Lecture 5
 Dynamics and control of open quantum systems

Alexandru Petrescu ${ }^{1,1, *}$
${ }^{1}$ LPENS, Département de physique, Ecole normale supérieure, Centre Automatique et Systèmes (CAS), MINES Paris, Université PSL, Sorbonne Université, CNRS, Inria, 75005 Paris, France

(Dated: November 7, 2023)

This lecture covers Schrieffer-Wolff perturbation theory and the Jaynes-Cummings model.

I. JAYNES-CUMMINGS HAMILTONIAN

The following Hamiltonian describes a spin $-\frac{1}{2}$ interacting with a harmonic oscillator

$$
\begin{equation*}
H / \hbar=\frac{\omega_{a}}{2} \sigma^{z} \otimes I_{r}+\omega_{r} I_{q} \otimes a^{\dagger} a+g\left(\sigma^{+} \otimes a+\sigma^{-} \otimes a^{\dagger}\right)=\frac{\omega_{a}}{2} \sigma^{z}+\omega_{r} a^{\dagger} a+g\left(\sigma^{+} a+\sigma^{-} a^{\dagger}\right) . \tag{1}
\end{equation*}
$$

The spin is described by the Pauli matrices σ^{i}, together with the identity I_{q}, whereas for the harmonic oscillator we have the bosonic commutation relation $\left[a, a^{\dagger}\right]=1$ as before.

A. Exact diagonalization

To diagonalize this Hamiltonian, it is simplest to find a conserved quantity, i.e. an operator that commutes with it. This is the excitation number $N=a^{\dagger} a+\frac{1+\sigma^{z}}{2}$. We leave the proof that $[N, H]=0$ as an exercise. Then N and H will be diagonal in the same basis.

The eigenspaces of N are $V_{0}=\{|0,0\rangle\}, V_{1}=\{|0,1\rangle,|1,0\rangle\}, \ldots, V_{n}=\{|n-1,1\rangle,|n, 0\rangle\}, \ldots$, where the subscript of V denotes the eigenvalue of N, and the two labels of the kets count the number of excitations in the simple harmonic oscillator and in the spin, respectively. For the one-dimensional eigenspace V_{0}, the eigenenergy is $E_{0,0}=-\omega_{a} / 2$. Over V_{n} for $n \geq 1$,

[^0]the Hamiltonian is represented by the two-dimensional block
\[

$$
\begin{array}{r}
H_{n}=\left(\begin{array}{cc}
\langle n-1,1| H|n-1,1\rangle & \langle n-1,1| H|n, 0\rangle \\
\langle n, 0| H|n-1,1\rangle & \langle n, 0| H|n, 0\rangle
\end{array}\right)=\left(\begin{array}{cc}
(n-1) \omega_{r}+\frac{\omega_{a}}{2} & g \sqrt{n} \\
g \sqrt{n} & n \omega_{r}-\frac{\omega_{a}}{2}
\end{array}\right) \tag{2}\\
=\left(n-\frac{1}{2}\right) \omega_{r} I_{2}+\frac{\omega_{a}-\omega_{r}}{2} \tau^{z}+g \sqrt{n} \tau^{x} .
\end{array}
$$
\]

We have introduced Pauli matrices τ^{i}, along with the identity operator, that act on the two-dimensional subspace V_{n}. The full Hamiltonian is block-diagonal, i.e. we write $H=$ $H_{0} \oplus H_{1} \oplus H_{2} \oplus \ldots$ acting on $V=V_{0} \oplus V_{1} \oplus V_{2} \oplus \ldots$

We may further write

$$
\begin{align*}
H_{n} & =\vec{r}_{n} \cdot \vec{\tau}+\left(n-\frac{1}{2}\right) \omega_{r} I_{2} \\
\vec{r}_{n} & =(g \sqrt{n}, 0, \Delta / 2) \equiv r_{n}\left(\sin \theta_{n}, 0, \cos \theta_{n}\right) \tag{3}\\
r_{n} & =\left|\vec{r}_{n}\right|=\sqrt{n g^{2}+\Delta^{2} / 4}, \sin \theta_{n}=g \sqrt{n} / r_{n}, \cos \theta_{n}=\Delta /\left(2 r_{n}\right)
\end{align*}
$$

From this form, we can calculate using the previous subsection the eigenenergies and eigenvectors in the subspace V_{n} for $n \geq 1$

$$
\begin{align*}
E_{ \pm, n} & = \pm r_{n} \\
\left|\psi_{+, n}\right\rangle & =\cos \left(\frac{\theta_{n}}{2}\right)|n, 0\rangle+\sin \left(\frac{\theta_{n}}{2}\right)|n-1,1\rangle \tag{4}\\
\left|\psi_{-, n}\right\rangle & =\sin \left(\frac{\theta_{n}}{2}\right)|n, 0\rangle-\cos \left(\frac{\theta_{n}}{2}\right)|n-1,1\rangle
\end{align*}
$$

$\theta_{n} / 2$ can be interpreted as a 'mixing angle'.

