Problem Set 1

(M2 Dynamics and control of open quantum systems 2023-2024)

This problem set is due on Friday, September 24th, 2023, at 5 PM. The solutions should be emailed as a single PDF (handwritten or typeset) to alexandru.petrescu@minesparis.psl.eu by the deadline. If you collaborate with a colleague, please write their names at the top of your solution. Cite your references (books, websites, chatbots etc.). If you submit late without a satisfactory reason, the set will be accepted with a 10% penalty in the score.

I. RABI-DRIVEN QUBIT

Consider a two-level system with $E_{1}<E_{2}$. There is a time-dependent potential that connects the two levels as follows:

$$
V_{11}=V_{22}=0, \quad V_{12}=\gamma e^{i \omega t}, \quad V_{21}=\gamma e^{-i \omega t} \quad(\gamma \text { real }) .
$$

At $t=0$, it is known that only the lower level is populated - that is, $c_{1}(0)=1, c_{2}(0)=0$.
a) Find $\left|c_{1}(t)\right|^{2}$ and $\left|c_{2}(t)\right|^{2}$ for $t>0$ by exactly solving the coupled differential equation

$$
i \hbar \dot{c}_{k}=\sum_{n=1}^{2} V_{k n}(t) e^{i \omega_{k n} t} c_{n}, \quad(k=1,2)
$$

b) Do the same problem using time-dependent perturbation theory to lowest nonvanishing order. Compare the two approaches for small values of γ. Treat the following two cases separately: (i) ω very different from ω_{21} and (ii) ω close to ω_{21}.

Hint: the answer for a) is Rabi's formula, which is so important that we reproduce it here

$$
\begin{align*}
& \left|c_{2}(t)\right|^{2}=\frac{\gamma^{2} / \hbar^{2}}{\gamma^{2} / \hbar^{2}+\left(\omega-\omega_{21}\right)^{2} / 4} \sin ^{2}\left\{\left[\frac{\gamma^{2}}{\hbar^{2}}+\frac{\left(\omega-\omega_{21}\right)^{2}}{4}\right]^{1 / 2} t\right\} \tag{1}\\
& \left|c_{1}(t)\right|^{2}=1-\left|c_{2}(t)\right|^{2}
\end{align*}
$$

SOLUTION

The Hamiltonian in the problem reads

$$
H(t)=\left(\begin{array}{cc}
E_{1} & \gamma e^{i \omega t} \tag{2}\\
\gamma e^{-i \omega t} & E_{2}
\end{array}\right) .
$$

Defining $\omega_{k n}=\left(E_{k}-E_{n}\right) / \hbar$, for $k, n=1,2$, we go to the interaction picture with respect to H_{0} representing the diagonal part of the Hamiltonian, i.e. by applying $H^{\prime}(t)-i \partial_{t} \equiv$ $U^{\dagger}(t)\left[H(t)-i \partial_{t}\right] U(t)$ with $U(t)=e^{-i H_{0} t}$. There is a partial derivative on the left hand side of the previous equation since we assume that both operators in that equation act on a test function from the left, and apply the chain rule.

With these notations, letting $\Omega=\omega+\omega_{12}$

$$
H^{\prime}(t)=\left(\begin{array}{cc}
0 & \gamma e^{i \Omega t} \tag{3}\\
\gamma e^{-i \Omega t} & 0
\end{array}\right)
$$

In this frame, the Schrödinger equation reads

$$
\begin{equation*}
i \partial_{t}\left|\psi^{\prime}(t)\right\rangle=H^{\prime}(t)\left|\psi^{\prime}(t)\right\rangle \tag{4}
\end{equation*}
$$

which, upon using Eq. (3) and furthermore denoting the two components of $\left|\psi^{\prime}(t)\right\rangle$ as $\left\langle 1 \mid \psi^{\prime}(t)\right\rangle=c_{1}(t)$, and $\left\langle 2 \mid \psi^{\prime}(t)\right\rangle=c_{2}(t)$, takes the following form

$$
\begin{align*}
i \hbar \dot{c}_{1}(t) & =\gamma e^{i \Omega t} c_{2}(t) \tag{5}\\
i \hbar \dot{c}_{2}(t) & =\gamma e^{-i \Omega t} c_{1}(t)
\end{align*}
$$

