Grivopoulos and Bamieh (2003Ferrante, Pavon, and
More specific results might be found in eAjbertini and Raccanelli (2002)Sugawara (2003)aidya, D'Alessandro,
D’Alessandro (2003)Altafini (2002), Ramakrishna, Sala- and Mezic (2003)Vettori (2002)for Lyapunov-based tech-
paka, Dahleh, and Rabitz (1993 rinici and Rabitz (2003) niques and irAltafini (2002), Constantinescu and Ramakr-
However, such a characterization does not provide, in gen-ishna (2003)Ramakrishna, Ober, Flores, and Rabitz (2002)
eral, a simple and efficient way for open-loop trajectory for factorizations techniques of the unitary group.
generation. Optimal control techniques (see, éiaday & This paper is devoted to Lyapunov-based techniques.
Turinici, 2003; Shi, Woody, & Rabitz, 198&nd the ref- Since measurement and feedback in quantum systems lead
erences herein) provide the first set of methods. Anotherto much more complicated models and dynamics than the

set consists in using feedback to generate trajectories andsimple Schrodinger equation, the design techniques devel-
oped in this work can be used only for generation of open-

* This paper was not presented at any IFAC meeting. This article was loop control laws. Nevertheless, the method presented here
recommended for publication in revised form by Associate Editor Zongli can be useful to elucidate issues regarding the state space

Lin under the direction of the Editor Hassan Khalil and as a first step to more realistic designs that include
Corresponding author.
E-mail addressesmazyar.mirrahimi@ensmp.{M. Mirrahimi), rggl measurement and feedback. We show that C,()ntrOIIa_
pierre_rouchon@ensmp.(p Rouchon)gabr|e|tur|n|c|@|nr|afr b|||ty Of the fII’St variation around the reference traJeCtOI’y
(G. Turinici). is a necessary condition for asymptotic convergence. The
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analysis is based on an adaptation to bilinear quantum sys-Thus, we consider the following control system:
tems of the general method proposedimdjevic and Quinn
(1978) (see alsoGauthier, 1981 Moreover, we propose +—%¥Y =(Ho+uH1+w)Y, Q)
here to add a fictitious contral (see (1)) to take into account
the physically meaningless global phase and to improve con-wherew € R is a new control playing the role of a gauge de-
vergence. Contrarily to other Lyapounov-based techniques,gree of freedom. We can choose it arbitrarily without chang-
our method is valid to track any trajectory and admits a pre- ing the physical quantities attached ¥ With such addi-
cise convergence analysis for two kind of trajectories (eigen- tional fictitious controko, we will assume in the sequel that
state and adiabatic). This method can be directly applied the state space i82"~1 and the dynamics given by (1) ad-
to several examples of physical interest including the O—H mit two independent controls andw.
bond modeled via a Morse potentidRgbitz & anf Zhu,
2003 and examples considered as difficult in the chemistry 2.2, Lyapunov control design
literature since highly degenerate and for which the adia-
batic method works directly (see the four-states system in  Take a reference trajectory— (¥ (1), ur(t), w(t)), i.e.,
Gross, Neuhauser, & Rabitz, 1991; Phan & Rabitz, 1997, a smooth solution of (1)(d/d?) ¥, = (Ho + ur H1 + wr) Py.
1999; Turinici & Rabitz, 200and the five-states system in  Take the following time varying functioW (¥, ¢):
Tersigni, Gaspard, & Rice, 1990; Ramakrishna et al., 1995

