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Local time control methods are used in the simulation of quantum control phenomena because they conveniently
ensure an increase of a predefined performance index and also avoid singularities associated with tracking
procedures. However, the drawback of the existing implementations is that they only take into account one-
photon, direct transitions and may stop at nonoptimal values of the index. We propose in this paper a
modification of the currently used algorithms that addresses this issue and explain how the convergence is
improved. Furthermore, when iterations are required, we show that this approach can be inserted into a
monotonically convergent algorithm.

1. Introduction

Using lasers (or other external interactions) to influence the
dynamical properties of quantum systems has been successfully
demonstrated both theoretically5,11,23,24,28 and in laboratory
practice.1-4,11,13,35Very often, control of quantum phenomena
is expressed as the minimization of a setting-dependent cost
functional that describes the goal to be attained and the eventual
penalties to consider. Three types of generic minimization
procedures have been used in the literature: stochastic iterative
approaches (e.g., genetic algorithms),7,15 iterative critical point
methods that use adjoint state information and give rise to
monotonic algorithms,10,17,29,32,36and tracking or local control
procedures6,8,12,16,20,30,31that obtain explicitly the control field
from the prescribed trajectory that the system is required to take
(and devise additional techniques to avoid eventual singularities).
The advantage of this last class of methods is that it only requires
one (or few) propagations of the time-dependent Schro¨dinger
equation (TDSE); when larger systems are to be treated, this
property may prove crucial for the numerical tractability of the
simulations.

A recent example of the local control procedure30 defines a
performance index in terms of the system’s wave function or
density matrix operator and of the target observables. The
controlling field is then obtained through the requirement that
this index increases monotonically during the optimization.
Although successful application of this approach has been
demonstrated for the control of the one-dimensional hydrogen
fluoride (HF) molecule, no analysis is available to quantify the
performance of this procedure in general circumstances. Starting
from a study of the stopping points of the local control method,
we were able to identify the ingredients that lead to successful
convergence. For instance, it was observed that the scheme only

exploits direct, one-photon-coupling capabilities of the dipole-
moment operator. When full direct coupling between all
eigenstates of the free Hamiltonian is not available, it will be
“trapped” into local minima on its way to convergence.
However, supposing existence of complete first-order transitions
is a restrictive assumption, and some standard benchmark
cases27,33 do not fall within this class.

To improve this behavior, we document in this paper a new
procedure that exploits transitions at all orders; this approach
also successfully treats systems with degenerate transitions, not
always covered by the initial approach. In addition, an enhance-
ment of this scheme that treats situations with constraints on
the total time or coupling field intensity is proposed. This
algorithm is shown to display monotonic convergence behavior.

The paper is organized as follows: we introduce in section
2 our Lyapunov-based method and compare its convergence
properties with those of the previously proposed schemes. We
illustrate these results with numerical simulations in section 3.
Further extensions of the method are given in subsection 4.
Discussions and concluding remarks are presented in section
5.

2. Lyapunov-Based Designs

Consider the control via an external interaction (e.g., a laser
field) of the expectation value of a physical observable operator
O in a quantum system. The system’s wave function is governed
by the Schro¨dinger equation

whereΨ0 is the initial state,H0 is the internal Hamiltonian,µ
is the coupling dipole moment, andε(t) is the external field
intensity. The control objective is to maximize the expectation
value of the operatorO. We will keep the wave-function
description throughout the paper, but similar considerations
apply to the density matrix formalism. When relevant, we will
indicate the analogous results than can be obtained in that
setting.

This problem has been treated in a general form in ref 6,
where the control objective is to guide the dynamical trajectory
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such that the expectation value ofO follows a desirable track,
S(t): 〈Ψ(t)|O|Ψ(t)〉 ) S(t). The approach of ref 6, named as
tracking, has also been studied in refs 8 and 16. It consists of
obtaining the control field from the evolution equation ofS(t)
and the requirement thatS(t) follows exactly a specified
trajectory. As a typical problem for such reverse-design
techniques, singularities may arise in the inversion process.
These singularities are classified and studied in refs 25 and 26.
A method to treat these singularities is presented in ref 26.