B. Schrieffer-Wolff Perturbation Theory

We rewrite the Jaynes-Cummings Hamiltonian Eq. (11) in the form

$$
\begin{equation*}
H=H_{0}+\hbar g I_{+}, \tag{5}
\end{equation*}
$$

where we define the unperturbed Hamiltonian

$$
\begin{equation*}
H_{0}=\hbar \omega_{r} a^{\dagger} a+\hbar \omega_{a} \frac{\sigma_{z}}{2}, \tag{6}
\end{equation*}
$$

and let

$$
\begin{equation*}
I_{ \pm}=a^{\dagger} \sigma_{-} \pm a \sigma_{+} \tag{7}
\end{equation*}
$$

I_{+}is the Hermitian operator that defines the perturbation, and I_{-}is an antihermitian operator that will enter the definition of the generator of the Schrieffer-Wolff transformation below.

Under the assumption that $|\Delta| \equiv\left|\omega_{a}-\omega_{r}\right| \gg g$, the Hamiltonian Eq. (1) can be diagonalized by the unitary transformation

$$
\begin{equation*}
\mathbf{D}=e^{-\Lambda\left(N_{q}\right) I_{-}} \tag{8}
\end{equation*}
$$

with the following definitions

$$
\begin{align*}
\Lambda\left(N_{q}\right) & =-\frac{\arctan \left(2 \lambda \sqrt{N_{q}}\right)}{2 \sqrt{N_{q}}} \tag{9}\\
N_{q} & \equiv a^{\dagger} a+\Pi_{e}
\end{align*}
$$

where $\Pi_{e}=|e\rangle\langle e|$ is the projector onto the excited state of the atom $\sigma_{z}|e\rangle=|e\rangle$.
Under the action of \mathbf{D} in Eq. (8),

$$
\begin{equation*}
H^{\mathbf{D}} \equiv \mathbf{D}^{\dagger} H \mathbf{D}=\hbar \omega_{r} a^{\dagger} a+\hbar \omega_{a} \frac{\sigma_{z}}{2}-\frac{\hbar \Delta}{2}\left(1-\sqrt{1+4 \lambda^{2} N_{q}}\right) \sigma_{z} \tag{10}
\end{equation*}
$$

In the following subsection we derive this result. This solution draws from Boissonneault et al., Phys. Rev. A 79, 013819 (2009).

1. Derivation

We first define the commutator as a superoperator

$$
\begin{equation*}
\mathcal{C}_{A} B \equiv[A, B], \quad \mathcal{C}_{A}^{m} B=\overbrace{[A,[A,[A, \ldots, B]]]}^{m \text { times }}, \tag{11}
\end{equation*}
$$

whence the Baker-Campbell-Hausdorff formula becomes

$$
\begin{equation*}
e^{A} B e^{-A}=\sum_{n=0}^{\infty} \frac{1}{n!} \mathcal{C}_{A}^{n} B . \tag{12}
\end{equation*}
$$

Writing the unitary that we are seeking in the form of Eq. (8)

$$
\begin{equation*}
\mathbf{D}=e^{-\Lambda\left(N_{q}\right) I_{-}} \tag{13}
\end{equation*}
$$

with Λ a yet unspecified function, we note that since N_{q} commutes with either H or $I_{ \pm}$, then $\Lambda\left(N_{q}\right)$ can be treated as a scalar when considering the nested commutators of the BCH formula Eq. (12) applied with $A=H$ and $B=\Lambda\left(N_{q}\right) I_{-}$.

Since

$$
\begin{equation*}
\mathcal{C}_{I_{-}} H_{0}=\hbar \Delta I_{+}, \tag{14}
\end{equation*}
$$

we can recast the transformed Hamiltonian Eq. (5) using Eq. (12)

$$
\begin{equation*}
H^{\mathbf{D}} \equiv \mathbf{D}^{\dagger} H \mathbf{D}=H_{0}+\hbar \sum_{n=0}^{\infty} \frac{(n+1) g+\Delta \Lambda}{(n+1)!} \mathcal{C}_{\Lambda_{I_{-}}}^{n} I_{+} \tag{15}
\end{equation*}
$$

To evaluate the sum, we need the following identities, which can be proved by induction

$$
\begin{align*}
\mathcal{C}_{\Lambda I_{-}}^{2 n} I_{+} & =(-4)^{n} \Lambda^{2 n} N_{q}^{n} I_{+}, \tag{16}\\
\mathcal{C}_{\Lambda I_{-}}^{2 n+1} I_{+} & =-2(-4)^{n} \Lambda^{2 n+1} N_{q}^{n+1} \sigma_{z} .
\end{align*}
$$

This allows us to evaluate the sum in Eq. (15)

$$
\begin{align*}
H^{\mathbf{D}}= & H_{0}+\hbar\left\{\frac{\Delta \sin \left(2 \Lambda \sqrt{N_{q}}\right)}{2 \sqrt{N_{q}}}+g \cos \left(2 \Lambda \sqrt{N_{q}}\right)\right\} I_{+} \\
& -2 \hbar N_{q} \sigma_{z}\left\{\frac{g \sin \left(2 \Lambda \sqrt{N_{q}}\right)}{2 \sqrt{N_{q}}}+\frac{\Delta\left[1-\cos \left(2 \Lambda \sqrt{N_{q}}\right)\right]}{4 N_{q}}\right\} . \tag{17}
\end{align*}
$$

