Mathematical methods for modeling and control of open quantum systems¹

Mazyar Mirrahimi², Pierre Rouchon³, Alain Sarlette⁴

December 9, 2021

¹Lecture-notes, slides and Matlab simulation scripts available at: http://cas.ensmp.fr/~rouchon/LIASFMA/index.html

²Inria-Paris ³Mines Paris ⁴Inria-Paris

Outline

- 1 Two kinds of feedback
- 2 Damped harmonic oscillator (low-Q mode)
 - Classical low-Q mode
 - Quantum low-Q mode
 - Wigner representation
- 3 Dynamical model reduction and adiabatic elimination
 - Model reduction and geometric singular perturbations

(日) (日) (日) (日) (日) (日) (日)

- Adiabatic elimination for bipartite quantum systems
- 4 Super-conducting circuit stabilizing a cat-qubit
 - First order RWA
 - Adiabatic elimination of the low-Q mode
 - Numerical simulations
- 5 Conclusion of these lectures

Outline

1 Two kinds of feedback

- 2 Damped harmonic oscillator (low-Q mode)
 - Classical low-Q mode
 - Quantum low-Q mode
 - Wigner representation
- 3 Dynamical model reduction and adiabatic elimination
 Model reduction and geometric singular perturbations
 Adiabatic elimination for bipartite quantum systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 4 Super-conducting circuit stabilizing a cat-qubit
 - First order RWA
 - Adiabatic elimination of the low-Q mode
 - Numerical simulations
- 5 Conclusion of these lectures

Two kinds of quantum feedback

Measurement-based feedback: controller is classical; measurement back-action on the quantum system of Hilbert space \mathcal{H} is stochastic (collapse of the wave-packet); the measured output *y* is a classical signal; the control input *u* is a classical variable appearing in some controlled Schrödinger equation; u(t) depends on the past measurements $y(\tau), \tau \leq t$.

Coherent/autonomous feedback and reservoir engineering: the system of Hilbert space \mathcal{H} is coupled to the controller, another quantum system; the composite system of Hilbert space $\mathcal{H}_{controller} \otimes \mathcal{H}$, is an openquantum system relaxing to some target (separable) state. Origin of such relaxation behaviors in open quantum systems: optical pumping of Alfred Kastler, physics Nobel prize 1966.

Watt regulator: classical analogue of quantum coherent feedback. 5

The first variations of speed $\delta \omega$ and governor angle $\delta \theta$ obey to

$$\frac{d}{dt}\delta\omega = -a\delta\theta$$
$$\frac{d^2}{dt^2}\delta\theta = -\Lambda\frac{d}{dt}\delta\theta - \Omega^2(\delta\theta - b\delta\omega)$$

with (a, b, Λ, Ω) positive parameters.

$$\frac{d^3}{dt^3}\delta\omega + \Lambda \frac{d^2}{dt^2}\delta\omega + \Omega^2 \frac{d}{dt}\delta\omega + ab\Omega^2\delta\omega = 0.$$

Characteristic polynomial $P(s) = s^3 + \Lambda s^2 + \Omega^2 s + ab\Omega^2$ with roots having negative real parts iff $\Lambda > ab$: governor damping must be strong enough to ensure asymptotic stability.

Key issues: asymptotic stability and convergence rates.

⁵J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.

 $H = H_{res} + H_{int} + H$

If $\rho_{\substack{t\to\infty\\t\to\infty}} \rho_{res} \otimes |\bar{\psi}\rangle \langle \bar{\psi}|$ exponentially on a time scale of $\tau > 0$ then

⁶See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique des Houches", July 2011.

$$H = H_{\text{res}} + H_{\text{int}} + H$$
$$\dots \qquad \rho_{t \to \infty} \rho_{\text{res}} \otimes |\bar{\psi}\rangle \langle \bar{\psi}| + \bar{\delta\rho}, \text{ if } \tau\gamma \ll 1 \text{ then } |\bar{\delta\rho}| \ll 1$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Convergence issues of open-quantum systems

Continuous-time models: Lindbald master eq. (quantum Fokker-Planck eq.):

$$\frac{d}{dt}\rho = -\mathcal{A}(\rho) \triangleq -\frac{i}{\hbar}[\boldsymbol{H},\rho] + \sum_{\nu} \left(\boldsymbol{L}_{\nu}\rho\boldsymbol{L}_{\nu}^{\dagger} - (\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu}\rho + \rho\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu})/2 \right),$$

of state ρ a density operator (Hermitian, non negative, trace-class, trace one) with **H** Hermitian operator and L_{ν} arbitrary operators (usually unbounded).

When \mathcal{H} is of finite dimension, $(e^{-t\mathcal{A}})_{t\geq 0}$ is a contraction semi-group for many metrics $(\text{Tr}(|\rho - \sigma|), \text{Tr}(\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}})$, see the work of D. Petz). Open issues motivated by robust quantum information processing:

- 1 characterization of the Ω -limit support of ρ : decoherence free spaces are affine spaces where the dynamics are of Schrödinger types; they can be reduced to a point (pointer-state);
- 2 Estimation of convergence rate and robustness.
- 3 Reservoir engineering: design of realistic *H* and L_{ν} to achieve rapid convergence towards prescribed affine spaces (protection against decoherence).

Lecture goal: cat-qubits and autonomous QEC of bit-flips⁷

⁷R. Lescanne, ..., M. Mirrahimi, M. and Z. Leghtas: Exponential suppression of bit-flips in a qubit encoded in an oscillator. 2020, Nat. Phys., Vol. 16, p. 509-513.

Outline

1 Two kinds of feedback

- 2 Damped harmonic oscillator (low-Q mode)
 - Classical low-Q mode
 - Quantum low-Q mode
 - Wigner representation
- 3 Dynamical model reduction and adiabatic elimination
 Model reduction and geometric singular perturbations
 Adiabatic elimination for bipartite quantum systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 4 Super-conducting circuit stabilizing a cat-qubit
 - First order RWA
 - Adiabatic elimination of the low-Q mode
 - Numerical simulations
- 5 Conclusion of these lectures

The driven and damped classical oscillator

Dynamics in the (x', p') phase plane with $\omega \gg \kappa$, $\sqrt{u_1^2 + u_2^2}$:

$$\frac{d}{dt}x' = \omega p', \quad \frac{d}{dt}p' = -\omega x' - \kappa p' - 2u_1 \sin(\omega t) + 2u_2 \cos(\omega t)$$

Define the frame rotating at ω by $(x', p') \mapsto (x, p)$ with

$$x' = \cos(\omega t)x + \sin(\omega t)p, \quad p' = -\sin(\omega t)x + \cos(\omega t)p.$$

