
Problem Set 2

(M2 Dynamics and control of open quantum systems 2023-2024)

This problem set is due on Monday, October 9th, 2023, at 23:59. The so-

lutions should be emailed as a single PDF (handwritten or typeset) to alexan-

dru.petrescu@minesparis.psl.eu by the deadline. If you collaborate with a colleague,

please write their names at the top of your solution. Cite your references (books,

websites, chatbots etc.). If you submit late without a satisfactory reason, the set

will be accepted with a 10% penalty in the score.

I. SIMPLE HARMONIC OSCILLATOR COUPLED TO A BOSONIC BATH

Consider a harmonic oscillator coupled to a bosonic bath in thermal equilibrium at tem-

perature T , as described by the Hamiltonian

H =HS +HI +HB

HS =~ω0a
†a, HB =

∑
l

~ωlb†l bl, HI =
∑
l

gl(a+ a†)⊗ (bl + b†l ).
(1)

a) Show that the Lindblad master equation for the reduced density matrix describing the

simple harmonic oscillator mode annihilated by operator a can be written as

ρ̇S =− i
[
ω′0a

†a, ρS
]

+
γ

2
(n̄+ 1)

(
2aρSa

† − a†aρS − ρSa†a
)

+
γ

2
n̄
(
2a†ρSa− aa†ρS − ρSaa†

)
.

(2)

Do this without repeating derivations already in the lecture notes, and give expressions

for γ, n̄, and ω′0.

b) Write down differential equations for the population of the nth state of the simple

harmonic oscillator, p(n, t) ≡ 〈n|ρS(t)|n〉. Suppose the system is in initial Fock state

|1〉 at the beginning of the evolution under Eq. (2). Supposing the bath temperature

is T = 0, what are p(n, t)? Let’s keep T 6= 0 for the remainder of this problem.

c) Write down and solve the ordinary differential equation for 〈a〉(t) = trS{ρS(t)a}.
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d) Write down and solve the ordinary differential equation for 〈n〉(t) = trS{ρS(t)n}, with

n = a†a.

e) Show that

ρeq =
e−HS/kBT

tr (e−HS/kBT )
=

e−~ω0a†a/kBT

1− e−~ω0/kBT
(3)

is a steady state of Eq. (2).

SOLUTION

a) Using the Lecture 2, Eq. (26) for the collapose operator,

Aα(ω) ≡
∑

ε′−ε=ω

Π(ε)AαΠ (ε′) , (4)

and the eigenenergies and eigenprojectors are (putting ~ = 1 for the rest of this solution)

ε = nω0,Π(nω0) = |n〉 〈n| , (5)

so (there is only one decay channel so we drop the subscript α)

A(ω0) ≡
∑

ε′−ε=ω0

Π(ε)AαΠ (ε′) =
∑
n≥0

|n〉 〈n| (a+ a†) |n+ 1〉 〈n+ 1|

=
∑
n≥0

√
n+ 1 |n〉 〈n+ 1| = a

A(−ω0) = A(ω0)
† = a†.

(6)

Furthermore, by identifying the coefficient in front of each dissipator and using Eq. (61) in

the notes for Lectures 2-3,

1

2
γ(1 + n̄) ≡ 2π

∑
l

g2l [1 + nB (ω0)] δ (ω0 − ωl) ,

1

2
γn̄ ≡ 2π

∑
l

g2l nB (ω0) δ (−ω0 + ωl) ,
(7)

or simply using Eq. (62) and (63) of the notes for Lectures 2 and 3,

1

2
γ = J(|ω0|),

J(ω) = 2π
∑
l

g2l δ (ω − ωl) ,

n̄ = nB(ω0) =
1

eβ~ω0 − 1
.