Another method of the same nature has been introduced in
ref 31, where locally optimized control fields are designed for
the control of quantum dynamics. The optimization theory of
LTI (linear time-invariant) systems has been used in small
intervals of time to design the control field in a quite direct
manner.

Finally, in refs 12 and 30, a first approach based on Lyapunov
techniques has been introduced. The method consists of using
a performance indexy(t) that formulate the desired physical
properties to be satisfied by the system, defined as

Here,〈Õj(t)〉 for j ∈ {1, 2, ..,N} denotes the expectation value
of the physical observables given by the Hermitian operators
Õj(t) that evolve with the equation of motion

The controlling field is then chosen so that it ensures the
increase of the performance indexy(t). A simple computation
shows that

Thus, any feedback of the form

whereK(t,s) ) R × R f R is a smooth function such that

ensures dy(t)/dt g 0. In the particular case wheny(t) is an
expectation value of the projection operator|φ〉〈φ| to an
eigenstateφ of the internal Hamiltonian, this is equivalent to
choose a feedback design of the form

As we will see in the formal analysis of this section and in the
numerical simulations of the next section, this Lyapunov-based
control only takes in account the first-order transitions. In the
case where all of the eigenstates ofH0 are coupled via the dipole
momentµ, this control field appears to be efficient. However,
in the case where some states of the system are not directly
coupled but transitions of higher orders exist, the design will
fail to lead the system toward the target state. It is shown in ref
18 that the trajectories of the system will converge toward a
subspace, with a dimension strictly more than one, of the

system’s space. Numerical simulations justifying this claim are
presented in the next section.

To cure these drawbacks, we introduce here another version
of this method that enables the use of multiphotonic transitions.
We present this approach for the general formulation of the local
coherent control theory and give some numerical simulations
for the particular case of the projection operators. Our procedure
automatically identifies the multiphoton transition paths needed
to reach the target. Once the driving field is obtained, an
a posteriorianalysis of the system dynamics (obtained during
the resolution of the TDSE) can inform on the control mech-
anisms that were found useful.

2.1. Control Design. Even if the operatorsÕj are not
constants of time, they are invariants of the free system without
any control term.14 The idea consists in defining reference
operators whose time dependence with respect to the free system
is not stationary and which becomes equal to desiredOj after a
large timeT. The formal analysis of the next subsection shows
how using such nonstationary reference operators allows to use
higher order transitions.

Take observable operatorsÕj(t) whose dependence with
respect to time is given by the following equation of motion:

wheref(t) is a reference field not identically zero and such that
f(t) ) 0 for all t g T. Deriving formally eq 2, we obtain

Thus, any feedback of the form

whereK(t,s) verifies the same conditions as before, will increase
the value of the performance indexy(t).

Now let us consider the case where the performance index is
the expectation value of a physical observable operator. We take

whereÕ(t) verifies eq 5 with a final conditionÕ(t ) T) ) Of.
One important question to ask is when does the system stop
before reaching the maximum value of the performance index.

The reference operatorÕ(t) reaches the desired observable
operatorOf at timeT (supposed to be large enough), and thus,
the control of〈Of〉 terminates successfully unless〈Õ(t)〉 stops
increasing toward its maximal value. For a rigorous proof of a
convergence result for the case of a projection operator, under
some technical but not restrictive assumptions onf(t), see ref
19. However, to illustrate the arguments of the proof, let us
explore formally the simple case where the reference trajectory
corresponds to the driving fieldf(t) ≡ 0, which is the method

y(t) ) y(〈Õ1(t)〉, 〈Õ2(t)〉, ..., 〈ÕN(t)〉) (2)

d
dt

Õj(t) ) i[Õj, H0] (3)

dy(t)

dt
) -ε(t)∑

i)1

N ∂y(t)

