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Two kinds of quantum feedback

quantum
system

classical
controller 

quantum world

classical world y

u

decoherence Measurement-based feedback: controller is
classical; measurement back-action on the
quantum system of Hilbert space H is stochas-
tic (collapse of the wave-packet); the measured
output y is a classical signal; the control input u
is a classical variable appearing in some con-
trolled Schrödinger equation; u(t) depends on
the past measurements y(τ), τ ≤ t .

quantum
system

quantum
controller

quantum world
y?

u ?

classical world

decoherence

decoherence

Coherent/autonomous feedback and reser-
voir engineering: the system of Hilbert
space H is coupled to the controller, an-
other quantum system; the composite sys-
tem of Hilbert space Hcontroller ⊗H, is an open-
quantum system relaxing to some target (sep-
arable) state. Origin of such relaxation behav-
iors in open quantum systems: optical pump-
ing of Alfred Kastler, physics Nobel prize 1966.



Watt regulator: classical analogue of quantum coherent feedback. 5

From WikiPedia The first variations of speed δω
and governor angle δθ obey to

d
dt
δω =−aδθ

d2

dt2
δθ = −Λ

d
dt
δθ − Ω2(δθ−bδω)

with (a,b,Λ,Ω) positive parame-
ters.

Third order system

d3

dt3 δω + Λ
d2

dt2 δω +Ω2 d
dt

δω + abΩ2δω = 0.

Characteristic polynomial P(s) = s3 + Λs2 +Ω2s + abΩ2 with roots
having negative real parts iff Λ > ab: governor damping must be
strong enough to ensure asymptotic stability.
Key issues: asymptotic stability and convergence rates.

5J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.



Reservoir Engineering and coherent feedback (1) 6

SystemReservoir

Engineered
interaction

dissipation
κ

Hint

HHres

H = H res + H int + H

If ρ →
t→∞

ρres ⊗ |ψ̄⟩⟨ψ̄| exponentially on a time scale of τ > 0

then . . . . . .

6See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique
des Houches", July 2011.



Reservoir Engineering and coherent feedback (2)

SystemReservoir

Engineered
interaction

dissipation
κ

Hint

HHres

γ

H = H res + H int + H

. . . . . . ρ →
t→∞

ρres ⊗ |ψ̄⟩⟨ψ̄|+ δρ, if τγ ≪ 1 then |δρ| ≪ 1



Convergence issues of open-quantum systems

Continuous-time models: Lindbald master eq. (quantum Fokker-Planck eq.):

d
dt
ρ = −A(ρ) ≜ − i

ℏ [H, ρ] +
∑
ν

(
LνρL†

ν − (L†
νLνρ+ ρL†

νLν)/2
)
,

of state ρ a density operator (Hermitian, non negative, trace-class, trace one)
with H Hermitian operator and Lν arbitrary operators (usually unbounded).

When H is of finite dimension, (e−tA)t≥0 is a contraction semi-group for
many metrics (Tr (|ρ− σ|), Tr

(√√
ρσ

√
ρ
)
, see the work of D. Petz).

Open issues motivated by robust quantum information processing:

1 characterization of the Ω-limit support of ρ: decoherence free spaces
are affine spaces where the dynamics are of Schrödinger types; they
can be reduced to a point (pointer-state);

2 Estimation of convergence rate and robustness.

3 Reservoir engineering: design of realistic H and Lν to achieve rapid
convergence towards prescribed affine spaces (protection against
decoherence).

Lecture goal: cat-qubits and autonomous QEC of bit-flips7

7R. Lescanne, ..., M. Mirrahimi, M. and Z. Leghtas: Exponential suppression of
bit-flips in a qubit encoded in an oscillator. 2020, Nat. Phys. , Vol. 16, p. 509-513.



Outline

1 Two kinds of feedback

2 Damped harmonic oscillator (low-Q mode)
Classical low-Q mode
Quantum low-Q mode
Wigner representation

3 Dynamical model reduction and adiabatic elimination
Model reduction and geometric singular perturbations
Adiabatic elimination for bipartite quantum systems

4 Super-conducting circuit stabilizing a cat-qubit
First order RWA
Adiabatic elimination of the low-Q mode
Numerical simulations

5 Conclusion of these lectures



The driven and damped classical oscillator

Dynamics in the (x ′,p′) phase plane with ω ≫ κ,
√

u2
1 + u2

2 :

d
dt

x ′ = ωp′,
d
dt

p′ = −ωx ′ − κp′ − 2u1 sin(ωt) + 2u2 cos(ωt)

Define the frame rotating at ω by (x ′,p′) 7→ (x ,p) with

x ′ = cos(ωt)x + sin(ωt)p, p′ = − sin(ωt)x + cos(ωt)p.