(8)
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The Lamb shift is Eq. (45) of the course notes (mind the summation over frequency covers

ω0 and −ω0)

ω′0 − ω0 = S(ω0) + S(−ω0), (9)

with S(ω) as given in Eq. (60). We typically absorb this shift into a redefinition of ω0.

b) Writing ρS(t) ≡
∑

mn≥0 ρmn |m〉 〈n|, and plugging into Eq. (2) we have

∑
mn≥0

ρ̇mn |m〉 〈n| =− i

[
ω′0a

†a,
∑
mn≥0

ρmn |m〉 〈n|

]
+
γ

2
(n̄+ 1)

∑
mn≥0

(
2aρmn |m〉 〈n| a† − a†aρmn |m〉 〈n| − ρmn |m〉 〈n| a†a

)
+
γ

2
n̄
∑
mn≥0

(
2a†ρmn |m〉 〈n| a− aa†ρmn |m〉 〈n| − ρmn |m〉 〈n| aa†

)
=− iω′0

∑
mn≥0

ρmnm |m〉 〈n|+ iω′0
∑
mn≥0

ρmn |m〉 〈n|n

+
γ

2
(n̄+ 1)

∑
mn≥0

(
2
√
mρmn |m− 1〉 〈n− 1|

√
n−mρmn |m〉 〈n| − ρmn |m〉 〈n|n

)
+
γ

2
n̄
∑
mn≥0

(
2
√
m+ 1ρmn |m+ 1〉 〈n+ 1|

√
n+ 1

− (m+ 1)ρmn |m〉 〈n| − ρmn |m〉 〈n| (n+ 1)
)
.

(10)

We can now get matrix-element equations of motion, by equating coefficients of transition

operators |m〉 〈n| on the lhs and rhs. Focusing on |n〉 〈n| we have (coefficient of |n〉 〈n|)

ρ̇nn =− iω′0ρnnn+ iω′0ρnnn

+
γ

2
(n̄+ 1) [2(n+ 1)ρn+1,n+1 − 2nρnn]

+
γ

2
n̄ [2ρn−1,n−1 − 2(n+ 1)ρn,n] ,

(11)

or, regrouping terms and calling ρnn = pn, we get

ṗn =− γ [(n̄+ 1)n+ n̄(n+ 1)] pn

+ γ(n̄+ 1)(n+ 1)pn+1

+ γn̄pn−1.

(12)

At zero temperature n̄ = 0, so

ṗn =− γnpn + γ(n+ 1)pn+1. (13)
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Starting in Fock state 1 means p1(t = 0) = 1 and pn6=1(t = 0) = 0. The cheapest way to

solve these equations is to first solve Eq. (13) for n > 1, which gives the constant solution

pn>1(t) = 0 (at zero temperature there is no way to excite the oscillator into a state higher

than the initial state |1〉), then solve

ṗ1(t) = −γp1(t) (14)

with p1(t) = e−γt, then finally plug into the equation for the ground state population

ṗ0(t) = γp1(t) = γe−γt, (15)

which is solved by p0(t) = 1− e−γt.

c) The equation for trS {ρS(t)a} derives from Eq. (2)

trS{ρ̇Sa} = trS

{
− i
[
ω′0a

†a, ρS
]
a

+
γ

2
(n̄+ 1)

(
2aρSa

† − a†aρS − ρSa†a
)
a

+
γ

2
n̄
(
2a†ρSa− aa†ρS − ρSaa†

)
a
}

= trS

[
− iω′0a†aρSa+ iρSω

′
0a
†aa

+
γ

2
(n̄+ 1)

(
2aρSa

†a− a†aρSa− ρSa†aa
)

+
γ

2
n̄
(
2a†ρSaa− aa†ρSa− ρSaa†a

) ]
= trS

[
− iω′0(ρSaa†a− ρSa†aa = ρSa)

+
γ

2
(n̄+ 1)

(
2ρSa

†aa− ρSaa†a− ρSa†aa
)

+
γ

2
n̄
(
2ρSaaa

† − ρSaaa† − ρSaa†a
) ]

= trS

[
− iω′0ρSa

+
γ

2
(n̄+ 1)

(
ρSa

†aa− ρSaa†a
)

+
γ

2
n̄
(
ρSaaa

† − ρSaa†a
) ]

=− iω′0 trS ρSa−
γ

2
(n̄+ 1) trS ρSa+

γ

2
n̄ trS ρSa

=−
(
iω′0 +

γ

2

)
trS ρSa.

