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This lecture covers the derivation of the Lindblad master equation for a system coupled to

an environment. Minimal suggested reading H. Carmichael, Statistical Methods in Quantum

Optics, Volume 1, Chapter 1-2, and H. P. Breuer and F. Petruccione, The Theory of Open

Quantum Systems, Chapter 3.

I. INTRODUCING FRICTION IN A QUANTUM SYSTEM

A. Classical approach does not apply

This lecture is on modeling friction in a quantum mechanical setting. In this subsection we

show that in order to ensure consistency, additional degrees of freedom need to be introduced.

To do so, we begin, following Carmichael, with a simple harmonic oscillator of mass m and

frequency ω, whose Hamiltonian is

H =
p2

2m
+

1

2
mω2q2, (1)

where p, q are the momentum and position of the particle, respectively. The Hamilton

equations of motion, to which we ad hoc add a friction term proportional to the negative

momentum, are

q̇ = p/m, ṗ = −γp−mω2q, (2)

or, eliminating momentum,

q̈ + γq̇ + ω2q = 0. (3)
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In a quantum mechanical treatment, the coordinates obey the canonical commutation

relation,

[q̂, p̂] = i~, (4)

and the equations of motion above, without the friction term, are exactly the same for

operators in the Heisenberg picture (Heisenberg equations of motion). If we kept the fric-

tion term, we would obtain the following for the time derivative of the commutator of the

coordinates

d

dt
[q̂, p̂] = ˙̂qp̂+ q̂ ˙̂p− ˙̂pq̂ − p̂ ˙̂q.

= −γ[q̂, p̂]

(5)

That is, the commutator decays exponentially in time,

[q̂(t), p̂(t)] = e−γt[q̂(0), p̂(0)] = e−γti~, (6)

which would lead to the unexpected conclusion that the Heisenberg uncertainty constraint

also decays exponentially

∆q∆p ≥ 1

2
~e−γt. (7)

To remedy this difficulty, at least one additional degree of freedom needs to be added to

model the physics of friction, as we explain below.

B. Additional degree of freedom

To see the source of the additional degree of freedom, assume that, in addition to the

friction term appearing in the equations of motion, the particle is also subjected to a fluc-

tuating random force F (t). Then the second-order differential equation for position changes

to

q̈ + γq̇ + ω2q = F (t)/m. (8)

We may think of F (t) as being exerted by a large collection of degrees of freedom (the

environment), upon which the dynamics of the oscillator q(t) has no backaction (that is,

we are neglecting the effect of q(t) on the dynamical equations for F (t)). These degrees of
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freedom may be a separate collection of harmonic oscillators coupled weakly to the harmonic

degree of freedom described by the coordinates (q, p). These harmonic oscillators could be,

for example, in thermal equilibrium at some temperature T .

To understand how the addition of degrees of freedom can remedy the problem we raised

above, in the Hamiltonian operator the addition of a single new harmonic oscillator would

amount to

H = ~ωa†a+ ~ωb†b+ ~κ
(
a†b+ ab†

)
, (9)

where the canonical commutators hold[
a, a†

]
= 1,

[
b, b†

]
= 1. (10)

The Hamiltonian for a single oscillator

H = ~ω
(
a†a+

1

2

)
(11)

is related to the one before via

a ≡ 1√
2~mω

(mωq̂ + ip̂),

a† ≡ 1√
2~mω

(mωq̂ − ip̂).
(12)

Without the b degree of freedom, the problem encountered before translates to[
a, a†

]
= e−γt. (13)

However, in the presence of b, due to the linear coupling κ, and without the ad hoc addition

of friction, the Heisenberg equations of motion yield the result

a(t) = e−iωt[a(0) cosκt− ib(0) sinκt]

b(t) = e−iωt[b(0) cosκt− ia(0) sinκt]
(14)

which leads to a conservation of the commutator[
a(t), a†(t)

]
=
[
a(0), a†(0)

]
cos2 κt+

[
b(0), b†(0)

]
sin2 κt = 1. (15)

In the following we will extrapolate this idea for an arbitrary system coupled to an envi-

ronment. In Sec. II we will begin with a formal treatment of ‘bath degrees of freedom’

coupled to a system, but will soon give a microscopic model for the bath, which consists of

a collection of harmonic oscillators.
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II. MICROSCOPIC DERIVATION IN THE WEAK-COUPLING LIMIT

