Mathematical methods for modeling and control of open quantum systems ${ }^{1}$

Mazyar Mirrahimi ${ }^{2}$, Pierre Rouchon ${ }^{3}$, Alain Sarlette ${ }^{4}$

December 7, 2021
${ }^{1}$ Lecture-notes, slides and Matlab simulation scripts available at: http://cas.ensmp.fr/~rouchon/LIASFMA/index.html
${ }^{2}$ Inria-Paris
${ }^{3}$ Mines Paris
${ }^{4}$ Inria-Paris

Outline

1 Single-frequency averaging and Kapitza's pendulum
2 Averaging and open-loop control of Schrödinger systems
■ Almost periodic open-loop control of Schrödinger systems

- Lemmas underlying first and second order approximations
■ Rotating Wave Approximation (RWA) recipes
3 Resonant control of a qubit
4 Averaging and control of spin/spring system
■ The spin/spring model
- Resonant interaction
- Dispersive interaction

■ Law-Eberly control of a single trapped ion

Outline

1 Single-frequency averaging and Kapitza's pendulum
2 Averaging and open-loop control of Schrödinger systems
■ Almost periodic open-loop control of Schrödinger systems

- Lemmas underlying first and second order approximations
- Rotating Wave Approximation (RWA) recipes

3 Resonant control of a qubit
4 Averaging and control of spin/spring system

- The spin/spring model
- Resonant interaction
- Dispersive interaction

■ Law-Eberly control of a single trapped ion

Time-periodic non-linear systems

We consider a non-linear ODE of the form:

$$
\frac{d}{d t} x=\epsilon f(x, t), \quad x \in \mathbb{R}^{n}, \quad 0<\epsilon \ll 1,
$$

where f is T-periodic in t and depends smoothly on x.

We will see how its solution is well-approximated by the solution of the time-independent system, the averaged system:

$$
\frac{d}{d t} z=\epsilon \bar{f}(z)
$$

where $\bar{f}(z)=\frac{1}{T} \int_{0}^{T} f(z, t) d t$.

The Averaging Theorem

Consider $\frac{d}{d t} x=\epsilon f(x, t)$ with $x \in U \subset \mathbb{R}^{n}, 0 \leq \epsilon \ll 1$, and $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ smooth and period $T>0$ in t. Also assume U to be bounded.

■ If z is the solution of $\frac{d}{d t} z=\epsilon \bar{f}(z)$ with the initial condition z_{0}, and assuming $\left|x_{0}-z_{0}\right|=\mathcal{O}(\epsilon)$, we have $|x(t)-z(t)|=\mathcal{O}(\epsilon)$ on a time-scale $t \sim 1 / \epsilon$.

■ If \bar{z} is a hyperbolic fixed point of the averaged system then there exists $\epsilon_{0}>0$ such that, for all $0<\epsilon \leq \epsilon_{0}$, the main system possesses a unique hyperbolic periodic orbit $\gamma_{\epsilon}(t)=\bar{z}+\mathcal{O}(\epsilon)$ of the same stability type as \bar{z}.
J. Guckenheimer and P. Holmes, Nonlinear oscillations, Dynamical systems and Bifurcation of Vector Fields, Springer, 1983.

Fixed suspension point:

$$
\frac{d^{2}}{d t^{2}} \theta=\frac{g}{l} \sin \theta
$$

g : free fall acceleration, l : pendulum's length, θ : angle to the vertical; $\theta=\pi$ stable and $\theta=0$ unstable equilibrium.

Suspension point in vertical oscillation:

Dynamics of the suspension point: $z=\frac{v}{\Omega} \cos (\Omega t)(a=v / \Omega>0$ amplitude and Ω frequency).

Pendulum's dynamics: replace acceleration g by $g+\ddot{z}=g-v \Omega \cos (\Omega t)$,

$$
\frac{d}{d t} \theta=\omega, \quad \frac{d}{d t} \omega=\frac{g-v \Omega \cos (\Omega t)}{l} \sin \theta .
$$

Replacing the velocity ω by the momentum $p_{\theta}=\omega+\frac{v \sin (\Omega t)}{\rho} \sin \theta$:

$$
\begin{aligned}
\frac{d}{d t} \theta & =p_{\theta}-\frac{v \sin (\Omega t)}{I} \sin \theta \\
\frac{d}{d t} p_{\theta} & =\left(\frac{g}{I}-\frac{v^{2} \sin ^{2}(\Omega t)}{R^{2}} \cos \theta\right) \sin \theta+\frac{v \sin (\Omega t)}{I} p_{\theta} \cos \theta
\end{aligned}
$$

For large enough Ω, we can average these time-periodic dynamics over $[t-\pi / \Omega, t+\pi / \Omega]$:

$$
\frac{d}{d t} \theta=p_{\theta}, \quad \frac{d}{d t} p_{\theta}=\left(\frac{g}{l}-\frac{v^{2}}{2 R^{2}} \cos \theta\right) \sin \theta .
$$

Around $\theta=0$ the approximation of small angles gives $\frac{d^{2}}{d t^{2}} \theta=\frac{g-v^{2} / 21}{l} \theta$. If $v^{2} / 21>g$ then the system becomes stable around $\theta=0$.

