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Dynamics and solutions to some control problems
for water-tank systems

Nicolas Petit , Pierre Rouchon

Abstract

We consider a tank containing a fluid. The tank is subjected to directly controlled translations and rotations. The fluid motion
is described by linearized wave equations under shallow water approximations. For irrotational flows, a new variational formulation of
Saint-Venant equations is proposed. This provides a simple method to establish the equations when the tank is moving. Several control
configurations are studied: one and two horizontal dimensions; tank geometries (straight and non-straight bottom, rectangular and circular
shapes), tank motions (horizontal translations with and without rotations). For each configuration we prove that the linear approximation is
steady-state controllable and provide a simple and flatness-based algorithm for computing the steering open-loop control. These algorithms
rely on operational calculus. They lead to second order equations in space variables whose fundamental solutions define delay operators
corresponding to convolutions with compact support kernels. For each configurations several controllability open-problems are proposed and
motivated.

Keywords:. Wave equations, boundary control, flatness, controllability, motion planning, delay operators.

Introduction

The following study is derived from an industrial problem for which tanks filled with liquid are to be moved to
different steady-state workbenches as fast as possible. For such start and stop motions, the fluid mass has a significant
contribution in the dynamics of the whole system. Several recent publications deal with this question, see, for example,
[1], [2], [3], [4], [5]. This paper is a first attempt to base the control design on wave equations describing the fluid surface
dynamics .

We concentrate on finding open-loop tank trajectories such that if the liquid is initially at rest then it returns to rest
when the tank stops. This is a typical motion planning problem: finding open-loop control steering in finite time from
one steady-state to another one. For finite dimensional systems, flatness based methods [6], [7] are very efficient to solve
this problem. In [8], [9], [10], [11], [12], [13], infinite dimensional extensions are proposed for several systems described
by partial differential equations with boundary control. We employ such a “flatness based” methodology, working on
physical models of the system and we establish several controllability results: positive results consider exact steady-state
controllability in finite time T , i.e., proving that there exists a control [0, T ] � t �→ u(t) steering the system from any
steady-state to any other one, on the other hand negative results describe the lack of approximate controllability.

The first contribution of the paper consists of models. The major modelling difficulty lies in the fact that the fluid
surface is unknown. A “rigorous” modelling involving Euler or Navier-Stoke equations with free surface boundaries is
out of reach. Thus we restrict our study to classical modelling based on shallow water approximation [14]. Even for such
restrictive modelling, the motion equations are not so simple to derive when the tank is moving. Thus in a first step, we
propose a variational formulation of the Saint-Venant equations for irrotational flows and fixed tank: their solutions are
extremal of the action under the constraint formed by the mass conservation equation. Then, when the tank is moving,
we derive a similar formulation by adding the contribution of the tank motion in the kinetic and potential energy and
proceed as before to get the dynamics.

The second contribution is relative to motion planning. The Saint-Venant equations are nonlinear hyperbolic equa-
tions. Only few results are available concerning their nonlinear stability, stabilization and controllability (see, e.g.,
[15], [16] and a recent result in [17]). Preliminary results [18] sketched in appendix lead us to thinking that, when
used properly, linearized Saint-Venant equations can be an insighful approximation for motion planning purposes. We
restrict our study to such linearized wave equations and show how to obtain open-loop control algorithms that are
computationally straightforward. They are derived from formulas presented in lemmas 3, 4, 5 and 6 and are based on
symbolic computations and involve operational calculus, Bessel functions, and Paley-Wiener theorem.

We would like to emphasize that although wave equations with Neuman boundary control have been intensively
studied and many precise and general results are available on their controllability and stabilization (see, e.g., [19], [20],
[21], [22], [23]), the classical results do not apply in a simple way to the problem presented in this paper. First reason: we
have a linear wave equation controlled via Neuman boundary control but, the control is not distributed on the boundary;
even for the simple tank described by system (26), the same control u, the acceleration of the tank, appears at both
edges x = −a and x = a. Second reason: the controlled wave equation is coupled with a double integrator D̈ = u; one
has to control not only the surface waves inside the tank but also the position and velocity of the tank.
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The paper is organized as follows. The dynamics of the systems under consideration are the subject of section I.
Sections II and III are devoted to control problems for the one-dimensional and two-dimensional cases respectively.

More precisely, in section I we detail the variational formulation: the Saint-Venant equations for a moving tank are
established. In section II, we consider one-dimensional cases: the translation case with a straight bottom is treated
in details; the non-straight bottom is also addressed; combination of tank translation and rotation are investigated.
Section III is devoted to two-dimensional cases: the translation of rectangular and circular tanks are solved; the combi-
nation of tank translation and rotation for an arbitrary geometry are also solved. In conclusion, we show that shallow
water approximation is essential to ensure an explicit formulation of the dynamics: a more general modelling with a
non-horizontal fluid velocity leads to an implicit formulation, an infinite dimensional analogue of an index one differential-
algebraic system. In the appendix we prove a technical lemma devoted to symbolic analysis of the one dimensional wave
equations when the speed depends on space: it can be seen as a generalization of d’Alembert formulas. We also recall in
appendix some preliminary results and nonlinear simulations based on Godunov scheme for the Saint-Venant equation.

In this paper we pin point several open problems. As far as we know, the techniques presented in this paper give only
partial answer, if any, in these tricky situations. We hope researchers in this area will welcome these challenges.

Some preliminary results relative to the horizontal translation of a tank in a vertical plane and with a straight bottom
can be found in [18]. A preliminary version of this paper can be found in [24].

I. Variational formulations

The Saint-Venant equations describe the motion of a perfect fluid under gravity g with a free boundary (the shallow
water assumption). We provide a variational formulation of these equations that, up to our knowledge, is new although
not surprising (see, e.g., [25], [26], [14]). This variational formulation is interesting: it gives directly the dynamics
equations when the tank is moving (translation and rotation).

A. The one-dimensional cases

A.1 One-dimensional straight bottom fixed tank

-a +a

v(x,t)

x

h(x,t)

Fig. 1. The one dimensional tank.

We assume that the tank is at rest and study the motion of the fluid.

A.1.a Notations. As displayed on figure 1, the system is described by the following quantities
• a horizontal coordinate x ∈ [−a, a] where 2a is the length of the tank;
• the height profile [−a, a] � x �→ h(x, t) with h(x, t) > 0;
• the velocity profile [−a, a] � x �→ v(x, t) with respect to the tank
• g is the gravity, ρ is the specific mass of the fluid.

A.1.b Physics. The mass conservation equation is

∂h

∂t
+

∂(hv)
∂x

= 0. (1)

The momentum conservation equation is
∂v

∂t
+ v

∂v

∂x
= −g

∂h

∂x
. (2)

The boundary condition is
v(−a, t) = v(a, t) = 0. (3)

The kinetic energy T is

T (h, v) =
ρ

2

∫ a

−a

h(x, t)v2(x, t) dx. (4)

The potential energy is

U(h, v) =
ρg

2

∫ a

−a

h2(x, t) dx. (5)

Under these hypothesis the following lemma holds
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Lemma 1: Take a positive time τ > 0. Equation (2) , i.e. the momentum conservation equation, results from the
Euler-Lagrange first-order stationarity conditions deduced from

δ

(∫ τ

0

(T (h, v) − U(h, v)) dt

)
= 0 (6)

under the constraints formed by the mass equation (1), the boundary conditions (3) and fixed initial and final values
for h and v: h(x, 0) = h0(x), v(x, 0) = v0(t), h(τ, x) = hτ (x), v(τ, x) = vτ (x).

Proof: Denote by λ(x, t) the multiplier associated to the constraint (1) and by L(h, v, λ) the Lagrangian1

L =
∫ τ

0

(T (h, v) − U(h, v)) dt +
∫ τ

0

∫ a

−a

λ(x, t)
(

∂h

∂t
+

∂(hv)
∂x

)
dx dt.

The condition δL = 0 for any small variation δh of h such that δh(x, 0) = δh(x, τ) = 0 yields∫ τ

0

∫ a

−a

[
ρ(v2/2 − gh)δh + λ

(
∂(δh)

∂t
+

∂(vδh)
∂x

)]
dx dt = 0,

and then thanks to an integration by parts∫ τ

0

∫ a

−a

[
ρ(v2/2 − gh) − ∂λ

∂t
− v

∂λ

∂x

]
δh dx dt = 0.