Following largely the notations of Breuer and Petruccione, we consider a system coupled

to a bath via an interaction Hamiltonian,

H = HS +HB +HI . (16)

In the interaction picture with respect to HS +HB, the von Neumann equation for the full

density matrix of the system is

d

dt
ρ(t) = −i [HI(t), ρ(t)] . (17)

That equation can be integrated to lead to the integral form

ρ(t) = ρ(0)− i
∫ t

0

ds [HI(s), ρ(s)] . (18)

We may plug the equation Eq. (18) into itself once, and take the trace with respect to the

bath degrees of freedom. Denoting ρS(t) = trB ρ(t), we have the exact equation

d

dt
ρS(t) = −

∫ t

0

ds trB [HI(t), [HI(s), ρ(s)]] , (19)

if we assume

trB [HI(t), ρ(0)] = 0. (20)

The first approximation that one makes is the Born approximation. This assumes that

the system and the bath are only weakly coupled, and therefore throughout the dynamics

there is no significant back-action of the system onto the bath, and therefore the density

matrix of the system+bath, ρ(t), remains in a tensor-product form

ρ(t) ≈ ρS(t)⊗ ρB, (21)

and, as assumed, with the reduced density matrix of the bath ρB time-independent. After

the Born approximation,

d

dt
ρS(t) = −

∫ t

0

ds trB [HI(t), [HI(s), ρS(s)⊗ ρB]] (22)

Furthermore, under the Markov approximation, we replace under the integral ρS(s) by ρS(t)

d

dt
ρS(t) = −

∫ t

0

ds trB [HI(t), [HI(s), ρS(t)⊗ ρB]] , (23)
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which amounts to enforcing the (Markov) condition that the time-evolution of the reduced

density matrix of the system ρS(t) only depends on its value at time t, and not upon its

past values at s < t. This is the Redfield equation.

To finish the Markov approximation, we replace s → t − s and change the integration

limit from t to∞. The first change is exact, since
∫ t
0
dsf(s) =

∫ t
0
dsf(t− s), and the second

change is valid insofar as the integrand decays sufficiently fast compared to bath correlation

times, i.e. for s� τB. The typical timescale of the integrand τR over which the state of the

system varies appreciably must then be large compared to τB. Reservoir correlations have

to decay fast. With these two steps done, we arrive at the Born-Markov master equation

d

dt
ρS(t) = −

∫ ∞
0

ds trB [HI(t), [HI(t− s), ρS(t)⊗ ρB]] . (24)

In the remainder of this section, we will introduce microscopic details in order to bring this

equation into Lindblad form.

We assume that the system-bath interaction takes the form

HI =
∑
α

Aα ⊗Bα, (25)

with the system operators A†α = Aα, and bath operators B†α = Bα being Hermitian. Note

that the bath operators can act on multiple bath Hilbert spaces α = 1, 2, 3, . . ., or on the

same Hilbert space. The former case is suited when we model multiple sources of noise,

such as charge noise and flux noise in a superconducting qubit. The latter case covers the

situation where the coupling between the system and some bath cannot be expressed as

a single tensor product of two operators. For concrete examples, see below in Sec. V the

treatment of a spin-1/2 and of a harmonic oscillator.

We next define the ‘collapse operator’ at frequency ω by

Aα(ω) ≡
∑

ε′−ε=ω

Π(ε)AαΠ (ε′) . (26)

The following hold

[HS, Aα(ω)] = −ωAα(ω),[
HS, A

†
α(ω)

]
= +ωA†α(ω),

(27)

which gives in the interaction picture chosen at the beginning of this section

eiHStAα(ω)e−iHSt = e−iωtAα(ω),

eiHStA†α(ω)e−iHSt = e+iωtA†α(ω).
(28)
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Moreover,

[
HS, A

†
α(ω)Aβ(ω)

]
= 0, (29)

and negative frequency collapse operators are merely the Hermitian conjugates of their

positive frequency counterparts

A†α(ω) = Aα(−ω). (30)

Resolution of identity
∑

ε Π(ε) = I leads to

∑
ω

Aα(ω) =
∑
ω

A†α(ω) = Aα, (31)

and, moreover, the Schrödinger picture interaction Hamiltonian is

HI =
∑
α,ω

Aα(ω)⊗Bα =
∑
α,ω

A†α(ω)⊗B†α. (32)