Removing highly oscillating terms (rotating wave approximation), from

d
dt

x = −κ sin2(ωt)x + 2u1 sin
2(ωt) + (κp − 2u2) sin(ωt) cos(ωt)

d
dt

p = −κ cos2(ωt)p + 2u2 cos
2(ωt) + (κx − 2u1) sin(ωt) cos(ωt)

we get, with α = x + ip and u = u1 + iu2:

d
dt

α = −κ
2α+ u.

With x ′ + ip′ = α′ = e−iωtα, we have d
dt α

′ = −(κ2 + iω)α′ + ue−iωt



Driven and damped quantum oscillator

The Lindblad master equation (quantum analogue of
d
dt α = −κ

2α+ u with α = Tr (aρ)):

d
dt
ρ = [ua† − u∗a,ρ] + κ

(
aρa† − 1

2 a†aρ− 1
2ρa†a

)
.

Consider ρ = DαξD−α with α = 2u/κ and Dα = eαa†−α∗a. We
get

d
dt
ξ = κ

(
aξa† − 1

2 a†aξ − 1
2ξa†a

)
since D−αaDα = a + α.

Informal convergence proof with the strict Lyapunov function
V (ξ) = Tr (ξN):

d
dt

V (ξ) = −κV (ξ) ⇒ V (ξ(t)) = V (ξ0)e
−κt .

Since ξ(t) is Hermitian and non-negative, ξ(t) tends to |0⟩⟨0|
when t 7→ +∞.



The rigorous underlying convergence result

Theorem

Consider with u ∈ C, κ > 0, the following Cauchy problem

d
dt
ρ = [ua† − u∗a,ρ] + κ

(
aρa† − 1

2 a†aρ− 1
2ρa†a

)
, ρ(0) = ρ0.

Assume that the initial state ρ0 is a density operator with finite energy
Tr (ρ0N) < +∞. Then exists a unique solution to the Cauchy problem
in the Banach space K1(H), the set of trace class operators on H. It
is defined for all t > 0 with ρ(t) a density operator (Hermitian,
non-negative and trace-class) that remains in the domain of the
Lindblad super-operator

ρ 7→ [ua† − u∗a,ρ] + κ
(
aρa† − 1

2 a†aρ− 1
2ρa†a

)
.

This means that t 7→ ρ(t) is differentiable in the Banach space K1(H).
Moreover ρ(t) converges for the trace-norm towards |α⟩⟨α| when t
tends to +∞, where |α⟩ is the coherent state of complex amplitude
α = 2u

κ .



Link with the classical oscillator

Lemma

Consider with u ∈ C, κ > 0, the following Cauchy problem

d
dt
ρ = [ua† − u∗a,ρ] + κ

(
aρa† − 1

2 a†aρ− 1
2ρa†a

)
, ρ(0) = ρ0.

1 for any initial density operator ρ0 with Tr (ρ0N) < +∞, we have
d
dt α = −κ

2 (α− α) where α = Tr (ρa) and α = 2u
κ .

2 Assume that ρ0 = |β0⟩⟨β0| where β0 is some complex amplitude.
Then for all t ≥ 0, ρ(t) = |β(t)⟩⟨β(t)| remains a coherent state of
amplitude β(t) solution of the following equation:
d
dt β = −κ

2 (β − α) with β(0) = β0.

Statement 2 relies on:

a|β⟩ = β|β⟩, |β⟩ = e−ββ∗

2 eβa†
|0⟩ d

dt
|β⟩ =

(
− 1

2 (β
∗β̇ + ββ̇∗) + β̇a†

)
|β⟩.



Driven and damped quantum oscillator with thermal photon

Parameters ω ≫ κ, |u| and nth ≥ 0:

d
dt

ρ = [ua† − u∗a,ρ] + (1 + nth)κ
(

aρa† − 1
2 a†aρ− 1

2ρa†a
)

+ nthκ
(

a†ρa − 1
2 aa†ρ− 1

2ρaa†
)
.