∂〈Õj(t)〉
〈[Õj(t), µ/i]〉

ε(t) ) K(t, -∑
i)1

N ∂y(t)

∂〈Õj(t)〉
〈[Õj(t), µ/i]〉)

sK(t,s) g 0 ∀s∈ R K(t,s) ) 0 S s ) 0

ε(t) ) K(t,Im(〈µΨ|φ〉〈φ|Ψ〉)) (4)

dÕj

dt
) i[Õj, H0 - f(t)µ]

Õj(t ) T) ) Oj (5)

dy(t)

dt
) ∑

i)1

N ∂y(t)

∂〈Õj(t)〉

d〈Õj(t)〉

dt

) -(ε(t) - f(t))∑
i)1

N ∂y(t)

∂〈Õj(t)〉
〈[Õj(t), µ/i]〉

ε(t) ) f(t) + K(t, -∑
i)1

N ∂y(t)

∂〈Õj(t)〉
〈[Õj(t),µ/i]〉)

y(t) ) 〈Õ(t)〉
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proposed in ref 30. We will make clear when using this
particular field [f(t) ≡ 0] can the expectation value of the
physical observableÕ reach its maximal value and when this
field fails to give a convenient reference observable operator.
Then, we will explain how using a nonstationary well-chosen
reference field one can overcome this lack of convergence (the
analysis for the case of a general index depending on the mean
value of many physical observables could be treated along the
same lines).

2.2. Convergence Analysis.Suppose that the reference
driving field is zero,f ≡ 0. Formally the mean value〈Õ〉 stops
increasing when the control fieldε(t) becomes uniformly equal
to the reference driving fieldf(t), which happens if and only if
˜ε(t) ) ε(t) - f(t) and all of its derivatives are zero. This may
be written as

Here,adZ
m(Y) is a notation for iterative commutators

In fact ε̃ ) 0 implies〈[Õ, µ/i]〉 ) 0. In general, we can prove
that

Indeed, suppose that eq 7 holds forj e k, then

where we have used the Jacobi identity for the Lie brackets.
We write the system in the eigenbasis corresponding to the

hermitian matrix H0. Thus, H0 is diagonal, H0 ) diag-
(λ1, ...,λn). Then, the commutator [H0, B] for any n × n matrix
B ) (Bij) is [H0, B] ) [(λi - λj)Bij] i,j, and thus, for anyk g 1

Using eq 7, eq 6 becomes equivalent to

whereΦ ) Oh Ψ. Then, under the assumption34

A1: H0 does not have degenerate transitions, i.e.,λi - λj *
λa - λb, for (i, j) * (a, b).

equation 9 becomes equivalent to

So if

A2: for any i * j ∈ {1, 2, ..,n}, the coefficientµij does not
vanish (µij * 0).

then,Φ must be proportional toΨ, which means thatΨ must
be an eigenstate of the physical observable operatorÕ.
Therefore, under the assumptionsA1 and A2, the algorithm
stops converging toward the maximal value of the expectation
value of Õ only on eigenstates of the operatorÕ. However,
because only the eigenstate ofÕ with a maximum eigenvalue
is stable, the system stops only on this eigenstate. For the case
of the density matrix description, the same analysis leads us to
conclude that stopping points necessarily commute with the
observableÕ.

Let us now consider the case where the assumptionA2 is
not fulfilled. It means that some states of the free Hamiltonian
H0 are not coupled by one-photon transitions, i.e., someµij

values are zero. This situation may arise for many controllable
molecules. We will see that in such cases the algorithm with a
reference fieldf ≡ 0 will not lead the system to the maximum
value of 〈Õ〉.

To clarify the situation, let us restrict ourselves to the
representative case where the operatorÕ is the projection
operator on eigenstateφ of the internal Hamiltonian with energy
λ, Õ ) |φ〉〈φ|.

