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This lecture covers adiabatic elimination. Minimal suggested reading H. Carmichael,

Statistical Methods in Quantum Optics, Volume 2, Chapter 9.

I. FACTS ABOUT SUPEROPERATORS

(
a†2b·

)
Ô ≡ a†2bÔ,

(
a · a†

)
Ô ≡ aÔa†,

(
·b†b
)
Ô ≡ Ôb†b (1)

(
a†2b·

)
=
(
a†2·
)

(b·),
(
a · a†

)
= (a·)

(
·a†
)
,
(
·b†b
)

= (·b)
(
·b†
)

(2)

(
a · a†

) (
b · b†

)
=
(
ab · b†a†

)
=
(
ba · a†b†

)
=
(
b · b†

) (
a · a†

) (3)

Definition of conjugate superoperator

(SÔ)† ≡ S†Ô† (4)

[(
a†2b·

)
Ô
]†

=
(
a†2bÔ

)†
=
(
Ô†b†a2

)
=
(
·b†a2

)
Ô†

(5)
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and therefore (
a†2b·

)†
=
(
·b†a2

)
(6)

Conjugation of a product of superoperators does not reverse their order

(S1S2)† = S†1S
†
2. (7)

For example [(
a · a†

) (
·a†a

)]†
=
(
a · a†aa†

)†
=
(
aa†a · a†

)
=
(
a · a†

) (
a†a·

)
=
(
a · a†

)† (·a†a)† .
(8)

Three examples of commutators of superoperators, which can be easily calculated once

we know how to compose them[(
b · b†

)
, (b·)

]
=
(
b · b†

)
(b·)− (b·)

(
b · b†

)
= 0[(

b†b·
)
, (b·)

]
=
(
b†b·
)

(b·)− (b·)
(
b†b·
)

=
(
b†b2·

)
−
(
bb†b·

)
= −(b·)[(

·b†b
)
, (b·)

]
=
(
·b†b
)

(b·)− (b·)
(
·b†b
)

= 0.

(9)

From their commutation relations we may derive equations of motion for superoperators.

For example, there is an equivalent to Heisenberg’s equation of motion. If we define from

some superoperator S another superoperator

S ′(t) ≡ e−LtSeLt, (10)

then the latter obeys the equation of motion

dS ′

dt
= [S ′,L] . (11)

For example, we may consider the one-photon dissipator L ≡ κ
(
2b · b† − b†b · − · b†b

)
and

for S = (b·) we find

d(b·)′

dt
= κ

[
(b·)′, 2

(
b · b†

)′ − (b†b·)′ − (·b†b)′] = −κ(b·)′, (12)
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which we may integrate to get

e−Lbt(b·)eLbt = e−κbt(b·). (13)

Similarly, we can prove that (exercise) for S ′(0) = S =
(
b†·
)

e−Lbt
(
b†·
)
eLbt = eκbt

(
b†·
)

+
(
e−κbt − eκbt

) (
·b†
)

(14)

Equation (13) and Eq. (14) will be useful in the next section where we discuss adiabatic

elimination.

II. ADIABATIC ELIMINATION

Consider a system governed by the following Liouvillian (Lindblad master equation)

ρ̇ = (La + Lb + Lab) ρ (15)

We assume that the first and last terms correspond to slow dynamics, whereas the middle

term corresponds to fast dynamics. That is a is a slow mode, b is a fast mode, and the

coupling between them is weak. Our task here is to eliminate the fast degree of freedom b

in order to obtain an effective Liouvillian for the mode a.

For example, the three Liouvillians could correspond to

La ≡ −i [Ha, ·] + κ
(
2a · a† − a†a · − · a†a

)
,

Lb ≡ κb
(
2b · b† − b†b · − · b†b

)
Lab ≡ (g/2)

[
a†2b− a2b†, ·

]
.

(16)

In this lecture we will pursue the adiabatic elimination of b to show that this induces an

effective two-photon dissipator on the mode a. The adiabatic elimination procedure can

be done more formally, i.e. without regard to the microscopic details of the Liouvillians.

