Mathematical methods for modeling and control of open quantum systems¹

Mazyar Mirrahimi², Pierre Rouchon³, Alain Sarlette⁴

December 7, 2021

¹Lecture-notes, slides and Matlab simulation scripts available at: http://cas.ensmp.fr/~rouchon/LIASFMA/index.html

²Inria-Paris ³Mines Paris ⁴Inria-Paris

Outline

- 1 Single-frequency averaging and Kapitza's pendulum
- 2 Averaging and open-loop control of Schrödinger systems
 - Almost periodic open-loop control of Schrödinger systems

(ロ) (同) (三) (三) (三) (○) (○)

- Lemmas underlying first and second order approximations
- Rotating Wave Approximation (RWA) recipes
- 3 Resonant control of a qubit
- 4 Averaging and control of spin/spring system
 - The spin/spring model
 - Resonant interaction
 - Dispersive interaction
 - Law-Eberly control of a single trapped ion

Outline

1 Single-frequency averaging and Kapitza's pendulum

- 2 Averaging and open-loop control of Schrödinger systems
 - Almost periodic open-loop control of Schrödinger systems

(日) (日) (日) (日) (日) (日) (日)

- Lemmas underlying first and second order approximations
- Rotating Wave Approximation (RWA) recipes
- 3 Resonant control of a qubit
- 4 Averaging and control of spin/spring system
 - The spin/spring model
 - Resonant interaction
 - Dispersive interaction
 - Law-Eberly control of a single trapped ion

Time-periodic non-linear systems

We consider a non-linear ODE of the form:

$$\frac{d}{dt}x = \epsilon f(x,t), \qquad x \in \mathbb{R}^n, \qquad 0 < \epsilon \ll 1,$$

where *f* is *T*-periodic in *t* and depends smoothly on *x*.

We will see how its solution is well-approximated by the solution of the time-independent system, the averaged system:

$$\frac{d}{dt}z = \epsilon \overline{f}(z)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\overline{f}(z) = \frac{1}{T} \int_0^T f(z, t) dt$.

Consider $\frac{d}{dt}x = \epsilon f(x, t)$ with $x \in U \subset \mathbb{R}^n$, $0 \le \epsilon \ll 1$, and $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ smooth and period T > 0 in t. Also assume U to be bounded.

- If *z* is the solution of $\frac{d}{dt}z = \epsilon \overline{f}(z)$ with the initial condition z_0 , and assuming $|x_0 z_0| = \mathcal{O}(\epsilon)$, we have $|x(t) z(t)| = \mathcal{O}(\epsilon)$ on a time-scale $t \sim 1/\epsilon$.
- If \bar{z} is a hyperbolic fixed point of the averaged system then there exists $\epsilon_0 > 0$ such that, for all $0 < \epsilon \le \epsilon_0$, the main system possesses a unique hyperbolic periodic orbit $\gamma_{\epsilon}(t) = \bar{z} + \mathcal{O}(\epsilon)$ of the same stability type as \bar{z} .

J. Guckenheimer and P. Holmes, Nonlinear oscillations, Dynamical systems and Bifurcation of Vector Fields, Springer, 1983.

Theory of Kapitza's pendulum

Fixed suspension point:

$$\frac{d^2}{dt^2}\theta = \frac{g}{l}\sin\theta$$

g: free fall acceleration, *I*: pendulum's length, θ : angle to the vertical; $\theta = \pi$ stable and $\theta = 0$ unstable equilibrium.

Suspension point in vertical oscillation:

Dynamics of the suspension point: $z = \frac{v}{\Omega} \cos(\Omega t)$ ($a = v/\Omega > 0$ amplitude and Ω frequency).

Pendulum's dynamics: replace acceleration g by $g + \ddot{z} = g - v\Omega \cos(\Omega t)$,

$$\frac{d}{dt}\theta = \omega, \quad \frac{d}{dt}\omega = \frac{g - v\Omega\cos(\Omega t)}{I}\sin\theta.$$

Replacing the velocity ω by the momentum $p_{\theta} = \omega + \frac{v \sin(\Omega t)}{l} \sin \theta$:

$$\begin{aligned} \frac{d}{dt}\theta &= p_{\theta} - \frac{v \sin(\Omega t)}{l} \sin \theta, \\ \frac{d}{dt}p_{\theta} &= \left(\frac{g}{l} - \frac{v^2 \sin^2(\Omega t)}{l^2} \cos \theta\right) \sin \theta + \frac{v \sin(\Omega t)}{l} p_{\theta} \cos \theta. \end{aligned}$$

For large enough Ω , we can average these time-periodic dynamics over $[t - \pi/\Omega, t + \pi/\Omega]$:

$$\frac{d}{dt}\theta = p_{\theta}, \quad \frac{d}{dt}p_{\theta} = \left(\frac{g}{l} - \frac{v^2}{2l^2}\cos\theta\right)\sin\theta.$$

Around $\theta = 0$ the approximation of small angles gives $\frac{d^2}{dt^2}\theta = \frac{g-v^2/2I}{I}\theta$. If $v^2/2I > g$ then the system becomes stable around $\theta = 0$.

Outline

1 Single-frequency averaging and Kapitza's pendulum

2 Averaging and open-loop control of Schrödinger systems

Almost periodic open-loop control of Schrödinger systems

(日) (日) (日) (日) (日) (日) (日)

- Lemmas underlying first and second order approximations
- Rotating Wave Approximation (RWA) recipes

3 Resonant control of a qubit

4 Averaging and control of spin/spring system

- The spin/spring model
 - Resonant interaction
 - Dispersive interaction
- Law-Eberly control of a single trapped ion

Bilinear Schrödinger equation

Un-measured quantum system \rightarrow Bilinear Schrödinger equation

$$irac{d}{dt}|\psi
angle = (oldsymbol{H}_0 + u(t)oldsymbol{H}_1)|\psi
angle,$$

• $|\psi\rangle \in \mathcal{H}$ the system's wavefunction with $\||\psi\rangle\|_{\mathcal{H}} = 1;$

- the free Hamiltonian, H_0 , is a Hermitian operator defined on \mathcal{H} ;
- the control Hamiltonian, H_1 , is a Hermitian operator defined on H;
- the control $u(t) : \mathbb{R}^+ \mapsto \mathbb{R}$ is a scalar control.

Formal computations dim(\mathcal{H}) arbitrary. Mathematical proofs dim(\mathcal{H}) finite

(日) (日) (日) (日) (日) (日) (日)

Two key examples:

- Qubit: $\boldsymbol{H}_0 + \boldsymbol{u}(t)\boldsymbol{H}_1 = \frac{\omega_{eg}}{2}\boldsymbol{\sigma}_{\boldsymbol{z}} + \frac{\boldsymbol{u}(t)}{2}\boldsymbol{\sigma}_{\boldsymbol{x}}$.
- Quantum harmonic oscillator: $H_0 + u(t)H_1 = \omega_c(a^{\dagger}a + \frac{1}{2}) + u(t)(a + a^{\dagger}).$

Almost periodic control

We consider the controls of the form

$$u(t) = \epsilon \left(\sum_{j=1}^{r} \boldsymbol{u}_{j} \boldsymbol{e}^{i\omega_{j}t} + \boldsymbol{u}_{j}^{*} \boldsymbol{e}^{-i\omega_{j}t} \right)$$

- $\epsilon > 0$ is a small parameter;
- $\epsilon \boldsymbol{u}_j$ is the constant complex amplitude associated to the pulsation $\omega_j \geq 0$;
- *r* stands for the number of independent frequencies ($\omega_j \neq \omega_k$ for $j \neq k$).

