Quantum Systems: Dynamics and Control

Mazyar Mirrahimi\(^2\) and Pierre Rouchon \(^3\)

March 11, 2015

\(^1\)See the web page:
http://cas.ensmp.fr/~rouchon/MasterUPMC/index.html

\(^2\)INRIA Paris-Rocquencourt

\(^3\)Mines ParisTech
Outline

1. Quantum measurement
 - Projective measurement
 - Positive Operator Valued Measurement (POVM)
 - Stochastic process attached to a POVM

2. Markov chains, martingales and convergence theorems

3. Quantum non-demolition measurements and asymptotic behavior

4. Quantum feedback and stabilization of photon number states
Outline

1 Quantum measurement
 - Projective measurement
 - Positive Operator Valued Measurement (POVM)
 - Stochastic process attached to a POVM

2 Markov chains, martingales and convergence theorems

3 Quantum non-demolition measurements and asymptotic behavior

4 Quantum feedback and stabilization of photon number states
Projective measurement

For the system defined on Hilbert space \mathcal{H}, take

- an observable O (Hermitian operator) defined on \mathcal{H}:

$$O = \sum_{\nu} \lambda_{\nu} P_{\nu},$$

where λ_{ν}'s are the eigenvalues of O and P_{ν} is the projection operator over the associated eigenspace.

- a quantum state given by the wave function $|\psi\rangle$ in \mathcal{H}.

Projective measurement of the physical observable $O = \sum_{\nu} \lambda_{\nu} P_{\nu}$ for the quantum state $|\psi\rangle$:

1. The probability of obtaining the value λ_{ν} is given by $p_{\nu} = \langle \psi | P_{\nu} | \psi \rangle$; note that $\sum_{\nu} p_{\nu} = 1$ as $\sum_{\nu} P_{\nu} = I_{\mathcal{H}}$ ($I_{\mathcal{H}}$ represents the identity operator of \mathcal{H}).

2. After the measurement, the conditional (a posteriori) state $|\psi\rangle_+$ of the system, given the outcome λ_{ν}, is

$$|\psi\rangle_+ = \frac{P_{\nu} |\psi\rangle}{\sqrt{p_{\nu}}} \quad \text{(collapse of the wave packet)}.$$
Positive Operator Valued Measurement (POVM) (1)

System S of interest (a quantized electromagnetic field) interacts with the meter M (a probe atom), and the experimenter measures projectively the meter M (the probe atom). Need for a **Composite system**: $\mathcal{H}_S \otimes \mathcal{H}_M$ where \mathcal{H}_S and \mathcal{H}_M are Hilbert spaces of S and M. Measurement process in three successive steps:

1. Initially the quantum state is separable
 \[
 \mathcal{H}_S \otimes \mathcal{H}_M \ni |\Psi\rangle = |\psi_S\rangle \otimes |\psi_M\rangle
 \]
 with a well defined and known state $|\psi_M\rangle$ for M.

2. Then a **Schrödinger evolution** during a small time (unitary operator $U_{S,M}$) of the composite system from $|\psi_S\rangle \otimes |\psi_M\rangle$ and producing $U_{S,M}(|\psi_S\rangle \otimes |\psi_M\rangle)$, entangled in general.

3. Finally a **projective measurement** of the meter M:
 \[
 O_M = I_S \otimes \left(\sum_\nu \lambda_\nu P_\nu \right)
 \]
 the measured observable for the meter. Projection operator P_ν is a rank-1 projection in \mathcal{H}_M over the eigenstate $|\xi_\nu\rangle \in \mathcal{H}_M$: $P_\nu = |\xi_\nu\rangle \langle \xi_\nu|$.
Positive Operator Valued Measurement (POVM) (2)

Define the measurement operators M_ν via

$$\forall |\psi_S\rangle \in \mathcal{H}_S, \quad U_{S,M}(|\psi_S\rangle \otimes |\psi_M\rangle) = \sum_\nu (M_\nu |\psi_S\rangle) \otimes |\xi_\nu\rangle.$$

Then $\sum_\nu M_\nu^\dagger M_\nu = I_S$. The set \{\$M_\nu\$\} defines a Positive Operator Valued Measurement (POVM).