The paper contains two convergence analyses. They areV (¥, 0) = (¥ = V|V = ¥r), )
given in Theorem 1 when the reference trajectory is an \here( | ) denotes the Hermitian produat.is positive for
eigenstate and in Theorem 3 when the reference trajectory, ; - o and all ¥ e S¥-1 and vanishes whet = ¥,
is adiabatic. In Section 2, we introduce the additional ficti-
tious phase contrab, we present the Lyapunov-based track-
ing feedback and we discuss three simulations that illustrate
Theorems 1 and 3. This section is tutorial and technicalities av = 2(u — up)I((HLP(1)| V)
are reduced to a strict minimum. The two remaining sections dr
are more technical and formal; Section 3 (resp. 4) is devoted +2(0 — o)I(YOIYPr),
to Theorem 1 (resp. 3). In conclusion, we suggest exten-
sions to the multi-input and infinite-dimensional cases. Pre-
liminary versions of these results can be foundimrahimi u=ur(t) —aI((HLV )|V (1)),
and Rouchon,(2004a,bFonnected but different results can ¢, — ¢, (r) — bI(P ()| P, (1)), ()
also be found irMirrahimi, Turinici, and Rouchon (2005)
where Lyapunov design is developed for the density ope
ator p instead of the probability amplitude®, and also e .
in Beauchard, Coron, Mirrahimi, and Rouchon (20€43t respond_s to an equilibriumi; = 0, Wr = —4 and ¥y = ¢
studies the stabilization around degenerate eigenstate wherd/N€re¢ is an eigenvector aflo associated to the eigenvalue
the linearized system is not controllable. The authors thank # € R (Hod =44, l|¢]l=1). Then (3) becomes a static-state
Claudio Altafini, Jean-Michel Coron and Laurent Praly for €edback
interesting discussions and comments. u=—a3(HLP|P), ©=—)—bI(P|P)). )

Simple computations show that is a control Lyapunov
function when¥ satisfies (1)

where3 denotes the imaginary part. With, e.g.,

r. (a>0 andb > 0 parameters), we ensuré’ddr <0. Let us
detail the important case when the reference trajectory cor-

2. Tracking feedback design 2.3. Tutorial examples and simulations

T

2.1. Dynamics and global phase Taken =3, ¥ = (¥3, ¥2, ¥3)" and

0 0O 0 1 1

Take«(d/dt)¥Y = (Ho + u(t)Hy) ¥, a n-states quantum  Hp= (0 1 O) , Hi= (1 0 1) . (5)
system f = 1) whereHp and H; aren x n Hermitian ma- 00 % 110

trices with coefficients irC f;md_”(t) € Ris ths control. | ot s use the previous Lyapunov control in order to trap our
The wave functiont” = (¥;)i_, is a vector inC", verify-  gyqtom in the first eigenstate= (1, 0, 0) of energy/ = 0.

ing Yo7y |%¥il? = 1 thus it lives on the unit sphere &f", We take (4) witha = b = 3 (* means complex conjugate)
¥ e S~ Physically, the probability amplitude® and
/™y describe the same physical state for any global phaseu = _%3( >+ %P3, o= _%S(Wi). (6)

t — 0(r) € R. This point has important consequences on

the geometry of the physical state space: two probability am- Simulations ofFig. 1 describe the trajectory witt¢® =
plitudes ¥, and ¥, are identified wher) € R exists such (O, N %) as initial state. Other simulations indicate that
that ¥'1 = exp(x0) ¥>». To take into account such non-trivial  the trajectories always converge ¢o It appears that such
geometry, we add a second controlcorresponding td. Lyapunov-based techniques is quite efficient for system (5).
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Fig. 1. Population\‘l’ﬂ2 and controlu; initial condition (O, % \%2);
system defined by (5) with feedback (6).
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Fig. 2. Populatior}¥1|2 and controlu; initial condition (O, %2 %); Ho

defined by (5),H1 by (7) andu, o by (8).

In Theorem 1, it is shown that almost global convergence
is equivalent to the controllability of the linearized system
aroundd.

Let us consider another example that clearly illustrates
the limitation of such Lyapunov-based techniqu#; and
the goal state) remain unchanged buf; becomes

0 1 0
le(l 0 1). (7)
0 1 0
The feedback becomes
3(P%) 3(PY)
=2 gy 8
> > (8)

Simulations ofFig. 2 start with (0, 75 ﬁ) as initial condi-
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Fig. 3. System and initial conditions identicalf@. 2; adiabatic trajectory
(9) tracking via the feedback (10).

This system is controllable since the Lie algebra spanned
by Hp/» and Hy /2 coincides withu(3) (Ramakrishna et al.,
1995. As explained in Theorem 1, such convergence defi-
ciency comes form the fact that the linearized system around
¢ is not controllable.