Thus
∂λ

∂t
+ v

∂λ

∂x
= ρ(v2/2 − gh).

Similarly, variation δv of v such that δv(x, 0) = δv(x, τ) = 0 and δv(−a, t) = δv(a, t) = 0, gives

∂λ

∂x
= ρv.

Gathering these last two stationarity equations we get

∂λ

∂t
+

ρ

2
v2 = −gρh.

A differentiation with respect to x yields
∂v

∂t
+ v

∂v

∂x
= −g

∂h

∂x
(7)

which is indeed identical to (2).

A.2 One-dimensional non-straight bottom moving tank

-a

+a

xv(t,x
)
h(t,x

)

D I

K k
i

Ο

Fig. 2. The non-straight bottom tank at rest (right) and in movement (translation and rotation) (left).

We assume that the tank is moving.

1The Lagrangian we use is the classical Lagrangian as used in optimization: the constraints are adjoined with their Lagrange multipliers
to the function (or functional) that is minimized.
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A.2.a Notations. (�I, �K) is the fixed frame with �I horizontal and (�ı,�k) is the tank frame: �ı = cos θ�I + sin θ �K and
�k = − sin θ�I + cos θ �K.

As displayed on figure 2, the tank motion is described by an horizontal position R+ � t �→ D(t) ∈ R and a rotation
angle θ(t) around the horizontal axis orthogonal to the translation axis.

We still assume that the fluid can be described by [−a, a]×R+ � (x, t) �→ h(x, t) and [−a, a]×R+ � (x, t) �→ v(x, t),
the velocity with respect to the tank. Notice that the space coordinate x is relative to the tank. Moreover we assume
that the tank bottom is not straight but described by a smooth profile [−a, a] � x �→ b(x) ∈ R. As before g is the
gravity, ρ is the specific mass of the fluid.

A.2.b Physics and derivation of the model. The momentum conservation equation is derived from the variational
formulation of lemma 1 with the following kinetic and potential energies (the boundary and constraint conditions
remain unchanged)

T (h, v) =
ρ

2

∫ a

−a

h
(
Ḋ�I + v�ı + xθ̇�k

)2

dx (8)

U(h, v) = ρg

∫ a

−a

∫ b+h

b

(
x�ı + z�k

)
· �K dz dx. (9)

Denote by λ(x, t) the multiplier associated to the mass conservation constraint and by L the resulting Lagrangian

L(h, v, λ) =
∫ τ

0

(T (h, v) − U(h, v)) dt +
∫ τ

0

∫ a

−a

λ(x, t)
(

∂h

∂t
+

∂(hv)
∂x

)
dx dt.

Stationary condition of L with respect to any small variation δv of v such that δv = 0 for t = 0, τ and x ∈ {−a, a},
yields

∂λ

∂x
= ρ(Ḋ cos θ + v). (10)

Stationary condition of L with respect to any small variation δh of h such that δh = 0 for t = 0, τ yields

∂λ

∂t
+ v

∂λ

∂x
=

ρ

2

(
Ḋ�I + v�ı + xθ̇�k

)2

− ρg
(
x�ı + (b + h)�k

)
· �K. (11)

We differentiate (11) with respect to x and substitute ∂λ
∂x by the righthand side of (10). We obtain the momentum

conservation equation for v. The full dynamics are then described by the following set of equations


∂h

∂t
+

∂(hv)
∂x

= 0

∂v

∂t
+ v

∂v

∂x
= −D̈ cos θ − g sin θ + xθ̇2 − g cos θ

∂(b + h)
∂x

v(−a, t) = v(a, t) = 0.

(12)

Notice that these equations are indeed invariant under Galilean transformations, i.e. uniform translations, D �→ D +
p1t + p0 with p1 and p0 arbitrary constants.

Assume now that θ̇ is small (θ̇2a � g), that h(x, t) = h̄(x)+H(x, t), with h̄(x) = �−b(x) > 0 (where � is a constant)
is the steady-state height profile and with |H| � h̄, and |v| �

√
gh̄. Notice that we neither assume θ small nor |D̈| � g.

Up to second order-terms the “linearized” dynamics read


∂H

∂t
= −∂(h̄v)

∂x
∂v

∂t
= −D̈ cos θ − g sin θ − g cos θ

∂H

∂x
v(−a, t) = v(a, t) = 0.

We end up with the following model
Model 1: Elimination of v yields to a wave equation for H


∂2H

∂t2
=

∂

∂x

[
h̄

(
D̈ cos θ + g sin θ + g cos θ

∂H

∂x

)]

g cos θ
∂H

∂x
(a, t) = g cos θ

∂H

∂x
(−a, t) = −D̈ cos θ − g sin θ

(13)
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where [−a, a] � x �→ h̄(x) is the steady-state height profile and h(x, t) = h̄(x) + H(x, t) is up-to second order terms the
liquid height. The control variables are D̈(t) the horizontal acceleration of the tank, and θ̇(t) its angular velocity. At
any given time t, [−a, a] � x �→ (H(x, t), ∂H

∂t (x, t)), D(t), Ḋ(t) and θ(t) constitute the state of the system.
These equations are a good approximation as soon as

θ̇2a � g, |H| � h̄, |v| �
√

gh̄.

B. The two-dimensional cases

B.1 Two-dimensional straight bottom fixed tank

Fig. 3. The two-dimensional tank.

B.1.a Notations. As displayed on figure 3, the system is described by the following quantities:
• two horizontal coordinates x = (x1, x2) ∈ Ω where Ω is an open bounded connected domain of R2 with smooth
boundary ∂Ω;
• the height profile Ω � x �→ h(x, t) with h(x, t) > 0;
• the velocity profile Ω � x �→ �v(x, t) ∈ R2.
We assume that the tank is at rest. As usual we denote by ∇ the operator

∇ =
( ∂

∂x1
∂

∂x2

)
.

The mass conservation equation is
∂h

∂t
+ ∇ · (h�v) = 0 (14)

where �v is the velocity field of coordinates (v1, v2).

B.1.b Physics. The momentum conservation equation is

∂�v

∂t
+ �v · ∇�v = −g∇h. (15)

The boundary condition is
�v · �n = 0 on ∂Ω (16)

where �n is the normal to ∂Ω.
We restrict our study to potential flow �v, i.e., solutions of (14,15,16) such that ∇× �v = 0. This makes sense since if

the initial velocity profile is irrotational, it remains irrotational

∂(∇× �v)
∂t

+ ∇× [(∇× �v) × �v) = 0.

For irrotational �v, (15) reads also
∂�v

∂t
+

1
2
∇(�v2) = −g∇h.

The kinetic energy T is

T (h,�v) =
ρ

2

∫
Ω

h(x, t)�v2(x, t) dx1dx2. (17)

The potential energy is

U(h,�v) =
ρg

2

∫
Ω

h2(x, t) dx1dx2. (18)
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As for the one dimensional case, we have the following lemma
Lemma 2: Take a positive time τ > 0 and consider irrotational solutions of (14,15,16) (∇×�v = 0). Then equation (15),

i.e. the momentum conservation equation, results from the Euler-Lagrange first-order stationarity conditions deduced
from

δ

(∫ τ

0

(T (h,�v) − U(h,�v)) dt = 0
)

(19)

under the constraints formed by the mass conservation equation (14), the boundary conditions (16) and fixed initial and
final values for h and v, h(x, 0) = h0(x), �v(x, 0) = �v0(t), h(τ, x) = hτ (x), �v(τ, x) = �vτ (x).
The proof is very similar to the one dimensional one and is left to the reader.

B.2 Two-dimensional non-straight bottom moving tank

In the following we sketch the main steps to derive from lemma 2 the dynamical equations when the tank is moving
with an irrotational velocity profile �v.

B.2.a Notations. The fixed frame is denoted by (�I1, �I2, �K) where �K is the upwards vertical unit vector. The tank
frame is (�ı1,�ı2,�k) where the liquid height is along the �k axis. The rotation of the tank is described by the instantaneous
rotation vector �ω defined by

�̇ı1 = �ω ×�ı1, �̇ı2 = �ω ×�ı2, �̇k = �ω × �k.