(16)

In the above we have used the cyclicity of the trace multiple times. Employing the notation

introduced in the problem,

˙〈a〉 = −
(
iω′0 +

γ

2

)
〈a〉, (17)
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at any temperature.

d) Proceeding as above directly from Eq. (2),

trS{ρ̇Sa} = trS

{
− i
[
ω′0a

†a, ρS
]
a†a

+
γ

2
(n̄+ 1)

(
2aρSa

† − a†aρS − ρSa†a
)
a†a

+
γ

2
n̄
(
2a†ρSa− aa†ρS − ρSaa†

)
a†a
}

= trS

[
− iω′0a†aρSa†a+ iρSω

′
0a
†aa†a

+
γ

2
(n̄+ 1)

(
2aρSa

†a†a− a†aρSa†a− ρSa†aa†a
)

+
γ

2
n̄
(
2a†ρSaa

†a− aa†ρSa†a− ρSaa†a†a
) ]

= trS

[
− iω′0(�����ρSa

†aa†a−�����ρSa
†aa†a)

+
γ

2
(n̄+ 1)

(
2ρSa

†a†aa− ρSa†aa†a− ρSa†aa†a
)

+
γ

2
n̄
(
2ρSaa

†aa† − ρSa†aaa† − ρSaa†a†a
) ]

= trS

[
− γ(n̄+ 1)ρSa

†a+
γ

2
n̄
(
2ρS(a†a+ 1)(a†a+ 1)− ρSa†a(a†a+ 1)− ρS(a†a+ 1)a†a

) ]
= trS

[
− γ(n̄+ 1)ρSa

†a+ γn̄ρSa
†a+ γn̄ρS

]
=− γ trS ρSa

†a+ γn̄.

(18)

Therefore

˙〈a†a〉 = −γ(〈a†a〉 − n̄), (19)

that is the number operator expectation value relaxes exponentially to the thermal popula-

tion, on a time scale that is twice as fast as that of the annihilation operator.

e) To prove the statement, we show that ρeq makes the rhs of Eq. (2) vanish. The

normalization constant factors out, so we need to evaluate

− i
����������[
ω′0a

†a, e−β~ω0a†a
]

+
γ

2
(n̄+ 1)

(
2ae−β~ω0a†aa† − a†ae−β~ω0a†a − e−β~ω0a†aa†a

)
+
γ

2
n̄
(

2a†e−β~ω0a†aa− aa†e−β~ω0a†a − e−β~ω0a†aaa†
) (20)

The tricky one to do is e−β~ω0a†aa − ae−β~ω0a†a. We can easily get [a, n] = [a, a†a] = a,

so an = (n + 1)a. Then an2 = (an)n = (n + 1)an = (n + 1)2a, and anp = (n + 1)anp−1 =

(n+1)2anp−2 = . . . = (n+1)pa. So then for any function of the number operator that admits
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a Taylor series we can write af(n) = f(n+ 1)a, and by taking the Hermitian conjugate we

get f(n)a† = a†f(n+ 1). Going back to Eq. (20) and using these facts

+
γ

2
(n̄+ 1)

(
2aa†e−β~ω0(a†a+1) − a†ae−β~ω0a†a − e−β~ω0a†aa†a

)
+
γ

2
n̄
(

2a†ae−β~ω0(a†a−1) − aa†e−β~ω0a†a − e−β~ω0a†aaa†
)

= +
γ

2
(n̄+ 1)

[
2(a†a+ 1)e−β~ω0(a†a+1) − a†ae−β~ω0a†a − e−β~ω0a†aa†a

]
+
γ

2
n̄
[
2a†ae−β~ω0(a†a−1) − (a†a+ 1)e−β~ω0a†a − e−β~ω0a†a(a†a+ 1)

]
= +

γ

2
(n̄+ 1)

[
2(a†a+ 1)e−β~ω0 − a†a− a†a

]
e−β~ω0a†a

+
γ

2
n̄
[
2a†aeβ~ω0 − (a†a+ 1)− (a†a+ 1)

]
e−β~ω0a†a

∝+
γ

2
(n̄+ 1)

[
2(a†a+ 1)e−β~ω0 − a†a− a†a

]
+
γ

2
n̄
[
2a†aeβ~ω0 − (a†a+ 1)− (a†a+ 1)

]
= + γ(n̄+ 1)e−β~ω0 − γn̄+

[
γ(n̄+ 1)(e−β~ω0 − 1) + γn̄(eβ~ω0 − 1)

]
a†a

(21)

Note that n̄ = 1
eβ~ω0−1 so that n̄ + 1 = eβ~ω0

eβ~ω0−1 . This makes the c-number part of the

expression above vanish. For the coefficient of a†a,[
γ

eβ~ω0

eβ~ω0 − 1
(e−β~ω0 − 1) + γ

1

eβ~ω0 − 1
(eβ~ω0 − 1)

]
= 0, (22)

and thus ρeq makes the rhs of Eq. (2) vanish. The thermal state is therefore a steady-state

of the master equation.