Outline

1 Single-frequency averaging and Kapitza's pendulum
2 Averaging and open-loop control of Schrödinger systems ■ Almost periodic open-loop control of Schrödinger systems

- Lemmas underlying first and second order approximations
■ Rotating Wave Approximation (RWA) recipes
3 Resonant control of a qubit
4 Averaging and control of spin/spring system
- The spin/spring model
- Resonant interaction
- Dispersive interaction

■ Law-Eberly control of a single trapped ion

Bilinear Schrödinger equation

Un-measured quantum system \rightarrow Bilinear Schrödinger equation

$$
i \frac{d}{d t}|\psi\rangle=\left(\boldsymbol{H}_{0}+u(t) \boldsymbol{H}_{1}\right)|\psi\rangle
$$

■ $|\psi\rangle \in \mathcal{H}$ the system's wavefunction with $\||\psi\rangle \|_{\mathcal{H}}=1$;

- the free Hamiltonian, \boldsymbol{H}_{0}, is a Hermitian operator defined on \mathcal{H};

■ the control Hamiltonian, \boldsymbol{H}_{1}, is a Hermitian operator defined on \mathcal{H};
■ the control $u(t): \mathbb{R}^{+} \mapsto \mathbb{R}$ is a scalar control.
Formal computations $\operatorname{dim}(\mathcal{H})$ arbitrary. Mathematical proofs $\operatorname{dim}(\mathcal{H})$ finite

Two key examples:
■ Qubit: $\boldsymbol{H}_{0}+u(t) \boldsymbol{H}_{1}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\frac{u(t)}{2} \boldsymbol{\sigma}_{\boldsymbol{x}}$.

- Quantum harmonic oscillator:

$$
\boldsymbol{H}_{0}+u(t) \boldsymbol{H}_{1}=\omega_{c}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)+u(t)\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)
$$

Almost periodic control

We consider the controls of the form

$$
u(t)=\epsilon\left(\sum_{j=1}^{r} \boldsymbol{u}_{j} e^{i \omega_{j} t}+\boldsymbol{u}_{j}^{*} e^{-i \omega_{j} t}\right)
$$

- $\epsilon>0$ is a small parameter;
- $\epsilon \boldsymbol{U}_{j}$ is the constant complex amplitude associated to the pulsation $\omega_{j} \geq 0$;
- r stands for the number of independent frequencies ($\omega_{j} \neq \omega_{k}$ for $j \neq k$).

We are interested in approximations, for ϵ tending to 0^{+}, of trajectories

$$
t \mapsto\left|\psi_{\epsilon}\right\rangle_{t} \text { of }
$$

$$
\frac{d}{d t}\left|\psi_{\epsilon}\right\rangle=\left(\boldsymbol{A}_{0}+\epsilon\left(\sum_{j=1}^{r} \boldsymbol{u}_{j} e^{i \omega_{j} t}+\boldsymbol{u}_{j}^{*} e^{-i \omega_{j} t}\right) \boldsymbol{A}_{1}\right)\left|\psi_{\epsilon}\right\rangle
$$

where $\boldsymbol{A}_{0}=-i \boldsymbol{H}_{0}$ and $\boldsymbol{A}_{1}=-i \boldsymbol{H}_{1}$ are skew-Hermitian.

Rotating frame

Consider the following change of variables

$$
\left|\psi_{\epsilon}\right\rangle_{t}=e^{\boldsymbol{A}_{0} t}\left|\phi_{\epsilon}\right\rangle_{t} .
$$

The resulting system is said to be in the "interaction frame"

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon \boldsymbol{B}(t)\left|\phi_{\epsilon}\right\rangle
$$

where $\boldsymbol{B}(t)$ is a skew-Hermitian operator whose time-dependence is almost periodic:

$$
B(t)=\sum_{j=1}^{r} \boldsymbol{u}_{j} e^{i \omega_{j} t} e^{-\boldsymbol{A}_{0} t} \boldsymbol{A}_{1} e^{\boldsymbol{A}_{0} t}+\boldsymbol{u}_{j}^{*} e^{-i \omega_{j} t} e^{-\boldsymbol{A}_{0} t} \boldsymbol{A}_{1} e^{\boldsymbol{A}_{0} t}
$$

Main idea
We can write

$$
\boldsymbol{B}(t)=\overline{\boldsymbol{B}}+\frac{d}{d t} \widetilde{\boldsymbol{B}}(t)
$$

where $\overline{\boldsymbol{B}}$ is a constant skew-Hermitian matrix and $\widetilde{\boldsymbol{B}}(t)$ is a bounded almost periodic skew-Hermitian matrix.

Multi-frequency averaging: first order

Consider the two systems

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon\left(\overline{\boldsymbol{B}}+\frac{d}{d t} \widetilde{\boldsymbol{B}}(t)\right)\left|\phi_{\epsilon}\right\rangle
$$

and

$$
\frac{d}{d t}\left|\phi_{\epsilon}^{1^{\mathrm{st}}}\right\rangle=\epsilon \overline{\boldsymbol{B}}\left|\phi_{\epsilon}^{1 \mathrm{st}^{\mathrm{st}}}\right\rangle
$$

initialized at the same state $\left|\phi_{\epsilon}^{1^{\mathrm{st}}}\right\rangle_{0}=\left|\phi_{\epsilon}\right\rangle_{0}$.

Theorem: first order approximation (Rotating Wave Approximation)

Consider the functions $\left|\phi_{\epsilon}\right\rangle$ and $\left|\phi_{\epsilon}^{\left.1^{\text {st }}\right\rangle}\right\rangle$ initialized at the same state and following the above dynamics. Then, there exist $M>0$ and $\eta>0$ such that for all $\epsilon \in] 0, \eta[$ we have

$$
\max _{t \in\left[0, \frac{1}{\epsilon}\right]} \|\left|\phi_{\epsilon}\right\rangle_{t}-\left|\phi_{\epsilon}^{1^{\mathrm{st}}}\right\rangle_{t} \| \leq M \epsilon
$$

Multi-frequency averaging: first order

Proof's idea
Almost periodic change of variables:

$$
\left|\chi_{\epsilon}\right\rangle=(1-\epsilon \widetilde{\boldsymbol{B}}(t))\left|\phi_{\epsilon}\right\rangle
$$

well-defined for $\epsilon>0$ sufficiently small.
The dynamics can be written as

$$
\frac{d}{d t}\left|\chi_{\epsilon}\right\rangle=\left(\epsilon \overline{\boldsymbol{B}}+\epsilon^{2} \boldsymbol{F}(\epsilon, t)\right)\left|\chi_{\epsilon}\right\rangle
$$

where $\boldsymbol{F}(\epsilon, t)$ is uniformly bounded in time.