Since we are looking for irrotational flows, we will see that, necessarily, �ω · �k = 0: the tank cannot spin around axis �k.
The fluid remains described by the height profile Ω � x �→ h(x, t) > 0, where Ω is as before an open bounded connected

domain of R2 with a piecewise smooth boundary ∂Ω, and the velocity profile �v(x, t) = v1�ı1 + v2�ı2 where x = (x1, x2)
are Cartesian coordinates along a plane attached to the tank and parallel to (�ı1,�ı2). We assume that the tank bottom is
given by the profile Ω � x �→ b(x). We denote by (D1,D2, Z) the coordinates in the fixed frame of the point D attached
to the tank. Vertical acceleration can be included by changing gravity g into g + Z̈ and just considering horizontal
motions for D. Without loss of generality, we assume in the sequel that Z ≡ 0 and

Ḋ = Ḋ1
�I1 + Ḋ2

�I2, D̈ = D̈1
�I1 + D̈2

�I2.

Once more, g denotes the gravity and ρ is the specific mass of the fluid.

B.2.b Physics and derivation of the model. With the above notations the kinetic and potential energies are

T (h,�v) =
ρ

2

∫
Ω

h
(
Ḋ + �v + �ω × (x1�ı1 + x2�ı2)

)2

dx1dx2 (20)

U(h,�v) = ρgZ + ρg

∫
Ω

∫ b+h

b

(
x1�ı1 + x2�ı2 + z�k

)
· �K dzdx1dx2. (21)

Denote by λ(x, t) the multiplier associated to the mass conservation constraint and by L the resulting Lagrangian

L(h,�v, λ) =
∫ τ

0

(T (h,�v) − U(h,�v)) dt +
∫ τ

0

∫
Ω

λ(x, t)
(

∂h

∂t
+ ∇ · (h�v)

)
dx1dx2 dt.

Stationary condition of L with respect to any small variation δ�v = δ�v1�ı1 + δ�v2�ı2 of �v such that δ�v = 0 for t = 0, τ and
δ�v · �n = 0 for x ∈ ∂Ω, yields

∂λ

∂xσ
= ρ

(
Ḋ + �v + �ω × (x1�ı1 + x2�ı2)

)
·�ıσ, σ = 1, 2. (22)

Stationary condition of L with respect to any small variation δh of h such that δh = 0 for t = 0, τ yields

∂λ

∂t
+ �v · ∇λ =

ρ

2

(
Ḋ + �v + �ω × (x1�ı1 + x2�ı2)

)2

−ρg
(
x1�ı1 + x2�ı2 + (b + h)�k

)
�K.

(23)

According to (22)
�v · ∇λ = ρ�v ·

(
Ḋ + �v + �ω × (x1�ı1 + x2�ı2)

)
.

We then apply ∂
∂x1

on (23) and substitute ∂λ
∂x1

by the righthand side of (22):

∂v1

∂t
+ �v · ∂�v

∂x1
= x2

d(�ω · �k)
dt

+ . . .

. . . +
∂

∂x1

(
1
2
(�ω × (x1�ı1 + x2�ı2))2 − (D̈ + g �K) · (x1�ı1 + x2�ı2) − g(b + h)�k · �K

)
.
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Similarly we have

∂v2

∂t
+ �v · ∂�v

∂x2
= −x1

d(�ω · �k)
dt

+ . . .

. . . +
∂

∂x2

(
1
2
(�ω × (x1�ı1 + x2�ı2))2 − (D̈ + g �K) · (x1�ı1 + x2�ı2) − g(b + h)�k · �K

)
.

This provides the vectorial momentum conservation equation for

∂v

∂t
+

1
2
∇�v2 =

d(�ω · �k)
dt

(x2�ı1 − x1�ı2) + . . .

. . . + ∇
(

1
2
(�ω × (x1�ı1 + x2�ı2))2 − (D̈ + g �K) · (x1�ı1 + x2�ı2) − g(b + h)�k · �K

)
.

�v must be kept irrotational to apply lemma 2. Thus we restrict rotations by �ω · �k ≡ 0.
The full dynamics is then described by the following set of equations



∂h

∂t
+ ∇ · (h�v) = 0

∂�v

∂t
+

1
2
∇�v2 =

1
2
∇ (

(�ω × (x1�ı1 + x2�ı2))2
)

+ . . .

. . . + ∇
(
−(D̈ + g �K) · (x1�ı1 + x2�ı2) − g(b + h)�k · �K

)
�v · �n = 0 on ∂Ω.

(24)

Assume now that �ω is small (�ω2a � g, where a is the typical size of Ω), that h(x, t) = h̄(x) + H(x, t), with
h̄(x) = cte − b(x) > 0 is the steady-state height profile and with |H| � h̄, and that |�v| �

√
gh̄. Up to second

order-terms the “linearized” dynamics read


∂H

∂t
= −∇ · (h̄�v)

∂�v

∂t
=∇

(
−(D̈ + g �K) · (x1�ı1 + x2�ı2) − g�k · �KH

)
.

We end up with the following model
Model 2: Elimination of �v yields to a wave equation for H


∂2H

∂t2
= ∇ ·

(
h̄∇

[
(D̈ + g �K) · (x1�ı1 + x2�ı2) + gH�k · �K

])
∇

[
(D̈ + g �K) · (x1�ı1 + x2�ı2) + gH�k · �K

]
· �n = 0 on ∂Ω

(25)

where h̄(x) is the steady-state height profile and h(x, t) = h̄(x) + H(x, t) is up-to second order terms the liquid height.
The control variables are D̈ the tank acceleration and �ω its instantaneous rotation vector (remember that �ω · �k = 0).

At any given time t, [−a, a] � x �→ (H(x, t), ∂H
∂t (x, t)), D(t), Ḋ and the three Euler angles defining the orientation of

the tank constitute the state of the system.
These equations are a good approximation as soon as

�ω2a � g, |H| � h̄, ‖�v‖ �
√

gh̄.

II. Several control problems and their solutions for the one-dimensional linearized model

A. Translation and straight bottom

Model 3: Assume that [−a, a] � x �→ b(x) = 0 and θ = 0. Then [−a, a] � x �→ h̄(x) is constant and model 1 reads


∂2H

∂t2
= h̄g

∂2H

∂x2

∂H

∂x
(a, t) =

∂H

∂x
(−a, t) = −u

g

D̈ = u

(26)
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with (H, ∂H
∂t ,D, Ḋ) as state and u as control.

The controllability of the above system can be studied directly by considering the dual system and its observability
(see, e.g., [19], [21], [23]). The dual system reads



∂2P

∂t2
= h̄g

∂2P

∂x2

∂P

∂x
(a, t) =

∂P

∂x
(−a, t) = 0

ξ̈ = 0

with output y = P (a, t) − P (−a, t) + ξ and is clearly not observable (any even solution x �→ P (x, t) with ξ ≡ 0 gives
y = 0 ). The approximate controllability is not even valid. Nevertheless, the system is steady-state controllable. This
results from the following elementary lemma.

Lemma 3 (Parametrization of the trajectories) Denote c =
√

gh̄ the velocity of the waves. The general solution
of (26) is given by 



H(x, t) =
c

2g

(
ẏ(t − x

c
) − ẏ(t +

x

c
)
)

+
1
2

(
F (t +

x

c
) + F (t − x

c
)
)

+ k0t

D(t) =
1
2

(
y(t +

a

c
) + y(t − a

c
)
)

u(t) =
1
2

(
ÿ(t +

a

c
) + ÿ(t − a

c
)
) (27)

where k0 is an arbitrary constant, F an arbitrary 2a/c-periodic time function and y an arbitrary time function. Moreover


k0 =
c

2a
(H(0, 2a/c) − H(0, 0))

F (t) = H(0, t) − c

2a
(H(0, 2a/c) − H(0, 0))t

y(t) = D(t) +
1
2h̄

(∫ a

0

H(x, t) dx −
∫ 0

−a

H(x, t) dx

)
.

(28)

Proof: When H and D are given by (27), standard computations show that they satisfy (26). Let us prove in
details the converse: any solution of (26) admits the form (27) with k0, F and y defined by (28).