Putting these all together, the interaction-picture system-bath interaction Hamiltonian

appearing in the Born-Markov master equation Eq. (24) is

HI(t) =
∑
α,ω

e−iωtAα(ω)⊗Bα(t) =
∑
α,ω

e+iωtA†α(ω)⊗B†α(t), (33)

where

Bα(t) = eiHBtBαe
−iHBt. (34)

We assume that the bath operators have zero expectation value in the state ρB

〈Bα(t)〉 ≡ tr {Bα(t)ρB} = 0. (35)

With these assumptions, we can insert the microscopic form of the interaction Hamiltonian

Eq. (33) into the Born-Markov master equation Eq. (24) to get

d

dt
ρS(t) =

∫ ∞
0

ds trB {HI(t− s)ρS(t)ρBHI(t)−HI(t)HI(t− s)ρS(t)ρB}+ h.c.

=
∑
ω,ω′

∑
α,β

ei(ω
′−ω)tΓαβ(ω)

(
Aβ(ω)ρS(t)A†α (ω′)− A†α (ω′)Aβ(ω)ρS(t)

)
+ h.c.

(36)
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Above, we have defined

Γαβ(ω) ≡
∫ ∞
0

dseiωs
〈
B†α(t)Bβ(t− s)

〉
, (37)

and we need to introduce the two-time correlation function of the bath

〈
B†α(t)Bβ(t− s)

〉
≡ trB

{
B†α(t)Bβ(t− s)ρB

}
, (38)

which we assume to be time-translation invariant

〈
B†α(t)Bβ(t− s)

〉
=
〈
B†α(s)Bβ(0)

〉
. (39)

Under the third and final approximation, called secular approximation, we assume that

transitions of different frequencies occur at sufficiently distinct frequencies so that ei(ω
′−ω)t

oscillates fast and can be neglected unless ω′ = ω. This allows us to perform the sum over

ω′ and gives

d

dt
ρS(t) =

∑
ω

∑
α,β

Γαβ(ω)
(
Aβ(ω)ρS(t)A†α(ω)− A†α(ω)Aβ(ω)ρS(t)

)
+ h.c. , (40)

We may further define the real and imaginary parts of Γαβ(ω) as follows

Γαβ(ω) =
1

2
γαβ(ω) + iSαβ(ω), (41)

or equivalently

Sαβ(ω) =
1

2i

(
Γαβ(ω)− Γ∗βα(ω)

)
, (42)

and

γαβ(ω) = Γαβ(ω) + Γ∗βα(ω) =

∫ +∞

−∞
dseiωs

〈
B†α(s)Bβ(0)

〉
. (43)

Then the interaction picture Lindblad master equation is

d

dt
ρS(t) = −i [HLS, ρS(t)] +D (ρS(t)) , (44)

where the ‘Lamb-shift’ Hamiltonian is

HLS =
∑
ω

∑
α,β

Sαβ(ω)A†α(ω)Aβ(ω), (45)
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and has the property that it commutes with the system Hamiltonian

[HS, HLS] = 0. (46)

In Eq. (44) the dissipator part is given by

D (ρS) =
∑
ω

∑
α,β

γαβ(ω)

(
Aβ(ω)ρSA

†
α(ω)− 1

2

{
A†α(ω)Aβ(ω), ρS

})
. (47)

Provided that the matrix γαβ(ω) is positive and diagonalizable over the indices α, β,

Eq. (44) can be brought to the so-called Lindblad form

D (ρS) =
∑
ω

∑
α

γ̄α(ω)

(
Āα(ω)ρSĀ

†
α(ω)− 1

2

{
Ā†α(ω)Āα(ω), ρS

})
, (48)

where the new operators Āα(ω) are related to the old ones via the unitary matrix that

diagonalizes. Concretely, if the diagonal rate matrix is given by γ̄α(ω)δαβ ≡ γ̄αβ(ω)

where γ̄αβ(ω) =
∑

µν Uαµγµν(ω)(U †)νβ =
∑

µν UαµU
∗
βνγµν(ω), and equivalently γαβ(ω) =∑

µν(U
†)αµγ̄µν(ω)Uνβ =

∑
µν U

∗
µαUνβγ̄µν(ω), we plug in this latter form for γαβ(ω) into

Eq. (47)