from which, by rearranging factors in the first equation, taking a time derivative, and inserting the second equation, we deduce (we set $\hbar=1$ and will reinstate it at the end with dimensional analysis)

$$
\begin{align*}
\gamma^{-1} \frac{d}{d t}\left[e^{-i \Omega t} \dot{c}_{1}(t)\right] & =-i \dot{c}_{2}(t)=-\gamma e^{-i \Omega t} c_{1}(t), \\
\frac{d}{d t}\left[e^{-i \Omega t} \dot{c}_{1}(t)\right] & =-\gamma^{2} e^{-i \Omega t} c_{1}(t), \tag{6}\\
-i \Omega e^{-i \Omega t} \dot{c}_{1}(t)+e^{-i \Omega t} \ddot{c}_{1}(t) & =-\gamma^{2} e^{-i \Omega t} c_{1}(t),
\end{align*}
$$

or, after rearranging phase factors

$$
\begin{equation*}
\ddot{c}_{1}(t)-i \Omega \dot{c}_{1}(t)+\gamma^{2} c_{1}(t)=0 \tag{7}
\end{equation*}
$$

If we look for solutions of the form $c_{1}(t)=e^{i \nu t}, \nu$ must obey the quadratic polynomial equation

$$
\begin{equation*}
-\nu^{2}+\Omega \nu+\gamma^{2}=0 \tag{8}
\end{equation*}
$$

with solutions

$$
\begin{equation*}
\nu_{ \pm}=\frac{\Omega}{2} \pm \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}, \tag{9}
\end{equation*}
$$

with the general complex solution to the homogeneous differential equation

$$
\begin{equation*}
c_{1}(t)=A_{+} e^{i \nu_{+} t}+A_{-} e^{-i \nu_{-} t} \tag{10}
\end{equation*}
$$

with $A_{ \pm}$complex coefficients. Now we impose $c_{1}(0)=1$, so

$$
\begin{equation*}
c_{1}(t)=A e^{i \nu_{+} t}+(1-A) e^{i \nu_{-} t} \tag{11}
\end{equation*}
$$

for some complex-valued coefficient A, yet undetermined.
We now write the expression for $c_{2}(t)$ using Eq. (5),

$$
\begin{array}{r}
c_{2}(t)=e^{-i \Omega t} \gamma^{-1} i \dot{c}_{1}^{\prime}(t)=e^{-i \Omega t} \gamma^{-1} i \frac{d}{d t}\left\{A e^{i \nu_{+} t}+(1-A) e^{i \nu_{-} t}\right\} \\
=e^{-i \Omega t} \gamma^{-1} i\left\{A i \nu_{+} e^{i \nu_{+} t}+i \nu_{-}(1-A) e^{i \nu_{-} t}\right\} \tag{12}\\
=-\gamma^{-1}\left\{A \nu_{+} e^{i\left(\nu_{+}-\Omega\right) t}+\nu_{-}(1-A) e^{i\left(\nu_{-}-\Omega\right) t}\right\} .
\end{array}
$$

We now impose $c_{2}(t)=0$, so that

$$
\begin{equation*}
A \nu_{+}+\nu_{-}(1-A)=0, \text { or } A=\frac{\nu_{-}}{\nu_{-}-\nu_{+}}=\frac{\sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}-\frac{\Omega}{2}}{2 \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}} \tag{13}
\end{equation*}
$$

Thus

$$
\begin{align*}
c_{2}(t) & =-\gamma^{-1}\left\{\frac{\nu_{-}}{\nu_{-}-\nu_{+}} \nu_{+} e^{i\left(\nu_{+}-\Omega\right) t}+\nu_{-}\left(1-\frac{\nu_{-}}{\nu_{-}-\nu_{+}}\right) e^{i\left(\nu_{-}-\Omega\right) t}\right\} \\
& =-\gamma^{-1}\left\{\frac{\nu_{-} \nu_{+}}{\nu_{-}-\nu_{+}} e^{i\left(\nu_{+}-\Omega\right) t}-\frac{\nu_{-} \nu_{+}}{\nu_{-}-\nu_{+}} e^{i\left(\nu_{-} \Omega\right) t}\right\} \tag{14}\\
& =\frac{2 i \gamma^{-1} \nu_{-} \nu_{+}}{\nu_{+}-\nu_{-}} e^{-i \Omega t / 2} \sin \left(t \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}\right),
\end{align*}
$$