Removing highly oscillating terms (rotating wave approximation), from

$$\frac{d}{dt}x = -\kappa \sin^2(\omega t)x + 2u_1 \sin^2(\omega t) + (\kappa p - 2u_2)\sin(\omega t)\cos(\omega t)$$
$$\frac{d}{dt}p = -\kappa \cos^2(\omega t)p + 2u_2\cos^2(\omega t) + (\kappa x - 2u_1)\sin(\omega t)\cos(\omega t)$$

we get, with $\alpha = x + ip$ and $u = u_1 + iu_2$:

$$\frac{d}{dt}\alpha = -\frac{\kappa}{2}\alpha + u.$$

With $x' + ip' = \alpha' = e^{-i\omega t}\alpha$, we have $\frac{d}{dt}\alpha' = -(\frac{\kappa}{2} + i\omega)\alpha' + ue^{-i\omega t}$

Driven and damped quantum oscillator

The Lindblad master equation (quantum analogue of $\frac{d}{dt}\alpha = -\frac{\kappa}{2}\alpha + u$ with $\alpha = \text{Tr}(\boldsymbol{a}\rho)$):

$$\frac{d}{dt}\boldsymbol{\rho} = [\boldsymbol{u}\boldsymbol{a}^{\dagger} - \boldsymbol{u}^{*}\boldsymbol{a}, \boldsymbol{\rho}] + \kappa \left(\boldsymbol{a}\boldsymbol{\rho}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\boldsymbol{a}\right).$$

Consider ρ = D_αξD_{-α} with α = 2u/κ and D_α = e^{αa[†]-α*a}. We get

$$\frac{d}{dt}\xi = \kappa \left(\boldsymbol{a}\xi \boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\xi - \frac{1}{2}\xi \boldsymbol{a}^{\dagger}\boldsymbol{a} \right)$$

since $\boldsymbol{D}_{-\overline{\alpha}}\boldsymbol{a}\boldsymbol{D}_{\overline{\alpha}} = \boldsymbol{a} + \overline{\alpha}$.

Informal convergence proof with the strict Lyapunov function $V(\xi) = \text{Tr}(\xi \mathbf{N})$:

$$\frac{d}{dt}V(\xi) = -\kappa V(\xi) \Rightarrow V(\xi(t)) = V(\xi_0)e^{-\kappa t}.$$

Since $\xi(t)$ is Hermitian and non-negative, $\xi(t)$ tends to $|0\rangle\langle 0|$ when $t \mapsto +\infty$.

Theorem

Consider with $u \in \mathbb{C}$, $\kappa > 0$, the following Cauchy problem

$$\frac{d}{dt}\boldsymbol{\rho} = \left[u\boldsymbol{a}^{\dagger} - u^{*}\boldsymbol{a}, \boldsymbol{\rho}\right] + \kappa \left(\boldsymbol{a}\boldsymbol{\rho}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\boldsymbol{a}\right), \quad \boldsymbol{\rho}(0) = \boldsymbol{\rho}_{0}.$$

Assume that the initial state ρ_0 is a density operator with finite energy $\operatorname{Tr}(\rho_0 \mathbf{N}) < +\infty$. Then exists a unique solution to the Cauchy problem in the Banach space $\mathcal{K}^1(\mathcal{H})$, the set of trace class operators on \mathcal{H} . It is defined for all t > 0 with $\rho(t)$ a density operator (Hermitian, non-negative and trace-class) that remains in the domain of the Lindblad super-operator

$$\boldsymbol{\rho} \mapsto [\boldsymbol{u}\boldsymbol{a}^{\dagger} - \boldsymbol{u}^{*}\boldsymbol{a}, \boldsymbol{\rho}] + \kappa \left(\boldsymbol{a}\boldsymbol{\rho}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\boldsymbol{a}\right).$$

This means that $t \mapsto \rho(t)$ is differentiable in the Banach space $\mathcal{K}^1(\mathcal{H})$. Moreover $\rho(t)$ converges for the trace-norm towards $|\overline{\alpha}\rangle\langle\overline{\alpha}|$ when t tends to $+\infty$, where $|\overline{\alpha}\rangle$ is the coherent state of complex amplitude $\overline{\alpha} = \frac{2u}{\kappa}$.

Lemma

Consider with $u \in \mathbb{C}$, $\kappa > 0$, the following Cauchy problem

$$\frac{d}{dt}\boldsymbol{\rho} = \left[u\boldsymbol{a}^{\dagger} - u^{*}\boldsymbol{a}, \boldsymbol{\rho}\right] + \kappa \left(\boldsymbol{a}\boldsymbol{\rho}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\boldsymbol{a}\right), \quad \boldsymbol{\rho}(0) = \boldsymbol{\rho}_{0}.$$

1 for any initial density operator ρ_0 with $\operatorname{Tr}(\rho_0 \mathbf{N}) < +\infty$, we have $\frac{d}{dt}\alpha = -\frac{\kappa}{2}(\alpha - \overline{\alpha})$ where $\alpha = \operatorname{Tr}(\rho \mathbf{a})$ and $\overline{\alpha} = \frac{2u}{\kappa}$.

 2 Assume that ρ₀ = |β₀⟩⟨β₀| where β₀ is some complex amplitude. Then for all t ≥ 0, ρ(t) = |β(t)⟩⟨β(t)| remains a coherent state of amplitude β(t) solution of the following equation: ^d/_{dt}β = -^κ/₂(β - ᾱ) with β(0) = β₀.

Statement 2 relies on:

$$\boldsymbol{a}|\beta\rangle = \beta|\beta\rangle, \quad |\beta\rangle = \boldsymbol{e}^{-\frac{\beta\beta^*}{2}} \boldsymbol{e}^{\beta\boldsymbol{a}^{\dagger}}|\boldsymbol{0}\rangle \quad \frac{d}{dt}|\beta\rangle = \left(-\frac{1}{2}(\beta^*\dot{\beta} + \beta\dot{\beta}^*) + \dot{\beta}\boldsymbol{a}^{\dagger}\right)|\beta\rangle.$$

(日) (日) (日) (日) (日) (日) (日)

Parameters $\omega \gg \kappa$, |u| and $n_{\text{th}} \ge 0$:

$$\begin{aligned} \frac{d}{dt}\rho &= [u\boldsymbol{a}^{\dagger} - u^{*}\boldsymbol{a},\rho] + (1+n_{\text{th}})\kappa \left(\boldsymbol{a}\rho\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\rho - \frac{1}{2}\rho\boldsymbol{a}^{\dagger}\boldsymbol{a}\right) \\ &+ n_{\text{th}}\kappa \left(\boldsymbol{a}^{\dagger}\rho\boldsymbol{a} - \frac{1}{2}\boldsymbol{a}\boldsymbol{a}^{\dagger}\rho - \frac{1}{2}\rho\boldsymbol{a}\boldsymbol{a}^{\dagger}\right).\end{aligned}$$

Key issue: $\lim_{t \to +\infty} \rho(t) =$?.