We are interested in approximations, for ϵ tending to 0⁺, of trajectories $t \mapsto |\psi_{\epsilon}\rangle_t$ of

$$\frac{d}{dt}|\psi_{\epsilon}\rangle = \left(\boldsymbol{A}_{0} + \epsilon \left(\sum_{j=1}^{r} \boldsymbol{u}_{j} \boldsymbol{e}^{i\omega_{j}t} + \boldsymbol{u}_{j}^{*} \boldsymbol{e}^{-i\omega_{j}t}\right) \boldsymbol{A}_{1}\right) |\psi_{\epsilon}\rangle$$

where $\mathbf{A}_0 = -i\mathbf{H}_0$ and $\mathbf{A}_1 = -i\mathbf{H}_1$ are skew-Hermitian.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Consider the following change of variables

 $|\psi_{\epsilon}\rangle_t = \boldsymbol{e}^{\boldsymbol{A}_0 t} |\phi_{\epsilon}\rangle_t.$

The resulting system is said to be in the "interaction frame"

$$rac{d}{dt}|\phi_{\epsilon}
angle=\epsilon m{B}(t)|\phi_{\epsilon}
angle$$

where B(t) is a skew-Hermitian operator whose time-dependence is almost periodic:

$$B(t) = \sum_{j=1}^{r} \boldsymbol{u}_{j} e^{i\omega_{j}t} e^{-\boldsymbol{A}_{0}t} \boldsymbol{A}_{1} e^{\boldsymbol{A}_{0}t} + \boldsymbol{u}_{j}^{*} e^{-i\omega_{j}t} e^{-\boldsymbol{A}_{0}t} \boldsymbol{A}_{1} e^{\boldsymbol{A}_{0}t}.$$

Main idea

We can write

$$\boldsymbol{B}(t) = \bar{\boldsymbol{B}} + \frac{d}{dt} \widetilde{\boldsymbol{B}}(t),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where \overline{B} is a constant skew-Hermitian matrix and $\widetilde{B}(t)$ is a bounded almost periodic skew-Hermitian matrix.

Multi-frequency averaging: first order

Consider the two systems

$$\frac{d}{dt}|\phi_{\epsilon}\rangle = \epsilon \left(\bar{\boldsymbol{B}} + \frac{d}{dt}\widetilde{\boldsymbol{B}}(t)\right)|\phi_{\epsilon}\rangle,$$

and

$$\frac{d}{dt}|\phi_{\epsilon}^{1^{\mathsf{st}}}\rangle = \epsilon \bar{\boldsymbol{B}}|\phi_{\epsilon}^{1^{\mathsf{st}}}\rangle,$$

initialized at the same state $|\phi_{\epsilon}^{\uparrow^{\text{st}}}\rangle_{0} = |\phi_{\epsilon}\rangle_{0}$.

Theorem: first order approximation (Rotating Wave Approximation)

Consider the functions $|\phi_{\epsilon}\rangle$ and $|\phi_{\epsilon}^{1^{\text{st}}}\rangle$ initialized at the same state and following the above dynamics. Then, there exist M > 0 and $\eta > 0$ such that for all $\epsilon \in]0, \eta[$ we have

$$\max_{t \in \left[0, \frac{1}{\epsilon}\right]} \left\| \left| \phi_{\epsilon} \right\rangle_{t} - \left| \phi_{\epsilon}^{\mathsf{1SL}} \right\rangle_{t} \right\| \leq M\epsilon$$

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆

Proof's idea

Almost periodic change of variables:

 $|\chi_{\epsilon}\rangle = (1 - \epsilon \widetilde{\boldsymbol{B}}(t)) |\phi_{\epsilon}\rangle$

well-defined for $\epsilon > 0$ sufficiently small. The dynamics can be written as

$$rac{d}{dt}|\chi_{\epsilon}
angle = (\epsilon ar{m{B}} + \epsilon^2 m{F}(\epsilon,t))|\chi_{\epsilon}
angle$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

where $F(\epsilon, t)$ is uniformly bounded in time.

Multi-frequency averaging: second order

More precisely, the dynamics of $|\chi_\epsilon
angle$ is given by

$$\frac{d}{dt}|\chi_{\epsilon}\rangle = \left(\epsilon\bar{\boldsymbol{B}} + \epsilon^{2}[\bar{\boldsymbol{B}}, \tilde{\boldsymbol{B}}(t)] - \epsilon^{2}\tilde{\boldsymbol{B}}(t)\frac{d}{dt}\tilde{\boldsymbol{B}}(t) + \epsilon^{3}\boldsymbol{E}(\epsilon, t)\right)|\chi_{\epsilon}\rangle$$

E(ε, t) is still almost periodic but its entries are no more linear combinations of time-exponentials;

B(t) d/dt B(t) is an almost periodic operator whose entries are linear combinations of oscillating time-exponentials.

We can write

$$\widetilde{\boldsymbol{B}}(t) = rac{d}{dt}\widetilde{\boldsymbol{C}}(t)$$
 and $\widetilde{\boldsymbol{B}}(t)rac{d}{dt}\widetilde{\boldsymbol{B}}(t) = \bar{\boldsymbol{D}} + rac{d}{dt}\widetilde{\boldsymbol{D}}(t)$

where $\widetilde{\boldsymbol{C}}(t)$ and $\widetilde{\boldsymbol{D}}(t)$ are almost periodic. We have

$$\frac{d}{dt}|\chi_{\epsilon}\rangle = \left(\epsilon\bar{\boldsymbol{B}} - \epsilon^{2}\bar{\boldsymbol{D}} + \epsilon^{2}\frac{d}{dt}\left([\bar{\boldsymbol{B}}, \widetilde{\boldsymbol{C}}(t)] - \widetilde{\boldsymbol{D}}(t)\right) + \epsilon^{3}\boldsymbol{E}(\epsilon, t)\right)|\chi_{\epsilon}\rangle$$

where the skew-Hermitian operators \overline{B} and \overline{D} are constants and the other ones \widetilde{C} , \widetilde{D} , and E are almost periodic.

Multi-frequency averaging: second order

Consider the two systems

$$rac{d}{dt}|\phi_{\epsilon}
angle = \epsilon \left(ar{m{B}} + rac{d}{dt}\widetilde{m{B}}(t)
ight)|\phi_{\epsilon}
angle,$$

and

$$rac{d}{dt} |\phi_{\epsilon}^{\mathsf{2}\mathsf{n}\mathsf{d}}
angle = (\epsilon ar{m{B}} - \epsilon^2 ar{m{D}}) |\phi_{\epsilon}^{\mathsf{2}\mathsf{n}\mathsf{d}}
angle,$$

both initialized at $|\phi_{\epsilon}\rangle_{0}$.