Key issue: limt 7→+∞ ρ(t) = ?.
The passage to another representation via the Wigner function:

Since DαeiπND−α bounded and Hermitian operator (the dual of K1(H)
is B(H)),

W {ρ}(x , p) = 2
π
Tr
(
ρDαeiπND−α

)
with α = x + ip ∈ C,

defines a real and bounded function |W {ρ}(x , p)| ≤ 2
π

.

For a coherent state ρ = |β⟩⟨β| with β ∈ C:

W {|β⟩⟨β|}(x , p) = 2
π

e−2|β−(x+ip)|2 .



The partial differential equation satisfied by the Wigner function (1)8

With Dα = eαa†e−α∗ae−αα∗/2 = e−α∗aeαa†eαα∗/2 we have:

π
2 W {ρ}(α, α∗) = Tr

(
ρeαa†e−α∗aeiπNeα∗ae−αa†

)
where α and α∗ are seen as independent variables:

∂

∂α
= 1

2

(
∂

∂x
− i

∂

∂p

)
,

∂

∂α∗ = 1
2

(
∂

∂x
+ i

∂

∂p

)
We have π

2
∂
∂α

W {ρ}(α, α∗) = Tr
(
(ρa† − a†ρ)DαeiπND−α

)
Since

a†DαeiπND−α = DαeiπND−α(2α∗ − a†), we get

∂

∂α
W {ρ}(α, α∗) = 2α∗W {ρ}(α, α∗)− 2W {a†ρ}(α, α∗).

Thus W {a†ρ}(α, α∗) = α∗W {ρ}(α, α∗)− 1
2

∂
∂α

W {ρ}(α, α∗), i.e.

W {a†ρ} =

(
α∗ − 1

2
∂

∂α

)
W {ρ}.

8See the excellent Wikipedia article:
https://en.wikipedia.org/wiki/Wigner_quasiprobability_distribution



The partial differential equation satisfied by the Wigner function (2)

Similar computations yield to the following correspondence rules:

W {ρa} =

(
α− 1

2
∂

∂α∗

)
W {ρ}, W {aρ} =

(
α+ 1

2
∂

∂α∗

)
W {ρ}

W {ρa†} =

(
α∗ + 1

2
∂

∂α

)
W {ρ}, W {a†ρ} =

(
α∗ − 1

2
∂

∂α

)
W {ρ}.

Thus

d
dt

ρ = [ua† − u∗a,ρ] + (1 + nth)κ
(

aρa† − 1
2 a†aρ− 1

2ρa†a
)

+ nthκ
(

a†ρa − 1
2 aa†ρ− 1

2ρaa†
)
.

becomes

∂

∂t
W {ρ} =

κ

2

(
∂

∂α
(α− α) +

∂

∂α∗ (α
∗ − α∗) + (1 + 2nth)

∂2

∂α∂α∗

)
W {ρ}



Solutions of the quantum Fokker-Planck equation

Since the Green function of

∂

∂t
W {ρ} =

κ

2

( ∂

∂x

(
(x − x)W {ρ}

)
+

∂

∂p

(
(p − p)W {ρ}

)
+ 1+2nth

4

(
∂2W {ρ}

∂x2 +
∂2W {ρ}

∂p2

))
is the following time-varying Gaussian function

G(x , p, t , x0, p0) =

exp

−

(
x−x−(x0−x)e−

κt
2

)2

+

(
p−p−(p0−p)e−

κt
2

)2

(nth+
1
2 )(1−e−κt )


π(nth +

1
2 )(1 − e−κt)

we can compute W {ρ}
t from W {ρ}

0 for all t > 0:

W {ρ}
t (x , p) =

∫
R2

W {ρ}
0 (x ′, p′)G(x , p, t , x ′, p′) dx ′dp′.



Asymptotics of the Fokker-Planck equation

Combining

W {ρ}
t (x , p) =

∫
R2 W {ρ}

0 (x ′, p′)G(x , p, t , x ′, p′) dx ′dp′.

G uniformly bounded and

limt 7→+∞ G(x , p, t , x ′, p′) = 1

π(nth+
1
2 )

exp

(
− (x−x)2+(p−p)2

(nth+
1
2 )

)
W {ρ}

0 in L1 with
∫∫

R2 W {ρ}
0 = 1

dominate convergence theorem

shows that all the solutions converge to a unique steady-state Gaussian
density function, centered in (x , p) with variance 1

2 + nth:

∀(x , p) ∈ R2, lim
t 7→+∞

W {ρ}
t (x , p) = 1

π(nth+
1
2 )

exp

(
− (x − x)2 + (p − p)2

(nth +
1
2 )

)
.



