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Propagator of a damped and driven quantum harmonic oscillator

We consider a quantum harmonic oscillator with annihilation operator a, photon number
operator N = a†a, pulsation ω, damping time 1/κ. This oscillator is driven by a coherent
drive of complex amplitude u and pulsation ωd = ωc −∆ (∆ being the detuning between the
drive of pulsation ωd and the oscillator of pulsation ωc). Its density operator ρ obeys to the
following Lindbald master equation:

d

dt
ρ = [ua† − u∗a, ρ]− ı∆[N , ρ] + κ

(
aρa† − 1

2(Nρ+ ρN)
)
.

We denote by ρ(t) the solution starting from an initial density operator ρ0 = ρ(0).

1. Assume u = 0, ∆ = 0 and κ > 0.

(a) What is the limit of ρ(t) for t tending to +∞ ?

(b) Show that ρ(t) admits the following expression (do not consider convergence issues
for the series)

ρ(t) =

+∞∑
n=0

(
(1−e−κt)n

n!

)
e−(κ2 )tNan ρ0 (a†)ne−(κ2 )tN .

2. Assume u = 0, ∆ 6= 0 and κ > 0.

(a) What is the limit of ρ(t) for t tending to +∞ ?

(b) Show that ρ(t) admits the following expression

ρ(t) =
+∞∑
n=0

(
(1−e−κt)n

n!

)
e−(κ2 +ı∆)tNan ρ0 (a†)ne−(κ2−ı∆)tN .

3. Assume u 6= 0, ∆ = 0 and κ > 0.

(a) What is the limit of ρ(t) for t tending to +∞ ?

(b) Show that ρ(t) admits the following expression

ρ(t) =

+∞∑
n=0

(
(1−e−κt)n

n!

)
Dα

(
e−(κ2 )tNan

)
D−α ρ0Dα

(
(a†)ne−(κ2 )tN

)
D−α

where Dα = eαa
†−α∗a is the displacement of complex amplitude α. What is the

expression of α versus u and κ.

1



4. Assume u 6= 0, ∆ 6= 0 and κ > 0.

(a) To what kind of frame corresponds the above Lindblad master equation ?

(b) What is the limit of ρ(t) for t tending to +∞ ?

(c) Show that ρ(t) admits the following expression

ρ(t) =

+∞∑
n=0

(
(1−e−κt)n

n!

)
Dα

(
e−(κ2 +ı∆)tNan

)
D−α ρ0Dα

(
(a†)ne−(κ2−ı∆)tN

)
D−α.

What is here the expression of α versus u, ∆ and κ ?

Dissipation induced dephasing

We consider a harmonic oscillator coupled dispersively to a single qubit. In the rotating frame
of the qubit and the cavity the Hamiltonian is given by

Hdisp = −χ
2
σz ⊗ a†a.

Furthermore, we assume the cavity to be dissipative so that the total dynamics of the system
for the density matrix ρ is given by

d

dt
ρ = −i[Hdisp,ρ] + κ(aρa† − 1

2
a†aρ− 1

2
ρa†a).

In the sequel, we will assume that χ� κ.

1. Write the system in the rotating frame of Hdisp (i.e. give the dynamics of ξ =
exp(iHdispt)ρ exp(−iHdispt)). Simplify the dynamics using the rotating wave approxi-
mation and knowing that χ� κ.

2. Consider the system initialized in the separable state ρq ⊗ ρc with ρq = |ψq〉〈ψq| and
an arbitrary cavity state ρc. Furthermore take |ψq〉 = cg|g〉+ ce|e〉. What is the steady
state of the above simplified system towards which the solution converges? Interpret
the result.
(Hint: start by writing ξ(t) = |e〉〈e| ⊗ ξee(t) + |g〉〈g| ⊗ ξgg(t) + |e〉〈g| ⊗ ξeg(t) + |g〉〈e| ⊗
ξge(t).)

3. Interpret the result.

Do and undo an entangled state between two harmonic oscillators

We consider two harmonic oscillators of annihilation operators a1 and a2, photon-number
operators N1 = a†1a1 and N2 = a†2a2, interacting sequentially with a qubit of ground state
|g〉 and excited state |e〉.