The passage to another representation via the Wigner function:

Since D_αe^{iπN}D_{-α} bounded and Hermitian operator (the dual of K¹(H) is B(H)),

$$W^{\{\rho\}}(x,\rho) = \frac{2}{\pi} \operatorname{Tr} \left(\rho \boldsymbol{D}_{\alpha} \boldsymbol{e}^{i\pi \boldsymbol{N}} \boldsymbol{D}_{-\alpha} \right) \quad \text{with} \quad \alpha = x + i \rho \in \mathbb{C},$$

defines a real and bounded function $|W^{\{\rho\}}(x,\rho)| \leq \frac{2}{\pi}$.

For a coherent state $\rho = |\beta\rangle\langle\beta|$ with $\beta \in \mathbb{C}$:

$$W^{\{|\beta\rangle\langle\beta|\}}(x,p) = \frac{2}{\pi}e^{-2|\beta-(x+ip)|^2}.$$

(日) (日) (日) (日) (日) (日) (日)

With
$$\mathbf{D}_{\alpha} = e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^* \mathbf{a}} e^{-\alpha \alpha^*/2} = e^{-\alpha^* \mathbf{a}} e^{\alpha \mathbf{a}^{\dagger}} e^{\alpha \alpha^*/2}$$
 we have:

$$\frac{\pi}{2} W^{\{\rho\}}(\alpha, \alpha^*) = \operatorname{Tr}\left(\rho e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^* \mathbf{a}} e^{i\pi \mathbf{N}} e^{\alpha^* \mathbf{a}} e^{-\alpha \mathbf{a}^{\dagger}}\right)$$

where α and α^* are seen as independent variables:

$$\begin{split} \frac{\partial}{\partial \alpha} &= \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial \rho} \right), \quad \frac{\partial}{\partial \alpha^*} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial \rho} \right) \\ \text{We have } \frac{\pi}{2} \frac{\partial}{\partial \alpha} W^{\{\rho\}}(\alpha, \alpha^*) &= \text{Tr} \left((\rho \boldsymbol{a}^{\dagger} - \boldsymbol{a}^{\dagger} \rho) \boldsymbol{D}_{\alpha} e^{i\pi \boldsymbol{N}} \boldsymbol{D}_{-\alpha} \right) \text{ Since } \\ \boldsymbol{a}^{\dagger} \boldsymbol{D}_{\alpha} e^{i\pi \boldsymbol{N}} \boldsymbol{D}_{-\alpha} &= \boldsymbol{D}_{\alpha} e^{i\pi \boldsymbol{N}} \boldsymbol{D}_{-\alpha} (2\alpha^* - \boldsymbol{a}^{\dagger}), \text{ we get } \\ \frac{\partial}{\partial \alpha} W^{\{\rho\}}(\alpha, \alpha^*) &= 2\alpha^* W^{\{\rho\}}(\alpha, \alpha^*) - 2W^{\{\boldsymbol{a}^{\dagger} \rho\}}(\alpha, \alpha^*) \\ \text{Thus } W^{\{\boldsymbol{a}^{\dagger} \rho\}}(\alpha, \alpha^*) &= \alpha^* W^{\{\rho\}}(\alpha, \alpha^*) - \frac{1}{2} \frac{\partial}{\partial \alpha} W^{\{\rho\}}(\alpha, \alpha^*), \text{ i.e. } \\ W^{\{\boldsymbol{a}^{\dagger} \rho\}} &= \left(\alpha^* - \frac{1}{2} \frac{\partial}{\partial \alpha} \right) W^{\{\rho\}}. \end{split}$$

⁸See the excellent Wikipedia article:

 a^{\dagger}

https://en.wikipedia.org/wiki/Wigner_quasiprobability_distribution < (~

Similar computations yield to the following correspondence rules:

$$\begin{split} \boldsymbol{W}^{\{\boldsymbol{\rho}\boldsymbol{a}\}} &= \left(\alpha - \frac{1}{2}\frac{\partial}{\partial\alpha^*}\right)\boldsymbol{W}^{\{\boldsymbol{\rho}\}}, \quad \boldsymbol{W}^{\{\boldsymbol{a}\boldsymbol{\rho}\}} = \left(\alpha + \frac{1}{2}\frac{\partial}{\partial\alpha^*}\right)\boldsymbol{W}^{\{\boldsymbol{\rho}\}}\\ \boldsymbol{W}^{\{\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\}} &= \left(\alpha^* + \frac{1}{2}\frac{\partial}{\partial\alpha}\right)\boldsymbol{W}^{\{\boldsymbol{\rho}\}}, \quad \boldsymbol{W}^{\{\boldsymbol{a}^{\dagger}\boldsymbol{\rho}\}} = \left(\alpha^* - \frac{1}{2}\frac{\partial}{\partial\alpha}\right)\boldsymbol{W}^{\{\boldsymbol{\rho}\}}. \end{split}$$

Thus

$$\begin{aligned} \frac{d}{dt}\rho &= [u\boldsymbol{a}^{\dagger} - u^{*}\boldsymbol{a}, \rho] + (1 + n_{\text{th}})\kappa \left(\boldsymbol{a}\rho\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\rho - \frac{1}{2}\rho\boldsymbol{a}^{\dagger}\boldsymbol{a}\right) \\ &+ n_{\text{th}}\kappa \left(\boldsymbol{a}^{\dagger}\rho\boldsymbol{a} - \frac{1}{2}\boldsymbol{a}\boldsymbol{a}^{\dagger}\rho - \frac{1}{2}\rho\boldsymbol{a}\boldsymbol{a}^{\dagger}\right).\end{aligned}$$

becomes

$$\frac{\partial}{\partial t}W^{\{\rho\}} = \frac{\kappa}{2} \left(\frac{\partial}{\partial \alpha} (\alpha - \overline{\alpha}) + \frac{\partial}{\partial \alpha^*} (\alpha^* - \overline{\alpha}^*) + (1 + 2n_{\text{th}}) \frac{\partial^2}{\partial \alpha \partial \alpha^*} \right) W^{\{\rho\}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Since the Green function of