We will however choose here the more explicit route in order to familiarize ourselves with

superoperator algebra. Throughout this lecture we are following the approach given by

Carmichael in Chapter 9 of his book (see abstract), with minor modifications for clarity.

The goal is to derive an equation for the reduced density matrix of subsystem a, under

the Born approximation Ansatz (tensor product symbol omitted hereafter for brevity)

ρ(t) ≈ σ(t)(|0〉〈0|)b (17)
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Plugging the Ansatz Eq. (17) into Eq. (15) would give σ̇ = Laσ which neglects the second-

order contribution from the b subsystem. Instead we need to proceed as we did in the case of

the derivation of the Lindblad master equation. The first step is, as we did before, to express

the interaction Liouvillian in the interaction picture (for which we will use an overline)

Lab(t) ≡ e−(La+Lb)tLabe(La+Lb)t. (18)

The interaction-picture density matrix

ρ̄(t) ≡ e−(La+Lb)tρ(t) (19)

then obeys

˙̄ρ = Lab(t)ρ̄. (20)

To parallel our treatment for the derivation of the master equation, we integrate Eq. (20),

we iterate it once, we differentiate with respect to time, and then we trace with respect to

the b subsystem.

Integrating and iterating, we get

ρ̄(t) = ρ̄(0) +

∫ t

0

dt′Lab(t′)ρ̄(t′)

= ρ̄(0) +

∫ t

0

dt′Lab(t′)

[
ρ̄(0) +

∫ t′

0

dt′′Lab(t′′)ρ̄(t′′)

]

= ρ̄(0) +

∫ t

0

dt′Lab(t′)ρ̄(0) +

∫ t

0

dt′Lab(t′)
∫ t′

0

dt′′Lab(t′′)ρ̄(t′′).

(21)

We may now differentiate with respect to t, and take the trace with respect to subsystem b,

˙̄σ = trb
[
Lab(t)ρ(0)

]
+

∫ t

0

dt′ trb
[
Lab(t)Lab (t′) ρ̄ (t′)

]
. (22)

Let us focus on the first term of Eq. (22) and show that it is vanishing.

trb
[
Lab(t)ρ(0)

]
= trb

[
e−(La+Lb)t(g/2)

[
a†2b− a2b†, ·

]
e(La+Lb)tσ(0) |0〉b 〈0|b

]
= trb

[
e−(La+Lb)t(g/2)

[
a†2b− a2b†, e(La+Lb)tσ(0) |0〉b 〈0|b

]]
= trb

[
e−Late−Lbt(g/2)(a†2b− a2b†)eLateLbtσ(0) |0〉b 〈0|b

]
− trb

[
e−Late−Lbt(g/2)eLateLbtσ(0) |0〉b 〈0|b (a†2b− a2b†)

]
= (g/2)

[
e−Latb

〈
0
∣∣(a†2b− a2b†)∣∣ 0〉

b
eLatσ(0)− σ(0)b

〈
0
∣∣(a†2b− a2b†)∣∣ 0〉

b

]
= 0,

(23)
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where we have used in the last step the fact that e±Lbt |0〉b 〈0|b = |0〉b 〈0|b (this is the steady-

state of the dynamics of the fast-decaying subsystem b).

Returning to Eq. (22), we replace on the right-hand side the Born-approximation Ansatz

Eq. (17), to finally obtain

˙̄σ(t) =

∫ t

0

dt′ trb
[
Lab(t)Lab (t′) σ̄ (t′) (|0〉〈0|)b

]
. (24)

To complete the adiabatic approximation, we need to fill in the explicit form for the

interaction-picture interaction Lab(t), and perform the time integral (which will involve the

equivalent of a Markov approximation).

To this end, we may rewrite Lab(t) as follows

Lab(t) =(g/2)e−(La+Lb)t
[(
a†2b·

)
−
(
a2b†·

)
−
(
·a†2b

)
+
(
·a2b†

)]
e(La+Lb)t

=(g/2)e−(La+Lb)t
[(
a†2·
)

(b·)−
(
a2·
) (
b†·
)
−
(
a2·
)† (

b†·
)†

+
(
a†2·
)†

(b·)†
]
e(La+Lb)t

=(g/2)
[
A1(t)B1(t)−A2(t)B2(t) +A†1(t)B

†
1(t)−A

†
2(t)B

†
2(t)
]
,

(25)

where we introduce two superoperators acting on the slow subspace and two superoperators

acting on the fast subspace

A1(t) ≡ e−Lat
(
a†2·
)
eLat,

A2(t) ≡ e−Lat
(
a2·
)
eLat,

B1(t) ≡ e−Lbt(b·)eLbt,

B2(t) ≡ e−Lbt
(
b†·
)
eLbt.