II. SPIN-1/2 COUPLED TO BOSONIC BATHS

Consider a spin-1/2 coupled to two bosonic baths, both at temperature T ,

HS =
1

2
~ω01σz,

HI =σx ⊗
∑
l

gx,l(bx,l + b†x,l) + σz ⊗
∑
l

gz,l(bz,l + b†z,l),

HB =
∑
α=x,z

∑
l

~ωα,lb†α,lbα,l,

(23)

where the canonical commutators hold [bα,l, b
†
β,m] = δαβδlm.

a) Show that the Lindblad master equation for the dynamics of the reduced density

matrix of the system is (express all quantities below in terms of two-point correlation
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functions of the baths at finite temperature):

d

dt
ρS(t) = −i

[
1

2
ω′01σz, ρS(t)

]
+ γ↓D [σ−] ρS(t) + γ↑D [σ+] ρS(t) +

1

2
γϕD [σz] ρS(t).

(24)

b) Find equations of motion for 〈σ±,z〉(t) = trS{ρS(t)σ±,z}. Hint: one way to do this is to

write down equations of motion first for the four entries of the reduced density matrix

in the qubit Hilbert space, ρS(t).

c) Show that the expectation value 〈σz〉 has an exponential decay with characteristic

time T1, i.e. 〈σz〉(t) ∝ e−t/T1 , and express T1 in terms of the constants in Eq. (24).

Show that 〈σ−〉(t) oscillates in time with an exponentially decaying envelope, with a

characterstic timescale T2, again to be expressed in terms of the constants in Eq. (24).

Express 1/T2 in terms of 1/T1 and 1/Tϕ ≡ γϕ.

d) Show that the density matrix ρS is pure if and only if |〈~σ〉| = 1. Can you write down

an equation of motion for the purity of the density matrix, Tr{ρ2}?

e) Assume that T → ∞. What is the steady-state density matrix? Same question for

T → 0. What is 〈~σ〉 for each of these steady states?

f) How does the answer in part a) change if now you have HS = ~ω01σz + ~ωxσx? What

about the particular case when ω01 = 0 and ωx > 0?

SOLUTION

a) We start again from Eq. (26) in the course notes for the collapse operator

Aα(ω) ≡
∑

ε′−ε=ω

Π(ε)AαΠ(ε′), (25)

and we apply this to Ax = σx and Az = σz corresponding to the two baths and to the

system operators coupling to them. Note that the qubit spectrum, in terms of eigenvalues

and eigenprojectors, reads

ε± = ±1

2
ω01, Π± = |↑ / ↓〉 〈↑ / ↓| . (26)
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For Ax = σx, we have

Ax(+ω01) =Π−σxΠ+ = |↓〉 〈↓| (|↓〉 〈↑|+ |↑〉 〈↓|) |↑〉 〈↑| = |↓〉 〈↑| = σ−,

Ax(−ω01) =Ax(ω01)
† = σ+.

(27)

For Az = σz, we have

Az(0) = Π−σzΠ− + Π+σzΠ+ = |↓〉 〈↓| (− |↓〉 〈↓|+ |↑〉 〈↑|) |↓〉 〈↓|

+ |↑〉 〈↑| (− |↓〉 〈↓|+ |↑〉 〈↑|) |↑〉 〈↑| = σz.
(28)

We can now identify the terms in Eq. (24). For the Lamb shift, we write the Lamb shift

Hamiltonian according to Eq. (45) of the course notes, reproduced below

HLS =
∑
ω

∑
α,β

Sαβ(ω)A†α(ω)Aβ(ω) (29)

Note that there are no cross-correlations between the two baths, so Sxz = Szx = 0. We

provide the explicit expressions of the bath correlation functions below. The Lamb-shift

Hamiltonian then evaluates to

HLS = Sxx(+ω01)A
†
x(+ω01)Ax(+ω01) + Sxx(−ω01)A

†
x(−ω01)Ax(−ω01) + Szz(0)A†z(0)Az(0)

= Sxx(+ω01)σ−σ+ + Sxx(−ω01)σ+σ− + Szz(0)σzσz

= Sxx(+ω01)σ−σ+ + Sxx(−ω01)σ+σ− + Szz(0)σzσz.