$$\begin{aligned} \frac{\partial}{\partial t}W^{\{\rho\}} &= \frac{\kappa}{2} \left(\frac{\partial}{\partial x} \left((x - \overline{x})W^{\{\rho\}} \right) + \frac{\partial}{\partial \rho} \left((\rho - \overline{\rho})W^{\{\rho\}} \right) \\ &+ \frac{1 + 2\eta_{\text{th}}}{4} \left(\frac{\partial^2 W^{\{\rho\}}}{\partial x^2} + \frac{\partial^2 W^{\{\rho\}}}{\partial \rho^2} \right) \right) \end{aligned}$$

is the following time-varying Gaussian function

$$G(x, p, t, x_0, p_0) = \frac{\exp\left(-\frac{\left(x - \overline{x} - (x_0 - \overline{x})e^{-\frac{\kappa t}{2}}\right)^2 + \left(p - \overline{p} - (p_0 - \overline{p})e^{-\frac{\kappa t}{2}}\right)^2}{(n_{\text{th}} + \frac{1}{2})(1 - e^{-\kappa t})}\right)}{\pi(n_{\text{th}} + \frac{1}{2})(1 - e^{-\kappa t})}$$

we can compute $W_t^{\{\rho\}}$ from $W_0^{\{\rho\}}$ for all t > 0:

$$W_t^{\{\rho\}}(x,p) = \int_{\mathbb{R}^2} W_0^{\{\rho\}}(x',p') G(x,p,t,x',p') \, dx' dp'$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Combining

•
$$W_t^{\{\rho\}}(x,p) = \int_{\mathbb{R}^2} W_0^{\{\rho\}}(x',p') G(x,p,t,x',p') dx' dp'.$$

G uniformly bounded and

$$\lim_{t \to +\infty} G(x, p, t, x', p') = \frac{1}{\pi(n_{th} + \frac{1}{2})} \exp\left(-\frac{(x - \overline{x})^2 + (p - \overline{p})^2}{(n_{th} + \frac{1}{2})}\right)$$

$$W_0^{\{\rho\}} \text{ in } L^1 \text{ with } \iint_{\mathbb{R}^2} W_0^{\{\rho\}} = 1$$

dominate convergence theorem

shows that all the solutions converge to a unique steady-state Gaussian density function, centered in $(\overline{x}, \overline{p})$ with variance $\frac{1}{2} + n_{\text{th}}$:

$$\forall (x,p) \in \mathbb{R}^2, \quad \lim_{t \to +\infty} W_t^{\{p\}}(x,p) = \frac{1}{\pi(n_{\mathsf{th}} + \frac{1}{2})} \exp\left(-\frac{(x-\overline{x})^2 + (p-\overline{p})^2}{(n_{\mathsf{th}} + \frac{1}{2})}\right).$$

Diffusion along x and p of Wigner function $W^{\rho}(x, p)$

With correspondence rules:

the super-operator

$$ho\mapsto (\boldsymbol{a}+\boldsymbol{a}^{\dagger})
ho(\boldsymbol{a}+\boldsymbol{a}^{\dagger})-rac{1}{2}\left((\boldsymbol{a}+\boldsymbol{a}^{\dagger})^{2}
ho+
ho(\boldsymbol{a}+\boldsymbol{a}^{\dagger})^{2}
ight)$$

becomes in Wigner representation⁹

$$W^{\{\rho\}} \mapsto \frac{-1}{2} \left(\frac{\partial}{\partial \alpha} - \frac{\partial}{\partial \alpha^*} \right)^2 W^{\{\rho\}}(\alpha, \alpha^*) \equiv \frac{1}{2} \frac{\partial^2}{\partial \rho^2} W^{\{\rho\}}(x, \rho).$$

Similarly, the super-operator

$$ho\mapsto(\pmb{a}-\pmb{a}^{\dagger})
ho(\pmb{a}-\pmb{a}^{\dagger})-rac{1}{2}ig((\pmb{a}-\pmb{a}^{\dagger})^2
ho+
ho(\pmb{a}-\pmb{a}^{\dagger})^2ig)$$

becomes in Wigner representation

$$W^{\{\rho\}} \mapsto \frac{-1}{2} \left(\frac{\partial}{\partial \alpha} + \frac{\partial}{\partial \alpha^*} \right)^2 W^{\{\rho\}}(\alpha, \alpha^*) \equiv \frac{1}{2} \frac{\partial^2}{\partial x^2} W^{\{\rho\}}(x, \rho).$$

⁹Use the fact that $\frac{\partial}{\partial \alpha} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial p} \right), \ \frac{\partial}{\partial \alpha^*} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial p} \right) \text{ and } \alpha = x + i p. \quad = \quad \text{or } \alpha$

¹⁰For $\psi \in L^2(\mathbb{R},\mathbb{C})$: $W(q,p) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \psi^* \left(q - \frac{u}{2}\right) \psi\left(q + \frac{u}{2}\right) e^{-\frac{2ipu}{2}} du$.

Wigner function W^{ρ} for different values of the density operator ρ

$$W^{
ho}:\mathbb{C}
i \xi
ightarrowrac{2}{\pi}\operatorname{Tr}\left(\left(oldsymbol{D}_{\xi}oldsymbol{e}^{i\pioldsymbol{N}}oldsymbol{D}_{\xi}^{\dagger}
ight)
ho
ight)\in\left[-2/\pi,2/\pi
ight]$$

1 Two kinds of feedback

- 2 Damped harmonic oscillator (low-Q mode)
 - Classical low-Q mode
 - Quantum low-Q mode
 - Wigner representation
- 3 Dynamical model reduction and adiabatic elimination
 Model reduction and geometric singular perturbations
 - Adiabatic elimination for bipartite quantum systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 4 Super-conducting circuit stabilizing a cat-qubit
 - First order RWA
 - Adiabatic elimination of the low-Q mode
 - Numerical simulations
- 5 Conclusion of these lectures

What is a dynamical reduced model for $\frac{d}{dt}x = v(x)$?

A possible answer:

restriction to an attractive invariant manifold Σ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Slow/fast systems (coordinate free setting)

Geometric definition independent of coordinates due to Fenichel¹¹:

- $x \mapsto v(x)$ close to $x \mapsto \overline{v}(x)$.
- v(x) = 0 define a manifold ∑ of dimension n_s < n = dim(x) of steady-states for v(x).</p>

• $n_f = n - n_s$ eigenvalues of $\frac{\partial \overline{v}}{\partial x}\Big|_{\overline{v}}$ are stable (negative real parts).

¹¹N. Fenichel: Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equations, 1979, 31, 53-98.