Diffusion along x and p of Wigner function W ρ(x ,p)

With correspondence rules:

W {ρa} =

(
α− 1

2
∂

∂α∗

)
W {ρ}, W {aρ} =

(
α+ 1

2
∂

∂α∗

)
W {ρ}

W {ρa†} =

(
α∗ + 1

2
∂

∂α

)
W {ρ}, W {a†ρ} =

(
α∗ − 1

2
∂

∂α

)
W {ρ}

the super-operator

ρ 7→ (a + a†)ρ(a + a†)− 1
2
(
(a + a†)2ρ+ ρ(a + a†)2)

becomes in Wigner representation9

W {ρ} 7→ −1
2

(
∂

∂α
− ∂

∂α∗

)2

W {ρ}(α, α∗) ≡ 1
2
∂2

∂p2 W {ρ}(x , p).

Similarly, the super-operator

ρ 7→ (a − a†)ρ(a − a†)− 1
2
(
(a − a†)2ρ+ ρ(a − a†)2)

becomes in Wigner representation

W {ρ} 7→ −1
2

(
∂

∂α
+

∂

∂α∗

)2

W {ρ}(α, α∗) ≡ 1
2
∂2

∂x2 W {ρ}(x , p).

9Use the fact that ∂
∂α

= 1
2

(
∂
∂x − i ∂

∂p

)
, ∂
∂α∗ = 1

2

(
∂
∂x + i ∂

∂p

)
and α = x + ip.



Wigner function10 of |α⟩+ |-α⟩ ("Schrödinger cat" with α = 5)
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-2

0

2

4

6

8

-0.2

-0.1

0

0.1

0.2

0.3

10For ψ ∈ L2(R,C): W (q, p) = 1
π

∫ +∞
−∞ ψ∗(q − u

2

)
ψ
(
q + u

2

)
e−2ipudu.



Wigner function W ρ for different values of the density operator ρ

W ρ : C ∋ ξ → 2
π Tr

((
DξeiπND†

ξ

)
ρ
)
∈ [−2/π,2/π]

Re(ξ)

Im
(ξ

)

−0.6

−0.4

−0.2

0

0.2

0.4

0.6Fock state |n=0> Fock state |n=3> Coherent state |α=1.8>

Coherent state |-α> Statistical mixture of 
|-α> and |α> Cat state |-α>+|α>

-3
-3

0

0

3
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What is a dynamical reduced model for d
dt x = v(x) ?

A possible answer:
restriction to an attractive invariant manifold Σ.



Slow/fast systems (coordinate free setting)

Geometric definition independent of coordinates due to Fenichel11:

x 7→ v(x) close to x 7→ v(x).

v(x) = 0 define a manifold Σ of dimension ns < n = dim(x) of
steady-states for v(x).

nf = n − ns eigenvalues of ∂v
∂x

∣∣∣
Σ

are stable (negative real parts).

11N. Fenichel: Geometric singular perturbation theory for ordinary
differential equations. J. Diff. Equations, 1979, 31, 53-98.



Tikhonov normal form 12 and model reduction

Any slow/fast system, can be put, after a
suitable change of coordinates, in to a
quasi-vertical vector field v :

d
dt

xs = vs(xs, xf ) = ϵṽs(xs, xf , ϵ)

d
dt

xf = vf (xs, xf )

with 0 < ϵ ≪ 1.

The reduced system d
dt xs = vs(xs, xf ) with 0 = vf (xs, xf ) is correct if

d
dt ξf = vf (xs, ξf ) hyperbolically stable for any fixed xs.

In general, modeling variables x are not Tikhonov variables.

12See, e.g., F. Verhulst: Methods and Applications of Singular
Perturbations: Boundary Layers and Multiple Timescale Dynamics. Springer,
2005



Model reduction with modeling variables

vf xs xf 0

Example with the heuristic method:

d
dt

xs = 2(xf − xs) + ϵxf
d
dt

xf = xs − xf

1- compute xf versus xs from d
dt xf = 0;

2- plug xf = xs into d
dt xs to obtain

d
dt xs = ϵxs (wrong slow model !)