(30)

Now recall that σ−σ+ = (σx− iσy)(σx+ iσy)/4 = 1
2

+ i[σx, σy] = 1
2

+ i
4
2iσz = 1

2
− 1

2
σz = 1−σz

2
,

whereas σ+σ− = (σx + iσy)(σx − iσy)/4 = 1
2
− i[σx, σy] = 1

2
− i

4
2iσz = 1

2
+ 1

2
σz = 1+σz

2
. So

HLS = Sxx(+ω01)
I2 − σz

2
+ Sxx(−ω01)

I2 + σz
2

+ Szz(0)I2

=
Sxx(−ω01)− Sxx(ω01)

2
σz + c-numbers,

(31)

where we have neglected constant offsets to all energies, since they are not observable.

Therefore

ω′0 − ω0 = Sxx(−ω01)− Sxx(ω01). (32)

Moreover, the decay rates in front of the dissipators in Eq. (24) are

γ↓ =
1

2
γxx(ω01),

γ↑ =
1

2
γxx(−ω01),

1

2
γϕ =

1

2
γzz(0).

(33)
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For each α = x, z, the rates are given by half the (real) bilateral power spectral density, as

in Eq. (43)

γαα(ω) =

∫ +∞

−∞
dseiωs

〈
B†α(s)Bα(0)

〉
, (34)

where we have used the interaction picture bath operators as

Bα(t) =
∑
l

gα,l

(
bα,le

−iωα,lt + b†α,le
iωα,lt

)
, (35)

these can be recast in terms of the spectral functions Jα(ω) as done in the previous problem

and detailed in the course notes. The Lamb shift is given by

Sαα(ω) =
1

2i
(Γαα(ω)− Γ∗αα(ω)) , (36)

with

Γαα(ω) = Γαα(ω) ≡
∫ ∞
0

dseiωs
〈
B†α(s)Bα(0)

〉
. (37)

Again, we will not write the detailed form in terms of the gα,l, which was given in the

problem above. These forms are interchangeable. Note also that expressions of rates and

the dressed frequency in terms of the microscopic details of the bath (coupling constants

gα,l, or the spectral functions Jα(ω)) are typically not used, since one usually takes the

relevant frequency and decay rates from some experimental data. We seldom worry about

the microscopic couplings gα,l, unless we specifically try to model the bath as a many-body

system.

b-c) We represent the density matrix as

ρS(t) =

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 (38)

and, while we could use Pauli algebra we opt for using the Pauli matrices

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 . (39)
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We can go ahead and evaluate terms in Eq. (24) as follows

d

dt
ρS(t) =

 ˙ρ↑↑ ˙ρ↑↓

˙ρ↓↑ ˙ρ↓↓

 ,

−i
[

1

2
ω′01σz, ρS(t)

]
= −i1

2
ω′01

 1 0

0 −1

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

+ i
1

2
ω′01

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 1 0

0 −1


= −i1

2
ω′01

 ρ↑↑ ρ↑↓

−ρ↓↑ −ρ↓↓

+ i
1

2
ω′01

 ρ↑↑ −ρ↑↓
ρ↓↑ −ρ↓↓


= −i1

2
ω′01

 ρ↑↑ ρ↑↓

−ρ↓↑ −ρ↓↓

− i1
2
ω′01

 −ρ↑↑ +ρ↑↓

−ρ↓↑ +ρ↓↓


= −i1

2
ω′01

 0 2ρ↑↓

−2ρ↓↑ 0

 = −iω′01

 0 ρ↑↓

−ρ↓↑ 0


γ↓D [σ−] ρS(t) = γ↓

[
σ−ρS(t)σ+ −

1

2
{σ+σ−, ρS(t)}

]
= γ↓

[
σ−ρS(t)σ+ −

1

2

{
1 + σz

2
, ρS(t)