with

$$
\begin{equation*}
\left|c_{2}(t)\right|^{2}=\frac{\gamma^{2}}{\frac{\Omega^{2}}{4}+\gamma^{2}} \sin ^{2}\left(t \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
c_{1}(t) & =\frac{\nu_{-}}{\nu_{-}-\nu_{+}} e^{i \nu_{+} t}-\frac{\nu_{+}}{\nu_{-}-\nu_{+}} e^{i \nu_{-} t} \\
& =\frac{e^{i \Omega t / 2}}{\nu_{-}-\nu_{+}}\left[-2 \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}} \cos \left(t \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}\right)+i \Omega \sin \left(t \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}\right)\right] \tag{16}\\
& =e^{i \Omega t / 2}\left[\cos \left(t \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}\right)+\frac{i \Omega}{\nu_{-}-\nu_{+}} \sin \left(t \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}\right)\right]
\end{align*}
$$

and thus

$$
\begin{equation*}
\left|c_{1}(t)\right|^{2}=\cos ^{2}\left(t \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}\right)+\frac{\Omega^{2} / 4}{\frac{\Omega^{2}}{4}+\gamma^{2}} \sin ^{2}\left(t \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}\right) \tag{17}
\end{equation*}
$$

Moreover, the sum of the populations of the two levels is one

$$
\begin{equation*}
\left|c_{1}(t)\right|^{2}=1-\left|c_{2}(t)\right|^{2} \tag{18}
\end{equation*}
$$

Note that the result including \hbar can be obtained by setting $\gamma \rightarrow \gamma / \hbar$ in Eq. (15) and Eq. (17).
b) Using Eq. (21) of the course notes,

$$
\begin{align*}
& c_{n}^{(0)}(t)=\delta_{n i}, \\
& c_{n}^{(1)}(t)=-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} e^{i \omega_{n i} t^{\prime}} V_{n i}\left(t^{\prime}\right), \tag{19}
\end{align*}
$$

we have, taking $t_{0}=0$,

$$
\begin{align*}
c_{1}(t) & =1-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} e^{i \omega_{11} t^{\prime}} V_{11}\left(t^{\prime}\right)=1+O\left(V^{2}\right), \\
c_{2}(t) & =0-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} e^{i \omega_{21} t^{\prime}} V_{21}\left(t^{\prime}\right)=-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} e^{i \omega_{21} t^{\prime}} \gamma e^{-i \omega t^{\prime}}=\frac{\gamma}{\hbar} \frac{e^{i\left(\omega_{21}-\omega\right) t}-1}{\omega-\omega_{21}} \tag{20}\\
& =\frac{\gamma}{\hbar\left(\omega-\omega_{21}\right)}\left[e^{i\left(\omega_{21}-\omega\right) t}-1\right],
\end{align*}
$$

so that the population of state 2 is

$$
\begin{align*}
\left|c_{2}(t)\right|^{2} & =\frac{\gamma^{2}}{\hbar^{2}\left(\omega-\omega_{21}\right)^{2}}\left|e^{i\left(\omega_{21}-\omega\right) t}-1\right|^{2}=\frac{\gamma^{2}}{\hbar^{2}\left(\omega-\omega_{21}\right)^{2}}\left(e^{i\left(\omega_{21}-\omega\right) t}-1\right)\left(e^{-i\left(\omega_{21}-\omega\right) t}-1\right) \\
& =\frac{\gamma^{2}}{\hbar^{2}\left(\omega-\omega_{21}\right)^{2}}\left\{2-2 \cos \left[\left(\omega-\omega_{21}\right) t\right]\right\}=\frac{4 \gamma^{2}}{\hbar^{2}\left(\omega-\omega_{21}\right)^{2}} \sin ^{2}\left(\frac{\omega-\omega_{21}}{2} t\right) . \tag{21}
\end{align*}
$$