A stable equilibrium manifold for the system is given by the
vector space

Indeed, the feedback design for this observable is given by eq
4. Clearly,E represents an equilibrium manifold for this field
design; when we start from any state inE, the feedback design
vanishes and the system’s dynamic will be stationary. The
mathematical analysis elaborated in ref 18 based on LaSalle’s
invariance principle shows that any trajectory of the closed-
loop system will converge toward an equilibrium point in this
vector space and not necessarily towardφ. Numerical simula-
tions of the next section illustrate this fact for some usual and
representative examples of finite dimension.

On the contrary, adding a nonzero reference driving fieldf(t)
will perturb the free Hamiltonian of the system and will lead
the system to verify the assumptionsA1 and A2. To have
effective perturbations on the free Hamiltonian if we are in the
weak fields regime, one should use resonant driving fieldsf(t).
In the case of strong fields this is not necessary.

∑(λi - λj)
kµij(Ψh iΦj + Ψh jΦi - Φh jΨi - Φh iΨj) ) 0

∀k ∈ {0, 2, 4, ..}

∑(λi - λj)
kµij(Ψh iΦj - Ψh jΦi + Φh jΨi - Φh iΨj) ) 0

∀k∈ {1, 3, 5, ..} (9)

µij(Ψh jΦi - ΨiΦh j) ) 0 ∀ i * j ∈ {1, 2, ..,n} (10)

E ) span{φi; 〈φ|µ|φi〉 ) 0 H0φi ) λiφi}

〈[Õ, adµ/i
k

H0

i ]〉 ) 〈Ψ|[Õ, adµ/i
k

H0

i ]|Ψ〉 ) 0

∀k ) 0, 1, 2, ... (6)

adZ
0(Y) ) Z adZ

m(Y) ) [Y, adZ
m-1(Y)] for m g 1

dj

dtj
ε̃ ) (-1)j〈[Õ, adµ/i

j
H0

i ]〉 for j ) 0, 1, 2, .. (7)

dk+1

dtk+1
ε̃ ) (-1)k

d
dt〈[Õ, adµ/i

k
H0

i ]〉
) (-1)k〈[[Õ, adµ/i

k
H0

i ], H0

i ]〉 + (-1)k〈[d
dt

Õ, adµ/i
k

H0

i ]〉
) (-1)k〈[[Õ, adµ/i

k
H0

i ], H0

i ]〉 - (-1)k〈[[Õ,
H0

i ], adµ/i
k

H0

i ]〉
) (-1)k〈[[Õ, adµ/i

k
H0

i ], H0

i ]〉 + (-1)k〈[[H0

i
, Õ], adµ/i

k
H0

i ]〉
) (-1)k+1〈[[adµ/i

k
H0

i
,
H0

i ], Õ]〉
) (-1)k+1〈[adµ/i

k+1
H0

i
, Õ]〉

adµ/i
k

H0

i
) (1i )k+1

[(λi - λj)
kµij] (8)
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For example, whenO is a projection operatorO ) |φ〉〈φ|
using a reference trajectory

and the Lyapunov-based method to obtain an increasing
function |〈Ψ(t)|Ψr(t)〉|2, the following simple design for the
control field can be proposed:

Numerical simulations of the next section, which are done
in this particular case, make clear how using a nonzero reference
field causes the assumptionsA1 andA2 to hold true.

3. Numerical Simulations

Consider the 5-level system (already used in the litera-
ture)27,33,34 where the internal HamiltonianH0 and the
dipole momentµ are

This system is controllable: the Lie algebra spanned byH0/i
and µ/i is u(5).27 Let us suppose that the goal is to steer the
system’s wave function to the first eigenstateφ ) (1, 0, 0, 0,
0)t of H0 with energyλ ) 1. Using the stationary projection
operator corresponding to the first eigenstateÕ(t) ) |φ〉〈φ|, we

obtain the following design for the control field:

Suppose that the initial state is a linear combination of the
first three eigenstates corresponding to the energies 1, 1.2, and
1.3. Evidently, for such initial state, the control field found
by the Lyapunov design vanishes for allt g 0, and there-
fore, the system state will not converge toward the desired
target state. Even if the population of the eigenstatesφ4 and
φ5 (which have direct transitions withφ1) in the initial state
are not zero, the system’s trajectory might converge to a state
of the system in the eigenspace generated byφ1, φ2, andφ3,
which turns out to be the stable equilibrium manifold of
the system. The simulation in Figure 1 shows this fact, when
the initial state is1/x3(1, 0, 1, 1, 0) and the functionK(t,s) is
defined as

with σ(t) being a Gaussian envelope centered atT/2 ) 250.
Here and throughout the paper, we express the system’s state
in the eigenbasis of the internal HamiltonianH0. To solve the
TDSE between two consecutive timest andt + dt, we compute
the propagator exp(i(H0 - ε(t)µ)dt). We refer to end of section
3 for a discussion on the numerical schemes to be used when
infinite dimensional settings are treated.

As one can see the system’s wave functionΨ stops its
progression to the target stateφ1 when attaining only 60% of
the population. Note that the algorithm with zero reference field
f(t) ≡ 0 forces the control fieldε(t) to vanish after the time
t ) 300 because of the feedback termIm(〈µΨ|φ〉〈φ|Ψ〉)
that tends to zero [irrespective of the choice ofK(t,s) )
σ(t)s; in fact, at t ) 300, σ(t) takes values near its maximum
reached att ) T/2]. Simulations with any other choice ofK(t,s)
lead to the same behavior. Moreover, if we increase the total
simulation timeT, the molecule will be “trapped” in the same
state.

Figure 1. (a) Square of the norm of the projection of the system’s trajectoryΨ(t) with a feedback of the form in eq 4 on different eigenstates of
the system, i.e.,|〈Ψ(t)|φi〉|2. (b) Control field found by eq 4 whereK(t,s) ) σ(t)s with σ(t) ) 1/4 exp(-0.1e - 3(t - T/2)2) (5-level system).13

ε(t) ) K(t,Im(〈µΨ|φ〉〈φ|Ψ〉)) )
K(t,Im(Ψ1(Ψ4

/(t) + Ψ5
/(t))))

K(t,s) ) σ(t)s

i
∂

∂t
Ψr ) (H0 - f(t)µ)Ψr

Ψr(T) ) φ (11)

ε(t) ) f(t) + K(t,Im(〈µΨ|Ψr〉〈Ψr|Ψ〉)) (12)

H0 ) (1.0 0 0 0 0
0 1.2 0 0 0
0 0 1.3 0 0
0 0 0 2.0 0
0 0 0 0 2.15

)µ ) (0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0

) (13)
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In ref 30, a method has been introduced to accelerate the
convergence to the target state when this convergence is slow.
It consists of using a performance index

wherePi ) |φi〉〈φi| is the projection operator on theith eigenstate
of the free Hamiltonian andR1 is chosen to be bigger than other
coefficients. This cure appears to be successful when the
interactions between states are weak. However, in general, it
has the same drawback as the last method. Let us see this fact
in another simulation. We take the same initial condition
Ψ0 ) 1/x3(1, 0, 1, 1, 0), and using the proportions (R1, R2, R3,

R4, R5) ) (10, 1, 1, 1, 7), one obtains the result in Figure 2,
which turns out to be quite similar to the last simulation. The
feedback designK(t,s) is chosen as before. Now let us consider
a nonzero reference perturbing fieldf(t). The simulation in
Figure 3 corresponds tof(t) ) σ(t)sin(t), whereσ(t) is a Gaussian
envelope centered att ) T/2 ) 1000. The initial state is still
1/x3(1, 0, 1, 1, 0), and the feedback design isK(t,s) ) σ(t)s.
Once again, the control field vanishes after the timet ) 900,
and this is not because of the special form ofK(t,s) but because
the feedback design converges to zero at the state where the
molecule is “trapped”.