In $\mathcal{H}_S \otimes \mathcal{H}_M$, projective measurement of $O_M = I_S \otimes (\sum_\nu \lambda_\nu P_\nu)$ with quantum state $U_{S,M}(|\psi_S\rangle \otimes |\theta_M\rangle)$:

1. The probability of obtaining the value λ_ν is given by $p_\nu = \langle \psi_S | M_\nu^\dagger M_\nu |\psi_S\rangle$

2. After the measurement, the conditional (a posteriori) state of the system, given the outcome λ_ν, is

$$|\psi_S\rangle^+ = \frac{M_\nu |\psi_S\rangle}{\sqrt{p_\nu}}.$$
To the POVM (M_ν) on \mathcal{H}_S is attached a stochastic process of quantum state $|\psi\rangle$

$$|\psi\rangle_+ = \frac{M_\nu|\psi\rangle}{\sqrt{p_\nu}}$$

with probability $p_\nu = \langle\psi|M_\nu^\dagger M_\nu|\psi\rangle$.

For any observable A on \mathcal{H}_S, its conditional expectation value after the transition knowing the state $|\psi\rangle$

$$\mathbb{E}\left(\langle\psi|A|\psi\rangle_+ \mid |\psi\rangle\right) = \langle\psi|\left(\sum_\nu M_\nu^\dagger AM_\nu\right)|\psi\rangle.$$

If \bar{A} is a stationary point of the adjoint Kraus map K^*, $K^*\bar{A} = \sum_\nu M_\nu^\dagger \bar{A}M_\nu$, then $\langle\psi|\bar{A}|\psi\rangle$ is a martingale:

$$\mathbb{E}\left(\langle\psi|\bar{A}|\psi\rangle_+ \mid |\psi\rangle\right) = \langle\psi|\left(\sum_\nu M_\nu^\dagger \bar{A}M_\nu\right)|\psi\rangle = \langle\psi|\bar{A}|\psi\rangle.$$
Markov process: $|\psi_k\rangle \equiv |\psi\rangle_{t=k\Delta t}, \ k \in \mathbb{N}, \ \Delta t \text{ sampling period},$

$$|\psi_{k+1}\rangle = \begin{cases}
\frac{M_g|\psi_k\rangle}{\sqrt{\langle \psi_k| M_g^\dagger M_g |\psi_k\rangle}} & \text{with } y_k = g, \ \text{probability } P_g = \langle \psi_k| M_g^\dagger M_g |\psi_k\rangle; \\
\frac{M_e|\psi_k\rangle}{\sqrt{\langle \psi_k| M_e^\dagger M_e |\psi_k\rangle}} & \text{with } y_k = e, \ \text{probability } P_e = \langle \psi_k| M_e^\dagger M_e |\psi_k\rangle,
\end{cases}$$

with

$$M_g = \cos(\varphi_0 + N\vartheta), \quad M_e = \sin(\varphi_0 + N\vartheta).$$
1. Quantum measurement
 - Projective measurement
 - Positive Operator Valued Measurement (POVM)
 - Stochastic process attached to a POVM

2. Markov chains, martingales and convergence theorems

3. Quantum non-demolition measurements and asymptotic behavior

4. Quantum feedback and stabilization of photon number states
Consider \((X_n)\) a sequence of random variables defined on the probability space \((\Omega, \mathcal{F}, P)\) and taking values in a metric space \(X\). The random process \(X_n\) is said to,

- converge in probability towards the random variable \(X\) if for all \(\epsilon > 0\),
 \[
 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = \lim_{n \to \infty} P(\omega \in \Omega \mid |X_n(\omega) - X(\omega)| > \epsilon) = 0;
 \]
- converge almost surely towards the random variable \(X\) if
 \[
 P\left(\lim_{n \to \infty} X_n = X\right) = P\left(\omega \in \Omega \mid \lim_{n \to \infty} X_n(\omega) = X(\omega)\right) = 1;
 \]
- converge in mean towards the random variable \(X\) if
 \[
 \lim_{n \to \infty} E(|X_n - X|) = 0.
 \]
Some definitions

Markov process

The sequence \((X_n)_{n=1}^{\infty}\) is called a Markov process, if for \(n' > n\) and any measurable function \(f(x)\) with \(\sup_x |f(x)| < \infty\),

\[
\mathbb{E} (f(X_{n'}) \mid X_1, \ldots, X_n) = \mathbb{E} (f(X_{n'}) \mid X_n).
\]