Any slow/fast system, can be put, after a suitable change of coordinates, in to a **quasi-vertical vector field** *v*:

$$\frac{d}{dt}x_s = v_s(x_s, x_f) = \epsilon \tilde{v}_s(x_s, x_f, \epsilon)$$
$$\frac{d}{dt}x_f = v_f(x_s, x_f)$$

with $0 < \epsilon \ll 1$.

The reduced system $\frac{d}{dt}x_s = v_s(x_s, x_f)$ with $0 = v_f(x_s, x_f)$ is correct if $\frac{d}{dt}\xi_f = v_f(x_s, \xi_f)$ hyperbolically stable for any fixed x_s .

In general, modeling variables *x* are **not** Tikhonov variables.

¹²See, e.g., F. Verhulst: Methods and Applications of Singular
 Perturbations: Boundary Layers and Multiple Timescale Dynamics. Springer,
 2005

Model reduction with modeling variables

Example with the heuristic method:

$$\frac{d}{dt}x_s = 2(x_f - x_s) + \epsilon x_f \quad \frac{d}{dt}x_f = x_s - x_f$$

1- compute x_f versus x_s from $\frac{d}{dt}x_f = 0$; **2-** plug $x_f = x_s$ into $\frac{d}{dt}x_s$ to obtain $\frac{d}{dt}x_s = \epsilon x_s$ (wrong slow model !)

The reduced model of $\frac{d}{dt}x_s = v_s(x_s, x_f, \epsilon)$, $\frac{d}{dt}x_f = v_f(x_s, x_f, \epsilon)$ is¹³

$$\frac{d}{dt}x_{s} = \left(1 + \frac{\partial v_{s}}{\partial x_{f}}\left(\frac{\partial v_{f}}{\partial x_{f}}\right)^{-2}\frac{\partial v_{f}}{\partial x_{s}}\right)^{-1}v_{s}(x_{s}, x_{f}, \epsilon) + O(\epsilon^{2}), \quad v_{f}(x_{s}, x_{f}, \epsilon) = 0.$$

Same example with the correct method: with $\frac{\partial v_s}{\partial x_t} = 2$, $\frac{\partial v_t}{\partial x_s} = 1 = -\frac{\partial v_t}{\partial x_t}$, we get the correct slow model , $\frac{d}{dt} x_s = \epsilon x_s/3$.

¹³J. Carr: Application of Center Manifold Theory. Springer, 1981.
 P. Duchêne, P.R. : Kinetic scheme reduction via geometric singular perturbation techniques. Chem. Eng. Science, 1996, 51, 4661-4672.

Slow/fast composite quantum systems

Take $0 < \epsilon \ll 1$ and composite system made of subsystem *A* with Hilbert space \mathcal{H}_A and subsystem *B* with Hilbert space \mathcal{H}_B :

$$\frac{d}{dt}\boldsymbol{\rho} = \mathcal{L}_{B}(\boldsymbol{\rho}) + \epsilon \Big(-i[\boldsymbol{H}_{\text{int}}, \boldsymbol{\rho}] + \mathcal{L}_{A}(\boldsymbol{\rho}) \Big)$$

where

- $\mathcal{L}_B(\rho)$ is a Lindbladian dynamics on \mathcal{H}_B converging towards a unique steady-state density operator $\overline{\rho}_B$ on \mathcal{H}_B .
- $\mathcal{L}_{A}(\rho)$ is a Lindbladian dynamics on \mathcal{H}_{A}
- *AB*-interaction Hamiltonian $H_{int} = \sum_{k=1}^{m} A_k \otimes B_k$, with A_k and B_k Hermitian operators on \mathcal{H}_A and \mathcal{H}_B respectively.

When $\epsilon = 0$, for all initial state ρ_0 on $\mathcal{H}_A \otimes \mathcal{H}_B$, the solution of $\frac{d}{dt}\rho = \mathcal{L}_B(\rho)$ converges towards the separable steady-state $\operatorname{Tr}_B(\rho_0) \otimes \overline{\rho}_B$. For $0 < \epsilon \ll 1$, the attractive steady-state manifold

 $\bar{\Sigma} = \left\{ \rho_A \otimes \bar{\rho}_B \mid \rho_A \text{ density operator on } \mathcal{H}_A \right\}$ becomes Σ_{ϵ} , an attractive invariant manifold where the evolution is slow. Σ_{ϵ} can be parameterized via density operators $\boldsymbol{\xi}$ on \mathcal{H}_A with a slow evolution. Approximation of such parametrization and slow evolution can be done via asymptotic expansion in ϵ . Is-it always possible to preserve positivity of ρ ? Always OK for second order expansion. Geometric singular perturbations for bipartite open quantum systems¹⁴

Lindbladian slow dynamics on a density operator ξ on \mathcal{H}_A ,

$$\frac{d}{dt}\xi = \epsilon \mathcal{F}_1(\xi) + \epsilon^2 \mathcal{F}_2(\xi) + \dots$$

with a Kraus map giving density operator ρ on $\mathcal{H}_A \otimes \mathcal{H}_B$ from $\boldsymbol{\xi}$:

 $\rho = \mathcal{K}(\xi) = \mathcal{K}_0(\xi) + \epsilon \mathcal{K}_1(\xi) + \epsilon^2 \mathcal{K}_2(\xi) + \dots$

¹⁴Azouit, R. / Chittaro, F. / Sarlette, A. / PR: Towards generic adiabatic elimination for bipartite open quantum systems 2017, Quantum Science and Technology , Vol. 2, p. 044011

Plug

$$\rho = \mathcal{K}(\boldsymbol{\xi}) = \boldsymbol{\xi} \otimes \overline{\rho}_B + \epsilon \mathcal{K}_1(\boldsymbol{\xi}) + \dots, \text{ and } \frac{d}{dt} \boldsymbol{\xi} = \mathcal{F}(\boldsymbol{\xi}) = \epsilon \mathcal{F}_1(\boldsymbol{\xi}) + \epsilon^2 \mathcal{F}_2(\boldsymbol{\xi}) + \dots$$

into invariance condition

$$\mathcal{L}_{\mathcal{B}}(\mathcal{K}(\boldsymbol{\xi})) - \epsilon i [\boldsymbol{H}_{int}, \mathcal{K}(\boldsymbol{\xi})] + \epsilon \mathcal{L}_{\mathcal{A}}(\mathcal{K}(\boldsymbol{\xi})) = \frac{d}{dt} \rho = \mathcal{K}(\mathcal{F}(\boldsymbol{\xi}))$$

and identify terms of same orders:

order 1:
$$\mathcal{L}_{B}(\mathcal{K}_{1}(\boldsymbol{\xi})) - i[\boldsymbol{H}_{int}, \mathcal{K}_{0}(\boldsymbol{\xi})] + \mathcal{L}_{A}(\mathcal{K}_{0}(\boldsymbol{\xi})) = \mathcal{K}_{0}(\mathcal{F}_{1}(\boldsymbol{\xi}))$$

order 2: $\mathcal{L}_{B}(\mathcal{K}_{2}(\boldsymbol{\xi})) - i[\boldsymbol{H}_{int}, \mathcal{K}_{1}(\boldsymbol{\xi})] + \mathcal{L}_{A}(\mathcal{K}_{1}(\boldsymbol{\xi})) = \mathcal{K}_{0}(\mathcal{F}_{2}(\boldsymbol{\xi})) + \mathcal{K}_{1}(\mathcal{F}_{1}(\boldsymbol{\xi}))$

