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Spring systems: the quantum harmonic oscillator

Spin-spring systems: the Jaynes-Cummings model



Harmonic oscillator? (1): quantization and correspondence principle

. . . . 2
Classical Hamiltonian formulation of %x = —w?x

OH OH w

d d 2 2
Quantization: probability wave function [¢); ~ (1(X, t))xer With
l), ~ (., t) € L3(R,C) obeys to the Schrédinger equation

(A =1 in all the lectures)

i) = Hlp), H=w(P?+X2)=-22 | 9y

where H results from H by replacing x by position operator
v/2X and p by impulsion operator v/2P = —ia%.

. ;0 9?

PDE model: i%%(x,t) = =455 (x, 1) + $x%(x, 1), x €R.
2Two references: C. Cohen-Tannoudiji, B. Diu, and F. Lalo&. Mécanique

Quantique, volume 1& Il. Hermann, Paris, 1977.

M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.

Oxford University Press, 2003.




Harmonic oscillator (2): annihilation and creation operators

Averaged position (X), = (| X|¢) and impulsion <P>t = (|Ply) 3

+o0 .
=35 [P, (P =—Js [ wGh
Annihilation a and creation operators a':

0 0
_ i T ip — 1 _
a_X+IP_f(X+8x> a=X-IiP= 2(x 8x)

Commutation relationships:
X, Pl=4 laa]=1 H=wP?+X2)=uw <aTa+ %) .
Set X, = § (e~a+ ea') for any angle A:

% X15) = %

3We assume everywhere that for each t, x — 9(x, t) is of the Schwartz
class (fast decay at infinity + smooth).



Harmonic oscillator (3): spectral decomposition and Fock states

[a, a'] = 1 and Ker(a) of dimension one imply that the spectrum
of N = a'ais non-degenerate and is N. More we have the
useful commutations for any entire function f:

af(Ny=f(N+1a fN)a =a f(N+I).

Fock state with n photon(s): the eigen-state of N associated to
the eigen-value n:

N|ny=n|n), any=+vnln—1), a|ny=vn+1|n+1).

The ground state |0) (0O photon state or vacuum state) satisfies
al0) = 0 and corresponds to the Gaussian function:

0) ~ to(x) = 5 exXP(—32/2).

The operator a (resp. a') is the annihilation (resp. creation)
operator since it transfers |n) to [n — 1) (resp. |[n+ 1)) and thus
decreases (resp. increases) the quantum number. n by one unit.



Harmonic oscillator (4): displacement operator

Quantization of dt2X = —w?Xx —wV2u
_ T 1 T
H_w(a a+§> +u(a+a').
The associated controlled PDE
.0
i—(x,t) = ——T(X )+ ( X%+ fux) P(x, t).
Glauber displacement operator D,, (unitary) with @ € C:
Da — eaaT—a*a _ eZ/%aX—Zz?RozP

From Baker-Campbell Hausdorf formula valid for any operators
A and B,

e’Be A = B+ [A B|+ LA A B] + LA A [A B]]] +. ..
we get the Glauber formula when [A, [A Bll=[B,[A,B]]=0:

A+ LA 8

e —e'ePe2

(show that C; = e!(A+B) _ gtA otB e_?[A’B] satisfies 2C = (A+ B)C)



Harmonic oscillator (5): identities resulting from Glauber formula

With A = aa' and B = —a*a, Glauber formula gives:

—% aal n—a*a +% —a*anaat
D,=e 2 e*e —e 2 e e

D_,aD,=a+a and D_,a'D,=a'+a"

With A = 2iSaX ~ ivV23ax and B = —2iRaP ~ —V2Ra 2,
Glauber formula gives*:

D, = e—i?)?a%a ei\/ﬁ%axe_\@g%a%
(Da W)))X,t — efi%a%a eiﬁ%ade(X . \/§§Ra7 t)

Exercice
For any o, 8, € € C, prove that

ot Bap*
Da+5 =e 2 DaDg

DoseD_o = (1 i %) 1+ea —ea+ O(lef’)

d

«d
(2D,) D = (M) 14 (Sa)a - (Sa") a



Harmonic oscillator (6): lack of controllability

Take | solution of the controlled Schrddinger equation
i9 1) = (w(ala+3) + u(a+a)) ). Set(a) = (|ay). Then

g(a) = —iw(a) — iu.

From a= X + iP, we have (a) = (X) + i(P) where
(X) = (Y| XYy € Rand (P) = (¢|P|y) € R. Consequently:

(¥
#X)=w(P), G(P)=—w(X)-u.
¥

Consider the change of frame [¢) = e Dy, [x) with

t
0 :/ <!<a>|2 + u%((a})) . D), = elad—(aa
0
Then |x) obeys to autonomous Schrédinger equation

i lx) =wa'alx).
The dynamics of |¢)) can be decomposed into two parts:

m a controllable part of dimension two for (a)
m an uncontrollable part of infinite dimension for |x).