Note that this expression contains both off-diagonal (second term in the equation above) and diagonal terms (first and third terms). We may now make the choice

$$
\begin{equation*}
\Lambda\left(N_{q}\right)=\frac{-\arctan \left(2 \lambda \sqrt{N_{q}}\right)}{2 \sqrt{N_{q}}} \tag{18}
\end{equation*}
$$

that nulls the off-diagonal term, to obtain

$$
\begin{equation*}
H^{\mathbf{D}}=H_{0}-\frac{\hbar \Delta}{2}\left(1-\sqrt{1+4 \lambda^{2} N_{q}}\right) \sigma_{z} . \tag{19}
\end{equation*}
$$

We can now define Lamb and ac Stark shift operators as follows

$$
\begin{align*}
\delta_{L} & \equiv H^{\mathbf{D}}(0,1)-H^{\mathbf{D}}(0,-1)-\hbar \omega_{a}=-\frac{\hbar \Delta}{2}\left(1-\sqrt{1+4 \lambda^{2}}\right) \\
\delta_{S}\left(a^{\dagger} a\right) & \equiv H^{\mathbf{D}}\left(a^{\dagger} a, 1\right)-H^{\mathbf{D}}\left(a^{\dagger} a,-1\right)-\delta_{L}-\hbar \omega_{a} \tag{20}\\
& =\frac{\hbar \Delta}{2}\left(\sqrt{1+4 \lambda^{2}\left(a^{\dagger} a+1\right)}+\sqrt{1+4 \lambda^{2} a^{\dagger} a}-1-\sqrt{1+4 \lambda^{2}}\right) .
\end{align*}
$$

Note that the unitary operator redefines the excitations in the problem. We have for the operators that were previously diagonal in the eigenbases of the atom and oscillator, respectively

$$
\begin{align*}
\sigma_{z}^{\mathbf{D}} & =\sigma_{z}\left(\frac{1}{\sqrt{1+4 \lambda^{2} N_{q}}}\right)-\frac{2 \lambda}{\sqrt{1+4 \lambda^{2} N_{q}}} I_{+}, \tag{21}\\
\left(a^{\dagger} a\right)^{\mathbf{D}} & =a^{\dagger} a+\frac{\sigma_{z}}{2}+\frac{\left(\lambda I_{+}-\sigma_{z} / 2\right)}{\sqrt{1+4 N_{q} \lambda^{2}}}
\end{align*}
$$

and

$$
\begin{align*}
& a^{\mathbf{D}} \approx a\left[1+\frac{\lambda^{2} \sigma_{z}}{2}\right]+\lambda\left[1-3 \lambda^{2}\left(a^{\dagger} a+\frac{1}{2}\right)\right] \sigma_{-}+\lambda^{3} a^{2} \sigma_{+} \\
& \sigma_{-}^{\mathbf{D}} \approx \sigma_{-}\left[1-\lambda^{2}\left(a^{\dagger} a+\frac{1}{2}\right)\right]+\lambda a \sigma_{z}-\lambda^{2} a^{2} \sigma_{+} \tag{22}
\end{align*}
$$

Finally, the Hamiltonian up to cubic order in λ is

$$
\begin{equation*}
H^{\mathrm{D}} \approx \hbar\left(\omega_{r}+\zeta\right) a^{\dagger} a+\hbar\left[\omega_{a}+2 \chi\left(a^{\dagger} a+\frac{1}{2}\right)\right] \frac{\sigma_{z}}{2}+\hbar \zeta\left(a^{\dagger} a\right)^{2} \sigma_{z} \tag{23}
\end{equation*}
$$

where we have introduced

$$
\begin{align*}
\chi & =g^{2}\left(1-\lambda^{2}\right) / \Delta \tag{24}\\
\zeta & =-g^{4} / \Delta^{3}
\end{align*}
$$

C. Coupling to environment

Suppose that the system described by H in Eq. (5) is coupled to a bath via the operator $A=a+a^{\dagger}$ via $H_{S B}=A \otimes B$ with B some bath operator as introduced in earlier lectures on the Lindblad master equation. Can we use the Schrieffer-Wolff approach to compute the so-called Purcell relaxation rate? We assume zero temperature throughout this subsection.

First, the system-bath coupling would be written in the interaction picture with respect to H, so we need to evaluate the time-evolution operator $U(t, 0)$. First we reexpress it as follows using the unitarity of \mathbf{D}

$$
\begin{equation*}
e^{-i H t}=\mathbf{D} e^{-i H^{\mathbf{D}} t} \mathbf{D}^{\dagger} \tag{25}
\end{equation*}
$$