Martingales

The sequence \((X_n)_{n=1}^{\infty}\) is called respectively a **supermartingale**, a **submartingale** or a **martingale**, if \(\mathbb{E} (|X_n|) < \infty\) for \(n = 1, 2, \ldots\), and

\[
\mathbb{E} (X_n \mid X_1, \ldots, X_m) \leq X_m \quad (\mathbb{P} \text{ almost surely}), \quad n \geq m,
\]

or

\[
\mathbb{E} (X_n \mid X_1, \ldots, X_m) \geq X_m \quad (\mathbb{P} \text{ almost surely}), \quad n \geq m,
\]

or finally,

\[
\mathbb{E} (X_n \mid X_1, \ldots, X_m) = X_m \quad (\mathbb{P} \text{ almost surely}), \quad n \geq m.
\]
Doob’s first martingale convergence theorem

Let \((X_n)^\infty_{n=1}\) be a submartingale such that \((x^+\) is the positive part of \(x\))

\[
\sup_n \mathbb{E} (X_n^+) < \infty.
\]

Then \(\lim_n X_n (= X_\infty)\) exists with probability 1, and \(\mathbb{E} (X_\infty^+) < \infty\).
Doob’s Inequality

Let \(\{X_n\} \) be a Markov chain on state space \(\mathcal{X} \). Suppose that there is a non-negative function \(V(x) \) satisfying \(\mathbb{E} (V(X_1) \mid X_0 = x) - V(x) = -k(x) \), where \(k(x) \geq 0 \) on the set \(\{x: V(x) < \lambda\} \equiv Q_\lambda \). Then

\[
\mathbb{P} \left(\sup_{\infty > n \geq 0} V(X_n) \geq \lambda \mid X_0 = x \right) \leq \frac{V(x)}{\lambda}.
\]

Corollary

Consider the same assumptions as in above theorem. Assume moreover that there exists \(\bar{x} \in \mathcal{X} \) such that \(V(\bar{x}) = 0 \) and that \(V(x) \neq 0 \) for all \(x \) different from \(\bar{x} \). Then the above theorem implies that the Markov process \(X_n \) is **stable in probability** around \(\bar{x} \), i.e.

\[
\lim_{x \to \bar{x}} \mathbb{P} \left(\sup_n \|X_n - \bar{x}\| \geq \epsilon \mid X_0 = x \right) = 0, \quad \forall \epsilon > 0.
\]
Theorem: H.J. Kushner

Let \(\{X_n\} \) be a Markov chain on the compact state space \(S \). Suppose that there exists a non-negative function \(V(x) \) satisfying
\[
E \left(V(X_{n+1}) \mid X_n = x \right) - V(x) = -k(x),
\]
where \(k(x) \geq 0 \) is a positive continuous function of \(x \). Then the \(\omega \)-limit set (in the sense of almost sure convergence) of \(X_n \) is included in the following set
\[
I = \{ X \mid k(X) = 0 \}.
\]
Trivially, the same result holds true for the case where
\[
E \left(V(X_{n+1}) \mid X_n = x \right) - V(x) = k(x) \quad (V(X_n) \text{ is a submartingale and not a supermartingale}),
\]
with \(k(x) \geq 0 \) and \(V(x) \) bounded from above.
Outline

1. Quantum measurement
 - Projective measurement
 - Positive Operator Valued Measurement (POVM)
 - Stochastic process attached to a POVM

2. Markov chains, martingales and convergence theorems

3. Quantum non-demolition measurements and asymptotic behavior

4. Quantum feedback and stabilization of photon number states
Markov process: $|\psi_k\rangle \equiv |\psi\rangle_{t=k\Delta t}$, $k \in \mathbb{N}$, Δt sampling period,

$$
\rho_{k+1} = \begin{cases}
\frac{M_g \rho_k M_g^\dagger}{\text{Tr}(M_g \rho_k M_g^\dagger)} & \text{with } y_k = g, \text{ probability } P_g = \text{Tr} \left(M_g \rho_k M_g^\dagger \right); \\
\frac{M_e \rho_k M_e^\dagger}{\text{Tr}(M_e \rho_k M_e^\dagger)} & \text{with } y_k = e, \text{ probability } P_e = \text{Tr} \left(M_e \rho_k M_e^\dagger \right),
\end{cases}
$$

with

$$
M_g = \cos(\varphi_0 + N \vartheta), \quad M_e = \sin(\varphi_0 + N \vartheta).
$$