The reduced model of d
dt xs = vs(xs, xf , ϵ), d

dt xf = vf (xs, xf , ϵ) is13

d
dt

xs =

(
1 +

∂vs

∂xf

(
∂vf

∂xf

)−2
∂vf

∂xs

)−1

vs(xs, xf , ϵ)+O(ϵ2), vf (xs, xf , ϵ) = 0.

Same example with the correct method: with ∂vs
∂xf

= 2, ∂vf
∂xs

= 1 = −∂vf
∂xf

,
we get the correct slow model , d

dt xs = ϵxs/3.

13J. Carr: Application of Center Manifold Theory. Springer, 1981.
P. Duchêne, P.R. : Kinetic scheme reduction via geometric singular
perturbation techniques. Chem. Eng. Science, 1996, 51, 4661-4672.



Slow/fast composite quantum systems

Take 0 < ϵ≪ 1 and composite system made of subsystem A with Hilbert
space HA and subsystem B with Hilbert space HB :

d
dt

ρ = LB(ρ) + ϵ
(
− i[H int, ρ] + LA(ρ)

)
where

LB(ρ) is a Lindbladian dynamics on HB converging towards a unique
steady-state density operator ρB on HB .

LA(ρ) is a Lindbladian dynamics on HA

AB-interaction Hamiltonian H int =
∑m

k=1 Ak ⊗ Bk , with Ak and Bk

Hermitian operators on HA and HB respectively.

When ϵ = 0, for all initial state ρ0 on HA ⊗HB , the solution of d
dt ρ = LB(ρ)

converges towards the separable steady-state TrB (ρ0)⊗ ρB .
For 0 < ϵ≪ 1, the attractive steady-state manifold

Σ̄ =
{
ρA ⊗ ρB | ρA density operator on HA

}
becomes Σϵ, an attractive invariant manifold where the evolution is slow.
Σϵ can be parameterized via density operators ξ on HA with a slow evolution.
Approximation of such parametrization and slow evolution can be done via
asymptotic expansion in ϵ. Is-it always possible to preserve positivity of ρ ?
Always OK for second order expansion.



Geometric singular perturbations for bipartite open quantum systems14

slow invariant attractive sub-manifold

0

(t)

fas
t re

lax
ati

on

slow evolution

d
dt Ai HintB

A B

A
d
dt 1

2
2

0 1
2

2

0
t

0 t

Lindbladian slow dynamics on a density operator ξ on HA,
d
dt
ξ = ϵF1(ξ) + ϵ2F2(ξ) + . . .

with a Kraus map giving density operator ρ on HA ⊗HB from ξ:

ρ = K(ξ) = K0(ξ) + ϵK1(ξ) + ϵ2K2(ξ) + . . .
14Azouit, R. / Chittaro, F. / Sarlette, A. / PR: Towards generic adiabatic elimination for

bipartite open quantum systems 2017, Quantum Science and Technology , Vol. 2, p.
044011



An iterative procedure based on center manifold approximation

Plug

ρ = K(ξ) = ξ⊗ρB+ϵK1(ξ)+. . . , and
d
dt

ξ = F(ξ) = ϵF1(ξ)+ϵ
2F2(ξ)+. . .

into invariance condition

LB(K(ξ))− ϵi
[
H int,K(ξ)

]
+ ϵLA(K(ξ)) =

d
dt

ρ = K(F(ξ))

and identify terms of same orders:

order 1: LB(K1(ξ))− i
[
H int,K0(ξ)

]
+ LA(K0(ξ)) = K0(F1(ξ))

order 2: LB(K2(ξ))− i
[
H int,K1(ξ)

]
+ LA(K1(ξ)) = K0(F2(ξ)) +K1(F1(ξ))

. . .

At each order
1 take the trace versus B to get the correction to F
2 compute the correction to K via −L−1

B , a super operator for zero-trace
operators W on HA

−L−1
B (W ) =

∫ +∞

0
etLB (W )dt

that coincides with the restriction to zero-trace operators of a
completely positive (CP) map.



Second order approximation when B is a low-Q mode

For LB(ρ) = κb

(
bρb† − 1

2 (b
†bρ+ ρb†b)

)
one gets using ρB = |0b⟩⟨0b|,

d
dt ξ = −iϵ

[ ∑
k βk Ak , ξ

]
+ ϵLA(ξ) +

4ϵ2

κb

(∑
k LkξL†

k − 1
2

(
L†

k Lkξ + ξL†
k Lk

))
+ O(ϵ3)

with
ρ = eiϵW 1

(
ξ ⊗ |0b⟩⟨0b|

)
e−iϵW 1 + O(ϵ2)

and where

βk = ⟨0b|Bk |0b⟩,
Lk =

∑m
k′=1 Λk,k′Ak′ based on Cholesky factorization Λ†Λ = G of the

following Gram matrix

Gkk′ ==
+∞∑
nb=1

(
1√
nb
⟨nb|Bk |0b⟩

)∗ (
1√
nb
⟨nb|Bk′ |0b⟩

)
.