Theorem: second order approximation

Consider $|\phi_{\epsilon}\rangle_t$ and $|\phi_{\epsilon}^{2^{nd}}\rangle_t$ solutions of the above dynamics. Then, there exist M > 0 and $\eta > 0$ such that for all $\epsilon \in]0, \eta]$ we have

$$\begin{split} \max_{t \in \left[0, \frac{1}{\epsilon}\right]} \left\| |\phi_{\epsilon}\rangle_{t} - (I + \epsilon \widetilde{\boldsymbol{B}}(t))|\phi_{\epsilon}^{2^{\mathsf{nd}}}\rangle_{t} \right\| &\leq M \epsilon^{2} \\ \max_{t \in \left[0, \frac{1}{\epsilon^{2}}\right]} \left\| |\phi_{\epsilon}\rangle_{t} - |\phi_{\epsilon}^{2^{\mathsf{nd}}}\rangle_{t} \right\| &\leq M \epsilon \end{split}$$

Proof's idea

Another almost periodic change of variables

$$|\xi_{\epsilon}\rangle = \left(\boldsymbol{I} - \epsilon^2 \left([\tilde{\boldsymbol{B}}, \widetilde{\boldsymbol{C}}(t)] - \widetilde{\boldsymbol{D}}(t) \right) \right) |\chi_{\epsilon}\rangle.$$

The dynamics can be written as

$$\frac{d}{dt}|\xi_{\epsilon}\rangle = \left(\epsilon\bar{\boldsymbol{B}} - \epsilon^{2}\bar{\boldsymbol{D}} + \epsilon^{3}\boldsymbol{F}(\epsilon,t)\right)|\xi_{\epsilon}\rangle$$

(日) (日) (日) (日) (日) (日) (日)

where $\epsilon \bar{B} - \epsilon^2 \bar{D}$ is skew Hermitian and F is almost periodic and therefore uniformly bounded in time.

The Rotating Wave Approximation (RWA) recipes

Schrödinger dynamics $i\frac{d}{dt}|\psi\rangle = H(t)|\psi\rangle$, with

$$H(t) = H_0 + \sum_{k=1}^m u_k(t)H_k, \qquad u_k(t) = \sum_{j=1}^r u_{k,j}e^{i\omega_j t} + u_{k,j}^*e^{-i\omega_j t}.$$

The Hamiltonian in interaction frame

$$\boldsymbol{H}_{\text{int}}(t) = \sum_{k,j} \left(\boldsymbol{u}_{k,j} \boldsymbol{e}^{i\omega_j t} + \boldsymbol{u}_{k,j}^* \boldsymbol{e}^{-i\omega_j t} \right) \boldsymbol{e}^{i\boldsymbol{H}_0 t} \boldsymbol{H}_k \boldsymbol{e}^{-i\boldsymbol{H}_0 t}$$

We define the first order Hamiltonian

$$\boldsymbol{H}_{\text{rwa}}^{\text{1st}} = \overline{\boldsymbol{H}_{\text{int}}} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \boldsymbol{H}_{\text{int}}(t) dt,$$

and the second order Hamiltonian

$$\boldsymbol{H}_{\text{rwa}}^{\text{2nd}} = \boldsymbol{H}_{\text{rwa}}^{\text{1st}} - i \overline{\left(\boldsymbol{H}_{\text{int}} - \overline{\boldsymbol{H}_{\text{int}}}\right)} \left(\int_{t} (\boldsymbol{H}_{\text{int}} - \overline{\boldsymbol{H}_{\text{int}}}) \right)$$

Choose the amplitudes $u_{k,j}$ and the frequencies ω_j such that the propagators of H_{rwa}^{ist} or H_{rwa}^{2nd} admit simple explicit forms that are used to find $t \mapsto u(t)$ steering $|\psi\rangle$ from one location to another one.

Outline

1 Single-frequency averaging and Kapitza's pendulum

- Averaging and open-loop control of Schrödinger systems
 Almost periodic open-loop control of Schrödinger systems
 Lemmas underlying first and second order
 - Lemmas underlying first and second orde approximations
 - Rotating Wave Approximation (RWA) recipes

3 Resonant control of a qubit

- 4 Averaging and control of spin/spring system
 - The spin/spring model
 - Resonant interaction
 - Dispersive interaction
 - Law-Eberly control of a single trapped ion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In

$$irac{d}{dt}|\psi
angle = \left(rac{\omega_{ ext{eg}}}{2}\sigma_{ extsf{z}} + rac{u(t)}{2}\sigma_{ extsf{x}}
ight)|\psi
angle,$$

take a resonant control $u(t) = ue^{i\omega_{eg}t} + u^* e^{-i\omega_{eg}t}$ with u slowly varying complex amplitude $\left|\frac{d}{dt}u\right| \ll \omega_{eg}|u|$. Set $H_0 = \frac{\omega_{eg}}{2}\sigma_z$ and $\epsilon H_1 = \frac{u}{2}\sigma_x$ and consider $|\psi\rangle = e^{-\frac{i\omega_{eg}t}{2}\sigma_z}|\phi\rangle$ to eliminate the drift H_0 and to get the Hamiltonian in the interaction frame:

$$i\frac{d}{dt}|\phi
angle = \frac{u(t)}{2}e^{\frac{i\omega_{eg}t}{2}\sigma_{z}}\sigma_{x}e^{-\frac{i\omega_{eg}t}{2}\sigma_{z}}|\phi
angle = H_{int}|\phi
angle$$

with $H_{int} = \frac{u(t)}{2}e^{i\omega_{eg}t} \underbrace{\frac{\sigma_{\star} = |e\rangle\langle g|}{2}}_{2} + \frac{u(t)}{2}e^{-i\omega_{eg}t} \underbrace{\frac{\sigma_{\star} = |g\rangle\langle e|}{2}}_{2}$ The RWA consists in neglecting the oscillating terms at frequency $2\omega_{eg}$ when $|\mathbf{u}| \ll \omega_{eg}$:

$$H_{int} = \left(\frac{\boldsymbol{u}\boldsymbol{e}^{2i\omega_{\text{eg}}t} + \boldsymbol{u}^{*}}{2}\right)\boldsymbol{\sigma}_{\bullet} + \left(\frac{\boldsymbol{u} + \boldsymbol{u}^{*}\boldsymbol{e}^{-2i\omega_{\text{eg}}t}}{2}\right)\boldsymbol{\sigma}_{\bullet}.$$