To overcome such lack of convergence observed with sim-
ulations onFig. 2, we will use (3) with an adiabatic refer-
ence trajectory

d
1— Wy = (Ho + ur (1) Hy) ¥y,

dt YJI’(O) = (17 Os O)v

9)

whereu, = % sin(2nt/ T) with a periodT =300, large com-
pared with the natural periods éfy to ensure that;, is a
slowly varying time function. Take the following tracking
feedback:

S(HLY ¥ (1))

_ S0
> , —_

u=ur— =
2

(10)

Sinceu, varies slowly, adiabatic theory ensures thatwill
follow closely the first eigenstate dfy + u,H1 (Messiah,
1962. So whenu, returns to 0,%, will almost return to
the first eigenspace spannedyO0, 0): we have¥,(T) ~
(exp(z0), 0, 0) for some phase shiff. If during this slow
motion, the reference trajectoty, is in the neighborhood
of an eigen-state affp + ur H1, where the linearized system
is controllable, this will strongly improve convergence. This
is effectively the case as shown kig. 3 that illustrates
the efficiency of combining Lyapunov design and adiabatic
invariance. See alsBeauchard et al. (2004pr a different

tion for ¥. We clearly realize that such a feedback reduces method based on an implicitly defined control-Lyapunov
the distance to the first state but does not ensure its con-function that ensures local convergence when the linearized

vergence to 0. This is not due to a lack of controllability.

system aroung is not controllable.
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3. Convergence analysis

The goal of this section is to prove the following theorem
that underlies simulations dfigs. 1and2:

Take/ € R. The spectrunily}; <, <, Of Ho is said to bel-
degenerate when exigtandf in {1, ..., n} such thatr # f
andMa — /1| = |/1/g — /1|

Theorem 1. Consider(1) with ¥ € S~ and an eigen-
state¢p € S¥*~1 of Hy associated to the eigenvalueTake
the static feedbac{d) with a, b > 0. Then the two following
propositions are true

(1) Ifthe spectrum ofp is noti-degeneratéall eigenvalues
are distinc), the Q-limit set of the closed-loop system
is the intersection 062" ~* with the vector spac& =
RolJ,CP, whered, is any eigenvector oflp not co-
linear to ¢ such that(®,|Hy|¢) = 0.

(2) The Q-limit set reduces td¢, —¢} if and only if Hg is
not A-degenerate and = R¢. In this case: the equi-
librium ¢ is exponentially stabléon S#'~1); the equi-
librium —¢ is unstablethe attractor set ofp is exactly
S?~1/{—¢}. This case corresponds to the controllabil-
ity of the linearized system dt, a time-invariant linear
system that lives on th&n — 1 plane tangent t&5% 1

at ¢.

For example inFig. 1, it becomes clear thak = R¢
since Hyp is not A-degenerate ang = (1,0, 0) is almost
globally asymptotically stable. Note the conditiGh= R¢
says that, physically, the target-stateis connected to all

other eigenstates via mono-photonic transitions (see, e.g.,

Messiah, 196p

For example inFig. 2 elements ofE are of the form
(x,0,z) with x € R and z € C; we observe effec-
tively that the Q-limit set contains elements of the form
(x, 0, r exp(20)) with x, r andf in R such thate? + r2 =1.
Physically, the transition betweeh and state of energg
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and(d/dt)I((¥|¢)) =0. Clearly(d/dr)I((¥|¢)) =0 does
not give any additional information sinclp¢ = 0. Only
(d/dt)3((H1P|¢p)) = 0 provides a new independent equa-
tion: R((H1HoV|¢)) = 0 that readsR({[Ho, H1]¥V|¢})) =

0. Similarly (d/dt)R({[Ho, H1]¥|¢)) = 0 implies 3({[ Hp,
[Ho, H1]1¥|¢)) = 0. And so on. Finally, the largest invari-
ant set is characterized B((¥|¢)) = 0 with the following
conditions:

S(H1¥1¢)) =0, R({([Ho, H1]¥|¢)) =0,
S(([Ho, [Ho, H111¥[¢)) =0, ...

that corresponds to the “ad-conditions” obtainedundjevic
and Quinn (1978)At each step, we have the Lie bracket of
the HamiltonianHp with the Hamiltonian of the last step.
We can always assume thHp is diagonal. Then we can
easily compute the commutatpHo, B] where B = (B;;)
is an x n matrix. With Hp = diag(41, ..., 4,), we have
[Ho, Al; j=(4i—4;) B;;. LettakeB=H; in order to simplify
the notations. So