The general solution of
∂2H

∂t2
= h̄g

∂2H

∂x2

is given by the d’Alembert’s formula

H(x, t) = ϕ(t +
x

c
) + ψ(t − x

c
)

where ϕ and ψ are smooth functions.
The idea of the proof is to turn the boundary conditions of the model into functional equations with ϕ and ψ as

variables, and then to solve these equations.
The boundary conditions can be expressed as


ϕ̇(t +

a

c
) − ψ̇(t − a

c
) = − c

g
D̈(t)

ϕ̇(t − a

c
) − ψ̇(t +

a

c
) = − c

g
D̈(t).

(29)

Elimination of D yields
ϕ̇(t +

a

c
) + ψ̇(t +

a

c
) = ϕ̇(t − a

c
) + ψ̇(t − a

c
).

Thus f ≡ ϕ̇ + ψ̇ is a periodic function with period 2a
c . Since ∂H

∂t (0, t) = f(t). F defined in (28) is a 2a/c periodic
function and

Ḟ (t) = f(t) − c

2a

∫ 2a/c

0

f.

Consider y defined in (28). Since H is solution of (26), we have

ÿ(t) = −g
∂H

∂x
(0, t).



9

Simple computations show also that

c
∂H

∂x
(0, t) = ϕ̇(t) − ψ̇(t).

So we have

ϕ̇(t) − ψ̇(t) = − c

g
ÿ

ϕ̇(t) + ψ̇(t) = Ḟ (t) +
c

2a

∫ 2a/c

0

f.

Thus

ϕ̇(t) =
1
2
Ḟ (t) − c

2g
ÿ(t) +

c

4a

∫ 2a/c

0

f

ψ̇(t) =
1
2
Ḟ (t) +

c

2g
ÿ(t) +

c

4a

∫ 2a/c

0

f

that is

ϕ(t) = m +
1
2
F (t) − c

2g
ẏ(t) +

ct

4a

∫ 2a/c

0

f

ψ(t) = n +
1
2
F (t) +

c

2g
ẏ(t) +

ct

4a

∫ 2a/c

0

f

where n and m are two constants. Yet F (0) = H(0, 0) and H(0, 0) = ϕ(0) + ψ(0). Thus m + n = 0 and

H(x, t) =
1
2

(
F (t +

x

c
) + F (t − x

c
)
)

+
c

2g

(
ẏ(t − x

c
) − ẏ(t +

x

c
)
)

+
ct

2a

∫ 2a/c

0

f.

With this relation, we compute
∫ a

0
H(x, t)dx and

∫ 0

−a
H(x, t)dx and derive D via D(t) = y(t) − (

∫ a

0
H(x, t)dx −∫ 0

−a
H(x, t)dx)/(2h̄). This gives

D(t) =
1
2

(
y(t +

a

c
) + y(t − a

c
))

)
.

Remark 1 (Inspection of the controllability) The explicit parameterization (27) implies that (26) is not controllable
neither exact nor approximate. To see this, take an initial state (H0(x), Ḣ0(x)), x ∈ [−a, a] that is zero. This means
that φ and ψ are zeros on [−a/c, a/c] since

2ϕ(t) = H0(ct) +
∫ ct

0

Ḣ0(x)dx, 2ψ(t) = H0(ct) −
∫ ct

0

Ḣ0(x)dx.

Thus F (t) = 0 on [−a/c, a/c]. Take any final state (HT (x), ḢT (x)) at time T . It will provide another F (t) that will not
vanish over [T − a/c, T + a/c], in general. Since F is 2a/c-periodic, there does not exist a trajectory joining such two
states: F is an invariant quantity that cannot be modified by control. From an algebraic point of view, it corresponds to
the torsion sub-module of the module attached to (29) (see [27] for more details). This means (26) is not controllable.

If we assume the initial state is zero then both F and k0 vanish. We have an explicit description of all the trajectories
passing though (H0, Ḣ0) = 0. It suffices to take (27) with k0 = F = 0. This provides a very simple way to steer the
system from any steady-position in D = p to any other steady-position in D = q. The system is steady-state controllable.
More precisely there is a one-to-one correspondence between the trajectories starting from the steady position D = p at
time t = 0 and arriving at time T > 2a/c at the steady position D = q, and the smooth functions t �→ y(t) such that

y(t) =




p if t ≤ a/c

arbitrary if a/c < t < T − a/c

q if t ≥ T − a/c

(30)

via the following formulas 


D(t) =
1
2

(
y(t +

a

c
) + y(t − a

c
)
)

H(x, t) =
c

2g

(
ẏ(t +

x

c
) − ẏ(t − x

c
)
)

.
(31)
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Remark 2: The reader might believe that the problem of finding t �→ D(t) with D(t ≤ 0) = p and D(t ≥ T ) = q such
that the solution of the Cauchy problem 


∂2H

∂t2
= h̄g

∂2H

∂x2

∂H

∂x
(a, t) =

∂H

∂x
(−a, t) = −D̈

g

starting from zeros at t = 0 and arriving at zero at t = T could be obtained via basic symmetry arguments and invariance
with respect to t �→ −t and x �→ −x: this is false. The fact that D̈(t) = −D̈(T − t) does not ensure that H and Ḣ
return to zero at time T . The proposed method does.

Remark 3 (Physical meaning of the flat output) The quantity y appearing in (27) is the position of a particular point
of the system. It is the center of gravity of the two punctual masses M+ (the mass at the front of the tank) and M−

(the mass at the rear of the tank) placed at the edges of the tank (x = a and x = −a):

M+ =
∫ a

0

(h̄ + H(x, t))dx, M− =
∫ 0

−a

(h̄ + H(x, t))dx, y(t) = D(t) +
M+ − M−

2h̄

(remember that M+ + M− = 2ah̄, by mass conservation).
We have thus proved that the first-order linear approximation of



∂h

∂t
+

∂(hv)
∂x

= 0

∂v

∂t
+ v

∂v

∂x
= −D̈(t) − ∂(h)

∂x
v(−a, t) = v(a, t) = 0

with D̈ = u as control is steady-state controllable but not controllable. Coron [17] has proved very recently using first
return and fixed-point methods that the above nonlinear model itself is also steady-state controllable.

Remark 4 (Relevance of the linearization approach) Nonlinear simulations, see [18], show that the motions computed
via formulas (26), i.e. parameterization of the trajectories of the linearized model, approximate the trajectories of the
nonlinear system.

B. Translation and non-straight bottom

Model 4: When θ = 0, model 1 reads


∂2H

∂t2
=

∂

∂x

[
h̄(x)D̈(t) + gh̄(x)

∂H

∂x

]
∂H

∂x
(a, t) =

∂H

∂x
(−a, t) = −u(t)

g

D̈(t) = u(t)

(32)

where h̄(x) the the steady-state height profile and where (H, ∂H
∂t ,D, Ḋ) is the state.

We will not study the controllability of (32) in details as for (26). We will just prove that for any h̄(x), this system is
steady-state controllable: one can steer the system from the steady-position D = p to another steady-position D = q in
finite time.

Lemma 4 (Steady-state controllability) Take p and q two reals, and T > 2∆ where

∆ =
∫ a

−a

dx√
gh̄(x)

is the propagation time between the two edges. There exists a smooth control t �→ D(t) such that D(t) = p for t ≤ 0,
D(t) = q for t ≥ T and the solution of (32) starting from (H, Ḣ) = 0 at time t = 0 returns to 0 at time T .

Proof: It is based on symbolic computations and the technical lemma 7 given in appendix. The proof is constructive
in the sense that the control D is obtained via convolutions with L2 kernels of compact support and deduced from the
function B(x, ξ) of lemma 7. Just for this proof, we will assume that the liquid is between x = 0 and x = 2a. In the
Laplace domain we have the following second order differential system2 :{

(gh̄H ′)′ = s2H − s2h̄′D

gH ′(0, t) + s2D = gH ′(2a, t) + s2D = 0
(33)

2We do not consider extra terms such as D(0) Ḋ(0) since s is just a formal variable that represents the derivation.
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where ′ is the derivation with respect to x. The general solution of (gh̄H ′)′ = s2H − s2h̄′D reads

H = s2(X + Dβ)A − s2(Y + Dα)B (34)

where X and Y are the integration constants, A and B the solutions of (gh̄A′)′ = s2A and (gh̄B′)′ = s2B with A(0) = 1,
A′(0) = 0, B(0) = 0, gh̄(0)B′(0) = 1, and

α(x, s) =
∫ x

0

h̄′(x)A(x)dx, β(x, s) =
∫ x

0

h̄′(x)B(x)dx.