D (ρS) =
∑
ω

∑
α,β

γαβ(ω)

(
Aβ(ω)ρSA

†
α(ω)− 1

2

{
A†α(ω)Aβ(ω), ρS

})
=
∑
ω

∑
α,β

∑
µ,ν

γ̄µν(ω)U∗µαUνβ

(
Aβ(ω)ρSA

†
α(ω)− 1

2

{
A†α(ω)Aβ(ω), ρS

})
=
∑
ω

∑
µ,ν

γ̄µν(ω)

(
Āµ(ω)ρSĀ

†
ν(ω)− 1

2

{
Ā†ν(ω)Āµ(ω), ρS

})
=
∑
ω

∑
µ,ν

γ̄µ(ω)

(
Āµ(ω)ρSĀ

†
µ(ω)− 1

2

{
Ā†µ(ω)Āµ(ω), ρS

})
≡
∑
ω

∑
µ

γ̄µ(ω)D[Āµ(ω)]ρS(t),

(49)

where we have used the fact that the parenthesis is linear in both Aβ(ω) and in A†α(ω)

and the replacement Āµ(ω) ≡
∑

α UµαAα(ω), and we have introduced the definition of the

dissipator superoperator

D[O]ρ = OρO† − 1

2
{O†O, ρ}. (50)

That the quantities γαβ(ω) > 0 is a reasonable requirement. One can put this on firmer

footing by imposing conditions on the time dependence of the two-point correlation function
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〈Bα(t)†Bβ(0)〉 (see Breuer and Petruccione, page 136). The Lindblad form can be shown

to be completely positive and trace-preserving (CPTP). The first property includes the fact

that the action of the dissipator retains the positivity of the density matrix. The second

property, which is immediate from the form of Eq. (44) (exercise), means that under the

Lindblad master equation the trace of the reduced density matrix ρS(t) remains unity, i.e.

d
dt

trS{ρS(t)} = 0. Further details on this can be found in Chapters 2, 3 of Breuer and

Petruccione.

From Eq. (44), the Schrödinger picture master equation is easy to obtain with the only

modification that now the unitary dynamics is generated by HS + HLS, that is, Eq. (44) is

replaced by

d

dt
ρS(t) = −i [HS +HLS, ρS(t)] +D (ρS(t)) , (51)

with now ρS(t) the Schrödinger-picture reduced density matrix for the system.

III. BOSONIC BATH

In this section we give formulas for various bath correlation functions in the specific

example of a bosonic bath. To this end, we consider

B =
∑
l

gl(bl + b†l ),

[bl, b
†
m] =δlm,

HB =
∑
l

~ωlb†l bl.

(52)

In circuit quantum electrodynamics, for example, the bosonic modes annihilated by opera-

tors bl can be thought of as the normal modes of a transmission line. The interaction-picture

form of the above, with respect to HS +HB, whatever form HS takes, is

B(t) =
∑
l

gl(ble
−iωlt + b†l e

iωlt). (53)

Then the unilateral spectral function is

Γ(ω) =

∫ ∞
0

dseiωs
〈
B†(s)B(0)

〉
=

∫ ∞
0

dseiωs

〈[∑
l

gl(ble
−iωls + b†l e

iωls)

][∑
m

gm(bm + b†m)

]〉
.

(54)
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Since 〈. . .〉 = TrB{ρB . . .} = TrB{e−βHB ...}
TrB{e−βHB }

, and since HB is diagonal in the bosonic normal

mode basis with annihilation operators {bl|l = 1, 2, . . .}, we have 〈b†l bm〉 ∝ δlm, and 〈blbm〉 =

〈b†l b†m〉 = 0.