Then we note that under \mathbf{D} the system operator coupling to the bath transforms as (according to Eq. (22))

$$
\begin{align*}
a+a^{\dagger} \rightarrow a^{\mathbf{D}}+a^{\dagger \mathbf{D}} & \approx a\left[1+\frac{\lambda^{2} \sigma_{z}}{2}\right]+\lambda\left[1-3 \lambda^{2}\left(a^{\dagger} a+\frac{1}{2}\right)\right] \sigma_{-}+\lambda^{3} a^{2} \sigma_{+}+\text {H.c. } \tag{26}\\
& \approx a+\lambda \sigma_{-}+\text {H.c. }
\end{align*}
$$

where we have kept the lowest-order contribution linear in λ.
We now need to recall how the Lindblad master equation is derived. We first need to express the system-bath coupling Hamiltonian in the interaction picture with respect to the uncoupled system and bath Hamiltonians, that is, we need

$$
\begin{equation*}
A(t) \equiv e^{i H t}\left(a+a^{\dagger}\right) e^{-i H t}=\mathbf{D} e^{i H^{\mathrm{D}} t} \mathbf{D}^{\dagger}\left(a+a^{\dagger}\right) \mathbf{D} e^{-i H^{\mathrm{D}} t} \mathbf{D}^{\dagger}=\mathbf{D} e^{i H^{\mathrm{D}} t}\left(a^{\mathbf{D}}+a^{\dagger \mathbf{D}}\right) e^{-i H^{\mathrm{D}} t} \mathbf{D}^{\dagger} \tag{27}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
A^{\mathbf{D}}(t) \equiv \mathbf{D}^{\dagger} A(t) \mathbf{D}=e^{i H^{\mathbf{D}} t}\left(a^{\mathbf{D}}+a^{\dagger \mathbf{D}}\right) e^{-i H^{\mathbf{D}} t} \equiv \sum_{\omega} A^{\mathbf{D}}(\omega) e^{-i \omega t} \tag{28}
\end{equation*}
$$

This suggests it is more convenient to write the Lindblad master equation in the frame rotated by \mathbf{D}.

If the von Neumann equation is

$$
\begin{equation*}
\dot{\rho}=-i\left[H_{t o t a l}, \rho\right], \tag{29}
\end{equation*}
$$

then in the rotated frame

$$
\begin{equation*}
\dot{\rho}^{\mathbf{D}}=-i\left[H_{t o t a l}^{\mathrm{D}}, \rho^{\mathbf{D}}\right] . \tag{30}
\end{equation*}
$$

Therefore the equation for the reduced density matrix $\rho^{\mathbf{D}}$ (abuse of notation) is

$$
\begin{equation*}
\dot{\rho}^{\mathbf{D}}=-i\left[H^{\mathbf{D}}, \rho^{\mathbf{D}}\right]+\sum_{\omega} \gamma(\omega) \mathcal{D}\left[A^{\mathbf{D}}(\omega)\right] \rho^{\mathbf{D}} \tag{31}
\end{equation*}
$$

with $\gamma(\omega)$ being related to the bilateral power spectral density of the bath modes as in Eq. (43) of Lecture 2 with $\alpha=\beta$. Then all that remains is then to evaluate Eq. (28). To get our answer we will do this using the order- λ result of Eq. 26), and use $H^{\mathbf{D}}$ of Eq. (32) up to order order λ, i.e.

$$
\begin{equation*}
H^{\mathbf{D}}=\hbar \omega_{r} a^{\dagger} a+\hbar\left(\omega_{a}+\chi\right) \frac{\sigma_{z}}{2}+\hbar \chi a^{\dagger} a \sigma_{z}+O\left(\lambda^{2}\right) \tag{32}
\end{equation*}
$$

In evaluating Eq. (28) we furthermore neglect terms of order χ in H^{D}, ultimately using its order $-\lambda^{0}$ contributions only. Then we find

$$
\begin{equation*}
A^{\mathbf{D}}\left(\omega_{a}\right)=\lambda \sigma_{-}, A^{\mathbf{D}}\left(-\omega_{a}\right)=\lambda \sigma_{+}, A^{\mathbf{D}}\left(\omega_{r}\right)=a, A^{\mathbf{D}}\left(-\omega_{r}\right)=a^{\dagger} \tag{33}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\dot{\rho}^{\mathbf{D}}=-i\left[H^{\mathbf{D}}, \rho^{\mathbf{D}}\right]+\gamma\left(\omega_{r}\right) \mathcal{D}[a] \rho^{\mathbf{D}}+\lambda^{2} \gamma\left(\omega_{a}\right) \mathcal{D}\left[\sigma_{-}\right] \rho^{\mathbf{D}} \tag{34}
\end{equation*}
$$

Assuming that the bath power spectral density is flat with $\gamma(\omega)=\kappa$, we get the result

$$
\begin{equation*}
\dot{\rho}^{\mathbf{D}}=-i\left[H^{\mathbf{D}}, \rho^{\mathbf{D}}\right]+\kappa \mathcal{D}[a] \rho^{\mathbf{D}}+\lambda^{2} \kappa \mathcal{D}\left[\sigma_{-}\right] \rho^{\mathbf{D}} \tag{35}
\end{equation*}
$$

leading to the formula for the Purcell decay rate of the qubit (rate of radiative decay of an atom coupled to a detuned lossy cavity)

$$
\begin{equation*}
\gamma_{P}=\left(\frac{g}{\Delta}\right)^{2} \kappa \tag{36}
\end{equation*}
$$

Note that this is primarily due to the 'hybridization' of the qubit with the cavity, given by the hybridization coefficient $\lambda \ll 1$, and that therefore this is an apparently weak effect on the qubit $\gamma_{P} \ll \kappa$, which however turns out to be important in practice.