Quantum Non-Demolition (QND) measurement

The measurement operators $M_{g,e}$ commute with the photon-number observable N: photon-number states $|n\rangle\langle n|$ are fixed points of the measurement process. We say that the measurement is QND for the observable N.
Asymptotic behavior

Theorem

Consider the Markov process defined above with an initial density matrix \(\rho_0 \) defined on the subspace \(\text{span}\{|n\rangle \mid n = 0, 1, \cdots, n^{\text{max}}\} \). Also, assume the non-degeneracy assumption

\[
\cos^2(\varphi_m) \neq \cos^2(\varphi_n) \quad \forall n \neq m \in \{0, 1, \cdots, n^{\text{max}}\},
\]

where \(\varphi_n = \varphi_0 + n\vartheta \). Then

- for any \(n \in \{0, \ldots, n^{\text{max}}\} \), \(\text{Tr}(\rho_k|n\rangle\langle n|) = \langle n|\rho_k|n\rangle \) is a martingale
- \(\rho_k \) converges with probability 1 to one of the \(n^{\text{max}} + 1 \) Fock state \(|n\rangle\langle n| \) with \(n \in \{0, \ldots, n^{\text{max}}\} \).
- the probability to converge towards the Fock state \(|n\rangle\langle n| \) is given by \(\text{Tr}(\rho_0|n\rangle\langle n|) = \langle n|\rho_0|n\rangle \).
Asymptotic behavior: numerical simulations

100 Monte-Carlo simulations of $\text{Tr}(\rho_k |3\rangle\langle 3|)$ versus k

Fidelity between ρ_K and the Fock state ξ_3
Consider the Markov chain $\rho_{k+1} = M_{s_k} \rho_k$ where $s_k = g$ (resp. $s_k = e$) with probability $p_{g,k} = \text{Tr} \left(M_g \rho_k M_g^\dagger \right)$ (resp. $p_{e,k} = \text{Tr} \left(M_e \rho_k M_e^\dagger \right)$). The Kraus operator are given by

$$M_g = \cos \left(\frac{\theta_1}{2} \right) \cos \left(\frac{\Theta}{2} \sqrt{N} \right) - \sin \left(\frac{\theta_1}{2} \right) \left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{N} \right)}{\sqrt{N}} \right) a^\dagger$$

$$M_e = - \sin \left(\frac{\theta_1}{2} \right) \cos \left(\frac{\Theta}{2} \sqrt{N} + 1 \right) - \cos \left(\frac{\theta_1}{2} \right) a \left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{N} \right)}{\sqrt{N}} \right)$$

with $\theta_1 = 0$. Assume the initial state to be defined on the subspace $\{ |n\rangle \}_{n=0}^{n_{\text{max}}}$ and that the cavity state at step k is described by the density operator ρ_k.

1. Show that

$$\mathbb{E} \left(\text{Tr} \left(N \rho_{k+1} \right) | \rho_k \right) = \text{Tr} \left(N \rho_k \right) - \text{Tr} \left(\sin^2 \left(\frac{\Theta}{2} \sqrt{N} \right) \rho_k \right).$$

2. Assume that for any integer n, $\Theta \sqrt{n}/\pi$ is irrational. Then prove that almost surely ρ_k tends to the vacuum state $|0\rangle \langle 0|$ whatever its initial condition is.

3. When $\Theta \sqrt{n}/\pi$ is rational for some integer n, describe the possible ω-limit sets for ρ_k.
Outline

1. Quantum measurement
 - Projective measurement
 - Positive Operator Valued Measurement (POVM)
 - Stochastic process attached to a POVM

2. Markov chains, martingales and convergence theorems

3. Quantum non-demolition measurements and asymptotic behavior

4. Quantum feedback and stabilization of photon number states
Quantum feedback

Question: how to stabilize deterministically a single photon-number state $|\bar{n}\rangle \langle \bar{n}|$?

Controlled Markov chain:

$$
\rho_{k+\frac{1}{2}} = \mathbb{M}_s(\rho_k), \quad \rho_{k+1} = \mathbb{D}_\alpha(\rho_{k+\frac{1}{2}}),
$$

where $\mathbb{D}_\alpha(\rho) = D_\alpha \rho D_\alpha$.