• Firstly the qubit interacts with oscillator 1 according to the unitary operator (resonant
interaction with vacuum Rabi angle θ1):

U1 = |g〉〈g| cos(θ1

√
N1)+|e〉〈e| cos(θ1

√
N1 + 1)−|e〉〈g|a1

sin(θ1
√
N1)√

N1
+|g〉〈e| sin(θ1

√
N1)√

N1
a†1.
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• After its interaction with oscillator 1, the same qubit interacts then with oscillator 2
according to the unitary operator (resonant interaction with vacuum Rabi angle θ2):

U2 = |g〉〈g| cos(θ2

√
N2)+|e〉〈e| cos(θ2

√
N2 + 1)−|e〉〈g|a2

sin(θ2
√
N2)√

N2
+|g〉〈e| sin(θ2

√
N2)√

N2
a†2.

• After its interaction with oscillator 2, the same qubit is measured according to its energy
operator |e〉〈e| − |g〉〈g|. The measurement outcome is denoted by y ∈ {g, e}.

Before the interaction with the qubit, the wave function of the composite system made of the
two oscillators is denoted by |ψ〉. Its admits the following expression in the photon-number
basis of each oscillators

|ψ〉 =
∑

n1,n2≥0

ψn1,n2 |n1n2〉 with
∑

n1,n2≥0

|ψn1,n2 |2 = 1.

Just after qubit measurement, the wave function of the two oscillators is denoted by |ψ〉+.

1. Before its interactions with the two oscillators, the qubit is prepared in |e〉.

(a) Express |ψ〉+ with respect to |ψ〉 and measurement outcome y. What are the
probabilities to detect y knowing |ψ〉.

(b) Assume in this question that θ1 = π/4, θ2 = π/2 and |ψ〉 = |00〉. What are |ψ〉+
and the probabilities to detect y. Interpret the result.

2. Before its interactions with the two oscillators, the qubit is prepared in |g〉.

(a) Express |ψ〉+ with respect to |ψ〉 and measurement outcome y. What are the
probabilities to detect y knowing |ψ〉.

(b) Assume that |ψ〉 = |00〉 and θ1, θ2 arbitrary. What are |ψ〉+ and the probabilities
to detect y. Interpret the result.

(c) We assume in this question that θ1 = π/2, θ2 = π/4 and |ψ〉 = (|10〉 + |01〉)/
√

2.
What are |ψ〉+ and the probabilities to detect y. Interpret the result according to
question 1b.
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Corrigé du Contrôle des connaissances
M. Mirrahimi et P. Rouchon

Propagator of a damped and driven quantum harmonic oscillator

1. (a) ρ(t) converges towards vacuum, i.e., |0〉〈0| where |0〉 is the 0-photon quantum state
a†a|0〉 = 0.

(b) Derivation with respect to t of the term indexed by n yields

d

dt

[(
(1−e−κt)n

n!

)
e−(κ2 )tNan ρ0 (a†)ne−(κ2 )tN

]
=

κe−κt
(

(1−e−κt)n−1

(n−1)!

)
e−(κ2 )tNan ρ0 (a†)ne−(κ2 )tN

− κ
2

(
(1−e−κt)n

n!

)
Ne−(κ2 )tNan ρ0 (a†)ne−(κ2 )tN

− κ
2

(
(1−e−κt)n

n!

)
e−(κ2 )tNan ρ0 (a†)ne−(κ2 )tNN

Assume that ρ(t) is given by the series. Then

d

dt
ρ =

+∞∑
n=0

κe−κt
(

(1−e−κt)n
n!

)
e−(κ2 )tNan+1 ρ0 (a†)n+1e−(κ2 )tN

− κ
2N

(
(1−e−κt)n

n!

)
e−(κ2 )tNan ρ0 (a†)ne−(κ2 )tN

− κ
2

(
(1−e−κt)n

n!

)
e−(κ2 )tNan ρ0 (a†)ne−(κ2 )tNN

=
+∞∑
n=0

κe−κt
(

(1−e−κt)n
n!

)
e−(κ2 )tNan+1 ρ0 (a†)n+1e−(κ2 )tN − κ

2 (Nρ+ ρN).

Using af(N) = f(N + 1)a and f(N)a† = a†f(N + 1) for any function f , we get

aρa† =
+∞∑
n=0

(
(1−e−κt)n

n!