Thus

$$\overline{H_{int}} = \frac{u^* \sigma_* + u \sigma_*}{2}.$$

Second order approximation and Bloch-Siegert shift

The decomposition of **H**_{int},

$$\boldsymbol{H}_{\text{int}} = \underbrace{\frac{\boldsymbol{u}^{*} \boldsymbol{\sigma}_{\star} + \frac{\boldsymbol{u}}{2} \boldsymbol{\sigma}_{\star}}_{\boldsymbol{H}_{\text{int}}} + \underbrace{\frac{\boldsymbol{u} \boldsymbol{\sigma}^{2i\omega_{\text{eg}}t}}{2} \boldsymbol{\sigma}_{\star} + \frac{\boldsymbol{u}^{*} \boldsymbol{e}^{-2i\omega_{\text{eg}}t}}{2} \boldsymbol{\sigma}_{\star}}_{\boldsymbol{H}_{\text{int}} - \overline{\boldsymbol{H}_{\text{int}}}},$$

provides the first order approximation (RWA) $\boldsymbol{H}_{rwa}^{ist} = \overline{\boldsymbol{H}_{int}} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \boldsymbol{H}_{int}(t) dt$, and also the second order approximation $\boldsymbol{H}_{rwa}^{2nd} = \boldsymbol{H}_{rwa}^{1st} - i(\overline{\boldsymbol{H}_{int}} - \overline{\boldsymbol{H}_{int}}) \left(\int_{t} (\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}}) \right)$. Since $\int_{t} \boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}} = \frac{ue^{2i\omega_{eg}t}}{4i\omega_{eg}} \boldsymbol{\sigma}_{\star} - \frac{u^{*}e^{-2i\omega_{eg}t}}{4i\omega_{eg}} \boldsymbol{\sigma}_{\star}$, we have $\overline{\left(\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}} \right) \left(\int_{t} (\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}}) \right)} = -\frac{|\boldsymbol{u}|^{2}}{8i\omega_{eg}} \boldsymbol{\sigma}_{z}$

(use $\sigma_{t}^{2} = \sigma_{t}^{2} = 0$ and $\sigma_{z} = \sigma_{t}\sigma_{t} - \sigma_{t}\sigma_{t}$). The second order approximation reads:

$$\boldsymbol{H}_{\text{rwa}}^{\text{2nd}} = \boldsymbol{H}_{\text{rwa}}^{1\,\text{st}} + \left(\frac{|\boldsymbol{u}|^2}{8\omega_{\text{eg}}}\right)\boldsymbol{\sigma_{z}} = \frac{\boldsymbol{u}^*}{2}\boldsymbol{\sigma_{\star}} + \frac{\boldsymbol{u}}{2}\boldsymbol{\sigma_{\star}} + \left(\frac{|\boldsymbol{u}|^2}{8\omega_{\text{eg}}}\right)\boldsymbol{\sigma_{z}}.$$

The 2nd order correction $\frac{|u|^2}{4\omega_{eg}}(\sigma_z/2)$ is called the Bloch-Siegert shift.

Take the first order approximation

(
$$\Sigma$$
) $i\frac{d}{dt}|\phi\rangle = \frac{(\boldsymbol{u}^*\boldsymbol{\sigma_*} + \boldsymbol{u}\boldsymbol{\sigma_*})}{2}|\phi\rangle = \frac{(\boldsymbol{u}^*|\boldsymbol{e}\rangle\langle \boldsymbol{g}| + \boldsymbol{u}|\boldsymbol{g}\rangle\langle \boldsymbol{e}|)}{2}|\phi\rangle$

with control $\boldsymbol{u} \in \mathbb{C}$.

- **1** Take constant control $\boldsymbol{u}(t) = \Omega_r \boldsymbol{e}^{i\theta}$ for $t \in [0, T]$, T > 0. Show that $i \frac{d}{dt} |\phi\rangle = \frac{\Omega_r(\cos\theta\sigma_x + \sin\theta\sigma_y)}{2} |\phi\rangle$.
- 2 Set $\Theta_r = \frac{\Omega_r}{2}T$. Show that the solution at T of the propagator $\boldsymbol{U}_t \in SU(2), \ i\frac{d}{dt}\boldsymbol{U} = \frac{\Omega_r(\cos\theta\sigma_{\boldsymbol{x}}+\sin\theta\sigma_{\boldsymbol{y}})}{2}\boldsymbol{U}, \ \boldsymbol{U}_0 = \boldsymbol{I}$ is given by $\boldsymbol{U}_T = \cos\Theta_r \boldsymbol{I} - i\sin\Theta_r(\cos\theta\sigma_{\boldsymbol{x}} + \sin\theta\sigma_{\boldsymbol{y}}),$
- 3 Take a wave function $|\bar{\phi}\rangle$. Show that exist Ω_r and θ such that $U_T|g\rangle = e^{i\alpha}|\bar{\phi}\rangle$, where α is some global phase.
- 4 Prove that for any given two wave functions $|\phi_a\rangle$ and $|\phi_b\rangle$ exists a piece-wise constant control $[0, 2T] \ni t \mapsto u(t) \in \mathbb{C}$ such that the solution of (Σ) with $|\phi\rangle_0 = |\phi_a\rangle$ satisfies $|\phi\rangle_{2T} = e^{i\beta}|\phi_b\rangle$ for some global phase β .

Outline

1 Single-frequency averaging and Kapitza's pendulum

- Averaging and open-loop control of Schrödinger systems
 Almost periodic open-loop control of Schrödinger systems
 - Lemmas underlying first and second order approximations
 - Rotating Wave Approximation (RWA) recipes

3 Resonant control of a qubit

- Averaging and control of spin/spring system
 The spin/spring model
 - Resonant interaction
 - Dispersive interaction
 - Law-Eberly control of a single trapped ion

(日) (日) (日) (日) (日) (日) (日)

The Schrödinger system

$$irac{d}{dt}|\psi
angle = \left(rac{\omega_{eg}}{2}\sigma_{z} + \omega_{c}\left(a^{\dagger}a + rac{1}{2}
ight) + irac{\Omega}{2}\sigma_{x}(a^{\dagger} - a)
ight)|\psi
angle$$

corresponds to two coupled scalar PDE's:

$$i\frac{\partial\psi_{e}}{\partial t} = +\frac{\omega_{eg}}{2}\psi_{e} + \frac{\omega_{c}}{2}\left(x^{2} - \frac{\partial^{2}}{\partial x^{2}}\right)\psi_{e} - i\frac{\Omega}{\sqrt{2}}\frac{\partial}{\partial x}\psi_{g}$$
$$i\frac{\partial\psi_{g}}{\partial t} = -\frac{\omega_{eg}}{2}\psi_{g} + \frac{\omega_{c}}{2}\left(x^{2} - \frac{\partial^{2}}{\partial x^{2}}\right)\psi_{g} - i\frac{\Omega}{\sqrt{2}}\frac{\partial}{\partial x}\psi_{e}$$

since $\mathbf{a} = \frac{1}{\sqrt{2}} \left(x + \frac{\partial}{\partial x} \right)$ and $|\psi\rangle$ corresponds to $(\psi_{\theta}(x, t), \psi_{g}(x, t))$ where $\psi_{\theta}(., t), \psi_{g}(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ and $\|\psi_{\theta}\|^{2} + \|\psi_{g}\|^{2} = 1$.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

In

$$\boldsymbol{H} = \frac{\omega_{\text{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}} + \omega_{c} \left(\boldsymbol{a}^{\dagger} \boldsymbol{a} + \frac{\boldsymbol{I}}{2} \right) + i \frac{\Omega}{2} \boldsymbol{\sigma}_{\boldsymbol{x}} (\boldsymbol{a}^{\dagger} - \boldsymbol{a})$$

take $\omega_{eg} = \omega_c + \Delta$ with $|\Omega|, |\Delta| \ll \omega_c$. Then $\boldsymbol{H} = \boldsymbol{H}_0 + \epsilon \boldsymbol{H}_1$ where ϵ is a small parameter and

$$H_0 = \frac{\omega}{2}\sigma_z + \omega_c \left(\mathbf{a}^{\dagger}\mathbf{a} + \frac{\mathbf{I}}{2} \right)$$

$$\epsilon H_1 = \frac{\Delta}{2}\sigma_z + i\frac{\Omega}{2}\sigma_x (\mathbf{a}^{\dagger} - \mathbf{a}).$$