Multi-frequency averaging: second order

More precisely, the dynamics of $\left|\chi_{\epsilon}\right\rangle$ is given by

$$
\frac{d}{d t}\left|\chi_{\epsilon}\right\rangle=\left(\epsilon \overline{\boldsymbol{B}}+\epsilon^{2}[\overline{\boldsymbol{B}}, \widetilde{\boldsymbol{B}}(t)]-\epsilon^{2} \widetilde{\boldsymbol{B}}(t) \frac{d}{d t} \widetilde{\boldsymbol{B}}(t)+\epsilon^{3} \boldsymbol{E}(\epsilon, t)\right)\left|\chi_{\epsilon}\right\rangle
$$

- $E(\epsilon, t)$ is still almost periodic but its entries are no more linear combinations of time-exponentials;
- $\widetilde{\boldsymbol{B}}(t) \frac{d}{d t} \widetilde{\boldsymbol{B}}(t)$ is an almost periodic operator whose entries are linear combinations of oscillating time-exponentials.
We can write

$$
\widetilde{\boldsymbol{B}}(t)=\frac{d}{d t} \widetilde{\boldsymbol{C}}(t) \quad \text { and } \quad \widetilde{\boldsymbol{B}}(t) \frac{d}{d t} \widetilde{\boldsymbol{B}}(t)=\overline{\boldsymbol{D}}+\frac{d}{d t} \widetilde{\boldsymbol{D}}(t)
$$

where $\widetilde{\boldsymbol{C}}(t)$ and $\widetilde{\boldsymbol{D}}(t)$ are almost periodic. We have

$$
\frac{d}{d t}\left|\chi_{\epsilon}\right\rangle=\left(\epsilon \overline{\boldsymbol{B}}-\epsilon^{2} \overline{\boldsymbol{D}}+\epsilon^{2} \frac{d}{d t}([\overline{\boldsymbol{B}}, \widetilde{\boldsymbol{C}}(t)]-\widetilde{\boldsymbol{D}}(t))+\epsilon^{3} \boldsymbol{E}(\epsilon, t)\right)\left|\chi_{\epsilon}\right\rangle
$$

where the skew-Hermitian operators $\overline{\boldsymbol{B}}$ and $\overline{\boldsymbol{D}}$ are constants and the other ones $\tilde{\boldsymbol{C}}, \tilde{\boldsymbol{D}}$, and \boldsymbol{E} are almost periodic.

Multi-frequency averaging: second order

Consider the two systems

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon\left(\overline{\boldsymbol{B}}+\frac{d}{d t} \widetilde{\boldsymbol{B}}(t)\right)\left|\phi_{\epsilon}\right\rangle
$$

and

$$
\frac{d}{d t}\left|\phi_{\epsilon}^{\mathrm{n}^{\mathrm{nd}}}\right\rangle=\left(\epsilon \overline{\boldsymbol{B}}-\epsilon^{2} \overline{\boldsymbol{D}}\right)\left|\phi_{\epsilon}^{\text {nnd }^{\text {nd }}}\right\rangle
$$

both initialized at $\left|\phi_{\epsilon}\right\rangle_{0}$.

Theorem: second order approximation

Consider $\left|\phi_{\epsilon}\right\rangle_{t}$ and $\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle_{t}$ solutions of the above dynamics. Then, there exist $M>0$ and $\eta>0$ such that for all $\epsilon \in] 0, \eta]$ we have

$$
\begin{aligned}
\left.\max _{t \in\left[0, \frac{1}{\epsilon}\right]} \|| | \phi_{\epsilon}\right\rangle_{t}-(I+\epsilon \widetilde{\boldsymbol{B}}(t))\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle_{t} \| & \leq M \epsilon^{2} \\
\max _{t \in\left[0, \frac{1}{\epsilon^{2}}\right]} \|\left|\phi_{\epsilon}\right\rangle_{t}-\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle_{t} \| & \leq M \boldsymbol{\epsilon}
\end{aligned}
$$

Multi-frequency averaging: second order

Proof's idea

Another almost periodic change of variables

$$
\left|\xi_{\epsilon}\right\rangle=\left(\boldsymbol{I}-\epsilon^{2}([\overline{\boldsymbol{B}}, \widetilde{\boldsymbol{C}}(t)]-\widetilde{\boldsymbol{D}}(t))\right)\left|\chi_{\epsilon}\right\rangle
$$

The dynamics can be written as

$$
\frac{d}{d t}\left|\xi_{\epsilon}\right\rangle=\left(\epsilon \overline{\boldsymbol{B}}-\epsilon^{2} \overline{\boldsymbol{D}}+\epsilon^{3} \boldsymbol{F}(\epsilon, t)\right)\left|\xi_{\epsilon}\right\rangle
$$

where $\epsilon \overline{\boldsymbol{B}}-\epsilon^{2} \overline{\boldsymbol{D}}$ is skew Hermitian and \boldsymbol{F} is almost periodic and therefore uniformly bounded in time.