)
ae−(κ2 )tNan ρ0 (a†)ne−(κ2 )tNa†

=
+∞∑
n=0

e−κt
(

(1−e−κt)n
n!

)
e−(κ2 )tNan+1 ρ0 (a†)n+1e−(κ2 )tNa†.

Thus d
dtρ = κ

(
aρa† − 1

2(Nρ+ ρN)
)
.

2. (a) ρ(t) still converges to vacuum.
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(b) The computations are slightly more complex than those of previous question. Since

d

dt

[(
(1−e−κt)n

n!

)
e−(κ2 +ı∆)tNan ρ0 (a†)ne−(κ2−ı∆)tN

]
=

κe−κt
(

(1−e−κt)n−1

(n−1)!

)
e−(κ2 +ı∆)tNan ρ0 (a†)ne−(κ2−ı∆)tN

−
(
κ
2 + ı∆

) ( (1−e−κt)n
n!

)
Ne−(κ2 +ı∆)tNan ρ0 (a†)ne−(κ2−ı∆)tN

−
(
κ
2 − ı∆

) ( (1−e−κt)n
n!

)
e−(κ2 +ı∆)tNan ρ0 (a†)ne−(κ2−ı∆)tNN

we get

d

dt
ρ ==

+∞∑
n=0

κe−κt
(

(1−e−κt)n
n!

)
e−(κ2 +ı∆)tNan+1 ρ0 (a†)n+1e−(κ2−ı∆)tN

− ı∆Nρ+ ı∆ρN − κ
2 (Nρ+ ρN).

With

aρa† =

+∞∑
n=0

e−κt
(

(1−e−κt)n
n!

)
e−(κ2 +ı∆)tNan+1 ρ0 (a†)n+1e−(κ2−ı∆)tN

we conclude that d
dtρ = −ı∆[N , ρ] + κ

(
aρa† − 1

2(Nρ+ ρN)
)
.

3. (a) ρ(t) converges to the coherent state |α〉 of amplitude α = 2u/κ.

(b) With the changement of frame ρ 7→ ξ = D−αρDα, the Lindblad equation becomes
d
dtξ = κ

(
aξa† − 1

2(Nξ + ξN)
)

with ξ0 = D−αρ0Dα (use D−αaDα = a + α and
D−αNDα = (a† + α∗)(a+ α) = N + α∗a+ αa† + |α|2 ) . Since

ξ(t) =

+∞∑
n=0

(
(1−e−κt)n

n!

)(
e−(κ2 )tNan

)
ξ0

(
(a†)ne−(κ2 )tN

)
we get the formula for ρ(t) = Dαξ(t)D−α with α = 2u/κ.

4. (a) The frame corresponds to the drive frame, i.e. a frame rotating at pulsation ωd
and defined by the unitary transformation e−ıωdtN .

(b) ρ(t) converges to the coherent state |α〉 of amplitude α = u/(κ/2+ı∆). This results
from the fact that with the changement of frame ρ 7→ ξ = D−αρDα, the Lindblad
equation becomes d

dtξ = −ı∆[N , ξ] + κ
(
aξa† − 1

2(Nξ + ξN)
)

and ξ(t) 7→ |0〉〈0|.
Thus ρ(t) =7→Dαξ(t)D−α converges towards Dα|0〉〈0|D−α = |α〉〈α|.

(c) Just use the series of 2b for ξ to obtain after a coherent displacement of amplitude
α = u/(κ/2 + ı∆), the series for ρ.

Dissipation induced dephasing

1. In this frame a become

eitHdispae−itHdisp = a(eit
χ
2 |e〉〈e|+ e−it

χ
2 |g〉〈g|).
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Therefore the Lindblad equation becomes

d

dt
ξ = κ

(
(|e〉〈e| ⊗ a)ξ(|e〉〈e| ⊗ a†) + (|g〉〈g| ⊗ a)ξ(|g〉〈g| ⊗ a†)− 1

2
a†aξ − 1

2
ξa†a

)
+ κ

(
eitχ(|e〉〈e| ⊗ a)ξ(|g〉〈g| ⊗ a†) + e−itχ(|g〉〈g| ⊗ a)ξ(|e〉〈e| ⊗ a†)

)
.