Γ(ω) =

∫ ∞
0

dseiωs

〈∑
l

g2l (blb
†
l e
−iωls + b†l ble

iωls)

〉

=

∫ ∞
0

dseiωs
∑
l

g2l (〈blb
†
l 〉e
−iωls + 〈b†l bl〉e

iωls)

=
∑
l

g2l 〈blb
†
l 〉
∫ ∞
0

dsei(ω−ωl)s +
∑
l

g2l 〈b
†
l bl〉

∫ ∞
0

dsei(ω+ωl)s

(55)

Using

〈b†l bl〉 = nB(ωl) =
1

eβ~ωl − 1
, 〈blb†l 〉 = 1 + nB(ωl). (56)

and Sokhotski-Plemelj ∫ ∞
0

dse−i(ω±ν)s = πδ(ω ± ν)− iP
(

1

ω ± ν

)
(57)

we have

Γ(ω) =
∑
l

g2l [1 + nB(ωl)]

[
πδ(ω − ωl) + iP

(
1

ω − ωl

)]
+
∑
l

g2l nB(ωl)

[
πδ(ω + ωl) + iP

(
1

ω + ωl

)] (58)

and therefore the real part of the above is

1

2π
γ(ω) =

∑
l

g2l [1 + nB(ωl)] δ(ω − ωl) +
∑
l

g2l nB(ωl)δ(ω + ωl), (59)

and its imaginary part

S(ω) =
∑
l

g2l [1 + nB(ωl)]P
(

1

ω − ωl

)
+
∑
l

g2l nB(ωl)P
(

1

ω + ωl

)
. (60)

If we distinguish between positive and negative frequencies, assuming bath modes all

have positive frequency ωl ≥ 0, then

1

2π
γ(ω ≥ 0) =

∑
l

g2l [1 + nB(ωl)] δ(ω − ωl),

1

2π
γ(ω < 0) =

∑
l

g2l nB(ωl)δ(ω + ωl).
(61)
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Taking the zero-temperature limit T → 0 equivalently β → ∞, only relaxation can occur,

i.e.

1

2π
γ(ω ≥ 0)

∣∣∣∣
β→∞

=
∑
l

g2l δ(ω − ωl) ≡
1

2π
J(ω),

1

2π
γ(ω < 0)

∣∣∣∣
β→∞

=0,

(62)

where we have defined the zero-temperature bath spectral function in the spirit of Caldeira

and Leggett [A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983)]. We can recast

the nonzero-temperature result in terms of the zero-temperature spectral function as follows

γ(ω) =Θ(ω) [1 + nB(ω)] J(ω) + Θ(−ω)nB(|ω|)J(|ω|)

= [Θ(ω) + nB(|ω|)] J(|ω|).
(63)

With this form, we can check detailed balance for all ω > 0

γ(ω) = γ(−ω)
1 + nB(ω)

nB(ω)
= eβωγ(−ω). (64)

We can define the bilateral power spectral density for B(t)

SBB(ω) =

∫ ∞
−∞

dseiωs〈B†(s)B(0)〉 =

∫ ∞
−∞

dseiωs〈B(s)B(0)〉 = γ(ω), (65)

as can be shown by changing variable s→ −s in the integral
∫ 0

−∞.

IV. FINITE-TEMPERATURE STEADY-STATE

If the bath is in a thermal state with inverse temperature β = 1/kBT , with kB the

Boltzmann constant, i.e. ρB = e−βHB/trB(e−βHB) then we expect under the Lindblad master

equation Eq. (44) that the system will have a unique Gibbs steady state

ρth =
exp (−βHS)

trS exp (−βHS)
. (66)

That is, under certain conditions detailed below, for any initial state ρS(t = 0), we have a

unique steady state

ρS(t) −→ ρth, for t −→ +∞. (67)
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For that to be the case, one imposes the KMS (Kubo-Martin-Schwinger) condition on

the correlation functions of the bath, which reads

〈
B†α(t)Bβ(0)

〉
=
〈
Bβ(0)B†α(t+ iβ)

〉
. (68)

The KMS condition holds for the canonical ensemble equilibrium density matrix for the bath

ρB =
exp (−βHB)

trB exp (−βHB)
. (69)

The proof is immediate using Eq. (69), Eq. (34), and the cyclic property of the trace (with

respect to bath degrees of freedom)

〈
B†α(t)Bβ(0)

〉
= tr{e−βHBeiHBtB†αe−iHBtBβ} = tr{e−βHBeiHBtB†αe−iHBteβHBe−βHBBβ}

= tr{eiHB(t+iβ)B†αe
−iHB(t+iβ)e−βHBBβ} = tr{B†α(t+ iβ)e−βHBBβ}

= tr{e−βHBBβ(0)B†α(t+ iβ)} =
〈
Bβ(0)B†α(t+ iβ)

〉
.