Control Lyapunov function

Idea: \[
\overline{V}(\rho) = V(\rho) + \sum_{n \geq 0} f(n) \text{Tr}(\rho |n\rangle \langle n|),
\]

Control law:
\[
\alpha_k : = \arg\max_{|\alpha| \leq \bar{\alpha}} \left\{ E \left(\overline{V}(\rho_{k+1}) | \rho_k, \alpha_k = \alpha \right) \right\}
\]
\[
= \arg\max_{|\alpha| \leq \bar{\alpha}} \left\{ \text{Tr} \left(M_g \rho_k M_g \right) \overline{V} \left(D_\alpha \left(M_g(\rho_k) \right) \right) + \text{Tr} \left(M_e \rho_k M_e \right) \overline{V} \left(D_\alpha \left(M_e(\rho_k) \right) \right) \right\}.
\]
Quantum feedback experiment

Stabilization around 3-photon state

$n_t = 3$ photons

With pure state $\rho = |\psi\rangle\langle\psi|$, we have

$$\rho_+ = |\psi_+\rangle\langle\psi_+| = \frac{1}{\text{Tr} \left(M_\mu \rho M_\mu^\dagger \right)} M_\mu \rho M_\mu^\dagger$$

when the atom collapses in $\mu = g$, e with proba. $\text{Tr} \left(M_\mu \rho M_\mu^\dagger \right)$.

Detection error rates: $\mathbb{P}(y = e/\mu = g) = \eta_g \in [0, 1]$ the probability of erroneous assignment to e when the atom collapses in g; $\mathbb{P}(y = g/\mu = e) = \eta_e \in [0, 1]$ (given by the contrast of the Ramsey fringes).

Bayes law: expectation ρ_+ of $|\psi_+\rangle\langle\psi_+|$ knowing ρ and the imperfect detection y.

$$\rho_+ = \begin{cases}
\frac{(1-\eta_g) M_g \rho M_g^\dagger + \eta_e M_e \rho M_e^\dagger}{\text{Tr} \left((1-\eta_g) M_g \rho M_g^\dagger + \eta_e M_e \rho M_e^\dagger \right)} & \text{if } y = g, \text{ proba. } \text{Tr} \left((1-\eta_g) M_g \rho M_g^\dagger + \eta_e M_e \rho M_e^\dagger \right); \\
\eta_g M_g \rho M_g^\dagger + (1-\eta_e) M_e \rho M_e^\dagger}{\text{Tr} \left(\eta_g M_g \rho M_g^\dagger + (1-\eta_e) M_e \rho M_e^\dagger \right)} & \text{if } y = e, \text{ proba. } \text{Tr} \left(\eta_g M_g \rho M_g^\dagger + (1-\eta_e) M_e \rho M_e^\dagger \right).
\end{cases}$$

ρ_+ does not remain pure: the quantum state ρ_+ becomes a mixed state; $|\psi_+\rangle$ becomes physically irrelevant.
We get
\[
\rho_+ = \begin{cases}
\frac{(1-\eta_g)M_g\rho M_g^\dagger + \eta_e M_e\rho M_e^\dagger}{\text{Tr}((1-\eta_g)M_g\rho M_g^\dagger + \eta_e M_e\rho M_e^\dagger)}, & \text{with prob. } \text{Tr}((1-\eta_g)M_g\rho M_g^\dagger + \eta_e M_e\rho M_e^\dagger); \\
\frac{\eta_g M_g\rho M_g^\dagger + (1-\eta_e) M_e\rho M_e^\dagger}{\text{Tr}(\eta_g M_g\rho M_g^\dagger + (1-\eta_e) M_e\rho M_e^\dagger)}, & \text{with prob. } \text{Tr}(\eta_g M_g\rho M_g^\dagger + (1-\eta_e) M_e\rho M_e^\dagger).
\end{cases}
\]

Key point:

\[
\text{Tr}((1-\eta_g)M_g\rho M_g^\dagger + \eta_e M_e\rho M_e^\dagger) \quad \text{and} \quad \text{Tr}(\eta_g M_g\rho M_g^\dagger + (1-\eta_e) M_e\rho M_e^\dagger)
\]

are the probabilities to detect \(y = g\) and \(e\), knowing \(\rho\).