This expression should match, to lowest order, the exact result Eq. 15). To see this, we take that equation and Taylor expand in γ

$$
\begin{align*}
\left|c_{2}(t)\right|^{2} & =\frac{\gamma^{2}}{\frac{\Omega^{2}}{4}+\gamma^{2}} \sin ^{2}\left(t \sqrt{\frac{\Omega^{2}}{4}+\gamma^{2}}\right)=\frac{4 \gamma^{2}}{\Omega^{2}}\left(1-\frac{4 \gamma^{2}}{\Omega^{2}}+\ldots\right) \sin ^{2}\left[\frac{\Omega}{2}\left(1+\frac{2 \gamma^{2}}{\Omega^{2}}+\ldots\right) t\right] \\
& =\frac{4 \gamma^{2}}{\Omega^{2}} \sin ^{2}\left[\frac{\Omega}{2} t\right]+O\left(\gamma^{4}\right) \tag{22}
\end{align*}
$$

the same as Eq. (21) after recalling our expression for Ω. Same as before, the result for $\hbar \neq 1$ is obtained by passing $\gamma \rightarrow \gamma / \hbar$. If the drive is nearly resonant, then $\Omega \approx 0$, and the perturbative result gives

$$
\begin{equation*}
\left|c_{2}(t)\right|^{2} \approx \frac{\gamma^{2}}{\hbar^{2}} t^{2}, \tag{23}
\end{equation*}
$$

consistent with the exact result which gives as $\Omega \rightarrow 0$

$$
\begin{align*}
& c_{1}(t)=\cos \left(\frac{\gamma}{\hbar} t\right) \tag{24}\\
& c_{2}(t)=i \sin \left(\frac{\gamma}{\hbar} t\right)
\end{align*}
$$

These are the Rabi oscillations with Rabi frequency γ / \hbar that allows us to perform singlequbit gates on the qubit, such as the π pulse and the $\pi / 2$ pulse.

II. QUANTUM SPECTROMETER OF CLASSICAL NOISE

Consider a qubit described by the unperturbed Hamiltonian

$$
\begin{equation*}
\hat{H}_{0}=\frac{\hbar \omega_{01}}{2} \hat{\sigma}_{z} \tag{25}
\end{equation*}
$$

Assume that at time $t=0$ this qubit is coupled to a classical noise source

$$
\begin{equation*}
\hat{V}=A F(t) \hat{\sigma}_{x} \tag{26}
\end{equation*}
$$

where $F(t)$ is a noisy function with zero mean, $\overline{F(t)}=0$, and time-translation invariant $\overline{F(t) F\left(t^{\prime}\right)}=\overline{F\left(t-t^{\prime}\right) F(0)}$. Moreover, assume that $\overline{F\left(t-t^{\prime}\right) F(0)}$ decays exponentially fast in $\left|t-t^{\prime}\right|$ whenever $\left|t-t^{\prime}\right| \gg \tau_{c}$, for some characteristic time τ_{c}. Furthermore, we define the noise spectral density

$$
\begin{equation*}
S_{F F}(\omega)=\int_{-\infty}^{+\infty} d \tau e^{i \omega \tau} \overline{F(\tau) F(0)} \tag{27}
\end{equation*}
$$

You can assume that the system evolves according to the total Hamiltonian $\hat{H}+\hat{V}(t)$. We will use time-dependent perturbation theory to find how the relaxation and excitation rates of the qubit allow us to measure properties of the classical noise source $F(t)$.
a) Assume that the system starts in the ground state $|i\rangle=|0\rangle$ of H_{0}, i.e. $c_{0}(t)=1$. Evaluate the time-dependent population of the excited state $\left|c_{1}(t)\right|^{2}$ to second order in perturbation theory in \hat{V}. You can leave your answer in terms of a double time-integral.
b) Ensemble average your result above over noise realizations, then perform the time integrals under the assumption that $t \gg \tau_{c}$, and using time-translation invariance. Hint: You should get a population that grows linearly on time: $\left|c_{1}(t)\right|^{2}=t \cdot \# \cdot S_{F F}(\#)$, where \# are constants that depend on A, \hbar, ω_{01} that you are to find.
c) Find the rate of excitation, or escape from the ground state due to the perturbation, $w_{0 \rightarrow 1}$.
d) How would your results in b) and c) change if you now started in the excited state $|i\rangle=|0\rangle$ and were asked to give the population of the ground state, and the relaxation rate due to the classical noise source?