(70)

If the KMS condition Eq. (68) holds, then via Eq. (43) we have

γαβ(−ω) = exp(−βω)γβα(ω). (71)

Moreover, using Eq. (27) we can prove, by analogy with Eq. (28), that

ρthAα(ω) = eβωAα(ω)ρth,

ρthA
†
α(ω) = e−βωA†α(ω)ρth.

(72)

To prove that Eq. (66) is a steady state of Eq. (44), simply plug in ρS(t)→ ρth on the right-

hand side of Eq. (44). Since the system Hamiltonian and the Lamb shift commute according

to Eq. (66), it follows that also [HLS, ρth] = 0, and hence the first term of the right-hand

side of Eq. (44) vanishes. We just need to ensure that second term on the right-hand side,
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the dissipator term, also vanishes

D (ρth) =
∑
ω

∑
α,β

γαβ(ω)

(
Aβ(ω)ρthA

†
α(ω)− 1

2

{
A†α(ω)Aβ(ω), ρth

})
=
∑
ω

∑
α,β

γαβ(ω)

(
e−βωAβ(ω)A†α(ω)ρth −

1

2
A†α(ω)Aβ(ω)ρth −

1

2
ρthA

†
α(ω)Aβ(ω)

)
=
∑
ω

∑
α,β

γαβ(ω)

(
e−βωAβ(ω)A†α(ω)− 1

2
A†α(ω)Aβ(ω)− 1

2
A†α(ω)Aβ(ω)

)
ρth

=
∑
ω

∑
α,β

γαβ(ω)
(
e−βωAβ(ω)A†α(ω)− A†α(ω)Aβ(ω)

)
ρth

=
∑
ω

∑
α,β

γαβ(ω)
(
e−βωAβ(ω)A†α(ω)− A†α(ω)Aβ(ω)

)
ρth

=
∑
ω

∑
α,β

γαβ(ω)e−βωAβ(ω)A†α(ω)ρth −
∑
ω

∑
α,β

γαβ(−ω)Aα(ω)A†β(ω)ρth

=
∑
ω

∑
α,β

γαβ(ω)e−βωAβ(ω)A†α(ω)ρth −
∑
ω

∑
α,β

γβα(ω)e−βωAα(ω)A†β(ω)ρth = 0.

(73)

In the first to last row, we changed ω → −ω everywhere in the sum and used the property

Eq. (30) of collapse operators, together with Eq. (71). This completes the proof that ρth is a

steady state of Eq. (44). It is also trivially a steady state for the Lindblad master equation

in the Schrödinger picture Eq. (51), since [HS, ρth] = 0.

If the spectrum of the system Hamiltonian HS is nondegenerate with energies εm corre-

sponding to eigenkets |n〉, then we can define the population of state |n〉 as a function of

time as follows

P (n, t) = 〈n |ρS(t)|n〉 (74)

Then immediately the Lindblad master equation implies the following rate equations

d

dt
P (n, t) =

∑
m

[W (n | m)P (m, t)−W (m | n)P (n, t)], (75)

with

W (n | m) =
∑
α,β

γαβ (εm − εn) 〈m |Aα|n〉 〈n |Aβ|m〉 . (76)

This latter equation is consistent with Fermi’s Golden Rule introduced above in the context

of time-dependent perturbation theory. The form of the master equation presented in this
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subsection involves only the diagonal elements of the density matrix. The rates of transition

satisfy detailed balance,

W (m | n) exp (−βεn) = W (n | m) exp (−βεm) , (77)

from which the steady state populations can be easily obtained to correspond to those of

the Gibbs state introduced above in Eq. (67)

Ps(n) = const × exp (−βεn) . (78)

V. EXAMPLES

In this section we will cover a couple of concrete examples of the more formal derivation

above. Carmichael (see abstract for reference) opts to derive these equations first. We

have taken above the approach of Breuer and Petruccione, and use the general form of the

Lindblad master equation to then derive particular cases.

A. Simple harmonic oscillator

The hamiltonian of a simple harmonic oscillator is given by

HS =~ωaa†a,

A =(a+ a†),
(79)

with the second line containing the system operator that couples to a bath (bosonic or

otherwise). The eigenspectrum of the Hamiltonian is given by

En = n~ωa, |n〉 =
(a†)n√
n!
|0〉 . (80)

For convenience, set ~ = 1 hereafter.