}]

= γ↓

[ 0 0

1 0

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 0 1

0 0



− 1

2


1 +

 1 0

0 −1


2

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

+

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 1 +

 1 0

0 −1


2


]

= γ↓

[ 0 0

ρ↑↑ ρ↑↓

 0 1

0 0

− 1

2

 1 0

0 0

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

− 1

2

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 1 0

0 0

]

= γ↓

[ 0 0

0 ρ↑↑

− 1

2

 ρ↑↑ ρ↑↓

0 0

− 1

2

 ρ↑↑ 0

ρ↓↑ 0

]

= γ↓

 −ρ↑↑ −ρ↑↓/2

−ρ↓↑/2 ρ↑↑


(40)



11

γ↑D [σ+] ρS(t) = γ↑

[
σ+ρS(t)σ− −

1

2
{σ−σ+, ρS(t)}

]
= γ↑

[
σ+ρS(t)σ− −

1

2

{
1− σz

2
, ρS(t)

}]

= γ↑

[ 0 1

0 0

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 0 0

1 0



− 1

2


1−

 1 0

0 −1


2

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

+

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 1−

 1 0

0 −1


2


]

= γ↑

[ ρ↓↑ ρ↓↓

0 0

 0 0

1 0

− 1

2

 0 0

0 1

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

− 1

2

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 0 0

0 1

]

= γ↑

[ ρ↓↓ 0

0 0

− 1

2

 0 0

ρ↓↑ ρ↓↓

− 1

2

 0 ρ↑↓

0 ρ↓↓

]

= γ↑

 ρ↓↓ −ρ↑↓/2

−ρ↓↑/2 −ρ↓↓


(41)

1

2
γϕD [σz] ρS(t) =

1

2
γϕ

 1 0

0 −1

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 1 0

0 −1

−
 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓


=

1

2
γϕ

 ρ↑↑ ρ↑↓

−ρ↓↑ −ρ↓↓

 1 0

0 −1

−
 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓


=

1

2
γϕ

 ρ↑↑ −ρ↑↓
−ρ↓↑ ρ↓↓

−
 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓


= γϕ

 0 −ρ↑↓
−ρ↓↑ 0

 .

(42)
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Reassembling Eq. (24) in matrix form we get ˙ρ↑↑ ˙ρ↑↓

˙ρ↓↑ ˙ρ↓↓

 = −iω′01

 0 ρ↑↓

−ρ↓↑ 0

+ γ↓

 −ρ↑↑ −ρ↓↑/2

−ρ↑↓/2 ρ↑↑


+γ↑

 ρ↓↓ −ρ↑↓/2

−ρ↓↑/2 −ρ↓↓

+ γϕ

 0 −ρ↑↓
−ρ↓↑ 0

 (43)

Finally, we express the expectation values of Pauli matrices in terms of the entries of the

density matrix

〈σz〉 = tr


 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 1 0

0 −1

 = tr


 ρ↑↑ −ρ↑↓
ρ↓↑ −ρ↓↓

 = ρ↑↑ − ρ↓↓,

〈σ+〉 = tr


 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 0 1

0 0

 = tr


 0 ρ↑↑

0 ρ↓↑

 = ρ↓↑,

〈σ−〉 = tr


 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 0 0

1 0

 = tr


 ρ↑↓ 0

ρ↓↓ 0

 = ρ↑↓.

(44)

Using Eq. (43) we can then obtain the equations of motion for the expectation values of the

Pauli matrices. We begin with σz. Note that since 〈σz〉 = ρ↑↑ − ρ↓↓ = 2ρ↑↑ − 1 = 1 − 2ρ↓↓,

we have ρ↑↑ = 〈σz〉+1
2

and ρ↓↓ = −〈σz〉+1
2

, so that

˙〈σz〉 = ˙ρ↑↑ − ˙ρ↓↓ = −γ↓ρ↑↑ + γ↑ρ↓↓ − γ↓ρ↑↑ + γ↑ρ↓↓ = −2γ↓ρ↑↑ + 2γ↑ρ↓↓

= −2γ↓
〈σz〉+ 1

2
+ 2γ↑

−〈σz〉+ 1

2
= −(γ↓ + γ↑)〈σz〉 − γ↓ + γ↑.