At each order

- 1 take the trace versus *B* to get the correction to \mathcal{F}
- 2 compute the correction to K via -L⁻¹_B, a super operator for zero-trace operators W on H_A

$$-\mathcal{L}_{B}^{-1}(\boldsymbol{W}) = \int_{0}^{+\infty} e^{t\mathcal{L}_{B}}(\boldsymbol{W}) dt$$

that coincides with the restriction to zero-trace operators of a completely positive (CP) map.

For
$$\mathcal{L}_{B}(\boldsymbol{\rho}) = \kappa_{b} \left(\boldsymbol{b} \boldsymbol{\rho} \boldsymbol{b}^{\dagger} - \frac{1}{2} (\boldsymbol{b}^{\dagger} \boldsymbol{b} \boldsymbol{\rho} + \boldsymbol{\rho} \boldsymbol{b}^{\dagger} \boldsymbol{b}) \right)$$
 one gets using $\overline{\rho}_{B} = |\mathbf{0}_{b}\rangle\langle\mathbf{0}_{b}|,$
 $\frac{d}{dt}\xi = -i\epsilon \left[\sum_{k} \beta_{k} \boldsymbol{A}_{k}, \xi \right] + \epsilon \mathcal{L}_{A}(\xi) + \frac{4\epsilon^{2}}{\kappa_{b}} \left(\sum_{k} \boldsymbol{L}_{k}\xi \boldsymbol{L}_{k}^{\dagger} - \frac{1}{2} \left(\boldsymbol{L}_{k}^{\dagger} \boldsymbol{L}_{k} \xi + \xi \boldsymbol{L}_{k}^{\dagger} \boldsymbol{L}_{k} \right) \right) + O(\epsilon^{3})$
with
$$\boldsymbol{\rho} = \boldsymbol{e}^{i\epsilon \boldsymbol{W}_{1}} \left(\xi \otimes |\mathbf{0}_{b}\rangle\langle\mathbf{0}_{b}| \right) \boldsymbol{e}^{-i\epsilon \boldsymbol{W}_{1}} + O(\epsilon^{2})$$

and where

- $L_k = \sum_{k'=1}^m \Lambda_{k,k'} A_{k'}$ based on Cholesky factorization $\Lambda^{\dagger} \Lambda = G$ of the following Gram matrix

$$G_{kk'} == \sum_{n_b=1}^{+\infty} \left(\frac{1}{\sqrt{n_b}} \langle n_b | \boldsymbol{B}_k | \boldsymbol{0}_b \rangle \right)^* \left(\frac{1}{\sqrt{n_b}} \langle n_b | \boldsymbol{B}_{k'} | \boldsymbol{0}_b \rangle \right).$$

$$W_1 = \frac{2}{\kappa_b} \sum_{k=1}^m \boldsymbol{A}_k \otimes \left((\boldsymbol{b}^{\dagger} \boldsymbol{b})^{-1} \boldsymbol{B}_k + \boldsymbol{B}_k (\boldsymbol{b}^{\dagger} \boldsymbol{b})^{-1} \right) \text{ using } \\ (\boldsymbol{b}^{\dagger} \boldsymbol{b})^{-1} = \sum_{n_b > 1} \frac{1}{n_b} |n_b\rangle \langle n_b|.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Outline

1 Two kinds of feedback

- 2 Damped harmonic oscillator (low-Q mode)
 - Classical low-Q mode
 - Quantum low-Q mode
 - Wigner representation
- 3 Dynamical model reduction and adiabatic elimination
 Model reduction and geometric singular perturbations
 Adiabatic elimination for bipartite quantum systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 4 Super-conducting circuit stabilizing a cat-qubit
 - First order RWA
 - Adiabatic elimination of the low-Q mode
 - Numerical simulations

5 Conclusion of these lectures

Figure S3. Equivalent circuit diagram. The cat-qubit (blue), a linear resonator, is capacitively coupled to the buffer (red). One recovers the circuit of Fig. 2 by replacing the buffer inductance with a 5-junction array and by setting $\varphi_{\Sigma} = (\varphi_{\text{ext},1} + \varphi_{\text{ext},2})/2$ and $\varphi_{\Delta} = (\varphi_{\text{ext},1} - \varphi_{\text{ext},2})/2$. Not shown here: the buffer is capacitively coupled to a transmission line, the cat-qubit resonator is coupled to a transmon qubit

¹⁵R. Lescanne, ..., M. Mirrahimi, M. and Z. Leghtas: Exponential suppression of bit-flips in a qubit encoded in an oscillator. 2020, Nat. Phys., Vol. 16, p. 509-513. See also the patent underlying the startup Alice&Bob.

Quantum analysis of the circuit stabilizing a cat-qubit (1)

Quantum Hamiltonian: two commuting annihilation operators $\mathbf{a} = (q_a + \frac{\partial}{\partial q_a})/\sqrt{2}$ and $\mathbf{b} = (q_b + \frac{\partial}{\partial q_b})/\sqrt{2}$ with $[\mathbf{a}, \mathbf{a}^{\dagger}] = \mathbf{I}$, $[\mathbf{b}, \mathbf{b}^{\dagger}] = \mathbf{I}$

$$\boldsymbol{H}_{1}(t) = \omega_{a}\boldsymbol{a}^{\dagger}\boldsymbol{a} + \omega_{b}\boldsymbol{b}^{\dagger}\boldsymbol{b} + 2g\cos\left(\phi_{a}(\boldsymbol{a} + \boldsymbol{a}^{\dagger}) + \phi_{b}(\boldsymbol{b} + \boldsymbol{b}^{\dagger}) + (2\omega_{a} - \omega_{b})t\boldsymbol{I}\right)$$