The Rotating Wave Approximation (RWA) recipes

Schrödinger dynamics $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}(t)|\psi\rangle$, with

$$
\boldsymbol{H}(t)=\boldsymbol{H}_{0}+\sum_{k=1}^{m} u_{k}(t) \boldsymbol{H}_{k}, \quad u_{k}(t)=\sum_{j=1}^{r} \boldsymbol{u}_{k, j} e^{i \omega_{j} t}+\boldsymbol{u}_{k, j}^{*} e^{-i \omega_{j} t}
$$

The Hamiltonian in interaction frame

$$
\boldsymbol{H}_{\text {int }}(t)=\sum_{k, j}\left(\boldsymbol{u}_{k, j} e^{i \omega_{j} t}+\boldsymbol{u}_{k, j}^{*} e^{-i \omega_{j} t}\right) e^{i H_{0} t} \boldsymbol{H}_{k} e^{-i H_{0} t}
$$

We define the first order Hamiltonian

$$
\boldsymbol{H}_{\text {rwa }}^{\mathrm{st}}=\overline{\boldsymbol{H}_{\text {int }}}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \boldsymbol{H}_{\text {int }}(t) d t,
$$

and the second order Hamiltonian

$$
\boldsymbol{H}_{\text {rwa }}^{\text {nd }}=\boldsymbol{H}_{\text {rwa }}^{\text {st }}-i \overline{\left(\boldsymbol{H}_{\text {int }}-\overline{\boldsymbol{H}_{\text {int }}}\right)\left(\int_{t}\left(\boldsymbol{H}_{\text {int }}-\overline{\boldsymbol{H}_{\text {int }}}\right)\right)}
$$

Choose the amplitudes $\boldsymbol{u}_{k, j}$ and the frequencies ω_{j} such that the propagators of $\boldsymbol{H}_{\text {wa }}^{\text {st }}$ or $\boldsymbol{H}_{\text {wa }}^{2^{\text {nd }}}$ admit simple explicit forms that are used to find $t \mapsto u(t)$ steering $|\psi\rangle$ from one location to another one.

Outline

1 Single-frequency averaging and Kapitza's pendulum
$\overline{2}$ Averaging and open-loop control of Schrödinger systems

- Almost periodic open-loop control of Schrödinger systems
- Lemmas underlying first and second order approximations
- Rotating Wave Approximation (RWA) recipes

3 Resonant control of a qubit
4 Averaging and control of spin/spring system

- The spin/spring model
- Resonant interaction
- Dispersive interaction
- Law-Eberly control of a single trapped ion

RWA and resonant control

In

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\frac{u(t)}{2} \boldsymbol{\sigma}_{\boldsymbol{x}}\right)|\psi\rangle
$$

take a resonant control $u(t)=\boldsymbol{u} e^{i \omega_{\text {eg }} t}+\boldsymbol{u}^{*} e^{-i \omega_{\text {eg }} t}$ with \boldsymbol{u} slowly varying complex amplitude $\left|\frac{d}{d t} \boldsymbol{u}\right| \ll \omega_{\text {eg }}|\boldsymbol{u}|$. Set $H_{0}=\frac{\omega_{\text {eg }}}{2} \sigma_{\boldsymbol{z}}$ and $\epsilon H_{1}=\frac{u}{2} \sigma_{\boldsymbol{x}}$ and consider $|\psi\rangle=e^{-\frac{i \omega_{\text {eg } t}}{2}} \sigma_{z}|\phi\rangle$ to eliminate the drift H_{0} and to get the Hamiltonian in the interaction frame:

$$
\begin{gathered}
i \frac{d}{d t}|\phi\rangle=\frac{u(t)}{2} e^{\frac{i \omega_{\mathrm{eg}} t}{2} \sigma_{\mathbf{z}}} \boldsymbol{\sigma}_{\boldsymbol{x}} e^{-\frac{i \omega_{\mathrm{eg}} t}{2} \boldsymbol{\sigma}_{\mathbf{z}}}|\phi\rangle=\boldsymbol{H}_{\mathrm{int}}|\phi\rangle \\
\overbrace{\overbrace{}^{\sigma_{+}=|e\rangle\langle g|}} \overbrace{}^{\boldsymbol{\sigma}=|g\rangle\langle e|}
\end{gathered}
$$

with $\boldsymbol{H}_{\text {int }}=\frac{u(t)}{2} e^{i \omega_{\mathrm{eg}} t} \frac{\overbrace{\sigma_{\boldsymbol{x}}+i \sigma_{\boldsymbol{y}}}^{2}}{2}+\frac{u(t)}{2} e^{-i \omega_{\mathrm{eg}} t} \overbrace{\frac{\sigma_{\boldsymbol{x}}-i \sigma_{\boldsymbol{y}}}{2}}^{2}$
The RWA consists in neglecting the oscillating terms at frequency $2 \omega_{\text {eg }}$ when $|\boldsymbol{u}| \ll \omega_{\mathrm{eg}}:$

$$
H_{i n t}=\left(\frac{\boldsymbol{u} e^{2 i \omega_{\mathrm{eg}} t}+\boldsymbol{u}^{*}}{2}\right) \sigma_{+}+\left(\frac{\boldsymbol{u}+\boldsymbol{u}^{*} e^{-2 i \omega_{\mathrm{eg}} t}}{2}\right) \sigma_{.}
$$

Thus

$$
\overline{H_{i n t}}=\frac{\boldsymbol{u}^{*} \sigma_{+}+\boldsymbol{u} \sigma}{2}
$$

Second order approximation and Bloch-Siegert shift

The decomposition of $\boldsymbol{H}_{\text {int }}$,

$$
\boldsymbol{H}_{\mathrm{int}}=\underbrace{\frac{\boldsymbol{u}^{*}}{2} \boldsymbol{\sigma}_{+}+\frac{\boldsymbol{u}}{2} \boldsymbol{\sigma}}_{\overline{\boldsymbol{H}_{\mathrm{int}}}}+\underbrace{\frac{e^{2 i \omega_{\mathrm{eg}} t}}{2} \boldsymbol{\sigma}_{+}+\frac{\boldsymbol{u}^{*} e^{-2 i \omega_{\mathrm{eg}} t}}{2} \boldsymbol{\sigma}^{2}}_{\boldsymbol{H}_{\mathrm{int}}-\overline{\boldsymbol{H}_{\mathrm{int}}}},
$$