As another situation where problems appear for a stationary
reference field, one may consider a free HamiltonianH0

with a degenerate spectrum. We will consider here a 4-level

Figure 2. (a) Square of the norm of the projection of the system’s trajectoryΨ(t) using the performance index in eq 14, on different eigenstates
of the system. (b) Control field (5-level system).13

Figure 3. (a) Square of the norm of the projection of the reference trajectoryΨr(t) solution of 11. (b) Square of the norm of the projection of the
system’s trajectoryΨ(t) using the feedback design of eq 12, on different eigenstates of the system. (c) Control field found by eq 12 where
f(t) ) σ(t)sin(t) andK(t,s) ) σ(t)s with σ(t) ) 0.01 exp(-0.1e - 4(t - T/2)2) (5-level system).13

y(t) ) ∑
i)1

5

Ri〈Pi〉 (14)
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system9, 21,22,34(also see ref 28-page 152)

The target state is (0, 0, 0, 1) in the eigenspace corresponding
to the multiple eigenvalue 0.095 683. Figure 4 illustrates a
simulation of this system when the open-loop part is given by
a functionf ) σ(t)(sin(ω1t) + sin(ω2t), whereσ is a Gaussian
envelope centered aroundT/2 ) 1.5e + 5 andω1 andω2 are
transition frequencies. The initial state is set to beΨ0 ) 1/2(1,
1, 1, 1), and the feedback design isK(t,s) ) 10σ(t)s.

As noticed previously, both systems considered here are
typical cases of finite dimensional systems already presented
in the literature. The time and field intensity parameters found
by the Lyapunov-based approach are coherent with values found
by other algorithms.

Note that the exactly same design can be used for situations
where the spectrum is continuous, and therefore, the system is
infinitely dimensional.37 In this case, the numerical simulations
are to be performed using, e.g., a third-order potential-centered
split-operator method.38

4. Further Extensions

The procedure presented in section 2 extends the work of ref
30 that considers the casef ≡ 0. Indeed, we show above that a
formula for ε(t) can be obtained for allf(t) provided that eq 5
is used instead of the free evolution forÕ.

In comparison with the classical tracking, this algorithm is a
singularity-free noniterative method. In fact, it is a stabilization

technique, and unfortunately no control on the convergence time
is generally available. However, in the cases considered here
and in many other additional situations, we have observed that
the time needed for the convergence of the algorithm is of the
same order as other methods, e.g., conventional tracking or
optimal control. If however, for a given setting, the method has
not finished converging at timeT, two approaches can be
proposed. If there are no restrictions on the total timeT, setting
it to a larger value ensures that smaller neighborhoods of the
target state will be reached because we know that the procedure
only stops when hitting the target. Otherwise, if we deal with
a control problem with a fixed timeT, we can use this algorithm
iteratively to get a better result at each step. Using a general
formulation of the coherent control theory with a performance
index y(t) defined in eq 2, we obtain the following algorithm
(a similar algorithm can be written in the density matrix
formulation):

1. Use an arbitrary driving fieldε(0)(t) for the reference
trajectory of different observablesÕj

(0) and the Lyapunov-based
method, to obtain a first candidate for the control fieldε(1)(t)
and a trajectoryΨ(1) of the system fort ∈[0, T]

2. At the i’s step (i g 1), useε(i)(t) as the reference driving
field and find new reference observablesÕj

(i) reachingOj at

Figure 4. (a) Square of the norm of the projection of the reference trajectoryΨr(t) solution of 11. (b) Square of the norm of the projection of the
system’s trajectoryΨ(t) using the feedback design of eq 12, on different eigenstates of the system. (c) Control field found by eq 12 where
f(t) ) σ(t)(sin(ω1t) + sin(ω2t) andK(t,s) ) 10σ(t)s with ω1 ) 0.095 863,ω2 ) 0.095 683- 0.004 556, andσ(t) ) 0.1e - 3 exp(-0.3e - 9(t -
T/2)2) (4-level system).15

d
dt

Õj
(0) ) i[Õj

(0), H0 - ε
(0)(t)µ]