 H_{int} is obtained by setting $|\psi\rangle = e^{-i\omega_c t \left(\boldsymbol{a}^{\dagger} \boldsymbol{a} + \frac{1}{2}\right)} e^{\frac{-i\omega_c t}{2} \sigma_{\boldsymbol{z}}} |\phi\rangle$ in $i \frac{d}{dt} |\psi\rangle = \boldsymbol{H} |\psi\rangle$ to get $i \frac{d}{dt} |\phi\rangle = \boldsymbol{H}_{\text{int}} |\phi\rangle$ with

$$\mathbf{H}_{\text{int}} = rac{\Delta}{2} \sigma_{\mathbf{z}} + i rac{\Omega}{2} (e^{-i\omega_{c}t} \sigma_{\mathbf{z}} + e^{i\omega_{c}t} \sigma_{\mathbf{z}}) (e^{i\omega_{c}t} \mathbf{a}^{\dagger} - e^{-i\omega_{c}t} \mathbf{a})$$

where we used

$$e^{rac{i heta}{2}\sigma_{\mathbf{z}}}\sigma_{\mathbf{x}}e^{-rac{i heta}{2}\sigma_{\mathbf{z}}}=e^{-i heta}\sigma_{\mathbf{z}}+e^{i heta}\sigma_{\mathbf{z}},\quad e^{i hetaig(\mathbf{a}^{\dagger}\mathbf{a}+rac{1}{2}ig)}\mathbf{a}\ e^{-i hetaig(\mathbf{a}^{\dagger}\mathbf{a}+rac{1}{2}ig)}=e^{-i heta}\mathbf{a}$$

Resonant case: first order (Jaynes-Cummings Hamiltonian)

The secular terms in H_{int} are given by (RWA, first order approximation)

$$\boldsymbol{H}_{\text{rwa}}^{\text{1st}} = \frac{\Delta}{2}\boldsymbol{\sigma}_{z} + i\frac{\Omega}{2}(\boldsymbol{\sigma}_{\cdot}\boldsymbol{a}^{\dagger} - \boldsymbol{\sigma}_{+}\boldsymbol{a}).$$

Since quantum state $|\phi\rangle = e^{+i\omega_c t \left(\mathbf{a}^{\dagger} \mathbf{a} + \frac{1}{2}\right)} e^{\frac{+i\omega_c t}{2} \sigma_{\mathbf{z}}} |\psi\rangle$ obeys approximatively to $i \frac{d}{dt} |\phi\rangle = \mathbf{H}_{\text{rws}}^{1\text{st}} |\phi\rangle$, the original quantum state $|\psi\rangle$ is governed by

$$i\frac{d}{dt}|\psi\rangle = \left(\frac{\omega_{c}+\Delta}{2}\sigma_{z} + \omega_{c}\left(\boldsymbol{a}^{\dagger}\boldsymbol{a} + \frac{1}{2}\right) + i\frac{\Omega}{2}(\sigma_{\star}\boldsymbol{a}^{\dagger} - \sigma_{\star}\boldsymbol{a})\right)|\psi\rangle$$

The Jaynes-Cummings Hamiltonian ($\omega_{eg} = \omega_c + \Delta$ with $|\Delta|, |\Omega| \ll \omega_c$) reads:

$$\boldsymbol{H}_{JC} = \frac{\omega_{c} + \Delta}{2} \boldsymbol{\sigma}_{z} + \omega_{c} \left(\boldsymbol{a}^{\dagger} \boldsymbol{a} + \frac{1}{2} \right) + i \frac{\Omega}{2} \left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger} - \boldsymbol{\sigma}_{\star} \boldsymbol{a} \right)$$

The corresponding PDE is (case $\Delta=0)$:

$$\begin{split} i\frac{\partial\psi_{e}}{\partial t} &= \frac{\omega_{c} + \Delta}{2}\psi_{e} + \frac{\omega_{c}}{2}(x^{2} - \frac{\partial^{2}}{\partial x^{2}})\psi_{e} - i\frac{\Omega}{2\sqrt{2}}\left(x - \frac{\partial}{\partial x}\right)\psi_{g} \\ i\frac{\partial\psi_{g}}{\partial t} &= -\frac{\omega_{c} + \Delta}{2}\psi_{g} + \frac{\omega_{c}}{2}(x^{2} - \frac{\partial^{2}}{\partial x^{2}})\psi_{g} + i\frac{\Omega}{2\sqrt{2}}\left(x + \frac{\partial}{\partial x}\right)\psi_{e} \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

For $\omega_c \gg |\Delta| \gg |\Omega|$, the dominant term in

$$\boldsymbol{H}_{rwa}^{1^{SI}} = \frac{\Delta}{2}\boldsymbol{\sigma}_{z} + i\frac{\Omega}{2}(\boldsymbol{\sigma}.\boldsymbol{a}^{\dagger} - \boldsymbol{\sigma}_{+}\boldsymbol{a})$$

is an isolated qubit. To make the interaction dominant, we go to the interaction frame with $(\omega_{eg} = \omega_c + \Delta)$ $H_0 = \frac{\omega_{eg}}{2}\sigma_z + \omega_c \left(\boldsymbol{a}^{\dagger} \boldsymbol{a} + \frac{1}{2}\right), \quad \epsilon H_1 = i\frac{\Omega}{2}\sigma_x(\boldsymbol{a}^{\dagger} - \boldsymbol{a}).$ By setting $|\psi\rangle = e^{-i\omega_c t}(\boldsymbol{a}^{\dagger} \boldsymbol{a} + \frac{1}{2})e^{-\frac{i\omega_e t}{2}\sigma_z}|\phi\rangle$ we get $i\frac{d}{dt}|\phi\rangle = H_{int}|\phi\rangle$ with

$$\begin{aligned} \boldsymbol{H}_{\text{int}} &= i\frac{\Omega}{2} \left(\boldsymbol{e}^{-i\omega_{\text{eg}}t} \boldsymbol{\sigma}_{\star} + \boldsymbol{e}^{i\omega_{\text{eg}}t} \boldsymbol{\sigma}_{\star} \right) \left(\boldsymbol{e}^{i\omega_{\text{c}}t} \boldsymbol{a}^{\dagger} - \boldsymbol{e}^{-i\omega_{\text{c}}t} \boldsymbol{a} \right) \\ &= i\frac{\Omega}{2} \left(\boldsymbol{e}^{-i\Delta t} \boldsymbol{\sigma}_{\star} \boldsymbol{a}^{\dagger} - \boldsymbol{e}^{i\Delta t} \boldsymbol{\sigma}_{\star} \boldsymbol{a} + \boldsymbol{e}^{i(2\omega_{\text{c}}+\Delta)t} \boldsymbol{\sigma}_{\star} \boldsymbol{a}^{\dagger} - \boldsymbol{e}^{-i(2\omega_{\text{c}}+\Delta)t} \boldsymbol{\sigma}_{\star} \boldsymbol{a} \right) \end{aligned}$$