II. ORDER-BY-ORDER ROTATING-WAVE APPROXIMATION FROM SCHRIEFFER-WOLFF PERTURBATION THEORY

Note for Fall 2023 course: This material was not covered in class, so it will not be on the exam. Below we consider a generic Schrieffer-Wolff perturbation theory for time-dependent Hamiltonians. Let us consider a generic Baker-Campbell-Hausdorff expansion of the form

$$
\begin{gathered}
e^{-\hat{G}_{\mathrm{I}}(t)}\left(\hat{H}_{\mathrm{I}}-i \partial_{t}\right) e^{\hat{\mathrm{G}}_{\mathrm{I}}(t)}=\hat{H}_{\mathrm{I}}-i \dot{\hat{G}}_{\mathrm{I}}+\left[\hat{H}_{\mathrm{I}}, \hat{G}_{\mathrm{I}}\right]-\frac{i}{2}\left[\dot{\hat{G}}_{\mathrm{I}}, \hat{G}_{\mathrm{I}}\right]+\frac{1}{2!}\left[\left[\hat{H}_{\mathrm{I}}, \hat{G}_{\mathrm{I}}\right], \hat{G}_{\mathrm{I}}\right]-\frac{i}{3!}\left[\left[\dot{\hat{G}}_{\mathrm{I}}, \hat{G}_{\mathrm{I}}\right], \hat{G}_{\mathrm{I}}\right] \\
+\frac{1}{3!}\left[\left[\left[\hat{H}_{\mathrm{I}}, \hat{G}_{\mathrm{I}}\right], \hat{G}_{\mathrm{I}}\right], \hat{G}_{\mathrm{I}}\right]-i \partial_{t}+\ldots
\end{gathered}
$$

Let us assume that the generator can be expanded as follows:

$$
\begin{equation*}
\hat{G}_{\mathrm{I}}(t)=\lambda \hat{G}_{\mathrm{I}}^{(1)}(t)+\lambda^{2} \hat{G}_{\mathrm{I}}^{(2)}(t)+\ldots \tag{37}
\end{equation*}
$$

We can rewrite (37) up to contributions of order λ^{3} as follows

$$
\begin{align*}
& e^{-\hat{G}_{\mathrm{I}}}\left(\hat{H}_{\mathrm{I}}-i \partial_{t}\right) e^{\hat{G}_{\mathrm{I}}}= \\
& \hat{H}_{\mathrm{I}}-i \lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)} \\
& +\left[\hat{H}_{\mathrm{I}}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right]-\frac{i}{2}\left[\lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right]-i \lambda^{2} \dot{\hat{G}}_{\mathrm{I}}^{(2)} \\
& +\left[\hat{H}_{\mathrm{I}}, \lambda^{2} \hat{G}_{\mathrm{I}}^{(2)}\right]-\frac{i}{2}\left[\lambda^{2} \dot{\hat{G}}_{\mathrm{I}}^{(2)}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right]-\frac{i}{2}\left[\lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}, \lambda^{2} \hat{G}_{\mathrm{I}}^{(2)}\right]+\frac{1}{2!}\left[\left[\hat{H}_{\mathrm{I}}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right], \lambda \hat{G}_{\mathrm{I}}^{(1)}\right]-\frac{i}{3!}\left[\left[\lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right], \lambda \hat{G}_{\mathrm{I}}^{(1)}\right] \\
& \\
& -i \partial_{t}+O\left(\lambda^{4}\right) \\
& \equiv \\
& \equiv \\
& \\
& \tag{38}\\
& +\hat{H}_{\mathrm{I}}^{(1)}(t)-i \lambda \lambda^{2} \hat{\dot{G}}_{\mathrm{I}}^{(2)}(t)-i \lambda_{\mathrm{I}}^{(1)} \\
& \\
& +\lambda^{3} \hat{\hat{G}}_{\mathrm{I}}^{(3)}(t)-i \lambda^{3} \dot{\hat{G}}_{\mathrm{I}}^{(2)} \\
& \\
& -i \partial_{t}+O\left(\lambda^{4}\right) .
\end{align*}
$$

The first, second, and third row contain terms that are first-order, second-order and thirdorder in λ, respectively. We needed to introduce the following notation:

$$
\begin{equation*}
\hat{H}_{\mathrm{I}}(t) \equiv \lambda \hat{H}_{\mathrm{I}}^{(1)}(t) \equiv \lambda \overline{\hat{H}}_{I}^{(1)}+\lambda \tilde{\hat{H}}_{I}^{(1)}(t) \tag{39}
\end{equation*}
$$

and moreover let us define more generally for $k>1$ integer a separation over constant and oscillatory terms:

$$
\begin{equation*}
\lambda^{k} \hat{H}_{\mathrm{I}}^{(k)}(t) \equiv \lambda^{k} \overline{\hat{H}}_{I}^{(k)}+\lambda^{k} \widetilde{\hat{H}}_{I}^{(k)}(t) \tag{40}
\end{equation*}
$$