Harmonic oscillator (7): coherent states as reachable ones from |0)

Coherent states

n=0

are the states reachable from vacuum set. They are also the
eigen-state of a: ala) = a/|a).

A widely known result in quantum optics®: classical currents
and sources (generalizing the role played by u) only generate
classical light (quasi-classical states of the quantized field
generalizing the coherent state introduced here)

We just propose here a control theoretic interpretation in terms
of reachable set from vacuum®

5See complement By, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc,
and G. Grynberg. Photons and Atoms: Introduction to Quantum
Electrodynamics.Wiley, 1989.

8see also: MM-PR, IEEE Trans. Automatic Control, 2004 and MM-PR,
CDC-ECC, 2005.



Atom-cavity coupling

The composite system lives on the Hilbert space
C? ® L?(R; C) ~ C? ® [?(C) with the Jaynes-Cummings Hamiltonian

(1)

5 ox(a" — a),

1 ,
HJC = %O’z +wc(aTa+ E) —+ 1

With we/2m & weg/2m around 50 GHz.
Gaussian radial profile of the cavity quantized mode (for t = 0 atom at

cavity center):
vt 2
Q(t) = Qo exp (— <W) )

where v is the atom velocity (250 m/s), w is the width (6 mm), Qq/27
around 50 kHz. Thus we have also Q(t) < we, weg-



Jaynes-Cumming model: RWA

We consider the change of frame:
‘l/)> _ e—iwct(aTa-i-%)efiwctaz ’(/)>

The system becomes i3 |¢) = H, |¢) with

A At —lw jw jw —lw
202+Ié)(e et | g) (e| + et |e) (g]) (e !al — e et a),

I-Iint =
where A = weg — we much smaller than we (A /27 around
250 kHz, same order as Q(t))

The secular terms of H,; are given by (RWA, first order
approximation):

Q(1‘)

Hma=%(|e> (el —19) (gl) +i—5~(Ig) (el a" —|e) (gl a).

Since Q(t) = Qo exp (— (%)2) we have, with A > 0 of the

same order of Qo, for all t, th(t)\ < AQ(t): adiabatic coupling
between atom/cavity, called also dispersive interaction.




PDE model behind H,,,

The quantum state |¢) satisfying
g10) =—i (% (1e) (el — 1g) (gl) + % (Ig) (el & — le) (g] @) Io)
is described by two elements of LZ(R, C), ¢g and ¢e,

|6) = (dg(x. 1), de(x. 1)) With [|6g|Z2 + [|el|2 = 1

and the time evolution is given by the coupled Partial
Differential Equations (PDE’s)

8¢g Q(t _2
ot igdg + (X 8x> Pe

Ode A Q1) 0
o~ 2% o \ Xt g ) %
SinCea:%(X+%)andaT:iz(Xff%)_



Jaynes-Cumming model: adiabatic propagator

The unitary operator U solution of

G =-i(G0e) (el - 19} gl) + 174 (g) el ~ e} (gl a)) U

starting from U_7 = I with vT /w > 1 (Q(—T) =~ 0), satisfies in
a good approximation

Ur =1g) (gl €™ + |e) (e] e~/ *N+D)

with ¢(n) being the analytic function (light-induced phase):

p(n) =3 /+TT \/ A2 + nQ2(t)at

Proof: for each n, use invariance of the space (|g,n+ 1), e, n))

and the adiabatic propagator for the spin system with an

adiabatic Hamiltonian of the form 4zo, + “o,.




Exercise on Jaynes-Cumming propagator (1)

Let us consider the Jaynes-Cumming propagator Uc

_ (A(|e><e—|g><g|) ,n(|g><eaf—|e><g|a))
—iT 2 +i >
UC =€

where T is an interaction time, A and Q2 are constant.
m Show by recurrence on integer k that

. + 2k

(a(le) (el - 1g) (gl) + i(1g) (el &' ~ [e) (gla)) " =

k k
le) (el (8% + (N+ 1)) +1g) (gl (&% + N°)
and that

. t 2k+1

(a(le) el —19) (gl) +i2(1g) (el a' - le) (gla)) " =

k k
le) (e| A (A2 +(N+ 1)92) —19) (gl A (A2 + NQ2)

+0(10) (el (8% + N2?) & — |} (g1 a (A% + N22)").



Exercise on Jaynes-Cumming propagator (2)

m Deduce that

Asin (T\/AZ+NQZ>
U = cos | 2V A2+N92) i
C |g> <g| ( 2 + \/m

Asin (n/A2+(N+1)Q2)

2

2

+16) (el | cos (TVAZHN*‘)QZ) -
A2+ (N+1)2

Qsin F@) Qsin <77@>
o) el | — e |2 10| — e

where N = a' a the photon-number operator (a is the photon annihilator
operator).



Exercise on Jaynes-Cumming propagator (3)

m In the resonant case, A = 0, prove that:

Uc = 1g) (gl cos (§VN) + &) (el cos (VN +1)

in( 2 sin ©
+1g) (el (@) a' —le)(gla <<f>>

and check that UL Uc = .
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