(45)

Defining

γ1 = γ↓ + γ↑ ≡
1

T1
, 〈σz〉ss =

−γ↓ + γ↑
γ↓ + γ↑

, (46)

we have the solution

〈σz〉(t) = e−t/T1(〈σz〉(0)− 〈σz〉ss) + 〈σz〉ss, (47)

i.e. the expectation value of σz starts in some initial value 〈σz〉(0) specified by the initial

condition for the reduced density matrix ρS(t = 0), exponentially decays on a timescale T1

to the steady-state value 〈σz〉ss.

Next, for the coherences, we have

˙〈σ+〉 = iω′01〈σ+〉 −
1

2
(γ↓ + γ↑)〈σ+〉 − γϕ〈σ+〉,

˙〈σ−〉 = −iω′01〈σ−〉 −
1

2
(γ↓ + γ↑)〈σ−〉 − γϕ〈σ−〉.

(48)
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Let us now define

Tϕ = γ−1ϕ ,

T1 = γ−11 =
1

γ↑ + γ↓
,

γ2 ≡
γ1
2

+ γϕ,

γ2 ≡
1

T2
=

1

2T1
+

1

Tϕ
.

(49)

T1 is the energy relaxation time, T2 is the decoherence time, and Tϕ is the dephasing time.

In terms of these, Eq. (45) and Eq. (48) become

˙〈σz〉 = − 1

T1
(〈σz〉 − 〈σz〉ss) ,

˙〈σ+〉 = iω′01〈σ+〉 −
1

T2
〈σ+〉,

˙〈σ−〉 = −iω′01〈σ−〉 −
1

T2
〈σ−〉,

(50)

which is the more standard expression of the Bloch equations.

d) The expectation value of ~σ is

〈~σ〉 = (ρ↓↑ + ρ↑↓,−i(ρ↓↑ − ρ↑↓), ρ↑↑ − ρ↓↓). (51)

Note that all entries above are real, by the hermiticity of ρS. Then

1 + |〈~σ〉|2

2
=

1 + (ρ↓↑ + ρ↑↓)
2 + (−iρ↓↑ + iρ↑↓)

2 + (ρ↑↑ − ρ↓↓)2

2
. (52)

We may expand the trace-1 density matrix over the basis formed by the identity and

the Pauli matrices ρS = 1
2
I + ~ρ · ~σ. Then (using tr [σασβ] = 2δαβ, and thus reading off the

components of ρS over the Pauli matrices)

trρ2S =
1

2
+ tr{~ρ · ~σ~ρ · ~σ} =

1

2
+

3∑
α,β=1

tr{ραρβσασβ} =
1

2
+

3∑
α,β=1

ραρβ2δαβ

=
1

2
+ 2~ρ2 =

1

2
+ 2

[(
ρ↑↑ − ρ↓↓

2

)2

+

(
ρ↑↓ + ρ↓↑

2

)2

+

(
ρ↑↓ − ρ↓↑

2i

)2
]

=
1

2
+

1

2

[
(ρ↑↑ − ρ↓↓)2 + (ρ↑↓ + ρ↓↑)

2 + (−iρ↑↓ + iρ↓↑)
2] =

1 + |〈~σ〉|2

2

(53)

Finally, ρS is pure iff tr(ρ2S) = 1. It is readily seen that this is true iff |〈~σ〉| = 1. That is,

the spin-1
2

is in a pure state iff the expectation value of the spin resides on the Bloch sphere

(the unit sphere).
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e) For T → ∞, γ↑ = γ↓ = γ1/2 and in the steady state the Bloch equations give

〈σz〉ss = 〈σ±〉ss = 0, and the steady state is the fully mixed state ρss = I/2.

For T → 0, γ↑ = 0 and γ↓ = γ1, and 〈σz〉ss = −1, whereas 〈σ±〉ss = 0, while ρss =

diag(0, 1). The system is in a pure state.

f) According to standard conventions, we are missing a half in the expression of the

Hamiltonian. Putting this back in, and renaming ω01 = ωz, we have

HS/~ =
1

2
(ωzσz + ωxσx). (54)

The easiest way to solve this is to recall that the eigensystem of this is

E± = ±1

2

√
ω2
x + ω2

z , Π± =
1

2
(1± ω̂ · ~σ), (55)

where ω̂ = (ωx,0,ωz)√
ω2
x+ω

2
z

.