W 1 = 2
κb

∑m
k=1 Ak ⊗

(
(b†b)−1Bk + Bk (b†b)−1) using

(b†b)−1 =
∑

nb>1
1

nb
|nb⟩⟨nb|.
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Super-conducting circuit stabilizing a cat-qubit 15

15R. Lescanne, ..., M. Mirrahimi, M. and Z. Leghtas: Exponential suppression of
bit-flips in a qubit encoded in an oscillator. 2020, Nat. Phys. , Vol. 16, p. 509-513.
See also the patent underlying the startup Alice&Bob.



Quantum analysis of the circuit stabilizing a cat-qubit (1)

Quantum Hamiltonian: two commuting annihilation operators a = (qa + ∂
∂qa

)/
√

2 and

b = (qb + ∂
∂qb

)/
√

2 with [a, a†] = I , [b,b†] = I

H1(t) = ωaa†a + ωbb†b + 2g cos
(
ϕa(a + a†) + ϕb(b + b†) + (2ωa − ωb)t I

)
Change of frame for d

dt ρ1 = −i[H1(t),ρ1]: new density operator

ρ2 = exp
(

iωata†a + iωb tb†b
)
ρ1 exp

(
−iωata†a − iωbtb†b

)
is governed by d

dt ρ2 = −i[H2(t),ρ2] with

H2(t) = gei(2ωa−ωb)t exp
(

iϕa(e−iωa t a + eiωa t a†) + iϕb(e−iωb t b + eiωb t b†)
)
+ h.c.

Expansion up-to order 3 versus ϕa, ϕb ≪ 1:

H2(t) ≈ gei(2ωa−ωb )t
(

I+iϕa
(
e−iωat a+eiωat a†

)
−ϕ2

a
2
(
e−iωat a+eiωat a†

)2− iϕ3
a

6
(
e−iωat a+eiωat a†

)3
)
. . .

(
I + iϕb

(
e−iωb t b + eiωb t b†)− ϕ2

b
2
(
e−iωb t b + eiωb t b†)2 −

iϕ3
b

6
(
e−iωb t b + eiωb t b†)3

)
+ h.c.



Quantum analysis of the circuit stabilizing a cat-qubit (2)

H2(t) ≈ gei(2ωa−ωb)t . . .(
I + iϕa

(
e−iωa t a + eiωa t a†)− ϕ2

a
2

(
e−iωa t a + eiωa t a†)2 − iϕ3

a
6

(
e−iωa t a + eiωa t a†)3

)
. . .(

I + iϕb
(
e−iωb t b + eiωb t b†)− ϕ2

b
2

(
e−iωb t b + eiωb t b†)2 − iϕ3

b
6

(
e−iωb t b + eiωb t b†)3

)
+ h.c.

When ωa/ωb irrational only two secular terms (i.e. non-oscillatory):
−ig2a2b† and its Hermitian conjugate ig2

(
a†)2b where g2 = gϕ2

aϕb/2 (order
exceeding 3 in ϕa, ϕb ≪ 1 are neglected).

Justify the following approximate time-invariant Hamiltonian for H2 (rotating
wave approximation): :

H2(t) ≈ −ig2a2b† + ig2
(
a†)2b.

Finer approximations via high-order averaging techniques.



Analysis of the circuit stabilizing a cat-qubit (1)

Cat-qubit stored in oscillator a, controller based on a damped oscillator b
stabilizing against one decoherence channel (bit-fip):

d
dt

ρ = −
[
g2a2b†−g2

(
a†)2b , ρ

]
+
[
ub†−u∗b , ρ

]
+κb

(
bρb†−(b†bρ+ρb†b)/2

)
= −

[
g2
(
a2 − α2)b†−g2

(
(a†)2 − (α)2)b , ρ]+κb

(
bρb†−(b†bρ+ρb†b)/2

)
with α ∈ C such that α2 = u/g2, the drive amplitude u ∈ C applied to mode b
and 1/κb > 0 the short life-time of photon in mode b.