provides the first order approximation (RWA)
$\boldsymbol{H}_{\text {rwa }}^{\text {st }}=\overline{\boldsymbol{H}_{\text {int }}}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \boldsymbol{H}_{\text {int }}(t) d t$, and also the second order approximation $\boldsymbol{H}_{\text {wa }}^{\text {nd }}=\boldsymbol{H}_{\text {iwa }}^{\text {st }}-i \overline{\left(\boldsymbol{H}_{\text {int }}-\overline{\boldsymbol{H}_{\text {int }}}\right)\left(\int_{t}\left(\boldsymbol{H}_{\text {int }}-\overline{\boldsymbol{H}_{\text {int }}}\right)\right.}$. Since $\int_{t} \boldsymbol{H}_{\text {int }}-\overline{\boldsymbol{H}_{\text {int }}}=\frac{\boldsymbol{u}^{2 i \omega_{\mathrm{eg} t}}}{4 i \omega_{\mathrm{eg}}} \sigma_{+}-\frac{\boldsymbol{u}^{*} e^{-2 i \omega_{\mathrm{eg} t}}}{4 i \omega_{\mathrm{eg}}} \boldsymbol{\sigma}$., we have

$$
\overline{\left(\boldsymbol{H}_{\text {int }}-\overline{\boldsymbol{H}_{\text {int }}}\right)\left(\int_{t}\left(\boldsymbol{H}_{\text {int }}-\overline{\boldsymbol{H}_{\text {int }}}\right)\right)}=-\frac{|\boldsymbol{u}|^{2}}{8 i \omega_{\text {eg }}} \boldsymbol{\sigma}_{\mathbf{z}}
$$

(use $\sigma_{+}^{2}=\sigma_{-}^{2}=0$ and $\sigma_{\mathbf{z}}=\sigma_{+} \sigma_{-}-\sigma \sigma_{+}$).
The second order approximation reads:

$$
\boldsymbol{H}_{\text {rwa }}^{\text {nd }}=\boldsymbol{H}_{\text {rwa }}^{\text {st }}+\left(\frac{|\boldsymbol{u}|^{2}}{8 \omega_{e g}}\right) \sigma_{\mathbf{z}}=\frac{u^{*}}{2} \sigma_{+}+\frac{u}{2} \sigma_{-}+\left(\frac{|\boldsymbol{u}|^{2}}{8 \omega_{\mathrm{eg}}}\right) \sigma_{\mathbf{z}} .
$$

The 2nd order correction $\frac{|u|^{2}}{4 \omega_{e g}}\left(\sigma_{z} / 2\right)$ is called the Bloch-Siegert shift.

Exercise: controllability of the 2-level systems and Rabi oscillation

Take the first order approximation

$$
\text { (г) } \quad i \frac{d}{d t}|\phi\rangle=\frac{\left(\boldsymbol{u}^{*} \sigma_{+}+\boldsymbol{u} \sigma_{-}\right)}{2}|\phi\rangle=\frac{\left(\boldsymbol{u}^{*}|e\rangle\langle g|+\boldsymbol{u}|g\rangle\langle e|\right)}{2}|\phi\rangle
$$

with control $\boldsymbol{u} \in \mathbb{C}$.
1 Take constant control $\boldsymbol{u}(t)=\Omega_{r} e^{i \theta}$ for $t \in[0, T], T>0$. Show that $i \frac{d}{d t}|\phi\rangle=\frac{\Omega_{r}\left(\cos \theta \sigma_{x}+\sin \theta \sigma_{y}\right)}{2}|\phi\rangle$.
2 Set $\Theta_{r}=\frac{\Omega_{r}}{2} T$. Show that the solution at T of the propagator $\boldsymbol{U}_{t} \in S U(2), i \frac{d}{d t} \boldsymbol{U}=\frac{\Omega_{r}\left(\cos \theta \sigma_{x}+\sin \theta \boldsymbol{\sigma}_{\boldsymbol{y}}\right)}{2} \boldsymbol{U}, \boldsymbol{U}_{0}=\boldsymbol{I}$ is given by

$$
\boldsymbol{U}_{T}=\cos \Theta_{r} \boldsymbol{I}-i \sin \Theta_{r}\left(\cos \theta \boldsymbol{\sigma}_{\mathbf{x}}+\sin \theta \boldsymbol{\sigma}_{\mathbf{y}}\right)
$$

3 Take a wave function $|\bar{\phi}\rangle$. Show that exist Ω_{r} and θ such that $U_{T}|g\rangle=e^{i \alpha}|\bar{\phi}\rangle$, where α is some global phase.
4 Prove that for any given two wave functions $\left|\phi_{a}\right\rangle$ and $\left|\phi_{b}\right\rangle$ exists a piece-wise constant control $[0,2 T] \ni t \mapsto \boldsymbol{u}(t) \in \mathbb{C}$ such that the solution of (Σ) with $|\phi\rangle_{0}=\left|\phi_{a}\right\rangle$ satisfies $|\phi\rangle_{2 T}=e^{i \beta}\left|\phi_{b}\right\rangle$ for some global phase β.

Outline

1 Single-frequency averaging and Kapitza's pendulum
2 Averaging and open-loop control of Schrödinger systems

- Almost periodic open-loop control of Schrödinger systems
- Lemmas underlying first and second order approximations
- Rotating Wave Approximation (RWA) recipes

3 Resonant control of a qubit
4 Averaging and control of spin/spring system
■ The spin/spring model

- Resonant interaction
- Dispersive interaction

■ Law-Eberly control of a single trapped ion

The spin/spring model

The Schrödinger system

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2} \sigma_{\mathbf{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)\right)|\psi\rangle
$$

corresponds to two coupled scalar PDE's:

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}-i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{g} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}-i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{e}
\end{aligned}
$$

since $\boldsymbol{a}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)$ and $|\psi\rangle$ corresponds to $\left(\psi_{e}(x, t), \psi_{g}(x, t)\right)$ where $\psi_{e}(., t), \psi_{g}(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ and $\left\|\psi_{e}\right\|^{2}+\left\|\psi_{g}\right\|^{2}=1$.