Definition (DC and AC parts of a time-dependent operator). The definitions above involved the DC part of a time-dependent operator $\hat{O}(t)$, defined as:

$$
\begin{equation*}
\overline{\hat{O}} \equiv \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \hat{O}(t) \tag{41}
\end{equation*}
$$

Moreover, we may define the AC, or oscillatory part, of the operator, according to

$$
\begin{equation*}
\widetilde{\hat{O}}(t) \equiv \hat{O}(t)-\overline{\hat{O}} \tag{42}
\end{equation*}
$$

Properties. The operations $\overline{\hat{O}}$ and $\widetilde{\hat{O}}(t)$ are linear, in the sense that $\widetilde{\hat{O}_{1}+\hat{O}_{2}}(t)=\widetilde{\hat{O}_{1}}(t)+$ $\widetilde{\hat{O}_{2}}(t)$, and $\overline{\hat{O}_{1}+\hat{O}_{2}}(t)=\overline{\hat{O}_{1}}(t)+\overline{\hat{O}_{2}}(t)$. Moreover, they are idempotent: $\overline{\hat{O}}=\overline{\hat{O}}$, and $\widetilde{\hat{O}}=\tilde{\hat{O}}$, but application of one after another gives zero: $\overline{\hat{\hat{O}}}=0$, and $\widetilde{\hat{O}}=0$. Thus, they appear to share properties with a pair of projectors onto complementary Hilbert subspaces.

Having introduced these notations, we are equipped to write the iterative procedure to derive the RWA Hamiltonian. The condition for removing non-RWA terms at order λ^{k} :

$$
\begin{equation*}
\lambda^{k} \hat{H}_{\mathrm{I}}^{(k)}(t)-i \lambda^{k} \dot{\hat{G}}_{I}^{(k)}(t)=\lambda^{k} \overline{\hat{H}}_{I}^{(k)}, \tag{43}
\end{equation*}
$$

Note that $\lambda^{k} \hat{H}_{\mathrm{I}}^{(k)}(t)$ for $k \geq 2$ is generally dependent on $\hat{G}_{\mathrm{I}}^{(1)}, \ldots, \hat{G}_{\mathrm{I}}^{(k-1)}$, which means that this is an iterated procedure: Equation (43) must be solved in order for $k=1,2,3, \ldots$. Once the first k equations have been solved, we can write down the RWA Hamiltonian in the following form

$$
\begin{equation*}
e^{-\hat{G}_{\mathrm{I}}(t)}\left(\hat{H}_{\mathrm{I}}-i \partial_{t}\right) e^{\hat{\epsilon}_{\mathrm{I}}(t)}=\sum_{l=1}^{k} \lambda^{l} \hat{\hat{H}}_{I}^{(l)}+O\left(\lambda^{k+1}\right) \tag{44}
\end{equation*}
$$

where terms of order λ^{k+1} are time-dependent, but terms of order $\leq k$ are stationary.

A. First-order RWA

In the first iteration we write Eq. (43) for $k=1$:

$$
\begin{equation*}
\lambda \hat{H}_{\mathrm{I}}^{(1)}(t)-i \lambda \dot{\hat{G}}_{I}^{(1)}(t)=\lambda \overline{\hat{H}}_{I}^{(1)} \tag{45}
\end{equation*}
$$

which yields, upon recalling the separation of $\lambda \hat{H}_{\mathrm{I}}^{(1)}(t)$, Eq. 40 :

$$
\begin{align*}
\lambda \tilde{\hat{H}}_{I}^{(1)}-i \lambda \dot{\hat{G}}_{I}^{(1)}=0 \quad \leftrightarrow \quad \lambda \hat{G}_{\mathrm{I}}^{(1)}(t) & =\frac{\lambda}{i} \int^{t} d t^{\prime} \tilde{\hat{H}}_{I}^{(1)}\left(t^{\prime}\right)+\lambda \hat{G}_{\mathrm{I}, 0}^{(1)} \\
& \equiv \lambda \tilde{\hat{G}}_{\mathrm{I}}^{(1)}(t)+\lambda \overline{\hat{G}}_{\mathrm{I}}^{(1)} \tag{46}
\end{align*}
$$

Note that the integral is indefinite, so that the first term is oscillatory, and we can set $\frac{\lambda}{i} \int^{t} d t^{\prime} \widetilde{\hat{H}}_{I}^{(1)}(1)\left(t^{\prime}\right) \equiv \lambda \widetilde{\hat{G}}_{\text {I }}^{(1)}(t)$, while the second term is the integration constant, which sets the DC part of the order- λ generator $\lambda \hat{G}_{\mathrm{I}, 0}^{(1)} \equiv \lambda \overline{\hat{G}}_{\mathrm{I}}^{(1)}$. Imposing the equation above, we rewrite Eq. (38) where to $O(\lambda)$ we have obtained a stationary Hamiltonian:

$$
\begin{equation*}
e^{-\hat{G}_{\mathrm{I}}}\left(\hat{H}_{\mathrm{I}}-i \partial_{t}\right) e^{\hat{G}_{\mathrm{I}}}=\lambda \hat{\hat{H}}_{I}^{()}(1)+O\left(\lambda^{2}\right), \tag{47}
\end{equation*}
$$

where we recall that, from the definition (39), $\lambda \hat{H}_{I}^{(1)}\left(\overline{\hat{H}}_{\mathrm{I}}\right.$. This is the standard RWA approximation.