Change of frame for $\frac{d}{dt}\rho_1 = -i[\boldsymbol{H}_1(t), \rho_1]$: new density operator

$$\boldsymbol{\rho}_{2} = \exp\left(i\omega_{a}t\boldsymbol{a}^{\dagger}\boldsymbol{a} + i\omega_{b}t\boldsymbol{b}^{\dagger}\boldsymbol{b}\right)\boldsymbol{\rho}_{1}\exp\left(-i\omega_{a}t\boldsymbol{a}^{\dagger}\boldsymbol{a} - i\omega_{b}t\boldsymbol{b}^{\dagger}\boldsymbol{b}\right)$$

is governed by $\frac{d}{dt} \rho_2 = -i[\boldsymbol{H}_2(t), \rho_2]$ with

$$\boldsymbol{H}_{2}(t) = g e^{i(2\omega_{a}-\omega_{b})t} \exp\left(i\phi_{a}(e^{-i\omega_{a}t}\boldsymbol{a} + e^{i\omega_{a}t}\boldsymbol{a}^{\dagger}) + i\phi_{b}(e^{-i\omega_{b}t}\boldsymbol{b} + e^{i\omega_{b}t}\boldsymbol{b}^{\dagger})\right) + h.c.$$

Expansion up-to order 3 versus $\phi_a, \phi_b \ll 1$:

$$\begin{aligned} \mathbf{H}_{2}(t) &\approx g e^{i(2\omega_{a}-\omega_{b})t} \Big(\mathbf{I} + i\phi_{a} (\mathbf{e}^{-i\omega_{a}t} \mathbf{a} + e^{i\omega_{a}t} \mathbf{a}^{\dagger}) - \frac{\phi_{a}^{2}}{2} (\mathbf{e}^{-i\omega_{a}t} \mathbf{a} + e^{i\omega_{a}t} \mathbf{a}^{\dagger})^{2} - \frac{i\phi_{a}^{3}}{6} (\mathbf{e}^{-i\omega_{a}t} \mathbf{a} + e^{i\omega_{a}t} \mathbf{a}^{\dagger})^{3} \Big) \dots \\ & \Big(\mathbf{I} + i\phi_{b} (\mathbf{e}^{-i\omega_{b}t} \mathbf{b} + e^{i\omega_{b}t} \mathbf{b}^{\dagger}) - \frac{\phi_{b}^{2}}{2} (\mathbf{e}^{-i\omega_{b}t} \mathbf{b} + e^{i\omega_{b}t} \mathbf{b}^{\dagger})^{2} - \frac{i\phi_{b}^{3}}{6} (\mathbf{e}^{-i\omega_{b}t} \mathbf{b} + e^{i\omega_{b}t} \mathbf{b}^{\dagger})^{3} \Big) + h.c. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\begin{aligned} H_{2}(t) &\approx g e^{i(2\omega_{a}-\omega_{b})t} \dots \\ \left(I + i\phi_{a} (e^{-i\omega_{a}t}\boldsymbol{a} + e^{i\omega_{a}t}\boldsymbol{a}^{\dagger}) - \frac{\phi_{a}^{2}}{2} (e^{-i\omega_{a}t}\boldsymbol{a} + e^{i\omega_{a}t}\boldsymbol{a}^{\dagger})^{2} - \frac{i\phi_{a}^{3}}{6} (e^{-i\omega_{a}t}\boldsymbol{a} + e^{i\omega_{a}t}\boldsymbol{a}^{\dagger})^{3} \right) \dots \\ \left(I + i\phi_{b} (e^{-i\omega_{b}t}\boldsymbol{b} + e^{i\omega_{b}t}\boldsymbol{b}^{\dagger}) - \frac{\phi_{b}^{2}}{2} (e^{-i\omega_{b}t}\boldsymbol{b} + e^{i\omega_{b}t}\boldsymbol{b}^{\dagger})^{2} - \frac{i\phi_{b}^{3}}{6} (e^{-i\omega_{b}t}\boldsymbol{b} + e^{i\omega_{b}t}\boldsymbol{b}^{\dagger})^{3} \right) \dots \\ &+ h.c. \end{aligned}$$

When ω_a/ω_b irrational **only two secular terms** (i.e. non-oscillatory): $-ig_2 a^2 b^{\dagger}$ and its Hermitian conjugate $ig_2 (a^{\dagger})^2 b$ where $g_2 = g\phi_a^2 \phi_b/2$ (order exceeding 3 in $\phi_a, \phi_b \ll 1$ are neglected).

Justify the following approximate time-invariant Hamiltonian for H_2 (rotating wave approximation): :

$$H_2(t) \approx -ig_2 a^2 b^{\dagger} + ig_2 (a^{\dagger})^2 b.$$

Finer approximations via high-order averaging techniques.

Cat-qubit stored in oscillator *a*, controller based on a damped oscillator *b* stabilizing against one decoherence channel (bit-fip):

$$\frac{d}{dt}\boldsymbol{\rho} = -[g_2\boldsymbol{a}^2\boldsymbol{b}^{\dagger} - g_2(\boldsymbol{a}^{\dagger})^2\boldsymbol{b}, \boldsymbol{\rho}] + [u\boldsymbol{b}^{\dagger} - u^*\boldsymbol{b}, \boldsymbol{\rho}] + \kappa_b \Big(\boldsymbol{b}\boldsymbol{\rho}\boldsymbol{b}^{\dagger} - (\boldsymbol{b}^{\dagger}\boldsymbol{b}\boldsymbol{\rho} + \boldsymbol{\rho}\boldsymbol{b}^{\dagger}\boldsymbol{b})/2\Big)$$
$$= -\Big[g_2(\boldsymbol{a}^2 - \alpha^2)\boldsymbol{b}^{\dagger} - g_2((\boldsymbol{a}^{\dagger})^2 - (\alpha)^2)\boldsymbol{b}, \boldsymbol{\rho}\Big] + \kappa_b \Big(\boldsymbol{b}\boldsymbol{\rho}\boldsymbol{b}^{\dagger} - (\boldsymbol{b}^{\dagger}\boldsymbol{b}\boldsymbol{\rho} + \boldsymbol{\rho}\boldsymbol{b}^{\dagger}\boldsymbol{b})/2\Big)$$

with $\alpha \in \mathbb{C}$ such that $\alpha^2 = u/g_2$, the drive amplitude $u \in \mathbb{C}$ applied to mode **b** and $1/\kappa_b > 0$ the short life-time of photon in mode **b**.