Resonant case: passage to the interaction frame

In

$$
\boldsymbol{H}=\frac{\omega_{\mathrm{eg}}}{2} \sigma_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{l}}{2}\right)+i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)
$$

take $\omega_{\text {eg }}=\omega_{c}+\Delta$ with $|\Omega|,|\Delta| \ll \omega_{c}$. Then $\boldsymbol{H}=\boldsymbol{H}_{0}+\epsilon \boldsymbol{H}_{1}$ where ϵ is a small parameter and

$$
\begin{aligned}
& \boldsymbol{H}_{0}=\frac{\omega}{2} \sigma_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right) \\
& \epsilon \boldsymbol{H}_{1}=\frac{\Delta}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+i \frac{\Omega}{2} \boldsymbol{\sigma}_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right) .
\end{aligned}
$$

$\boldsymbol{H}_{\text {int }}$ is obtained by setting $|\psi\rangle=e^{-i \omega_{c} t\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)} e^{\frac{-i \omega_{c} t}{2} \boldsymbol{\sigma}_{\mathbf{z}}}|\phi\rangle$ in $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle$ to get $i \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\text {int }}|\phi\rangle$ with

$$
\boldsymbol{H}_{\text {int }}=\frac{\Delta}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+i \frac{\Omega}{2}\left(e^{-i \omega_{c} t} \boldsymbol{\sigma}_{-}+e^{i \omega_{c} t} \boldsymbol{\sigma}_{+}\right)\left(e^{i \omega_{c} t} \mathbf{a}^{\dagger}-e^{-i \omega_{c} t} \boldsymbol{a}\right)
$$

where we used

$$
e^{\frac{i \theta}{2} \sigma_{\mathbf{z}}} \sigma_{\boldsymbol{x}} e^{-\frac{i \theta}{2} \sigma_{\mathbf{z}}}=e^{-i \theta} \boldsymbol{\sigma}_{\mathbf{-}}+e^{i \theta} \sigma_{\boldsymbol{+}}, \quad e^{i \theta\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)} \boldsymbol{a} e^{-i \theta\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)}=e^{-i \theta} \boldsymbol{a}
$$

Resonant case: first order (Jaynes-Cummings Hamiltonian)

The secular terms in $\boldsymbol{H}_{\text {int }}$ are given by (RWA, first order approximation)

$$
\boldsymbol{H}_{\mathrm{rwa}}^{\mathrm{st}}=\frac{\Delta}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+i \frac{\Omega}{2}\left(\boldsymbol{\sigma}_{-} \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)
$$

Since quantum state $|\phi\rangle=e^{+i \omega_{c} t\left(a^{\dagger} a+\frac{1}{2}\right)} e^{\frac{+i \omega_{c t}}{2}} \boldsymbol{\sigma}_{\boldsymbol{z}}|\psi\rangle$ obeys approximatively to $i \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\text {rwa }}^{\text {st }}|\phi\rangle$, the original quantum state $|\psi\rangle$ is governed by

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{c}+\Delta}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{l}}{2}\right)+i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \cdot \mathbf{a}^{\dagger}-\boldsymbol{\sigma}_{+} \boldsymbol{a}\right)\right)|\psi\rangle
$$

The Jaynes-Cummings Hamiltonian ($\omega_{\mathrm{eg}}=\omega_{c}+\Delta$ with $|\Delta|,|\Omega| \ll \omega_{c}$) reads:

$$
\boldsymbol{H}_{J C}=\frac{\omega_{c}+\Delta}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \cdot \mathbf{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)
$$

The corresponding PDE is (case $\Delta=0$) :

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=\frac{\omega_{c}+\Delta}{2} \psi_{e}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}-i \frac{\Omega}{2 \sqrt{2}}\left(x-\frac{\partial}{\partial x}\right) \psi_{g} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{c}+\Delta}{2} \psi_{g}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}+i \frac{\Omega}{2 \sqrt{2}}\left(x+\frac{\partial}{\partial x}\right) \psi_{e}
\end{aligned}
$$

Dispersive case: passage to the interaction frame

For $\omega_{c} \gg|\Delta| \gg|\Omega|$, the dominant term in

$$
\boldsymbol{H}_{\mathrm{wwa}}^{\mathrm{st}}=\frac{\Delta}{2} \boldsymbol{\sigma}_{\mathbf{z}}+i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \cdot \mathbf{a}^{\dagger}-\boldsymbol{\sigma}_{+} \boldsymbol{a}\right)
$$

is an isolated qubit. To make the interaction dominant, we go to the interaction frame with ($\omega_{\text {eg }}=\omega_{c}+\Delta$)

$$
\boldsymbol{H}_{0}=\frac{\omega_{\mathbf{e g}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right), \quad \epsilon \boldsymbol{H}_{1}=i \frac{\Omega}{2} \boldsymbol{\sigma}_{\mathbf{x}}\left(\mathbf{a}^{\dagger}-\boldsymbol{a}\right) .
$$

By setting $|\psi\rangle=e^{-i \omega_{c} t\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)} e^{\frac{-i \omega_{\text {eg }} t}{2} \sigma_{\boldsymbol{z}}}|\phi\rangle$ we get $i \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\text {int }}|\phi\rangle$ with

$$
\begin{aligned}
& \boldsymbol{H}_{\mathrm{int}}=i \frac{\Omega}{2}\left(e^{-i \omega_{\mathrm{eg}} t} \boldsymbol{\sigma}_{-}+e^{i \omega_{\mathrm{eg}} t} \boldsymbol{\sigma}_{+}\right)\left(e^{i \omega_{c} t} \boldsymbol{a}^{\dagger}-e^{-i \omega_{c} t} \boldsymbol{a}\right) \\
&=i \frac{\Omega}{2}\left(e^{-i \Delta t} \boldsymbol{\sigma} \boldsymbol{a}^{\dagger}-e^{i \Delta t} \boldsymbol{\sigma}_{+} \boldsymbol{a}+e^{i\left(2 \omega_{c}+\Delta\right) t} \boldsymbol{\sigma}_{+} \boldsymbol{a}^{\dagger}-e^{-i\left(2 \omega_{c}+\Delta\right) t} \boldsymbol{\sigma} \boldsymbol{a}\right)
\end{aligned}
$$