[Ho, Bl = ((4 — 4j)Bij),
[Ho, [Ho. Bl = ((4i —7;)?B;j),
[Ho.[Ho,....[Ho, Bll...] = ((i—2)"Bij).

k
Thus the previous system reads

times

3(Z;B,; ;) = 0O,

R (41— 4))Bj¥Y;)) = 0,
(11)

3(Z;0a—2)*B1j¥)) = 0O,

R0 — 2% By = 0

Using the Vandermonde structure and the fact #iighas a
non-i-degenerate spectrunf, ¢ S¥~ is in the Q-limit set
ifandonly if By;¥; =0,Vj € {2,...,n}. and3(¥1) =0.

3.2. Proof of proposition (2) of Theorem 1

necessitates at least two photons: the feedback (8) cannot Note first that in any case th@-limit set containsp and

find such multi-photonic processes.
The proof of Theorem 1 mainly relies on the characteri-
zation of theQ-limit set via LaSalle invariance principle. It

—¢. If Hp has a nomt-degenerate spectrum ad= R¢
then proposition (1) implies that the-limit set is just{£¢}.
Now let us suppose that at least one of these two conditions

provides here a complete description of the invariant subsetis not fulfilled.
via the linear system (11). Such description becomes very Assume thaE # R¢. Thus exists an eigenvectdrof Hy

simple whenHj is not degenerate.

3.1. Proof of proposition (1) of Theorem 1

Up to a shift onw and Hp, we can assume that= 0.
LaSalle’s principle (see, e.gkhalil, 1992, Theorem 3.4,
p. 119 says that the trajectories of the closed-loop system
converge to the largest invariant set containedWn'dt =0
whereVis defined by (2). The equatiorVdd:=0 means that
I(H1YP ) =3((¥]¢))=0. Thusu =0 andw =0. Invari-
ance means thatd/dr) ¥ = Ho¥, (d/dt)S((H1¥|¢)) =0

not co-linear tap such that H1 ®@|¢) =0. With ¥(0) = ® as
initial state, we have(r) =0 andw(r) = -4 and¥(t) = @
for all r > 0. TheQ-limit set containsd.

AssumeE = R¢ but thatHp has al-degenerate spectrum.
We will consider two cases

(1) There exists an eigenvectgy, with length 1 of Hp or-
thogonal top but with the same eigenvalue SinceE =
R, Buu=({H1d;|p)) # 0. With ¥ (0)= (B /| Bk ) Py
as initial state, we have(r) =0, w = -4 and ¥(¢) =
(B /| Bik]) ¢, belongs to the-limit set.
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(2) There exist two orthogonal eigenvectafg and ¢,
of Hp, with length one and admitting the eigenval-
uesu # A. SinceE = R¢, By = ((H1¢lp)) # 0
and By = ((Hi¢;1¢)) # 0. With ¥(0) = (Bu¢; —
Budy)/+/ | Bik|? + | Bu|?, we haveu(t) =0, o=—/ and

P(1) = e =D,
Thus theQ-limit set containg(€*¥(0)) (0, 27]-

The proof of the first part of proposition (2) is thus done.

Let us prove now that is locally exponentially stable
when Hy is not Z-degenerate and = R¢. We will prove
that the linearized closed-loop system is asymptotically sta-
ble. This will automatically imply that the equilibrium is
locally exponentially stable. S&t(1) = ¢+ AY¥(¢) with AY
small. Then up to second order terms we have

91—

ar AY = (Ho — ADAY — aJ((H1AY|$)) Hip

— b3I(AY|P)¢

andR((AY|¢)) =0 (definition of the tangent space @tto

the unit spher&s?'~1). Setw (A¥) = J(A¥|AP). Simple
computations show thatid/dr <0 andE =R¢ implies that

the LaSalle’s invariant set of this linearized system reduces
to A¥ = 0 on the tangent space @tto S2' 1.

The fact that-¢ is unstable results from the fact that the
Lyapunov functionV reaches its maximum o082~ only
for ¥ = —¢. Thus if ¥(0) # —¢, then necessary(r)
must converge to the other point of tli&limit set. Thus
M 100 P(r) = ¢; the equilibrium—¢ is unstable, the
attraction region ofp is S%~1/{—¢}.