We use the same Eq. (26) of the lecture notes to find collapse operators. We need to

evaluate 4 operators for each of Ax,z. Using Einstein summation, letting i be either x or z,

4Π±σiΠ± = (1± ω̂ · ~σ)σi(1± ω̂ · ~σ) = σi ± ω̂α{σα, σi}+ ω̂αω̂βσασiσβ

= σi ± 2ω̂iI + ω̂αω̂βσα(δiβ + iεiβγσγ)

= σi ± 2ω̂iI + ω̂iω̂ασα + ω̂αω̂βiεiβγ(δαγ + iεαγδσδ)

= σi ± 2ω̂iI + ω̂iω̂ασα + ω̂αω̂βiεiβγ(δαγ + iεαγδσδ)

= σi ± 2ω̂iI + ω̂iω̂ασα + ω̂αω̂βεiβγεαδγσδ

= σi ± 2ω̂iI + ω̂iω̂ασα + ω̂αω̂β(δiαδβδ − δiδδβα)σδ

= σi ± 2ω̂iI + ω̂iω̂ασα + ω̂iω̂δσδ − ω̂αω̂βδiδδβασδ

= 2ω̂i(ω̂ · ~σ ± I)

4Π−σiΠ+ = (1− ω̂ · ~σ)σi(1 + ω̂ · ~σ) = σi − ω̂α[σα, σi]− ω̂αω̂βσασiσβ

= σi − 2iεαilω̂ασl − ω̂iω̂ασα − ω̂iω̂δσδ + ω̂αω̂βδiδδβασδ

= 2σi − 2iεαilω̂ασl + ω̂iω̂ασα + ω̂iω̂δσδ

= 2σi − 2ω̂iω̂ · ~σ − 2iεαilω̂ασl

4Π+σiΠ− = 2σi − 2ω̂iω̂ · ~σ + 2iεαilω̂ασl

(56)

Then the collapse operators should be

Ai(0) = ω̂iω̂ · ~σ. (57)
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If ωz 6= 0 and ωx = 0, then

Ax(0) = ω̂xω̂ · ~σ = 0, Az(0) = ω̂zω̂ · ~σ = σz. (58)

If ωx 6= 0 and ωz = 0, then

Ax(0) = ω̂xω̂ · ~σ = σx, Az(0) = 0. (59)

Thus, if the Zeeman field ~ω is pointing in the x direction, then dephasing is induced by the

bath coupling to σx (see discussion of Bloch equation in the previous sections. If the Zeeman

field is pointing in the z direction, then dephasing comes from the bath coupling to σz.

Moreover, transitions in the qubit are induced by the collapse operators

Ai

(
∓
√
ω2
x + ω2

z

)
= Π±σiΠ∓, (60)

which give explicitly

4Ax

(
∓
√
ω2
x + ω2

z

)
= 2σx − 2ω̂xω̂ · ~σ ± 2iεαxlω̂ασl,

4Az

(
∓
√
ω2
x + ω2

z

)
= 2σz − 2ω̂zω̂ · ~σ ± 2iεαzlω̂ασl.

(61)

If ωz 6= 0 and ωx = 0, then

Ax (∓ωz) =
1

2
σx ±

1

2
iσy = σ±,

Az (∓ωz) =
1

2
σz −

1

2
σz ±

1

2
iεzzlσl = 0.

(62)

If ωx 6= 0 and ωz = 0, then

Ax (∓ωx) =
1

2
σx −

1

2
σx ±

1

2
iεxxlω̂xσl = 0,

Az (∓ωx) =
1

2
σz ∓

1

2
iσy.

(63)

That is, if the Zeeman field is pointing in the z direction, then transitions are induced by

the bath coupled to σx. Else, if the Zeeman field is pointing in the x direction, then the

bath coupling to σx cannot induce transitions in the qubit, but the bath coupling to σz does.

This is because σz is the bit flip operator if the bit is defined on the eigenstates of σx.
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