The fact that H given by (34) is solution results from the classical Wronskian identity∣∣∣∣ A B
gh̄A′ gh̄B′

∣∣∣∣ ≡ 1.

Since
H ′ = s2(X + Dβ)A′ − s2(Y + Dα)B′

the boundary conditions read {
h̄(0)D = Y

D/g = −(X + Dβ+)A′
+ + (Y + Dα+)B′

+

(35)

where A′
+(s) = A′(2a, s), . . . Notice that A(0, s) = 1, α(0, s) = β(0, s) = 0 and B′(0, s) = 1/(gh̄(0)). Elimination of D

yields
PX = QY

where

P (s) = gh̄(0)A′
+

Q(s) = −(1 + g(β+A′
+ − α+B′

+)) + gh̄(0)B′
+.

Let us examine in details the structure of the operators P (s) and Q(s). According to lemma 7, see appendix, with
c2(x) = gh̄(x), A and B read

A(x, s) =

√
c(0)
c(x)

cosh(sσ(x)) +
∫ σ(x)

−σ(x)

A(x, ξ) exp(ξs)dξ

B(x, s) =
∫ σ(x)

−σ(x)

B(x, ξ) exp(ξs)dξ

where A and B are L2 functions of ξ. Since

gh̄A′ = s2

∫ x

0

A(ξ, s) dξ, gh̄B′ = 1 + s2

∫ x

0

B(ξ, s) dξ,

we have

A′(x, s) = s2

∫ σ(x)

−σ(x)

Ā(x, ξ) exp(ξs)dξ

B′(x, s) =
1

gh̄(x)
+ s2

∫ σ(x)

−σ(x)

B̄(x, ξ) exp(ξs)dξ

for some L2 functions of ξ, Ā and B̄. Since

α(x, s) = h̄(x)A(x, s) − h̄(0) −
∫ x

0

h̄A′

β(x, s) =
∫ x

0

h̄′B
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we have similarly

α(x, s) = h̄(x)A(x, s) − h̄(0) + s2

∫ σ(x)

−σ(x)

ᾱ(x, ξ) exp(sξ)dξ

β(x, s) =
∫ σ(x)

−σ(x)

β̄(x, ξ) exp(sξ)dξ

where ᾱ, β̄ are L2 functions of ξ with ᾱ(0, ξ) = β̄(0, ξ) ≡ 0. Thus

P = s2

∫ σ(2a)

−σ(2a)

P̄ (ξ) exp(ξs)dξ

Q = gh̄(2a)A+B′
+ − 1 + s2

∫ σ(a)

−σ(a)

Q̄(ξ) exp(ξs)dξ

where P̄ and Q̄ are L2 functions of ξ. Thanks to the identity gh̄(AB′ −A′B) = 1, gh̄(2a)A+B′
+ − 1 is equal to gB+A′

+

and can be represented as

s2

∫ σ(2a)

−σ(2a)

f̄(ξ) exp(ξs)dξ

via some L2 function f . Thus Q reads

Q = s2

(∫ σ(2a)

−σ(2a)

(Q̄(ξ) + f̄(ξ)) exp(ξs)dξ

)
.

and we have the following factorization P (s) = s2R(s) and Q(s) = s2S(s) with



R =
∫ σ(2a)

−σ(2a)

P̄ (ξ) exp(ξs)dξ

S =
∫ σ(2a)

−σ(2a)

(Q̄(ξ) + f̄(ξ)) exp(ξs)dξ.

(36)

The operators R and S correspond to convolution with L2 kernels whose supports are included in [−σ(2a), σ(2a)]. For
any quantity Z(s)

X = SZ, Y = RZ, D =
R

h̄(0)
Z

formally satisfies the boundary conditions (35) and H(x, s) defined by (34) is a solution of (33). Yet, we have seen
that for each x, the operators A, B, α and β are also convolutions with compact kernels. In the time domain, all this
machinery defines, for any arbitrary smooth time function t �→ Z(t), a solution of (t, x) �→ H(x, t) and t �→ D(t) of (32).
Moreover D(t) depends on the values of Z over the interval [t − ∆, t + ∆] where ∆ = σ(2a) is the propagation time
between the two edges. When Z is constant for t < 0, D is constant for t < −∆ and H(x, t) is 0 for t small enough, i.e.,
t < −3∆ since

H = s2[SA − RB + (β)A − αB)R/h̄(0)] Z

and for each x, each operator, S, R, A, B, α, β is a convolution with a kernel of support included in [−∆,+∆]. In fact
H(x, t) is 0 for t < −∆. This results from Holgrem uniqueness theorem: every quantity is smooth and H = 0 is also
solution of (32) over [−d,−∆] with D = cte and Ht=−d = 0 and Ḣt=−d = 0 for any d > 3∆. For Z constant we have

D =
4a

h̄(2a)
Z

since D = gA′(2a, s)/s2Z and for s = 0, A′(2a, s)/s2 is a well defined function of x, Λ(x), solution of the differential
equation

(gh̄Λ′)′ = 2A(x, 0) = 2,

the second s-derivative of (33) in s = 0 with 0 initial values (Λ′(x) = 2x/(gh̄(x))). This relation explains the factorization
by s2 between P , Q and R, S: without it, we will not be able to steer the system from different steady-states via smooth
functions Z that are constant outside [−∆,∆]; with P instead of R, D will always return to 0 when Z becomes constant;
with R, the motion planning problem can be solved as in section II using a sigmoid function similar to (30).
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Remark 5: For a general bottom profile, one can conjecture3 that the minimum transition time is 2∆, i.e., the double
of the travelling time from one edge to the over one. This is to compare with the straight bottom case where the
minimum transition case is just ∆. Notice that, when the bottom profile is symmetric one can prove that the minimum
transition is also ∆ . It suffices to define A(x, s) and B(x, s) such that A is symmetric and B is anti-symmetric and to
adapt the above proof: with such A and B computations simplify and provide ∆ as minimum transition time.

C. Translation and rotation

Assume that we have two controls D and θ and that we want to steer the system from rest to rest, i.e. from D0 at
time t = 0 to DT at time t = T > 0. Take any smooth function [0, T ] � t �→ D(t) such that D(0) = D0, D(T ) = DT

and D(i)(0) = D(i)(T ) = 0, i = 1, 2. Set θ = − arctan(D̈/g). The solution t �→ H(x, t) of (13) starting from 0 satisfies


∂2H

∂t2
=

∂

∂x

[
h̄(x)g cos θ

∂H

∂x

]

g cos θ
∂H

∂x
(a, t) = g cos θ

∂H

∂x
(−a, t) = 0.

We can deduce from that H(x, t) = 0,∀x ∈ [−a, a],∀t ∈ [0, T ]. The control θ(t) = − arctan(D̈(t)/g) steers the system
from rest to rest. In practice such open-loop control will be valid if θ̇2a � g, i.e., for all t ∈ [0, T ],

|D(3)(t)| � g2 + (D(2)(t))2√
ga

.

D. Open problems

D.1 Controllability of the non-straight bottom system

With the single control D (θ ≡ 0), we have seen that, when the bottom is straight, the system is not controllable.
Is it still true for a non-straight bottom ? This suggests the following problem: characterize in term of h̄(x), the
controllability of 



∂2H

∂t2
=

∂

∂x

[
h̄(x)u(t) + gh̄(x)

∂H

∂x

]
∂H

∂x
(a, t) =

∂H

∂x
(−a, t) = −u(t)

g

D̈(t) = u(t).