(26)

The explicit time dependences of B1(t) and B2(t) are given by Eq. (13) and Eq. (14), and

their conjugates are obtained from Eq. (4). Then

B1(t) = e−κbt(b·)

B†1(t) = e−κbt
(
·b†
)

B2(t) = eκbt
(
b†·
)

+
(
e−κbt − eκbt

) (
·b†
)

B†2(t) = eκbt(·b) +
(
e−κbt − eκbt

)
(b·).

(27)

Plugging Eq. (27) into Eq. (25), the expression for Lab(t)Lab(t′) appearing in Eq. (24) will

contain 36 contributions, coming from six terms for each factor.
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Many contributions vanish. Our strategy is to make B1,2(t) explicit, but leave A1,2 in

place. This is because, of the six terms of Lab(t′), when evaluating Lab(t′) |0〉b 〈0|b four will

vanish since either b will hit |0〉b or 〈0|b will hit b†. Then

Lab (t′) σ̄ (t′) (|0〉〈0|)b = −(g/2)eκbt
′
[
A2 (t′)

(
b†·
)

+A†2 (t′) (·b)
]
σ̄ (t′) (|0〉〈0|)b. (28)

Then there are only twelve contributions in Lab(t)Lab(t′) |0〉b 〈0|b

Lab(t)Lab (t′) σ̄ (t′) (|0〉〈0|)b

= −(g/2)2eκbt
′
{[
e−κbtA1(t)(b·)− eκbtA2(t)

(
b†·
)
− eκbtA†2(t)(·b)−

(
e−κbt − e−κbt

)
A†2(t)(b·)

]
A2 (t′)

(
b†·
)

+
[
−eκbtA2(t)

(
b†·
)
−
(
e−κbt − eκbt

)
A2(t)

(
·b†
)

+ e−κbtA†1(t)
(
·b†
)
− eκbtA†2(t)(·b)

]
A†2 (t′) (·b)

}
σ̄ (t′) (|0〉〈0|)b

= −(g/2)2
{
e−κb(t−t

′)
[(
A1(t)A2 (t′)−A†2(t)A2 (t′)

) (
bb†·
)

+ s.c.
]

−eκb(t+t′)
[
A2(t)A2 (t′)

(
b†2·
)

+A†2(t)A2 (t′)
((
b† · b

)
−
(
bb†·
))

+ s.c.
]}

σ̄ (t′) (|0〉〈0|)b,

(29)

where s.c. denotes superoperator conjugation according to Eq. (4). There are two types

of terms that survive in Eq. (29). However, the ones that diverge as a function of time

∝ eκb(t+t
′) vanish under trb.

For the remaining terms, the ones that decay in time ∝ e−κb(t+t
′), we perform an analogue

of the Markov approximation, assuming 1/κb is a timescale much faster than the timescale

of system evolution in A2(t
′), which justifies replacing

e−κb(t−t
′)A2 (t′) σ̄ (t′)→ 2κ−1b δ (t− t′)A2 (t′) σ̄ (t′) . (30)

Upon doing this the time integral becomes trivial, and we find from Eq. (24)

˙̄σ =
g2

4κb
e−Lat

[
2
(
a2 · a†2

)
−
(
a†2a2·

)
−
(
·a†2a2

)]
eLatσ̄. (31)

We can undo the interaction picture by writing the equation of motion for σ(t) = eLatσ(t),

which yields

σ̇ = Laσ +
g2

4κb

[
2
(
a2 · a†2

)
−
(
a†2a2·

)
−
(
·a†2a2

)]
σ, (32)

where we now appropriately see the two-photon dissipator appear.
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