B. Second-order RWA

We move on to second order in λ. The second-order terms were:

$$
\left.\left.\begin{array}{r}
\lambda^{2} \hat{H}_{\mathrm{I}}^{(2)}(t)-i \lambda^{2} \dot{\hat{G}}_{\mathrm{I}}^{(2)}=\left[\hat{H}_{\mathrm{I}}(t), \lambda \hat{G}_{\mathrm{I}}^{(1)}(t)\right]-\frac{i}{2}\left[\lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}(t), \lambda \hat{G}_{\mathrm{I}}^{(1)}(t)\right]-i \lambda^{2} \dot{\hat{G}}_{\mathrm{I}}^{(2)} \\
=\left[\hat{H}_{\mathrm{I}}(t)-\frac{i}{2} \lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}(t), \lambda \hat{G}_{\mathrm{I}}^{(1)}(t)\right]-i \lambda^{2} \dot{\hat{G}}_{\mathrm{I}}^{(2)} \\
\text { Eq. } \tag{48}\\
=[\lambda 5)
\end{array} \lambda \hat{\hat{H}}_{I}^{(1)}+\frac{i}{2} \lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}(t), \lambda \hat{G}_{\mathrm{I}}^{(1)}(t)\right]-i \lambda^{2} \dot{\hat{G}}_{\mathrm{I}}^{(2)}\right)
$$

Condition (43) for $k=2$ implies the following equation for $\hat{G}_{\mathrm{I}}^{(2)}(t)$:

$$
\begin{equation*}
\left[\lambda \hat{\hat{H}}_{I}^{(1)}+\frac{i}{2} \lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}(t), \lambda \hat{G}_{\mathrm{I}}^{(1)}(t)\right]-i \lambda^{2} \dot{\hat{G}}_{\mathrm{I}}^{(2)}=\lambda^{2} \overline{\hat{H}}_{I}^{(2)}, \tag{49}
\end{equation*}
$$

where the second-order RWA Hamiltonian is

$$
\begin{equation*}
\lambda^{2} \hat{\hat{H}}_{I}^{(2)} \equiv \overline{\left[\lambda \overline{\hat{H}}_{I}^{(1)}+\frac{i}{2} \lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}(t), \lambda \hat{G}_{\mathrm{I}}^{(1)}(t)\right]} \tag{50}
\end{equation*}
$$

We can simplify this form by using the separation of $\hat{G}_{\mathrm{I}}^{(1)}(t)$ into DC and AC components:

$$
\begin{align*}
\lambda^{2} \overline{\hat{H}}_{I}^{(2)} & \equiv\left[\overline{\left[\lambda \overline{\hat{H}}_{I}^{(1)}+\frac{i}{2} \lambda \dot{\tilde{G}}_{\mathrm{I}}^{(1)}(t), \lambda \widetilde{\hat{G}}_{\mathrm{I}}^{(1)}(t)+\lambda \overline{\hat{G}}_{\mathrm{I}}^{(1)}\right]}\right. \\
& =\left[\lambda \hat{\hat{H}}_{I}^{(1)}, \lambda \overline{\hat{G}}_{\mathrm{I}}^{(1)}\right]+\left[\frac{i}{2} \lambda \dot{\tilde{G}}_{\mathrm{I}}^{(1)}(t), \lambda \tilde{\hat{G}}_{\mathrm{I}}^{(1)}(t)\right] \tag{51}
\end{align*}
$$

Remark that the cross terms vanished under time-averaging. We may wish to express this in terms of the Hamiltonian, so we can write

$$
\begin{align*}
\lambda^{2} \hat{\hat{H}}_{I}^{(2)} & =\left[\lambda \hat{\hat{H}}_{I}^{(1)}, \lambda \overline{\hat{G}}_{\mathrm{I}}^{(1)}\right]+\frac{1}{2 i} \overline{\left[\lambda \tilde{\hat{H}}_{I}^{(1)}(t), \int^{t} \lambda \widetilde{\hat{H}}_{I}^{(1)}\left(t^{\prime}\right) d t^{\prime}\right]} \\
& =\left[\lambda \overline{\hat{H}}_{I}^{(1)}, \lambda \overline{\hat{G}}_{\mathrm{I}}^{(1)}\right]+\frac{1}{2 i}\left[\hat{H}_{\mathrm{I}}(t)-\lambda \overline{\hat{H}}_{I}^{(1)}, \int^{t}\left(\hat{H}_{\mathrm{I}}\left(t^{\prime}\right)-\lambda \hat{\hat{H}}_{I}^{(1)}\right) d t^{\prime}\right] \tag{52}
\end{align*}
$$

Note the first term, which corresponds to the boundary condition, and hence the DC part, of the generator.