Since d2

dt2

(∫ a

−a
H(x, t)dx

)
= 0 we assume that

∫ a

−a
H ≡ 0: this is just the global conservation of the fluid in the tank. An

interesting fact is that one can prove, from the observability of the adjoint system [19], that, when [−a, a] � x �→ h(x)
is even (h(x) = h(−x)), the system is not controllable: the adjoin system

∂2P

∂t2
=

∂

∂x

(
gh̄(x)

∂P

∂x

)
,

∂P

∂x
(−a, t) =

∂P

∂x
(a, t) = 0

ẍi = 0

with
y(t) = ξh̄(a)P (a, t) − h̄(−a)P (−a, t) −

∫ a

−a

P (x, t)h̄′(x)dx

as output is not observable (y ≡ 0 for solutions P (x, t) that are even x-function and ξ = 0). This particular case
is important in practice, but more precisely speaking, what are, if any, the necessary and sufficient conditions on
[−a, a] � x �→ h(x) for the system to be controllable?

D.2 Use of an extra control

We know that the straight bottom tank with the single control D is not controllable. Is-it still true with the additional
control θ? This suggests the study of the controllability of the following system where the nonlinearity is due to the

3This conjecture has been suggested by Jean-Michel Coron.
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Fig. 4. Height contours sequence of the free surface of a square tank filled with fluid. Finite-time excursion from a steady point (a1 = a2 = .5,
h̄ = .2, g = 10, time = 2.2)

control: 


∂2H

∂t2
=

∂

∂x

[
h̄

(
D̈ cos θ + g sin θ + g cos θ

∂H

∂x

)]

g cos θ
∂H

∂x
(a, t) = g cos θ

∂H

∂x
(−a, t) = −D̈ cos θ − g sin θ

with D̈ = u(t) and θ̇ = ω as control variables (we still assume that
∫ a

−a
H ≡ 0).

III. Control of the two-dimensional linearized model: first issues

A. Translation of the rectangular tank

Model 5: When Z ≡ 0, �ω ≡ 0 and (�ı1,�ı2,�k) ≡ (�I1, �I2, �K), model 2 becomes for a straight bottom (h̄ constant):


Ḧ = gh̄∆H

g∇H · �n = −u.�n on ∂Ω

D̈ = u

(37)

Assume that Ω is the rectangle [−a1, a1] × [−a2, a2]. The following lemma provides a constructive answer to the
motion planing problem.

Lemma 5 (Flatness of the rectangular tank) Take two arbitrary C3 time functions y1 and y2. Then D and H defined
by (c2 = gh̄) 



D1(t) =
1
2

(
y1(t +

a1

c
) + y1(t − a1

c
)
)

D2(t) =
1
2

(
y2(t +

a2

c
) + y2(t − a2

c
)
)

H(x1, x2, t) =
c

2g

(
ẏ1(t +

x1

c
) − ẏ1(t − x1

c
) + ẏ2(t +

x2

c
) − ẏ2(t − x2

c
)
)

.

(38)

satisfy (37) automatically.
The proof is straightforward. When y1 and y2 are constant, D1 = y1, D2 = y2 and H = 0. Steering from steady position
(p1, p2) to steady position (q1, q2) can then be solved as in section II with a sigmoid function for y1 and y2 similar to (30).

In fact, equations (38) can be seen as the superposition of solutions of two one-dimensional wave equations whose
boundary conditions are decoupled, see [12]. We represent on figure 4 successive contours of the free surface of a
rectangular tank filled with fluid steered from two different steady points, using bump functions in equations (38).
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Fig. 5. The tank position D1 and D2 associated to the contours sequence of figure 4

B. Translation of the circular tank: the tumbler

Model 6: When Z ≡ 0, �ω ≡ 0 and (�ı1,�ı2,�k) ≡ (�I1, �I2, �K), model 2 becomes for a straight bottom (h̄ constant):


Ḧ = gh̄∆H

g∇H · �n = −u.�n on ∂Ω

D̈ = u

(39)

Assume that Ω is the disk of radius l and D its center. We denote by (r, θ) the polar coordinates with respect to the
center of Ω. The following lemma provides a simple positive and constructive answer to the motion planing problem.

Lemma 6: Take two arbitrary C3 time functions y1 and y2. Then D and H defined by


D1(t) =
1
π

∫ 2π

0

y1

(
t − l cos ϕ√

gh̄

)
cos2 ϕ dϕ

D2(t) =
1
π

∫ 2π

0

y2

(
t − l cos ϕ√

gh̄

)
cos2 ϕ dϕ

H(r, θ, t) =
cos θ

π

√
h̄

g

∫ 2π

0

ẏ1

(
t − r√

gh̄
cos ϕ

)
cos ϕ dϕ

+
sin θ

π

√
h̄

g

∫ 2π

0

ẏ2

(
t − r√

gh̄
cos ϕ

)
cos ϕ dϕ

(40)

satisfy automatically (39).
When y1 and y2 are constant, D1 = y1, D2 = y2 and H = 0. Steering from steady position (p1, p2) to steady position
(q1, q2) can then be solved as for the rectangular tank.

Figure 6 shows the shape of the free surface during a transition between two steady points. This snapshot was
computed using lemma 6. The corresponding Matlab code can be obtained upon request to the authors.

Proof: The direct proof which consists in verifying (39) is left to the reader. The proof given below is much more
instructive. It explains the method used to obtain (40). Moreover it can be generalized to any variable depth profile h̄
depending only on r. This proof uses some classical computations detailed in [28].

Let us perform a Laplace transform with respect to the time variable (with zero initial conditions)
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Fig. 6. The tumbler in movement. Snapshot of an animation computed using the explicit parameterization (40).

∆Ĥ(x, y, s) − s2

gh̄
Ĥ(x, y, s) = 0 (41)

where s can be considered as a parameter. Let us find a solution of equation (41) in cylindrical coordinates in the form
H̄(r, θ) = R(r)Θ(θ). By differentiation we get

1
R

(
d2R

dr2
+

1
r

dR

dr

)
+

1
r2Θ

d2Θ
dθ2

− s2

gh̄
= 0. (42)

The variable θ appears only in the second term of this equation. So the term 1
Θ

d2Θ
dθ2 is independent of r and θ. It just

depends on s and it can be denoted by −ν2(s), ν ∈ C. Thus

1
Θ

d2Θ
dθ

= −ν2(s)

and

Θ = A(s) cos(ν(s)θ) + B(s) sin(ν(s)θ)

for some integration constant A(s) and B(s). Then (42) writes

d2R

dr2
+

1
r

dR

dr
+ R

(
− s2

gh̄
− ν(s)2

r2

)
= 0.

This is a Bessel equation. Its general solution is a combination of Jν(s)

(
isr√

gh̄

)
and Yν(s)

(
isρ√

gh̄

)
. Since Yν(s)

(
isr√

gh̄

)
is not bounded for r = 0, we only consider solutions involving Jν(s). A set of bounded solution of (41) is given by

Ĥ(r, θ, s) = Jν(s)

(
isr√
gh̄

)
(A(s) cos(ν(s)θ) + B(s) sin(ν(s)θ)) (43)
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The boundary conditions in the Laplace domain is

g
∂Ĥ

∂r
= −û1(s) cos θ − û2(s) sin θ for r = l.

Via (43) the boundary conditions also read

∂Ĥ

∂r
=

is√
gh̄

J ′
1

(
isr√
gh̄

)
(A(s) cos θ + B(s) sin θ) for r = l.

By identification we have ν(s) = 1 and


û1(s) = − isA(s)
√

g

h̄
J ′

1

(
isr√
gh̄

)

û2(s) = − isB(s)
√

g

h̄
J ′

1

(
isr√
gh̄

)

Ĥ(r, θ, s) =(A(s) cos θ + B(s) sin θ) J1

(
isr√
gh̄

)
.

Transforming these equations back into the time domain using the Poisson integral representations

J1

(
isr√
gh̄

)
=

1
2iπ

∫ 2π

0

e
− sr cos ϕ√

gh̄ cos ϕ dϕ

J ′
1

(
isr√
gh̄

)
=

1
2π

∫ 2π

0

e
− sr cos ϕ√

gh̄ cos2 ϕ dϕ

with

A(s) = 2is

√
h̄

g
ŷ1, B(s) = 2is

√
h̄

g
ŷ2,

yields (40).

C. Translation and rotation

We consider a general tank with an arbitrary domain Ω and assume that the dynamics are described by model 2. We
will prove that the method used for the one-dimensional tank can be extended to the two-dimensional one.