After the 1st order RWA (keeping only the secular terms in the first line) we find:

d

dt
ξ = κ

(
(|e〉〈e| ⊗ a)ξ(|e〉〈e| ⊗ a†) + (|g〉〈g| ⊗ a)ξ(|g〉〈g| ⊗ a†)− 1

2
a†aξ − 1

2
ξa†a

)
.

2. We start by writing

ξ = |e〉〈e| ⊗ ξee(t) + |g〉〈g| ⊗ ξgg(t) + |e〉〈g| ⊗ ξeg(t) + |g〉〈e| ⊗ ξge(t)

where ξgg, ξee, ξge, ξeg all live on the Hilbert space of the harmonic oscillator. Fur-
thermore, ξgg, ξee are positive semi-definite trace-class and Hermitian operators with

Tr
(
ξgg
)

+ Tr (ξee) = 1. Also, ξge = ξ†eg. In order to find the dynamics satisfied by each
of these operators, we multiply the above equation by 〈g| or 〈e| on the left and by |g〉
or |e〉 on the right. Therefore

d

dt
ξgg = κ(aξgga

† − 1

2
a†aξgg −

1

2
ξgga

†a),

d

dt
ξee = κ(aξeea

† − 1

2
a†aξee −

1

2
ξeea

†a),

d

dt
ξge =

d

dt
ξ∗eg = −κ(

1

2
a†aξge +

1

2
ξgea

†a).

First, we note that Tr
(
ξgg(t)

)
et Tr (ξee(t)) remain constant and furthremore Tr

(
ξgg(0)

)
=

|cg|2 and Tr (ξee(0)) = |ce|2. Therefore following the result of the course

ξgg(t)→ |cg|2|0〉〈0| and ξee(t)→ |ce|2|0〉〈0| as t→∞.

Let us now study the dynamics of ξge. We start by writing ξge = cmn|m〉〈n|. We
therefore have

d

dt
cmn = −κ(m+ n)

2
cmn.

Therefore for all (m,n) 6= (0, 0), cmn → 0 and thus

ξge(t)→ 〈0|ξge(0)|0〉 = c∗gce〈0|ρc|0〉 as t→∞

Calling r := 〈0|ρc|0〉 ≤ 1, we therefore obtain

ξ(t)→
(
|cg|2|g〉〈g|+ |ce|2|e〉〈e|+ rc∗gce|g〉〈e|+ rc∗ecg|e〉〈g|

)
⊗ |0〉〈0|.

3. While the cavity state decays to the vacuum state |0〉〈0|, the qubit state converges to a
state that is less pure than the initial state. More precisely, even if we start with a pure
state, as soon as r = 〈0|ρc|0〉 < 1 (i.e. ρc is not the vacuum state) the steady qubit
state is a mixed state. This is the dephasing (decoherence) of the qubit caused by its
coupling to a dissipative cavity.
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Do and undo an entangled state between two harmonic oscillators

1. (a) Before interaction with oscillator 1, the wave function is |e〉⊗|ψ〉. After interaction
with oscillator 1, it becomes

U1|e〉 ⊗ |ψ〉 = |e〉 ⊗ cos(θ1

√
N1 + 1)|ψ〉+ |g〉 ⊗ sin(θ1

√
N1)√

N1
a†1|ψ〉.

After interaction with oscillator 2, it reads

U2U1|e〉 ⊗ |ψ〉 =

|e〉⊗cos(θ2

√
N2 + 1) cos(θ1

√
N1 + 1)|ψ〉+ |g〉⊗ sin(θ2

√
N2)√

N2
a†2 cos(θ1

√
N1 + 1)|ψ〉

+ |g〉 ⊗ cos(θ2

√
N2) sin(θ1

√
N1)√

N1
a†1|ψ〉 − |e〉 ⊗ a2

sin(θ2
√
N2)√

N2

sin(θ1
√
N1)√

N1
a†1|ψ〉

= |g〉 ⊗
(

sin(θ2
√
N2)√

N2
a†2 cos(θ1

√
N1 + 1) + cos(θ2

√
N2) sin(θ1

√
N1)√

N1
a†1

)
|ψ〉

+ |e〉 ⊗
(

cos(θ2

√
N2 + 1) cos(θ1

√
N1 + 1)− a2

sin(θ2
√
N2)√

N2

sin(θ1
√
N1)√

N1
a†1

)
|ψ〉.