Thus $\boldsymbol{H}_{rwa}^{1st} = \overline{\boldsymbol{H}_{int}} = 0$: no secular term. We have to compute $\boldsymbol{H}_{rwa}^{2nd} = \overline{\boldsymbol{H}_{int}} - i(\overline{\boldsymbol{H}_{int}} - \overline{\boldsymbol{H}_{int}}) \left(\int_{t} (\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}}) \right)$ where $\int_{t} (\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}})$ corresponds to $\frac{-\Omega}{2} \left(\frac{e^{-i\Delta t}}{\Delta} \boldsymbol{\sigma}_{\star} \boldsymbol{a}^{\dagger} + \frac{e^{i\Delta t}}{\Delta} \boldsymbol{\sigma}_{\star} \boldsymbol{a} - \frac{e^{i(2\omega_{c}+\Delta)t}}{2\omega_{c}+\Delta} \boldsymbol{\sigma}_{\star} \boldsymbol{a}^{\dagger} - \frac{e^{-i(2\omega_{c}+\Delta)t}}{2\omega_{c}+\Delta} \boldsymbol{\sigma}_{\star} \boldsymbol{a} \right)$

Dispersive spin/spring Hamiltonian and associated PDE

The secular terms in
$$\boldsymbol{H}_{\text{rwa}}^{2\text{nd}}$$
 are

$$\frac{-\Omega^2}{4\Delta} \left(\boldsymbol{\sigma}.\boldsymbol{\sigma}_{\star}\boldsymbol{a}^{\dagger}\boldsymbol{a} - \boldsymbol{\sigma}_{\star}\boldsymbol{\sigma}.\boldsymbol{a}\boldsymbol{a}^{\dagger} \right) + \frac{-\Omega^2}{4(\omega_c + \omega_{\text{eg}})} \left(\boldsymbol{\sigma}.\boldsymbol{\sigma}_{\star}\boldsymbol{a}\boldsymbol{a}^{\dagger} - \boldsymbol{\sigma}_{\star}\boldsymbol{\sigma}.\boldsymbol{a}^{\dagger}\boldsymbol{a} \right)$$
Since $|\Omega| \ll |\Delta| \ll \omega_{\text{eg}}, \omega_c$, we have $\frac{\Omega^2}{4(\omega_c + \omega_{\text{eg}})} \ll \frac{\Omega^2}{4\Delta}$
 $\boldsymbol{H}_{\text{rwa}}^{2\text{nd}} \approx \frac{\Omega^2}{4\Delta} \left(\boldsymbol{\sigma}_{z} \left(\boldsymbol{N} + \frac{1}{2} \right) + \frac{1}{2} \right).$

Since quantum state $|\phi\rangle = e^{+i\omega_{c}t\left(\mathbf{N}+\frac{1}{2}\right)}e^{\frac{+i\omega_{eg}t}{2}\sigma_{z}}|\psi\rangle$ obeys approximatively to $i\frac{d}{dt}|\phi\rangle = \mathbf{H}_{rwa}^{2nd}|\phi\rangle$, the original quantum state $|\psi\rangle$ is governed by $i\frac{d}{dt}|\psi\rangle = \left(\mathbf{H}_{disp} + \frac{\Omega^{2}}{8\Delta}\right)|\psi\rangle$ with

$$\boldsymbol{H}_{disp} = \frac{\omega_{eg}}{2}\boldsymbol{\sigma_{z}} + \omega_{c}\left(\boldsymbol{N} + \frac{l}{2}\right) - \frac{\chi}{2}\boldsymbol{\sigma_{z}}\left(\boldsymbol{N} + \frac{l}{2}\right) \quad \text{and } \chi = \frac{-\Omega^{2}}{2\Delta}$$

The corresponding PDE is :

$$i\frac{\partial\psi_{\theta}}{\partial t} = +\frac{\omega_{\text{eg}}}{2}\psi_{\theta} + \frac{1}{2}(\omega_{c} - \frac{\chi}{2})(x^{2} - \frac{\partial^{2}}{\partial x^{2}})\psi_{\theta}$$
$$i\frac{\partial\psi_{g}}{\partial t} = -\frac{\omega_{\text{eg}}}{2}\psi_{g} + \frac{1}{2}(\omega_{c} + \frac{\chi}{2})(x^{2} - \frac{\partial^{2}}{\partial x^{2}})\psi_{g}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Exercise: resonant spin-spring system with controls

Consider the resonant spin-spring model with $\Omega \ll |\omega|$:

$$\boldsymbol{H} = \frac{\omega}{2}\boldsymbol{\sigma}_{\boldsymbol{z}} + \omega \left(\boldsymbol{a}^{\dagger}\boldsymbol{a} + \frac{1}{2}\right) + i\frac{\Omega}{2}\boldsymbol{\sigma}_{\boldsymbol{x}}(\boldsymbol{a}^{\dagger} - \boldsymbol{a}) + u(\boldsymbol{a} + \boldsymbol{a}^{\dagger})$$

with a real control input $u(t) \in \mathbb{R}$:

1 Show that with the resonant control $u(t) = ue^{-i\omega t} + u^* e^{i\omega t}$ with complex amplitude u such that $|u| \ll \omega$, the first order RWA approximation yields the following dynamics in the interaction frame:

$$irac{d}{dt}|\psi
angle = \left(irac{\Omega}{2}(\pmb{\sigma}.\pmb{a}^{\dagger}-\pmb{\sigma}_{\star}\pmb{a})+\pmb{u}\pmb{a}^{\dagger}+\pmb{u}^{*}\pmb{a}
ight)|\psi
angle$$

2 Set $\mathbf{v} \in \mathbb{C}$ solution of $\frac{d}{dt}\mathbf{v} = -i\mathbf{u}$ and consider the following change of frame $|\phi\rangle = D_{-\mathbf{v}}|\psi\rangle$ with the displacement operator $D_{-\mathbf{v}} = e^{-\mathbf{v}\mathbf{a}^{\dagger} + \mathbf{v}^{*}\mathbf{a}}$. Show that, up to a global phase change, we have, with $\tilde{\mathbf{u}} = i\frac{\Omega}{2}\mathbf{v}$,

$$irac{d}{dt}|\phi
angle = \left(rac{i\Omega}{2}(\sigma_{\text{-}}a^{\dagger} - \sigma_{\text{+}}a) + (\tilde{u}\sigma_{\text{+}} + \tilde{u}^{*}\sigma_{\text{-}})
ight)|\phi
angle$$

- 3 Take the orthonormal basis { $|g, n\rangle$, $|e, n\rangle$ } with $n \in \mathbb{N}$ being the photon number and where for instance $|g, n\rangle$ stands for the tensor product $|g\rangle \otimes |n\rangle$. Set $|\phi\rangle = \sum_{n} \phi_{g,n}|g, n\rangle + \phi_{e,n}|e, n\rangle$ with $\phi_{g,n}, \phi_{e,n} \in \mathbb{C}$ depending on *t* and $\sum_{n} |\phi_{g,n}|^2 + |\phi_{e,n}|^2 = 1$. Show that, for $n \ge 0$ $i\frac{d}{dt}\phi_{g,n+1} = i\frac{\Omega}{2}\sqrt{n+1}\phi_{e,n} + \tilde{\mathbf{u}}^*\phi_{e,n+1}, \quad i\frac{d}{dt}\phi_{e,n} = -i\frac{\Omega}{2}\sqrt{n+1}\phi_{g,n+1} + \tilde{\mathbf{u}}\phi_{g,n}$ and $i\frac{d}{dt}\phi_{g,0} = \tilde{\mathbf{u}}^*\phi_{e,0}$.
- 4 Assume that $|\phi\rangle_0 = |g, 0\rangle$. Construct an open-loop control $[0, T] \ni t \mapsto \tilde{u}(t)$ such that $|\phi\rangle_T \approx |g, 1\rangle$ (hint: use an impulse for $t \in [0, \epsilon]$ followed by 0 on $[\epsilon, T]$ with $\epsilon \ll T$ and well chosen *T*).
- 5 Generalize the above open-loop control when the goal state $|\phi\rangle_T$ is $|g, n\rangle$ with any arbitrary photon number *n*.