Any density operator ρ̄ = ρ̄a ⊗ |0⟩⟨0|b is a steady-state as soon as the
support of ρ̄a belongs to the two dimensional vector space spanned by
the coherent states |α⟩ and |-α⟩ (range(ρ̄a) ⊂ span{|α⟩, |-α⟩})
(Schrödinger phase-cat).



Analysis of the circuit stabilizing a cat-qubit (2)

Cat-qubit stored in oscillator a, controller based low-Q mode b:

d
dt

ρ == −
[
g2
(
a2 − α2)b†−g2

(
(a†)2 − (α)2)b , ρ]+κb

(
bρb†−(b†bρ+ρb†b)/2

)
with α ∈ C and κb ≫ g2.

Any density operators ρ̄ = ρ̄a ⊗ |0⟩⟨0|b is a steady-state as soon as the
support of ρ̄a belongs to the two dimensional vector space spanned by the
quasi-classical wave functions |α⟩ and |-α⟩ (range(ρ̄a) ⊂ span{|α⟩, |-α⟩})
(Schrödinger cat-qubit).

Usually κb ≫ |g2|, mode b relaxes rapidly to vaccuum |0⟩⟨0|b , can be eliminated
adiabatically (singular perturbations, second order corrections) to provides the
slow evolution of mode a:

d
dt

ρa = 4|g2|2
κb

(
(a2−α2)ρa(a

2−α2)†− 1
2 ((a

2−α2)†(a2−α2)ρa+ρa(a
2−α2)†(a2−α2))

)
.

Exponential convergence toward the code space span{|α⟩, |-α⟩} based on the
following exponential Lyapunov function16

V (ρa) = Tr
((

a2 − α2)†(a2 − α2)ρa

)
, d

dt V ≤ − 8|g2|2
κb

V .

Photon-number parity Tr
(

eiπa†aρ
)

is invariant since [a2, eiπa†a] ≡ 0.

16
For a mathematical proof of convergence analysis in an adapted Banach space, see : R. Azouit, A. Sarlette,

PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with
multi-photon drive and damping. 2016, ESAIM: COCV , Vol. 22, No. 4, p. 1353 -1369.



Numerical simulation and exponentially protection against bit-flips

Take |α| ≫ 1 (with |α| > 3 one has ⟨α|-α⟩ ≤ e−18) and the following logical
state

|0⟩L ≈ |α⟩, |1⟩L ≈ |-α⟩
Even and odd cats read

|+⟩L = 1√
2
(|0⟩L + |1⟩L) and |−⟩L = 1√

2
(|0⟩L − |1⟩L).

Dynamic governed by the following Lindblad master equation

d
dt

ρ = DL0(ρ) + κ1DL1(ρ)

with DL(ρ) ≜ LρL† − 1
2

(
L†Lρ+ ρL†L

)
, two-photon pumping L0 = a2 − α2

and the main error channel L1 = a corresponding to photon losses.
Matlab script CatQubit.m:

α2 = 25/2, k1 = 1/10.

truncation to nmax ≈ α2 + 15α of the Fock basis

discretization time dt = 10−3/α2

numerical integration between t = 0 to t = 10/α2 starting from vacuum,
|+⟩L and |0⟩L.



Wigner function of a GKP grid-state
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Magic logical-qubit state endoded in a GKP grid-state with finite energy:

ψ(q) ∝ e−ϵq2
(∑

k cos(
π
8 )e

− (q−2k
√

π)2

ϵ + sin(π8 )e
− (q−(2k+1)

√
π)2

ϵ

)
with 0 < ϵ≪ 1.
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Conclusion of these lectures

Topics partially covered:

Models of open quantum systems based on density operators, Kraus
maps and Stochastic Master Equation (SME).

Positivity preserving numerical schemes for simulation with classical
computers.

Two key quantum systems: qubit (two-level system) and harmonic
oscillator (cavity mode).

Two approximation methods, averaging (RWA) and singular
perturbations (adiabatic elimination), for open-loop control and
closed-loop stabilization with a quantum controller.

Convergence analysis based on Lyapunov techniques and
super-martingales.

Absent topics;

Open-loop control: adiabatic control, optimal control, ensemble control
and parametric robustness

Stabilisation with a classical controller: measurement based feedback,
quantum error correction.

State and parameter estimation: quantum filtering and tomography.

. . .
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