Any density operator $\bar{\rho} = \bar{\rho}_a \otimes |0\rangle \langle 0|_b$ is a steady-state as soon as the support of $\bar{\rho}_a$ belongs to the two dimensional vector space spanned by the coherent states $|\alpha\rangle$ and $|-\alpha\rangle$ (range($\bar{\rho}_a$) \subset span{ $|\alpha\rangle$, $|-\alpha\rangle$ }) (Schrödinger phase-cat).

Cat-qubit stored in oscillator *a*, controller based low-Q mode *b*:

$$\frac{d}{dt}\rho = -\left[g_2(\boldsymbol{a}^2 - \alpha^2)\boldsymbol{b}^{\dagger} - g_2((\boldsymbol{a}^{\dagger})^2 - (\alpha)^2)\boldsymbol{b}, \rho\right] + \kappa_b \left(\boldsymbol{b}\rho \boldsymbol{b}^{\dagger} - (\boldsymbol{b}^{\dagger}\boldsymbol{b}\rho + \rho \boldsymbol{b}^{\dagger}\boldsymbol{b})/2\right)$$

with $\alpha \in \mathbb{C}$ and $\kappa_b \gg g_2$.

- Usually *κ_b* ≫ |*g*₂|, mode *b* relaxes rapidly to vaccuum |0⟩⟨0|_b, can be eliminated adiabatically (singular perturbations, second order corrections) to provides the slow evolution of mode *a*:

$$\frac{d}{dt}\boldsymbol{\rho}_{\boldsymbol{a}} = \frac{4|g_{2}|^{2}}{\kappa_{b}} \Big((\boldsymbol{a}^{2} - \alpha^{2})\boldsymbol{\rho}_{\boldsymbol{a}} (\boldsymbol{a}^{2} - \alpha^{2})^{\dagger} - \frac{1}{2} ((\boldsymbol{a}^{2} - \alpha^{2})^{\dagger} (\boldsymbol{a}^{2} - \alpha^{2})\boldsymbol{\rho}_{\boldsymbol{a}} + \boldsymbol{\rho}_{\boldsymbol{a}} (\boldsymbol{a}^{2} - \alpha^{2})^{\dagger} (\boldsymbol{a}^{2} - \alpha^{2})) \Big).$$

Exponential convergence toward the code space span{ $|\alpha\rangle$, $|-\alpha\rangle$ } based on the following exponential Lyapunov function¹⁶

$$V(\rho_{a}) = \operatorname{Tr}\left(\left(\boldsymbol{a}^{2} - \alpha^{2}\right)^{\dagger}\left(\boldsymbol{a}^{2} - \alpha^{2}\right)\rho_{a}\right), \qquad \frac{d}{dt}V \leq -\frac{8|g_{2}|^{2}}{\kappa_{b}}V.$$

Photon-number parity $\text{Tr}\left(e^{i\pi a^{\dagger}a}\rho\right)$ is invariant since $[a^{2}, e^{i\pi a^{\dagger}a}] \equiv 0$.

¹⁶For a mathematical proof of convergence analysis in an adapted Banach space, see : R. Azouit, A. Sarlette, PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping. 2016, ESAIM: COCV, Vol. 22, No. 4, p. 1353-1369.

Numerical simulation and exponentially protection against bit-flips

Take $|\alpha| \gg 1$ (with $|\alpha| > 3$ one has $\langle \alpha | \cdot \alpha \rangle \le e^{-18}$) and the following logical state

$$\mathbf{0}\rangle_L \approx |\alpha\rangle, \qquad |\mathbf{1}\rangle_L \approx |-\alpha\rangle$$

Even and odd cats read

$$|+\rangle_L = \frac{1}{\sqrt{2}}(|0\rangle_L + |1\rangle_L)$$
 and $|-\rangle_L = \frac{1}{\sqrt{2}}(|0\rangle_L - |1\rangle_L).$

Dynamic governed by the following Lindblad master equation

$$\frac{d}{dt}\rho = \mathbb{D}_{L_0}(\rho) + \kappa_1 \mathbb{D}_{L_1}(\rho)$$

with $\mathbb{D}_{L}(\rho) \triangleq L\rho L^{\dagger} - \frac{1}{2} \left(L^{\dagger} L\rho + \rho L^{\dagger} L \right)$, two-photon pumping $L_{0} = a^{2} - \alpha^{2}$ and the main error channel $L_{1} = a$ corresponding to photon losses. Matlab script CatQubit.m:

- $\alpha^2 = 25/2, k_1 = 1/10.$
- truncation to $n_{\rm max} \approx \alpha^2 + 15\alpha$ of the Fock basis
- discretization time $dt = 10^{-3}/\alpha^2$
- numerical integration between t = 0 to $t = 10/\alpha^2$ starting from vacuum, $|+\rangle_L$ and $|0\rangle_L$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Wigner function of a GKP grid-state

Magic logical-qubit state endoded in a GKP grid-state with finite energy: $\psi(q) \propto e^{-\epsilon q^2} \left(\sum_k \cos(\frac{\pi}{8}) e^{-\frac{(q-2k\sqrt{\pi})^2}{\epsilon}} + \sin(\frac{\pi}{8}) e^{-\frac{(q-(2k+1)\sqrt{\pi})^2}{\epsilon}} \right) \text{ with } 0 < \epsilon \ll 1.$

▲ロ▶▲御▶★臣▶★臣▶ 臣 のなぐ

Outline

1 Two kinds of feedback

- 2 Damped harmonic oscillator (low-Q mode)
 - Classical low-Q mode
 - Quantum low-Q mode
 - Wigner representation
- 3 Dynamical model reduction and adiabatic elimination
 Model reduction and geometric singular perturbations
 Adiabatic elimination for bipartite quantum systems
- 4 Super-conducting circuit stabilizing a cat-qubit
 - First order RWA
 - Adiabatic elimination of the low-Q mode
 - Numerical simulations

5 Conclusion of these lectures

Conclusion of these lectures

Topics partially covered:

- Models of open quantum systems based on density operators, Kraus maps and Stochastic Master Equation (SME).
- Positivity preserving numerical schemes for simulation with classical computers.
- Two key quantum systems: qubit (two-level system) and harmonic oscillator (cavity mode).
- Two approximation methods, averaging (RWA) and singular perturbations (adiabatic elimination), for open-loop control and closed-loop stabilization with a quantum controller.
- Convergence analysis based on Lyapunov techniques and super-martingales.

Absent topics;

- Open-loop control: adiabatic control, optimal control, ensemble control and parametric robustness
- Stabilisation with a classical controller: measurement based feedback, quantum error correction.

(ロ) (同) (三) (三) (三) (三) (○) (○)

State and parameter estimation: quantum filtering and tomography.

. . .