Problem Set 2 (M2 Dynamics and control of open quantum systems 2023-2024)

This problem set is due on Monday, October 9th, 2023, at 23:59. The solutions should be emailed as a single PDF (handwritten or typeset) to alexandru.petrescu@minesparis.psl.eu by the deadline. If you collaborate with a colleague, please write their names at the top of your solution. Cite your references (books, websites, chatbots etc.). If you submit late without a satisfactory reason, the set will be accepted with a 10% penalty in the score.

I. SIMPLE HARMONIC OSCILLATOR COUPLED TO A BOSONIC BATH

Consider a harmonic oscillator coupled to a bosonic bath in thermal equilibrium at temperature T, as described by the Hamiltonian

$$
\begin{align*}
H & =H_{S}+H_{I}+H_{B} \\
H_{S} & =\hbar \omega_{0} a^{\dagger} a, H_{B}=\sum_{l} \hbar \omega_{l} b_{l}^{\dagger} b_{l}, H_{I}=\sum_{l} g_{l}\left(a+a^{\dagger}\right) \otimes\left(b_{l}+b_{l}^{\dagger}\right) \tag{1}
\end{align*}
$$

a) Show that the Lindblad master equation for the reduced density matrix describing the simple harmonic oscillator mode annihilated by operator a can be written as

$$
\begin{align*}
\dot{\rho}_{S}= & -i\left[\omega_{0}^{\prime} a^{\dagger} a, \rho_{S}\right]+\frac{\gamma}{2}(\bar{n}+1)\left(2 a \rho_{S} a^{\dagger}-a^{\dagger} a \rho_{S}-\rho_{S} a^{\dagger} a\right) \\
& +\frac{\gamma}{2} \bar{n}\left(2 a^{\dagger} \rho_{S} a-a a^{\dagger} \rho_{S}-\rho_{S} a a^{\dagger}\right) . \tag{2}
\end{align*}
$$

Do this without repeating derivations already in the lecture notes, and give expressions for γ, \bar{n}, and ω_{0}^{\prime}.
b) Write down differential equations for the population of the $n^{t h}$ state of the simple harmonic oscillator, $p(n, t) \equiv$ $\langle n| \rho_{S}(t)|n\rangle$. Suppose the system is in initial Fock state $|1\rangle$ at the beginning of the evolution under Eq. (22). Supposing the bath temperature is $T=0$, what are $p(n, t)$? Let's keep $T \neq 0$ for the remainder of this problem.
c) Write down and solve the ordinary differential equation for $\langle a\rangle(t)=\operatorname{tr}_{S}\left\{\rho_{S}(t) a\right\}$.
d) Write down and solve the ordinary differential equation for $\langle n\rangle(t)=\operatorname{tr}_{S}\left\{\rho_{S}(t) n\right\}$, with $n=a^{\dagger} a$.
e) Show that

$$
\begin{equation*}
\rho_{\mathrm{eq}}=\frac{e^{-H_{S} / k_{B} T}}{\operatorname{tr}\left(e^{-H_{S} / k_{B} T}\right)}=\frac{e^{-\hbar \omega_{0} a^{\dagger} a / k_{B} T}}{1-e^{-\hbar \omega_{0} / k_{B} T}} \tag{3}
\end{equation*}
$$

is a steady state of Eq. (2).

II. SPIN-1/2 COUPLED TO BOSONIC BATHS

Consider a spin- $1 / 2$ coupled to two bosonic baths, both at temperature T,

$$
\begin{align*}
H_{S} & =\frac{1}{2} \hbar \omega_{01} \sigma_{z} \\
H_{I} & =\sigma_{x} \otimes \sum_{l} g_{x, l}\left(b_{x, l}+b_{x, l}^{\dagger}\right)+\sigma_{z} \otimes \sum_{l} g_{z, l}\left(b_{z, l}+b_{z, l}^{\dagger}\right) \tag{4}\\
H_{B} & =\sum_{\alpha=x, z} \sum_{l} \hbar \omega_{\alpha, l} b_{\alpha, l}^{\dagger} b_{\alpha, l}
\end{align*}
$$

where the canonical commutators hold $\left[b_{\alpha, l}, b_{\beta, m}^{\dagger}\right]=\delta_{\alpha \beta} \delta_{l m}$.
a) Show that the Lindblad master equation for the dynamics of the reduced density matrix of the system is (express all quantities below in terms of two-point correlation functions of the baths at finite temperature):

$$
\begin{equation*}
\frac{d}{d t} \rho_{S}(t)=-i\left[\frac{1}{2} \omega_{01}^{\prime} \sigma_{z}, \rho_{S}(t)\right]+\gamma_{\downarrow} \mathcal{D}\left[\sigma_{-}\right] \rho_{S}(t)+\gamma_{\uparrow} \mathcal{D}\left[\sigma_{+}\right] \rho_{S}(t)+\frac{1}{2} \gamma_{\varphi} \mathcal{D}\left[\sigma_{z}\right] \rho_{S}(t) \tag{5}
\end{equation*}
$$

b) Find equations of motion for $\left\langle\sigma_{ \pm, z}\right\rangle(t)=\operatorname{tr}_{S}\left\{\rho_{S}(t) \sigma_{ \pm, z}\right\}$. Hint: one way to do this is to write down equations of motion first for the four entries of the reduced density matrix in the qubit Hilbert space, $\rho_{S}(t)$.
c) Show that the expectation value $\left\langle\sigma_{z}\right\rangle$ has an exponential decay with characteristic time T_{1}, i.e. $\left\langle\sigma_{z}\right\rangle(t) \propto e^{-t / T_{1}}$, and express T_{1} in terms of the constants in Eq. (5). Show that $\left\langle\sigma_{-}\right\rangle(t)$ oscillates in time with an exponentially decaying envelope, with a characterstic timescale T_{2}, again to be expressed in terms of the constants in Eq. (5). Express $1 / T_{2}$ in terms of $1 / T_{1}$ and $1 / T_{\varphi} \equiv \gamma_{\varphi}$.
d) Show that the density matrix ρ_{S} is pure if and only if $|\langle\vec{\sigma}\rangle|=1$. Can you write down an equation of motion for the purity of the density matrix, $\operatorname{Tr}\left\{\rho^{2}\right\}$?
e) Assume that $T \rightarrow \infty$. What is the steady-state density matrix? Same question for $T \rightarrow 0$. What is $\langle\vec{\sigma}\rangle$ for each of these steady states?
f) How does the answer in part a) change if now you have $H_{S}=\hbar \omega_{01} \sigma_{z}+\hbar \omega_{x} \sigma_{x}$? What about the particular case when $\omega_{01}=0$ and $\omega_{x}>0$?