Let us finally prove thaty non-A-degenerate anfl =R¢
is equivalent to the controllability of the linearized system
at ¢.

Set (1) = ¢ + AP(t) with R(AP|¢) =0, u = Au
andw = —1+ Aw with AY, Au andAw small. Then up to
second order terms, (1) reads

d
ZEAIP = (Ho— ADAY + AuH1¢ + Awo.
Take (¢4, ..., ¢,) an orthonormal eigen-basis @iy as-

sociated to(41,...,4,) with ¢, = ¢ and A3 = 4. Set

(z1, ..., zn) € C" the coordinates oA ¥ in this basis. Then
N(z1) =0 and
d
—(3(z1)) = —Aw— BuiAu,
dr
ZEZZ = (A2 — A1)z2 + B1oAu,
zi (Jn — 2120 + B1,A
dr Zn n 11)2n AU,

where B;; = (¢;|H1¢ ;). Controllability is then equivalent
to the fact thatBy; # 0 and|4; — 4| # |[A; — 4] for i#j
(use, e.g., Kalman controllability matrix). This is clearly
equivalent toHp non-i-degenerate anfi = R¢.

1991
3.3. A technical lemma

The following lemma will be used during the Proof of
Theorem 3:

Lemma 2. Consider(1). Take$ € S¥~* an eigenvector
of Hp associated to the eigenvalueAssume thaty is not
A-degenerate and the vector-space E defined in Thedrem
coincides withR¢. Taked € R and consider the following
closed-loop systertu, b > 0):

ud/dn¥Y = (Ho+uHi+w)?,
(1) {u = —a3(H1P|e 0= ¢)),
) = —b3(P1e0=D¢y).

Then for ally > 0 and ¢ > 0, existsT > 0, such that for all
0 € R and P9 € C" satisfying||¥° — exp(:0) || <2 — 1,
we havevr > T, minyeo2n || P(1) — explea) ¢l <& where
¥ is the solution of Y") with ¥(0) = ¥°.

Note thatT is independent off: this point will be crucial
in the proof of Theorem 3. The detailed proof of this lemma
is left to the reader. It relies on the following arguments:

e Up to a shift of—4 on w and Hp, and multiplying¥ by
e, we can assumé = 0 and# = 0; one recognizes
feedback (4).

|¥ — ¢|12 is a Lyapunov function that reaches its maxi-
mum value 2 only folV = —¢.

e ¥ lives on the compac6?'~! and according to propo-
sition (2) of Theorem 1, th&-limit set of (") is made
of two equilibrium {¢, —¢} with ¢ exponentially stable
with attraction regiorS?'~1/{—¢}.

The time taken by (¢) to enter the sphere of centg¢rand
radiuse is a continuous function d#(0) € S¥~1/{—¢}.

It reaches its maximum on every compact subset of

S?=1/(—o}.

4. Lyapunov tracking of adiabatic trajectories

The goal of this section is to prove the following theorem
that underlies simulations &fig. 3

Theorem 3. Consider (1) and an analytic mapu +—
(¢", 1) whereg" is an eigenvector offp +u1 H1 of length
1 associated to the eigenvalué. Take a smooth may :
[0, 1] — [0, 1] such thatf (0)= f(1)=0.For T > 0, denote
by [0, T] > t — W(¢) the reference trajectory solution of

ud/dn)¥y = (Ho+ ur(t)Hy) Vs,
(Z0) | P (0) = ¢
ur(r) = f@/T).
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and by[0,T] > t — Y(¢) the trajectory of closed-loop
system(see(3), a, b > 0 constany

1(d/d¥Y = (Ho+u(t)Hy + o)¥,
17O = ¥

u = ur(t) —a3I(HLV|¥Y)),

w = —b3I{Y|Y))).

Assume that there
system of1) around the steady stat# = ¢
ur(sT) andw = —A" is controllable

Then for ally > 0 and ¢ > 0 there exists > 0, such that

exisise]0, 1[ such that the linearized
La=fG) =

for all 0 € S#*~1 such that|| ¥° — ¢°|| <2 — i we have
VT>T, min |P(T) - &%¢°|<e.
oe[0,27]

The existence of the analytical map— (¢“, 1) comes
from the following classical result of the perturbation the-
ory for finite dimensional self-adjoint operatotsato, 1966,

p. 121:

Lemma 4. Let us consider the x n hermitian matricesHy
and H; with entries inC and let us define

H(u):= Hyo+uH;.