SOLUTION

a) Note that in this problem we use $\omega_{01}>0$ for the qubit frequency. In our conventions for Eq. (21), we have to flip the sign of the frequency to accommodate the notation in this problem

$$
\begin{align*}
c_{1}^{(0)}(t) & =0 \\
c_{1}^{(1)}(t) & =-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} e^{i \omega_{10} t^{\prime}} V_{10}\left(t^{\prime}\right) \tag{28}\\
& =-\frac{i A}{\hbar} \int_{0}^{t} d t^{\prime} e^{i \omega_{01} t^{\prime}} F\left(t^{\prime}\right) .
\end{align*}
$$

and therefore to second order in the amplitude of the perturbation A,

$$
\begin{equation*}
\left|c_{1}(t)\right|^{2}=-\frac{A^{2}}{\hbar^{2}} \int_{0}^{t} d t^{\prime} \int_{0}^{t} d t^{\prime \prime} e^{i \omega_{01}\left(t^{\prime}-t^{\prime \prime}\right)} F\left(t^{\prime}\right) F\left(t^{\prime \prime}\right) \tag{29}
\end{equation*}
$$

b) Ensemble averaging over noise realizations gives

$$
\begin{align*}
\overline{\left|c_{1}(t)\right|^{2}} & =\frac{A^{2}}{\hbar^{2}} \int_{0}^{t} d t^{\prime} \int_{0}^{t} d t^{\prime \prime} e^{i \omega_{01}\left(t^{\prime}-t^{\prime \prime}\right)} \overline{F\left(t^{\prime}\right) F\left(t^{\prime \prime}\right)} \\
& =\frac{A^{2}}{\hbar^{2}} \int_{0}^{t} d t^{\prime} \int_{0}^{t} d t^{\prime \prime} e^{i \omega_{01}\left(t^{\prime}-t^{\prime \prime}\right)} \overline{F\left(t^{\prime}-t^{\prime \prime}\right) F(0)} \\
& =\frac{A^{2}}{\hbar^{2}} \int_{0}^{t} d\left(\frac{t^{\prime}+t^{\prime \prime}}{2}\right) \int_{-t}^{t} d\left(t^{\prime}-t^{\prime \prime}\right) e^{i \omega_{01}\left(t^{\prime}-t^{\prime \prime}\right)} \overline{F\left(t^{\prime}-t^{\prime \prime}\right) F(0)} \tag{30}\\
& =\frac{A^{2}}{\hbar^{2}} t \int_{-t}^{t} d \tau e^{i \omega_{01} \tau} \overline{F(\tau) F(0)}
\end{align*}
$$

where we have used the time-translation invariance property first, then made a change of variable which allowed us to perform one of the time integrals. Finally, assuming $t \ll \tau_{c}$, we can change the limits of integration from $-t, t$ to $-\infty, \infty$, since the integrand is nonnegligible on a small interval of size $2 \tau_{c} \ll t$. So

$$
\begin{align*}
\overline{\left|c_{1}(t)\right|^{2}} & =\frac{A^{2}}{\hbar^{2}} t \int_{-\infty}^{\infty} d \tau e^{i \omega_{01} \tau} \overline{F(\tau) F(0)} \tag{31}\\
& =\frac{A^{2}}{\hbar^{2}} t S_{F F}\left(\omega_{01}\right)
\end{align*}
$$

c) The rate of populating the 1 state is the time derivative of the population calculated above

$$
\begin{equation*}
\gamma_{\uparrow} \equiv \frac{d}{d t} \overline{\left|c_{1}(t)\right|^{2}}=\frac{A^{2}}{\hbar^{2}} S_{F F}\left(\omega_{01}\right) . \tag{32}
\end{equation*}
$$

d) If the two states are reversed, we would have the following changes. Eq. 30) changes to

$$
\begin{equation*}
\overline{\left|c_{0}(t)\right|^{2}}=\frac{A^{2}}{\hbar^{2}} t \int_{-t}^{t} d \tau e^{-i \omega_{01} \tau} \overline{F(\tau) F(0)}, \tag{33}
\end{equation*}
$$

from which the population of the ground state evaluates to

$$
\begin{equation*}
\overline{\left|c_{0}(t)\right|^{2}}=\frac{A^{2}}{\hbar^{2}} t S_{F F}\left(-\omega_{01}\right) \tag{34}
\end{equation*}
$$

and therefore the relaxation rate is

$$
\begin{equation*}
\gamma_{\downarrow} \equiv \frac{d}{d t} \overline{\left|c_{0}(t)\right|^{2}}=\frac{A^{2}}{\hbar^{2}} S_{F F}\left(-\omega_{01}\right) \tag{35}
\end{equation*}
$$