Recall the definition of the collapse operator at frequency ω

A(ω) =
∑
ε′−ε=ω

Π(ε)(a+ a†)Π(ε′). (81)
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For the case of the harmonic oscillator, the summand is nonzero whenever the states at ε

and ε′ differ by one excitation only, that is ε′ − ε = ±ωa.

A(ωa) =
∑
n≥0

|n〉 〈n| (a+ a†) |n+ 1〉 〈n+ 1| =
∑
n≥0

√
n+ 1 |n〉 〈n+ 1| = a,

A(−ωa) =
∑
n≥0

|n+ 1〉 〈n+ 1| (a+ a†) |n〉 〈n| =
∑
n≥0

√
n+ 1 |n+ 1〉 〈n| = a†.

(82)

Then the dissipator part of the Lindblad master equation reads

D (ρS) =γ(ωa)

(
A(ωa)ρSA(ωa)

† − 1

2

{
A(ωa)

†A(ωa), ρS
})

+ γ(−ωa)
(
A(ωa)

†ρSA(ωa)−
1

2

{
A(ωa)A(ωa)

†, ρS
})

=γ(ωa)

(
aρSa

† − 1

2

{
a†a, ρS

})
+ γ(−ωa)

(
a†ρSa−

1

2

{
aa†, ρS

})
(83)

The Lamb shift contribution is a frequency shift of the oscillator

HLS =
∑
ω

∑
α,β

Sαβ(ω)A†α(ω)Aβ(ω)

=S(ωa)a
†a+ S(−ωa)aa†

=[S(ωa) + S(−ωa)]a†a+ const.

(84)

Putting these two together, the full master equation in the lab frame is

d

dt
ρS(t) = −i

[
ω′aa

†a, ρS(t)
]

+ γ(ωa)D[a]ρS(t) + γ(−ωa)D[a†]ρS(t), (85)

where we have included the Lamb shift in ω′a = ωa + S(ωa) + S(−ωa), and introduced the

dissipator superoperator

D[O]ρ = OρO† − 1

2
{O†O, ρ}. (86)

B. Spin-1/2

The treatment of the spin-1/2 follows along the same lines, with system Hamiltonian and

operators coupling to baths

HS =
1

2
~ω01σz,

A1 = σx = σ+ + σ−,

Aϕ = σz.

(87)
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We have set ω01 is the positive transition frequency of the qubit. We also consider that the

system couples to two different baths, one for spin relaxation via the operator A1 and one

primarily responsible for dephasing via the operator Aϕ. To be concrete, we may imagine

the following system-bath Hamiltonian in the laboratory frame

HI =
∑
l

g1,lA1 ⊗ (b†1,l + b1,l) +
∑
l

gϕ,lAϕ ⊗ (b†ϕ,l + bϕ,l), (88)

corresponding to two bosonic baths each described by HB,α =
∑

l ωα,lb
†
α,lbα,l with α = 1, ϕ.

However the content of the bath need not be specified, and more generally we could have in

the laboratory frame

HI = Aα ⊗Bα, (89)

as specified before, with α = 1, ϕ.

We are interested in the possible transitions in the system spectrum, and these are given

by the nonzero collapse operators

A1(ω01) =
∑

ε′−ε=ω01

Π(ε)(σ+ + σ−)Π(ε′) = |↓〉 〈↑| = σ−,

A1(−ω01) =σ+,

Aϕ(0) =
∑
ε′−ε=0

Π(ε)σzΠ(ε′) = σz,

(90)

With these, the Lindblad master equation (neglecting the Lamb shift) is

d

dt
ρS(t) = −i

[
1

2
ω01σz, ρS(t)

]
+ γ1(ω01)D[σ−]ρS(t) + γ1(−ω01)D[σ+]ρS(t) + γϕ(0)D[σz]ρS(t),

(91)

assuming no cross-correlation between the two baths, where γα(ω) = SBαBα(ω), the bilateral

power spectral density of the bath corresponding to α = 1, ϕ, as defined above in Eq. (65).

Notice how, by virtue of the operators chosen to each bath, there are two separate effects.

The fluctuations of the operators in the bath ϕ can only act upon the system via a dissipator

D[σz], and vice-versa, the fluctuations of operators in bath 1 can only induce relaxation or

excitation of the two-level system. We will fix these notions in the problem set as we show

the correspondence between Eq. (91) and the Bloch equations for a spin-1/2.
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