A single trapped ion

1D ion trap, picture borrowed from S. Haroche course at CDF.

A classical cartoon of spin-spring system.

・ロット (雪) (日) (日)

ъ

A single trapped ion

A composite system:

internal degree of freedom+vibration inside the 1D trap

Hilbert space:

 $\mathbb{C}^2 \otimes L^2(\mathbb{R},\mathbb{C})$

Hamiltonian:

$$\boldsymbol{H} = \omega_m \left(\boldsymbol{a}^{\dagger} \boldsymbol{a} + \frac{\mathbf{I}}{2} \right) + \frac{\omega_{\text{eg}}}{2} \sigma_{\mathbf{z}} + \left(u_l \boldsymbol{e}^{i(\omega_l t - \eta_l(\boldsymbol{a} + \boldsymbol{a}^{\dagger}))} + u_l^* \boldsymbol{e}^{-i(\omega_l t - \eta_l(\boldsymbol{a} + \boldsymbol{a}^{\dagger}))} \right) \sigma_{\mathbf{x}}$$

Parameters:

 ω_m : harmonic oscillator of the trap, ω_{eg} : optical transition of the internal state, ω_l : lasers frequency, $\eta_l = \omega_l/c$: Lamb-Dicke parameter. **Scales:**

$$|\omega_l - \omega_{\text{eg}}| \ll \omega_{\text{eg}}, \quad \omega_m \ll \omega_{\text{eg}}, \quad |u_l| \ll \omega_{\text{eg}}, \quad \left|\frac{d}{dt}u_l\right| \ll \omega_{\text{eg}}|u_l|.$$

PDE formulation

The Schrödinger equation $i \frac{d}{dt} |\psi\rangle = \boldsymbol{H} |\psi\rangle$, with

$$\boldsymbol{H} = \omega_m \left(\boldsymbol{a}^{\dagger} \boldsymbol{a} + \frac{\mathbf{I}}{2} \right) + \frac{\omega_{\text{eg}}}{2} \sigma_{\mathbf{z}} + \left(u_l \boldsymbol{e}^{i(\omega_l t - \eta_l(\boldsymbol{a} + \boldsymbol{a}^{\dagger}))} + u_l^* \boldsymbol{e}^{-i(\omega_l t - \eta_l(\boldsymbol{a} + \boldsymbol{a}^{\dagger}))} \right) \sigma_{\mathbf{x}}$$

can be written in the form

$$\begin{split} i\frac{\partial\psi_g}{\partial t} &= \frac{\omega_m}{2}\left(x^2 - \frac{\partial^2}{\partial x^2}\right)\psi_g - \frac{\omega_{eg}}{2}\psi_g + \left(u_l e^{i(\omega_l t - \sqrt{2}\eta_l x)} + u_l^* e^{-i(\omega_l t - \sqrt{2}\eta_l x)}\right)\psi_e,\\ i\frac{\partial\psi_e}{\partial t} &= \frac{\omega_m}{2}\left(x^2 - \frac{\partial^2}{\partial x^2}\right)\psi_e + \frac{\omega_{eg}}{2}\psi_e + \left(u_l e^{i(\omega_l t - \sqrt{2}\eta_l x)} + u_l^* e^{-i(\omega_l t - \sqrt{2}\eta_l x)}\right)\psi_g. \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

■ This system is approximately controllable in (L²(ℝ, ℂ))²: S. Ervedoza and J.-P. Puel, Annales de l'IHP (c), 26(6): 2111-2136, 2009.

Law-Eberly method

Main idea

Control is superposition of 3 mono-chromatic plane waves with:

- **1** frequency ω_{eg} (ion transition frequency) and amplitude u;
- 2 frequency $\omega_{eg} \omega_m$ (red shift by a vibration quantum) and amplitude u_r ;
- 3 frequency $\omega_{eg} + \omega_m$ (blue shift by a vibration quantum) and amplitude u_b ;

Control Hamiltonian:

Lamb-Dicke parameters:

$$\eta = \eta_{eg} \approx \eta_r \approx \eta_b \ll 1.$$

Law-Eberly method: rotating frame

Rotating frame:
$$|\psi
angle=e^{-i\omega_m t\left(m{a}^{\dagger}m{a}+rac{1}{2}
ight)}e^{rac{-i\omega_{
m eg}t}{2}\sigma_{
m z}}|\phi
angle$$

$$\begin{split} \boldsymbol{H}_{\text{int}} &= e^{i\omega_m t \left(\boldsymbol{a}^{\dagger} \boldsymbol{a}\right)} \left(u e^{i\omega_{\text{eg}} t} e^{-i\eta \left(\boldsymbol{a} + \boldsymbol{a}^{\dagger}\right)} + u^* e^{-i\omega_{\text{eg}} t} e^{i\eta \left(\boldsymbol{a} + \boldsymbol{a}^{\dagger}\right)} \right) \\ &= e^{-i\omega_m t \left(\boldsymbol{a}^{\dagger} \boldsymbol{a}\right)} \left(e^{i\omega_{\text{eg}} t} | \boldsymbol{e} \rangle \langle \boldsymbol{g} | + e^{-i\omega_{\text{eg}} t} | \boldsymbol{g} \rangle \langle \boldsymbol{e} | \right) \\ &+ e^{i\omega_m t \left(\boldsymbol{a}^{\dagger} \boldsymbol{a}\right)} \left(u_b e^{i\left(\omega_{\text{eg}} + \omega_m\right) t} e^{-i\eta_b\left(\boldsymbol{a} + \boldsymbol{a}^{\dagger}\right)} + u_b^* e^{-i\left(\omega_{\text{eg}} + \omega_m\right) t} e^{i\eta_b\left(\boldsymbol{a} + \boldsymbol{a}^{\dagger}\right)} \right) \\ &= e^{-i\omega_m t \left(\boldsymbol{a}^{\dagger} \boldsymbol{a}\right)} \left(e^{i\omega_{\text{eg}} t} | \boldsymbol{e} \rangle \langle \boldsymbol{g} | + e^{-i\omega_{\text{eg}} t} | \boldsymbol{g} \rangle \langle \boldsymbol{e} | \right) \\ &+ e^{i\omega_m t \left(\boldsymbol{a}^{\dagger} \boldsymbol{a}\right)} \left(u_r e^{i\left(\omega_{\text{eg}} - \omega_m\right) t} e^{-i\eta_r\left(\boldsymbol{a} + \boldsymbol{a}^{\dagger}\right)} + u_r^* e^{-i\left(\omega_{\text{eg}} - \omega_m\right) t} e^{i\eta_r\left(\boldsymbol{a} + \boldsymbol{a}^{\dagger}\right)} \right) \\ &= e^{-i\omega_m t \left(\boldsymbol{a}^{\dagger} \boldsymbol{a}\right)} \left(e^{i\omega_{\text{eg}} t} | \boldsymbol{e} \rangle \langle \boldsymbol{g} | + e^{-i\omega_{\text{eg}} t} | \boldsymbol{g} \rangle \langle \boldsymbol{e} | \right) \end{split}$$

Commutation of exponentials in $(\mathbf{a} + \mathbf{a}^{\dagger})$ and $(\mathbf{a}^{\dagger}\mathbf{a})$ is non-trivial.