Thus $\boldsymbol{H}_{\text {wad }}^{\text {st }}=\overline{\boldsymbol{H}_{\text {int }}}=0$: no secular term. We have to compute $\boldsymbol{H}_{\text {rwa }}^{\text {nd }}=\overline{\boldsymbol{H}_{\text {int }}}-i\left(\boldsymbol{H}_{\text {int }}-\overline{\boldsymbol{H}_{\text {int }}}\right)\left(\int_{t}\left(\boldsymbol{H}_{\text {int }}-\overline{\boldsymbol{H}_{\text {int }}}\right)\right)$ where $\int_{t}\left(\boldsymbol{H}_{\text {int }}-\overline{\boldsymbol{H}_{\text {int }}}\right)$ corresponds to

$$
\frac{-\Omega}{2}\left(\frac{e^{-i \Delta t}}{\Delta} \boldsymbol{\sigma}_{-} \boldsymbol{a}^{\dagger}+\frac{e^{i \Delta t}}{\Delta} \boldsymbol{\sigma}_{+} \boldsymbol{a}-\frac{e^{i\left(2 \omega_{c}+\Delta\right) t}}{2 \omega_{c}+\Delta} \boldsymbol{\sigma}_{+} \boldsymbol{a}^{\dagger}-\frac{e^{-i\left(2 \omega_{c}+\Delta\right) t}}{2 \omega_{c}+\Delta} \boldsymbol{\sigma}_{-} \boldsymbol{a}\right)
$$

Dispersive spin/spring Hamiltonian and associated PDE

The secular terms in $\boldsymbol{H}_{\text {rwa }}^{\text {nd }}$ are

$$
\frac{-\Omega^{2}}{4 \Delta}\left(\boldsymbol{\sigma}_{\cdot} \sigma_{+} \boldsymbol{a}^{\dagger} \boldsymbol{a}-\sigma_{+} \sigma_{\cdot} \boldsymbol{a} \boldsymbol{a}^{\dagger}\right)+\frac{-\Omega^{2}}{4\left(\omega_{c}+\omega_{\mathrm{eg}}\right)}\left(\boldsymbol{\sigma}_{-} \sigma_{+} \boldsymbol{a} \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{\sigma}_{-} \boldsymbol{a}^{\dagger} \boldsymbol{a}\right)
$$

Since $|\Omega| \ll|\Delta| \ll \omega_{\mathrm{eg}}, \omega_{c}$, we have $\frac{\Omega^{2}}{4\left(\omega_{c}+\omega_{\mathrm{eg}}\right)} \ll \frac{\Omega^{2}}{4 \Delta}$

$$
\boldsymbol{H}_{\mathrm{rwa}}^{2^{\mathrm{nd}}} \approx \frac{\Omega^{2}}{4 \Delta}\left(\boldsymbol{\sigma}_{\boldsymbol{z}}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)+\frac{\boldsymbol{l}}{2}\right) .
$$

Since quantum state $|\phi\rangle=e^{+i \omega_{c} t\left(N+\frac{1}{2}\right)} e^{\frac{+i \omega_{\mathrm{eg}} t}{2}} \boldsymbol{\sigma}_{\mathbf{z}}|\psi\rangle$ obeys approximatively to $i \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\text {rwa }}^{2 \text { nd }}|\phi\rangle$, the original quantum state $|\psi\rangle$ is governed by
$i \frac{d}{d t}|\psi\rangle=\left(\boldsymbol{H}_{\text {disp }}+\frac{\Omega^{2}}{8 \Delta}\right)|\psi\rangle$ with

$$
\boldsymbol{H}_{\text {disp }}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)-\frac{\chi}{2} \boldsymbol{\sigma}_{\mathbf{z}}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right) \quad \text { and } \chi=\frac{-\Omega^{2}}{2 \Delta}
$$

The corresponding PDE is :

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\frac{1}{2}\left(\omega_{c}-\frac{\chi}{2}\right)\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\frac{1}{2}\left(\omega_{c}+\frac{\chi}{2}\right)\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}
\end{aligned}
$$

Exercise: resonant spin-spring system with controls

Consider the resonant spin-spring model with $\Omega \ll|\omega|$:

$$
\boldsymbol{H}=\frac{\omega}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)+i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)+u\left(\boldsymbol{a}+\boldsymbol{a}^{\dagger}\right)
$$

with a real control input $u(t) \in \mathbb{R}$:
1 Show that with the resonant control $u(t)=\boldsymbol{u} e^{-i \omega t}+\boldsymbol{u}^{*} e^{i \omega t}$ with complex amplitude \boldsymbol{u} such that $|\boldsymbol{u}| \ll \omega$, the first order RWA approximation yields the following dynamics in the interaction frame:

$$
i \frac{d}{d t}|\psi\rangle=\left(i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\boldsymbol{\sigma}_{+} \boldsymbol{a}\right)+\boldsymbol{u}^{\dagger}+\boldsymbol{u}^{*} \boldsymbol{a}\right)|\psi\rangle
$$

2 Set $\mathbf{v} \in \mathbb{C}$ solution of $\frac{d}{d t} \mathbf{v}=-i \boldsymbol{u}$ and consider the following change of frame $|\phi\rangle=D_{-\mathbf{v}}|\psi\rangle$ with the displacement operator $D_{-\mathbf{v}}=e^{-\mathbf{v} \mathbf{a}^{\dagger}+\mathbf{v}^{*} \mathbf{a}}$. Show that, up to a global phase change, we have, with $\tilde{\mathbf{u}}=i \frac{\Omega}{2} \mathbf{v}$,

$$
i \frac{d}{d t}|\phi\rangle=\left(\frac{i \Omega}{2}\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)+\left(\tilde{\boldsymbol{u}} \sigma_{+}+\tilde{\boldsymbol{u}}^{*} \boldsymbol{\sigma}\right)\right)|\phi\rangle
$$