Reformulation with quantum maps: set

\[
K_g(\rho) = (1-\eta_g)M_g\rho M_g^\dagger + \eta_e M_e\rho M_e^\dagger, \quad K_e(\rho) = \eta_g M_g\rho M_g^\dagger + (1-\eta_e) M_e\rho M_e^\dagger.
\]

\[
\rho_+ = \frac{K_y(\rho)}{\text{Tr}(K_y(\rho))} \quad \text{when we detect } y
\]

The probability to detect \(y\) knowing \(\rho\) is \(\text{Tr}(K_y(\rho))\).

We have the following Kraus map:

\[
E(\rho_+ | \rho) = K_g(\rho) + K_e(\rho) = K(\rho) = M_g\rho M_g^\dagger + M_e\rho M_e^\dagger.
\]
Cavity decay (decoherence) seen as unread measurements

The cavity mirrors play the role of a detector with two possible outcomes:

- **zero photon annihilation** during ΔT: Kraus operator
 \[M_0 = I - \frac{\Delta T}{2} L_{-1}^\dagger L_{-1}, \]
 probability $\approx \text{Tr} \left(M_0 \rho M_0^\dagger \right)$ with back action
 \[\rho_{t+\Delta T} \approx \frac{M_0 \rho_t M_0^\dagger}{\text{Tr}(M_0 \rho M_0^\dagger)}. \]

- **one photon annihilation** during ΔT: Kraus operator
 \[M_{-1} = \sqrt{\Delta T} L_{-1}, \]
 probability $\approx \text{Tr} \left(M_{-1} \rho M_{-1}^\dagger \right)$ with back action
 \[\rho_{t+\Delta T} \approx \frac{M_{-1} \rho_t M_{-1}^\dagger}{\text{Tr}(M_{-1} \rho M_{-1}^\dagger)}. \]

where
\[L_{-1} = \sqrt{\frac{1}{T_{\text{cav}}}} a \]
is the Lindbald operator associated to cavity damping (see the continuous time models) with T_{cav} the photon life time and $\Delta T \ll T_{\text{cav}}$ the sampling period ($T_{\text{cav}} = 100 \text{ ms}$ and $\Delta T \approx 100 \mu s$ for the LKB photon Box).
Cavity decoherence: cavity decay, thermal photon(s)

Three possible outcomes:

- **zero photon annihilation** during \(\Delta T \): Kraus operator

 \[
 M_0 = I - \frac{\Delta T}{2} L_{-1} L_{-1} - \frac{\Delta T}{2} L_1 L_1,
 \]

 probability \(\approx \text{Tr} \left(M_0 \rho M_0^\dagger \right) \) with back action

 \[
 \rho_{t+\Delta T} \approx \frac{M_0 \rho_t M_0^\dagger}{\text{Tr} \left(M_0 \rho M_0^\dagger \right)}.
 \]

- **one photon annihilation** during \(\Delta T \): Kraus operator

 \[
 M_{-1} = \sqrt{\Delta T} L_{-1},
 \]

 probability \(\approx \text{Tr} \left(M_{-1} \rho M_{-1}^\dagger \right) \) with back action

 \[
 \rho_{t+\Delta T} \approx \frac{M_{-1} \rho_t M_{-1}^\dagger}{\text{Tr} \left(M_{-1} \rho M_{-1}^\dagger \right)}
 \]

- **one photon creation** during \(\Delta T \): Kraus operator

 \[
 M_1 = \sqrt{\Delta T} L_1,
 \]

 probability \(\approx \text{Tr} \left(M_1 \rho M_1^\dagger \right) \) with back action

 \[
 \rho_{t+\Delta T} \approx \frac{M_1 \rho_t M_1^\dagger}{\text{Tr} \left(M_1 \rho M_1^\dagger \right)}
 \]

where

\[
L_{-1} = \sqrt{\frac{1+n_{th}}{T_{cav}}} a,
L_1 = \sqrt{\frac{n_{th}}{T_{cav}}} a^\dagger
\]

are the Lindbald operators associated to cavity decoherence: \(T_{cav} \) the photon life time, \(\Delta T \ll T_{cav} \) the sampling period and \(n_{th} \) is the average of thermal photon(s) (vanishes with the environment temperature) \((n_{th} \approx 0.05 \text{ for the LKB photon box}) \).