Õj
(0)|t)T ) Oj for j ∈ {1, 2, ..,N} (16)

i
∂

∂t
Ψ(1) ) H0Ψ

(1) - ε
(1)(t)µΨ(1)

Ψ(1)|t)0 ) Ψ0 (17)

ε
(1)(t) ) ε

(0)(t) +

K(t, -∑
j)1

N ∂y(t)

∂〈Õj
(0)(t)〉

〈Ψ(1)(t)|[Õj
(0)(t), µ/i]|Ψ(1)(t)〉) (18)

H0 ) (0 0 0 0
0 .004 556 0 0
0 0 0.095 683 0
0 0 0 0.095 683

)µ )

(0 1 1 -1
1 0 1 1
1 1 0 0
-1 1 0 0

) (15)
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t ) T. Then, update the control field using the Lyapunov-based
method and find the new control fieldε(i+1)(t) and the
corresponding trajectoryΨ(i+1)

We can prove that this algorithm has a very convenient
monotonic convergence to the target, i.e.

Indeed, becauseε(i+1)(t) is chosen to have an increasing function
y({〈Ψ(i+1)(t)|Õj

(i)(t)|Ψ(i+1)(t)〉}j)1
N ), one must have

where, in the last equality, we have used the fact that the wave
functions Ψ(i)(t) and the observablesÕj

(i)(t) evolve with the
same coupling fieldε(i)(t) and, therefore, the values for
〈Ψ(i)(t)|Õj

(i)(t)|Ψ(i)(t)〉 remain constant. Finally,Õj
(i)(T) ) Oj,

which yields eq 22.

5. Discussion and Conclusion

This paper presents an extension of the local time control
procedure in ref 30 to obtain external fields that maximize a
predefined performance index of interest. We have analyzed
the previous implementations of the Lyapunov techniques and
explained that these methods fail when “trapped” in a state that
does not ensure proper optimality of the performance index.
We show that considering a general reference field helps in
avoiding such phenomena.

Such local control approaches have no control over the final
time required to reach the target. When the initial choice of
final time T does not ensure reaching the target, two solutions

can be suggested: either to simply increase the simulation time
(it can only stop at the target!) or, if the time is to be kept fixed,
to use iterative procedures. One such procedure that displays
convenient monotonic convergence is presented in section 4.
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d
dt

Õj
(i) ) i[Õj

(i), H0 - ε
(i)(t)µ]

Õj
(i)|t)T ) Oj for j ∈ {1, 2, ..,N} (19)

i
∂

∂t
Ψ(i+1) ) H0Ψ

(i+1) - ε
(i+1)(t)µΨ(i+1)

Ψ(i+1)|t)0 ) Ψ0 (20)

ε
(i+1)(t) ) ε

(i)(t) +

K(t, -∑
j)1

N ∂y(t)

∂〈Õj
(i)(t)〉

〈Ψ(i+1)(t)|[Õj
(i)(t), µ/i]|Ψ(i+1)(t)〉) (21)

y({〈Ψ(i+1)(T)|Oj|Ψ(i+1)(T)〉}j)1
N ) g

y({〈Ψ(i)(T)|Oj|Ψ(i)(T)〉}j)1
N ) ∀i g 0 (22)

y({〈Ψ(i+1)(T)|Õj
(i)(T)|Ψ(i+1)(T)〉}j)1

N ) g

y({〈Ψ(i+1)(0)|Õj
i(0)|Ψ(i+1)(0)〉}j)1

N )

) y({〈Ψ0|Õj
(i)(0)|Ψ0〉}j)1

N ) )

y({〈Ψ(i)(T)|Õj
(i)(T)|Ψ(i)(T)〉}j)1

N )
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