Assume that t �→ D = (D1,D2, Z) is a given smooth time function. We can adjust the tank rotations such that the
term

(D̈ + g �K) · (x1�ı1 + x2�ı2)

appearing in (25) vanishes identically. With the three Euler angles (ϕ, θ, ψ) (see, e.g.,[29, pages 10,16]) this gives the
following two equations

−(g + Z̈) cos φ sin θ =D̈1(cos φ cos θ cos ψ − sinφ sin ψ)

− D̈2(cos φ cos θ sin ψ + sinφ cos ψ)

−(g + Z̈) sin φ sin θ =D̈1(sin φ cos θ cos ψ + cos φ sin ψ)

+ D̈2(− sin φ cos θ sin ψ + cos φ cos ψ)

that must be completed by the non-holonomic constraint �ω · �k = 0 (the tank cannot spin around �k)

ψ̇ + φ̇ cos θ = 0.

Simple computations give ψ ∈ [0, 2π[ and θ ∈] − π/2, π/2[ directly

cos ψ =
D̈1√

D̈2
1 + D̈2

2

, sinψ = − D̈2√
D̈2

1 + D̈2
2

, tan θ = −
√

D̈2
1 + D̈2

2

g + Z̈
.
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The remaining angle φ ∈ [0, 2π[ is then obtained by integrating

φ̇ = −ψ̇/ cos θ.

This method is just a compensation of accelerations by tank rotations. With such rotations the vector �k that is orthogonal
to the liquid surface at rest always remains co-linear to the total acceleration D̈ + g �K. As for the one-dimensional tank,
we can move the tank from one steady-state position to another one. Expected for simple motions t �→ D(t) such as
straight line ones, the orientation of the tank is not preserved between two steady-state positions: θ always returns to 0
after the motion, whereas the net rotation around the vertical axis �K, i.e., the total variation of φ + ψ, does not. This
results from the non-holonomic constraint ψ̇ + φ̇ cos θ = 0.

Notice that, if the problem is to steer the tank from D0 = (p1, p2) at time 0 to DT = (q1, q2) at time T > 0
and to preserve its initial and final orientations, such method works when we take the straight trajectory D(t) =
(1 − σ(t))D0 + σ(t)DT with [0, T ] � t �→ σ(t) ∈ [0, 1] a smooth function such that σ(0) = 0, σ(T ) = 1 and σ̇ = σ̈ = 0 at
t = 0 and t = T .

D. Open problem: beyond rectangular and circular shapes

For special geometries of the fluid domain Ω (namely rectangle and disk) and bottom profile (h̄ constant) we have
seen that

∂2H

∂t2
= ∇ ·

(
h̄

(
D̈ + g∇H

))
on Ω

g∇H · �n = −u · �n on ∂Ω

D̈ = u

is steady-state controllable with the two controls D̈1 = u1 and D̈2 = u2. We have also seen that in the one-dimensional
case it is steady-state controllable for arbitrary bottom profile h̄(x). Is-it still true in the two dimensional case with
an arbitrary domain Ω? As far as we know the ellipsoidal case is problematic. Using the technique we detailed for
the circular case, we are left with Mathieu equations instead of Bessel equations. The fundamental solutions of these
Mathieu equations do not have handy integral representations that would give a constructive proof of controllability
when turned back into the time-domain. Up to now this seems a major obstruction to our method.

IV. Conclusion

The results presented in this paper are all based on linear control models deduced from shallow water approximations.
This is a major restriction but we would like to emphasize the difficulties one would encounter dealing with a non-
horizontal fluid velocity. For an arbitrary liquid height, a correct description of the dynamics around steady-states could
be obtained as follows. For the translation of the tank of figure 1 with irrotational 2D flows, we linearize the Euler
equations and the free boundary conditions. Following [14, page 436 ] the system is described by a scalar potential
φ(x, z, t) depending on the horizontal coordinate x, the vertical one z and the time t, that satisfies

∂2φ

∂x2
+

∂2φ

∂z2
= 0 for (x, z) ∈ [−a, a] × [0, h̄]

∂φ

∂z
(x, 0, t) = 0 for x ∈ [−a, a]

g
∂φ

∂z
(x, h̄, t) = −∂2φ

∂t2
(x, h̄, t) for x ∈ [−a, a]

∂φ

∂x
(−a, z, t) = Ḋ(t) for z ∈ [0, h̄]

∂φ

∂x
(a, z, t) = Ḋ(t) for z ∈ [0, h̄]

where D(t) is the control, the horizontal tank position. The fluid velocity with respect to the tank admits two compo-
nents, v the horizontal one and w the vertical one given by

v(x, z, t) =
∂φ

∂x
− Ḋ(t), w(x, z, t) =

∂φ

∂z
.

The liquid height is also derived from φ via

h(x, t) = h̄ − 1
g

∂φ

∂t
(x, h̄, t).
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This implicit formulation of the dynamics is very similar to differential-algebraic systems of index 1 [30], [31], [32]

dX

dt
= f(X,Y,U), 0 = g(X,Y,U)

often encountered for finite dimensional systems ( ∂g
∂Y invertible). Set

X ≡ (φ(x, h̄, t))−a≤x≤a, Y ≡ φ, U ≡ D.

Then the algebraic part g(X,Y,U) = 0 reads


∂2φ

∂x2
+

∂2φ

∂z2
= 0 for (x, z) ∈ [−a, a] × [0, h̄]

∂φ

∂z
(x, 0, t) = 0 for x ∈ [−a, a]

φ(x, h̄, t) = X(x, t) for x ∈ [−a, a]
∂φ

∂x
(−a, z, t) = U̇ for z ∈ [0, h̄]

∂φ

∂x
(a, z, t) = U̇ for z ∈ [0, h̄].

(44)

The differential part dX/dt = f corresponds to

∂2φ

∂t2
(x, h̄, t) = −g

∂φ

∂z
(x, h̄, t) for x ∈ [−a, a]

The system is of “index 1” since the “algebraic part” is invertible with respect to the “algebraic variables” Y : φ is a
linear function of X and U by solving (44). Such implicit formulations of “index one” remain valid when the fluid is
irrotational and described by the following nonlinear Euler equations (see, e.g., [14, pp:431–436]):

∂2φ

∂x2
+

∂2φ

∂z2
= 0 for − a ≤ x ≤ a, 0 ≤ z ≤ h(x, t)

∂φ

∂z
(x, 0, t) = 0 for x ∈ [−a, a][

∂φ

∂t
+

1
2

((
∂φ

∂x

)2

+
(

∂φ

∂z

)2
)]

(x,h(x,t),t)

+ gh(x, t) = 0 for x ∈ [−a, a]

∂φ

∂z
(x, h(x, t), t) − ∂h

∂x
(x, t)

∂φ

∂x
(x, h(x, t), t) − ∂h

∂t
(x, t) = 0 for x ∈ [−a, a]

∂φ

∂x
(−a, z, t) = Ḋ(t) for z ∈ [0, h(−a, t)]

∂φ

∂x
(a, z, t) = Ḋ(t) for z ∈ [0, h(a, t)]

with z = h(x, t) the free surface equation (the profiles ζ(x, t) = φ(x, h(x, t), t) and h(x, t) corresponding then to the
“differential variables” X).

Very few results (see [33] for a first result on a closely related problem) are available concerning the controllability
and stabilization of such implicit systems of infinite dimension. Are such systems steady-state controllable?
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Appendix

Technical lemma

Lemma 7: Take R � x �→ c(x) a strictly positive smooth function and consider for each s ∈ C, x �→ A(x, s), the
solution of

∂

∂x

(
c2(x)

∂A

∂x

)
= s2A

A(0, s) = a

∂A

∂x
(0, s) = b
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with (a, b) ∈ R2. Set σ(x) =
∫ x

0

dξ

c(ξ)
. Then for each x, there exists an L2 function [−σ(x), σ(x)] � ξ �→ B(x, ξ) ∈ R

such that

A(x, s) = a

√
c(0)
c(x)

cosh(sσ(x)) +
∫ σ(x)

−σ(x)

B(x, ξ) exp(ξs)dξ.

Proof: The proof of this result is organized as follows
1. A Liouville transform, x �→ z and A �→ u, is performed.
2. Using a majoring series we prove that, for each z, s �→ u(z, s) is an entire functions of exponential kind.
3. We show that for any given z ∈ [0, 1], ıR � s �→ u(z, s) is, up to some addition of exponentials, in L2

4. We conclude thanks to the Paley-Wiener theorem.
Remark 6: B depends on a and b as detailed below. B = 0 if (a, b) = (0, 0).