For each realu € R, there exists an orthonormal basis
(@D je,...ny Of C" consisting of eigenvectors aff (u).

These orthonormal eigenvectors can be chosen as analyticVs > Tp,

functions ofu € R.

For the case oFig. 3, it is then clear that the eigenvec-
tor d)o = (1, 0, 0) of Hp belongs to such an analytic branch.
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Proof. Taken >0, ¢>0 andT > 0. Denote byR > ¢
¥ (¢) the solution of the following closed-loop system

Wd/dn¥ = (Ho+iiHi+®)7,

- | PG = YGT),

2) i = i — aS((Hy e 0-- 5T) )y
) — _b\s((g/|ez(9 (t— sT))“)¢u

where the anglé e [0, 2x] is such that
17/ GT) — 0" = min [ P,GT) — 4"
o€[0,27]

By the adiabatic Theorem 5 there exi$ts> 0 such that for
al T>1,:
vVt € [0, T], mln ||‘I’r(t)

&)< (12)

Since|| ¥ — ¥,| is a time decreasing function we have

[PGT) = PrGDI<IP(O0) — ¥ (O <2—1.

But for 7 > T, | #: GT)—€%¢"| <y/2. Thus, forT =T,
I1¥GT) —e¢"|

SNPGET) — (ST + 1P (ST) — Zéfﬁﬁll <2-—1n/2.
Lemma 2 applied ori2) provides a7}, > 0 such that

m|n || PGET +1) — %" < g (13)
One can always choodg large enough to ensure that for all
T>T,,sT+Ty,<T,5s <1andT, isindependent of > T,.

This last point will be crucial in the sequel: it results from

Moreover, simple numerical computations indicate that for the invariance with respect to time translation of Lemma 2

i = 0.1, the linearized system aroungl’ is controllable.
Moreover, sinceg{)0 is defined up a multiplication by 6 €
[0, 2xt], one can always chooﬁé’ such that| ¥° — ¢0|| <1.

and from the independence @f versusf that depends a
priori onT. ~
Let us compare now the solution @&) and (X) for

Thus, all the conditions of Theorem 3 are fulfilledandwe can ¢ € [sT,sT + T,]. Both systems have far= 57T the same

adjust the final error by takin§large enough. One observes
that, asymptotically whea> 0 tends to 0, the required time
T to ensure a final error less thaincreases as-k log ¢ for

somek > 0. Such asymptotics fdF can be interpreted as a

kind of exponential convergence. Such exponential behav-

iors are often encountered (see, eMartinez, 1994

The proof of Theorem 3 relies on the following adiabatic
theorem (se&lgart & Avron, 1999 for a tutorial presenta-
tion of different versions of adiabatic theorem).

Theorem 5. Consider the solutiofi0, 7] > ¢ — W, (¢) of
(Zy). Then for alle > 0, there existd;, > 0 such that for all
T>T,,

vt € [0, T1, %) <e.

min ||¥:(¢) —
ae[O,Zn]” r (1)

The remaining part of this section is devoted to the proof

of Theorem 3.

initial value. They are both closed-loop dynamics (dynam-
ics (1) with the tracking feedback (3)). The only differ-
ence is the reference trajectony:—~ ¥, (r) for (X) and

t s> @0-a=5DAY it for (3). Let us prove that

lim sup
T—+00 \ (e[5T,5T+T3]

1P, () — 0= g ||) =0.(14)

For T large, these two reference trajectories satisfy on
[ST,ST + T,] almost the same differential equations
(1) with almost the same initial conditions at= 57
max cs7.5747,] | ur(t) — it| and | ¥, (5T) — €9¢"| tend to 0
asT tends to+oo. Since the interval lengt, does not de-
pend onT, we have (14) by standard continuity arguments.
For the same reasons, (14) implies f&h and (2):

sup

lim (15)
T—+00 \e[ST,5T+T]

1P (1) — %)n) =0
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