• Approximation $e^{i\epsilon(\boldsymbol{a}+\boldsymbol{a}^{\dagger})} \approx 1 + i\epsilon(\boldsymbol{a}+\boldsymbol{a}^{\dagger})$ for $\epsilon = \pm \eta, \eta_b, \eta_r$

Then averaging: neglecting highly oscillating terms of frequencies $2\omega_{eg}$, $2\omega_{eg} \pm \omega_m$, $2(\omega_{eg} \pm \omega_m)$ and $\pm \omega_m$, as

$$|u|, |u_b|, |u_r| \ll \omega_m, \left|\frac{d}{dt}u\right| \ll \omega_m |u|, \left|\frac{d}{dt}u_b\right| \ll \omega_m |u_b|, \left|\frac{d}{dt}u_r\right| \ll \omega_m |u_r|.$$

First order approximation:

$$m{H}_{\mathsf{rwa}} = u|g
angle\langle m{e}| + u^*|m{e}
angle\langle g| + ar{u}_bm{a}|g
angle\langle m{e}| + ar{u}_b^*m{a}^\dagger|m{e}
angle\langle g| \ + ar{u}_rm{a}^\dagger|g
angle\langle m{e}| + ar{u}_r^*m{a}|m{e}
angle\langle g|$$

where

$$\bar{u}_b = -i\eta_b u_b$$
 and $\bar{u}_r = -i\eta_r u_r$

$$i\frac{\partial\phi_{g}}{\partial t} = \left(u + \frac{\bar{u}_{b}}{\sqrt{2}}\left(x + \frac{\partial}{\partial x}\right) + \frac{\bar{u}_{r}}{\sqrt{2}}\left(x - \frac{\partial}{\partial x}\right)\right)\phi_{e}$$
$$i\frac{\partial\phi_{e}}{\partial t} = \left(u^{*} + \frac{\bar{u}_{b}^{*}}{\sqrt{2}}\left(x - \frac{\partial}{\partial x}\right) + \frac{\bar{u}_{r}^{*}}{\sqrt{2}}\left(x + \frac{\partial}{\partial x}\right)\right)\phi_{g}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hilbert basis: $\{|g, n\rangle, |e, n\rangle\}_{n=0}^{\infty}$

Dynamics:

$$i\frac{d}{dt}\phi_{g,n} = u\phi_{e,n} + \bar{u}_r\sqrt{n}\phi_{e,n-1} + \bar{u}_b\sqrt{n+1}\phi_{e,n+1}$$
$$i\frac{d}{dt}\phi_{e,n} = u^*\phi_{g,n} + \bar{u}_r^*\sqrt{n+1}\phi_{g,n+1} + \bar{u}_b^*\sqrt{n}\phi_{g,n-1}$$

Physical interpretation:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Law-Eberly method: spectral controllability

Truncation to *n*-phonon space:

$$\mathcal{H}_n = \operatorname{span} \{ |g, 0\rangle, |e, 0\rangle, \dots, |g, n\rangle, |e, n\rangle \}$$

We consider $|\phi\rangle_0, |\phi\rangle_T \in \mathcal{H}_n$ and we look for u, \overline{u}_b and \overline{u}_r , s.t.

for
$$|\phi
angle(t=0)=|\phi
angle_0$$
 we have $|\phi
angle(t=T)=|\phi
angle_T.$

If u^1 , \bar{u}_b^1 and \bar{u}_r^1 bring $|\phi\rangle_0$ to $|g, 0\rangle$ at time T/2, and u^2 , \bar{u}_b^2 and \bar{u}_r^2 bring $|\phi\rangle_T$ to $|g, 0\rangle$ at time T/2, then

$$u = u^{1}, \qquad u_{b} = u_{b}^{1}, \qquad u_{r} = u_{r}^{1} \quad \text{for } t \in [0, T/2],$$

$$u = -u^{2}, \qquad u_{b} = -u_{b}^{2}, \qquad u_{r} = -u_{r}^{2} \quad \text{for } t \in [T/2, T],$$

$$u_{r} = -u_{r}^{2} \quad \text{for } t \in [T/2, T],$$

bring $|\phi\rangle_0$ to $|\phi\rangle_T$ at time *T*.

Т

Take
$$|\phi_0\rangle \in \mathcal{H}_n$$
 and $\overline{T} > 0$:
For $t \in [0, \frac{\overline{T}}{2}]$, $\overline{u}_r(t) = \overline{u}_b(t) = 0$, and
 $\overline{u}(t) = \frac{2i}{\overline{T}} \arctan \left| \frac{\phi_{e,n}(0)}{\phi_{g,n}(0)} \right| e^{i \arg(\phi_{g,n}(0)\phi_{e,n}^*(0))}$
implies $\phi_{e,n}(\overline{T}/2) = 0$;
For $t \in [\frac{\overline{T}}{2}, \overline{T}]$, $\overline{u}_b(t) = \overline{u}(t) = 0$, and
 $\overline{u}_r(t) = \frac{2i}{\overline{T}\sqrt{n}} \arctan \left| \frac{\phi_{g,n}(\overline{T})}{\phi_{e,n-1}(\overline{T})} \right| e^{i \arg\left(\phi_{g,n}(\overline{T})\phi_{e,n-1}^*(\overline{T})\right)}$

implies that $\phi_{e,n}(\overline{T}) = 0$ and that $\phi_{g,n}(\overline{T}) = 0$.

The two pulses \overline{u} and \overline{u}_r lead to some $|\phi\rangle(\overline{T}) \in \mathcal{H}_{n-1}$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Repeating *n* times, we have

$$|\phi\rangle(n\overline{T}) \in \mathcal{H}_0 = \operatorname{span}\{|g,0\rangle, \langle e,0|\}.$$

• for $t \in [n\overline{T}, (n + \frac{1}{2})\overline{T}]$, the control

$$\overline{u}_{r}(t) = \overline{u}_{b}(t) = 0,$$

$$\overline{u}(t) = \frac{2i}{\overline{T}} \arctan \left| \frac{\phi_{e,0}(n\overline{T})}{\phi_{g,0}(n\overline{T})} \right| e^{i \arg(\phi_{g,0}(n\overline{T})\phi_{e,0}^{*}(n\overline{T}))}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

implies
$$|\phi\rangle_{(n+\frac{1}{2})\overline{T}} = e^{i\theta}|g,0\rangle.$$