Liouville transform

The Liouville transform

(x,A) �→ (z, u)

(see for instance [34, page 110]) turns the equations

d

dx

(
p(x)

dA

dx

)
+ (λr(x) − q(x)) A = 0,

where p(x) > 0 into the following form

d2u

dz2
+ (ρ2 − h(z))u = 0

where ρ depends only on λ and can be considered as a parameter.
Here

p(x) = c2(x), λ = −s2, r(x) = 1, q(x) = 0, x ∈ [0, L].

With the change of variables

z =
∫ x

0

1
c
, u(z, s) = (c(x))1/2A(x, s)

we obtain

H(z) =
F ′′(z)
F (z)

with F (z) =
√

c(x).

We have turned 


∂

∂x

(
c2(x)

∂A

∂x

)
= s2A

A(0, s) = a

∂A

∂x
(0, s) = b

(45)

into 


d2u

dz2
− (h(z) + s2)u = 0

u(0, s) = α

du

dz
(0, s) = β

(46)

with

α = u(0, s) = a(c(0))1/2, β =
du

dz
(0, s) =

c′(0)(c(0))1/2

2
a + c(0)3/2b
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Proving that C � s �→ u(z, s) is an entire function of exponential type

Let W (z, s) the 2 × 2 matrix solution of

dW

dz
=

(
0 1

h(z) + s2 0

)
W with W (0, s) = I

Then u(z, s) = ( 1 0 )W (z, s)
(

α
β

)
. Let us show that W is entire with respect to s. By the classical fixed point

technique W (z, s) =
∑

i≥0 Wi(z, s) with the following recurrence

W0(z, s) = I,Wi+1(z, s) =
∫ z

0

(
0 1

h(z) + s2 0

)
Wi(ξ, s)dξ

Each Wi(z, s) is a polynomial in s2. Its degree is 2i and its coefficients depend only on z. Reordering all the terms we
get ∑

0≤i≤k

Wi(z, s) =
∑

0≤j≤k

W j,k(z)s2j .

From step k to k + 1 we have

W j,k+1(z) = W j,k(z) + Wj,k+1(z)

where Wj,k+1 is the coefficient of s2j in Wk+1.
Take K > 0 and z ∈ [0,K]. Set m = sup[0,K] | h | and define the following majoring series by the recurrence

M0(z, s) = I,Mi+1(z, s) =
∫ z

0

(
0 1

m + s2 0

)
Mi(ξ, s) dξ

As previously we define∑
0≤i≤k

Mi(z, s) =
∑

0≤j≤k

M j,k(z)s2j ,M j,k+1(z) = M j,k(z) + Mj,k+1(z)

By classical matrix computations we get

M(z, s) =
(

cosh(z
√

m + s2) sinh(z
√

m + s2)/
√

m + s2

sinh(z
√

m + s2)
√

m + s2 cosh(z
√

m + s2)

)
.

For each j, the matrices M j,k =
∑

j≤l≤k−1 Mj,l converge as k tends to ∞. Denote by M j the limit. By con-
struction, M =

∑
j≥0 M j(z) ρ2j and this series has an infinite radius of convergence in ρ, since, for each z, the

functions s �→ cosh(z
√

m + s2), s �→ sinh(z
√

m + s2)/
√

m + s2 and s �→ sinh(z
√

m + s2)
√

m + s2 are entire functions
of s2.

But, for each i, j and k, the matrices M j,k and Mj,k+1 whose entries are always non-negative, dominate the absolute
values of the entries of W j,k and Wj,k+1, respectively. Thus for each j, the matrices W j,k =

∑
j≤l≤k−1 Wj,l converge

as k tends to ∞. Denote by W j the limit. By construction, W =
∑

j≥0 W j(z)ρ2j and this series has an infinite radius
of convergence in ρ, since M has one. In other words, W is an entire function of ρ. Moreover the entries of M are upper
bounds of the entries of W . Thus W is of exponential type in ρ: for each z ∈ [0,K], there exists E > 0 such that

∀s ∈ C, |W (z, s)| ≤ E exp(z|s|).

We have proven that, for each z ∈ [0, π], u(z, s) is an entire function of s with exponential type :

∀s ∈ C, u(z, s) ≤ b(z) exp(z|s|) (47)

for some b(z) > 0 well chosen.
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Proving that “a part” of iR � s �→ u(z, s) belongs to L2

From the Volterra equation of the second kind satisfied by u (see for instance [34, p. 111]),

u(z, s) = α cosh(sz) + β
sinh(sz)

s
+

1
s

∫ z

0

sinh(s(z − ξ))h(ξ)u(z, s)dξ (48)

Denote

w(z, s) = u(z, s) − α cosh(sz) (49)

From (48) we deduce

w(z, s) = φ(z, s) +
1
s

∫ z

0

sinh(s(z − ξ))h(ξ)w(z, s)dξ (50)

with

φ(z, s) = β
sinh(sz)

s
+

1
s

∫ z

0

sinh(s(z − ξ))h(ξ)α cosh(sξ)dξ.

Clearly, there exists D such that for all z ∈ [0,K] and s ∈ ıR,

| φ(z, s) |≤ D

1+ | s |
(h is bounded). Let us show that for any given z, iR � s �→ w(z, s) is in L2. To prove this we use the following classical
majoring arguments (see [34, p. 112] for instance). Denote

µ(z, s) = sup
0≤ξ≤z

| w(ξ, s) |

We deduce from (50) that

µ(z, s) ≤ D

1+ | s | +
1

| s |mµ(z, s)K

for m = sup[0,K] | h |. So

µ(z, s) ≤ D

(1+ | s |)
1

1 − mK
|s|

.

And for | s |≥ 2mK

µ(z, s) ≤ 2D

1+ | s |
which proves that iR � s �→ w(z, s) is in L2.

Use of the Paley-Wiener theorem

iR � s �→ w(z, s) is in L2 and is an entire function of s of exponential type such that | w(z, s) |≤ d(z) exp(z | s |).
Thanks to the Paley-Wiener theorem we can conclude that for each z there exists [−z, z] � ξ �→ K(z, ξ) in L2[−z, z]
such that

w(z, s) =
∫ z

−z

K(z, ξ) exp(ξs) dξ.

Then

u(z, s) = α cosh(sz) +
∫ z

−z

K(z, ξ) exp(ξs)dξ.
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and

A(x, s) =
1√
c(x)

u (σ(x), s)

=
α√
c(x)

cosh(sσ(x)) +
1√
c(x)

∫ σ(x)

−σ(x)

K(σ(x), ξ) exp(ξs)dξ

= a

√
c(0)
c(x)

cosh(sσ(x)) +
∫ σ(x)

−σ(x)

B(x, ξ) exp(ξs)dξ (51)

with z = σ(x) =
∫ x

0

1
c

and B(x, ξ) = K(σ(x), s)/
√

c(x).

I. Simulations

In this section, we report some results of [18]. They correspond to numerical simulations (Godunov scheme) of the 1D
nonlinear Saint-Venant equations 12 with θ = 0 with the open-loop control u = D̈ of formula (31) and based on the linear
tangent equations. This simulation indicates that, when the tank motion is not to fast the neglected nonlinearity are
not very important. Several other simulation show that our open-loop control design is effective when sup |D̈|/ga � h̄.

In the following, ∆, which is the required time for a wave to meet a boundary starting from the opposite one, is equal
to 1. The vertical scale of the figures has been enlarged by a factor 3 for the reader to see the details.

A. Transfer time T=4.0

The prediction of a slow move is rather close to the numerical results of a Godunov scheme simulation. Results are
shown on figure 7.

B. Transfer time T=2.5

Yet as the move speeds up the prediction results get more different from the numerical simulation. Results are shown
on figure 8.
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Fig. 7. T=4.0; snapshots at t=0, t=T/4, t=T/2, t=3T/4 and t=T. Left: linear prediction. Right: nonlinear simulation.
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Fig. 8. T=2.5; snapshots at t=0, t=T/4, t=T/2, t=3T/4 and t=T. Left: linear prediction. Right: nonlinear simulation.