For further use in the third-order RWA, recall that the generator obeys the equation

$$
\begin{align*}
\lambda^{2} \tilde{\hat{H}}_{I}^{(2)}-i \lambda^{2} \dot{\hat{G}}_{I}^{(2)}=0 \quad \leftrightarrow \quad \lambda^{2} \hat{G}_{\mathrm{I}}^{(2)}(t) & =\frac{\lambda^{2}}{i} \int^{t} d t^{\prime} \tilde{\hat{H}}_{I}^{(2)}\left(t^{\prime}\right)+\lambda^{2} \hat{G}_{\mathrm{I}, 0}^{(2)} \\
& \equiv \lambda \tilde{\hat{G}}_{\mathrm{I}}^{(2)}(t)+\lambda \overline{\hat{G}}_{\mathrm{I}}^{(2)} \tag{53}
\end{align*}
$$

where we write the oscillating part of the Hamiltonian at second-order in λ as follows:

$$
\begin{equation*}
\lambda^{2} \widetilde{\hat{H}}_{I}^{(2)}(t)=\lambda^{2} \hat{H}_{\mathrm{I}}^{(2)}(t)-\lambda^{2} \overline{\hat{H}}_{I}^{(2)} \tag{54}
\end{equation*}
$$

C. Third-order RWA

The third-order terms are

$$
\begin{align*}
& +\left[\hat{H}_{\mathrm{I}}, \lambda^{2} \hat{G}_{\mathrm{I}}^{(2)}\right]-\frac{i}{2}\left[\lambda^{2} \dot{\hat{G}}_{\mathrm{I}}^{(2)}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right]-\frac{i}{2}\left[\lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}, \lambda^{2} \hat{G}_{\mathrm{I}}^{(2)}\right]+\frac{1}{2!}\left[\left[\hat{H}_{\mathrm{I}}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right], \lambda \hat{G}_{\mathrm{I}}^{(1)}\right]-\frac{i}{3!}\left[\left[\lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right], \lambda \hat{G}_{\mathrm{I}}^{(1)}\right] \\
= & \lambda^{3} \hat{H}_{\mathrm{I}}^{(3)}(t)-i \lambda^{3} \dot{\hat{G}}_{\mathrm{I}}^{(3)} \equiv \lambda^{3} \overline{\hat{H}}_{I}^{(3)}+\lambda^{3} \widetilde{\hat{H}}_{I}^{(3)}(t)-i \lambda^{3} \dot{\hat{G}}_{\mathrm{I}}^{(3)}=\lambda^{3} \hat{\hat{H}}_{I}^{(3)}
\end{align*}
$$

The third-order RWA Hamiltonian is

$$
\begin{align*}
& \lambda^{3} \hat{\hat{H}}_{I}^{(3)}= \underbrace{\overline{\left[\hat{H}_{\mathrm{I}}, \lambda^{2} \hat{G}_{\mathrm{I}}^{(2)}\right]}}_{\text {term } 1} \underbrace{\overline{\frac{i}{2}}\left[\lambda^{2} \dot{\hat{G}}_{\mathrm{I}}^{(2)}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right]}_{\text {term } 2} \\
& \underbrace{-\frac{i}{2} \overline{\left[\lambda \dot{\hat{G}}_{\mathrm{I}}^{(1)}, \lambda^{2} \hat{G}_{\mathrm{I}}^{(2)}\right]}}_{\text {term } 4} \tag{56}\\
& \underbrace{+\frac{1}{2!}\left[\left[\hat{H}_{\mathrm{I}}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right], \lambda \hat{G}_{\mathrm{I}}^{(1)}\right]}_{\text {term } 3} \\
& \underbrace{-\frac{i}{3!}\left[\left[\lambda \hat{\dot{G}}_{\mathrm{I}}^{(1)}, \lambda \hat{G}_{\mathrm{I}}^{(1)}\right], \lambda \hat{G}_{\mathrm{I}}^{(1)}\right]}_{\text {term } 5}
\end{align*}
$$

D. RWA Hamiltonian up to third-order assuming no DC part to generator

We collect here the simpler expressions under the assumption $\overline{\hat{G}}_{I}^{(k)}=0$. We will test the validity of this assumption by checking this RWA transformation against some simple test cases.

$$
\begin{align*}
\lambda \hat{\hat{H}}_{I}^{()}(1) & =\overline{\hat{H}_{\mathrm{I}}} \\
\lambda^{2} \hat{\hat{H}}_{I}^{()}(2) & =\frac{1}{2} \overline{\left.\lambda \widetilde{\hat{H}}_{I}^{()}(1), \lambda \widetilde{\hat{G}}_{I}^{(1)}(t)\right]} \\
\lambda^{3} \hat{\hat{H}}_{I}^{()}(3) & \left.=+\frac{1}{2} \overline{\left[\left[\lambda \hat{\hat{H}}_{I}^{()}(1), \lambda \widetilde{\hat{G}}_{I}^{(1)}(t)\right], \lambda \widetilde{\hat{G}}_{I}^{(1)}(t)\right]}+\frac{1}{3}\left[\left[\lambda \widetilde{\hat{H}}_{I}^{()}(1), \lambda \widetilde{\hat{G}}_{I}^{(1)}(t)\right], \lambda \widetilde{\hat{G}}_{I}^{(1)}(t)\right]\right] \tag{57}
\end{align*}
$$

[^0]: * alexandru.petrescu@inria.fr