With

M g = sin(θ2
√
N2)√

N2
a†2 cos(θ1

√
N1 + 1) + cos(θ2

√
N2) sin(θ1

√
N1)√

N1
a†1

M e = cos(θ2

√
N2 + 1) cos(θ1

√
N1 + 1)− a2

sin(θ2
√
N2)√

N2

sin(θ1
√
N1)√

N1
a†1

we have U2U1|e〉 ⊗ |ψ〉 = |g〉 ⊗M g|ψ〉+ |e〉 ⊗M e|ψ〉. Measurement of the qubit
gives then the following Markov chain

|ψ〉+ =


Mg |ψ〉√

〈ψ|M†
gMg |ψ〉

, if y = g with proba. 〈ψ|M †
gM g|ψ〉;

Me|ψ〉√
〈ψ|M†

eMe|ψ〉
, if y = e with proba. 〈ψ|M †

eM e|ψ〉.

(b) When θ1 = π/4 and θ2 = π/2 we have

M g|00〉 =
|01〉+ |10〉√

2
and M e|00〉 = 0.

Thus y = g with probability 1. This corresponds to a deterministic preparation of
the entangled state |ψ〉+ = |01〉+|10〉√

2
between the two oscillators.

2. (a) Before interaction with oscillator 1, the wave function is |g〉⊗|ψ〉. After interaction
with oscillator 1, it becomes

U1|g〉 ⊗ |ψ〉 = |g〉 ⊗ cos(θ1

√
N1)|ψ〉 − |e〉 ⊗ a1

sin(θ1
√
N1)√

N1
|ψ〉.

After interaction with oscillator 2, it reads

U2U1|g〉 ⊗ |ψ〉 =

|g〉 ⊗ cos(θ2

√
N2) cos(θ1

√
N1)|ψ〉 − |e〉 ⊗ a2

sin(θ2
√
N2)√

N2
cos(θ1

√
N1)|ψ〉

− |e〉 ⊗ cos(θ2

√
N2 + 1)a1

sin(θ1
√
N1)√

N1
|ψ〉 − |g〉 ⊗ sin(θ2

√
N2)√

N2
a†2a1

sin(θ1
√
N1)√

N1
|ψ〉

= |g〉 ⊗
(

cos(θ2

√
N2) cos(θ1

√
N1)− sin(θ2

√
N2)√

N2
a†2a1

sin(θ1
√
N1)√

N1

)
|ψ〉

− |e〉 ⊗
(
a2

sin(θ2
√
N2)√

N2
cos(θ1

√
N1) + cos(θ2

√
N2 + 1)a1

sin(θ1
√
N1)√

N1

)
|ψ〉.
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With

M g = cos(θ2

√
N2) cos(θ1

√
N1)− sin(θ2

√
N2)√

N2
a†2a1

sin(θ1
√
N1)√

N1

M e = −a2
sin(θ2

√
N2)√

N2
cos(θ1

√
N1)− cos(θ2

√
N2 + 1)a1

sin(θ1
√
N1)√

N1

we have U2U1|e〉 ⊗ |ψ〉 = |g〉 ⊗M g|ψ〉+ |e〉 ⊗M e|ψ〉. Measurement of the qubit
gives then the following Markov chain

|ψ〉+ =


Mg |ψ〉√

〈ψ|M†
gMg |ψ〉

, if y = g with proba. 〈ψ|M †
gM g|ψ〉;

Me|ψ〉√
〈ψ|M†

eMe|ψ〉
, if y = e with proba. 〈ψ|M †

eM e|ψ〉.

(b) We have
M g|00〉 = |00〉 and M e|00〉 = 0.

Starting with qubit and oscillators in ground state, it is impossible to have any
exchange of energy between them. We recover here the fact that y = g with
probability 1 and |ψ〉+ = |00〉.

(c) With θ1 = π/2, θ2 = π/4 we have

M g
|10〉+|01〉√

2
= |01〉−|01〉

2 = 0 and M e
|10〉+|01〉√

2
= − |00〉+|00〉

2 = −|00〉

Thus y = e with probability 1 with the deterministic result −|00〉. With initial

qubit-state |g〉 and these values of θ1 and θ2 , we undo the entangled state |10〉+|01〉√
2

obtained in 1b and recover the vacuum state of the oscillators (defined up to a
global phase).
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