3 Take the orthonormal basis $\{|g, n\rangle,|e, n\rangle\}$ with $n \in \mathbb{N}$ being the photon number and where for instance $|g, n\rangle$ stands for the tensor product $|g\rangle \otimes|n\rangle$. Set $|\phi\rangle=\sum_{n} \phi_{g, n}|g, n\rangle+\phi_{e, n}|e, n\rangle$ with $\phi_{g, n}, \phi_{e, n} \in \mathbb{C}$ depending on t and $\sum_{n}\left|\phi_{g, n}\right|^{2}+\left|\phi_{e, n}\right|^{2}=1$. Show that, for $n \geq 0$

$$
i \frac{d}{d t} \phi_{g, n+1}=i \frac{\Omega}{2} \sqrt{n+1} \phi_{e, n}+\tilde{\boldsymbol{u}}^{*} \phi_{e, n+1}, \quad i \frac{d}{d t} \phi_{e, n}=-i \frac{\Omega}{2} \sqrt{n+1} \phi_{g, n+1}+\tilde{\boldsymbol{u}} \phi_{g, n}
$$

and $i \frac{d}{d t} \phi_{g, 0}=\tilde{\boldsymbol{u}}^{*} \phi_{e, 0}$.
4 Assume that $|\phi\rangle_{0}=|g, 0\rangle$. Construct an open-loop control $[0, T] \ni t \mapsto \tilde{\boldsymbol{u}}(t)$ such that $|\phi\rangle_{T} \approx|g, 1\rangle$ (hint: use an impulse for $t \in[0, \epsilon]$ followed by 0 on $[\epsilon, T]$ with $\epsilon \ll T$ and well chosen T).
5 Generalize the above open-loop control when the goal state $|\phi\rangle_{T}$ is $|g, n\rangle$ with any arbitrary photon number n.

A single trapped ion

1D ion trap, picture borrowed from S. Haroche course at CDF.

A classical cartoon of spin-spring system.

A single trapped ion

A composite system:

internal degree of freedom+vibration inside the 1D trap
Hilbert space:

$$
\mathbb{C}^{2} \otimes L^{2}(\mathbb{R}, \mathbb{C})
$$

Hamiltonian:
$\boldsymbol{H}=\omega_{m}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right)+\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\left(u_{l} e^{i\left(\omega_{l} t-\eta_{l}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)}+u_{l}^{*} e^{-i\left(\omega_{l} \boldsymbol{t}-\eta_{l}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)}\right) \sigma_{\boldsymbol{x}}$

Parameters:

ω_{m} : harmonic oscillator of the trap,
ω_{eg} : optical transition of the internal state,
$\omega_{/}$: lasers frequency,
$\eta_{I}=\omega_{l} / c$: Lamb-Dicke parameter.

Scales:

$$
\left|\omega_{l}-\omega_{\mathrm{eg}}\right| \ll \omega_{\mathrm{eg}}, \quad \omega_{m} \ll \omega_{\mathrm{eg}}, \quad\left|u_{l}\right| \ll \omega_{\mathrm{eg}}, \quad\left|\frac{d}{d t} u_{l}\right| \ll \omega_{\mathrm{eg}}\left|u_{l}\right|
$$

The Schrödinger equation $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle$, with

$$
\boldsymbol{H}=\omega_{m}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right)+\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\left(u_{l} e^{i\left(\omega_{l} t-\eta_{l}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)}+u_{l}^{*} e^{-i\left(\omega_{l} t-\eta_{l}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)}\right) \sigma_{\boldsymbol{x}}
$$

can be written in the form

$$
\begin{aligned}
& i \frac{\partial \psi_{g}}{\partial t}=\frac{\omega_{m}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\left(u_{l} e^{i\left(\omega_{l} t-\sqrt{2} \eta_{l} x\right)}+u_{l}^{*} e^{-i\left(\omega_{l} t-\sqrt{2} \eta_{l} x\right)}\right) \psi_{e} \\
& i \frac{\partial \psi_{e}}{\partial t}=\frac{\omega_{m}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\left(u_{l} e^{i\left(\omega_{l} t-\sqrt{2} \eta_{l} x\right)}+u_{l}^{*} e^{-i\left(\omega_{l} t-\sqrt{2} \eta_{l} x\right)}\right) \psi_{g}
\end{aligned}
$$

- This system is approximately controllable in $\left(L^{2}(\mathbb{R}, \mathbb{C})\right)^{2}$:
S. Ervedoza and J.-P. Puel, Annales de l'IHP (c), 26(6): 2111-2136, 2009.

Law-Eberly method

Main idea

Control is superposition of 3 mono-chromatic plane waves with:
1 frequency $\omega_{\text {eg }}$ (ion transition frequency) and amplitude u;
2 frequency $\omega_{\mathrm{eg}}-\omega_{m}$ (red shift by a vibration quantum) and amplitude u_{r};

3 frequency $\omega_{\text {eg }}+\omega_{m}$ (blue shift by a vibration quantum) and amplitude u_{b};

Control Hamiltonian:

$$
\begin{aligned}
\boldsymbol{H}= & \omega_{m}\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{l}}{2}\right)+\frac{\omega_{\mathrm{eg}}}{2} \sigma_{\mathbf{z}}+\left(u e^{i\left(\omega_{\mathrm{eg}} t-\eta\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)}+u^{*} e^{-i\left(\omega_{\mathrm{eg}} t-\eta\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)}\right) \sigma_{\boldsymbol{X}} \\
& +\left(u_{b} e^{i\left(\left(\omega_{\mathrm{eg}}+\omega_{\mathrm{m}}\right) t-\eta_{b}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)}+u_{b}^{*} e^{-i\left(\left(\omega_{\mathrm{eg}}+\omega_{\mathrm{m}}\right) t-\eta_{b}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)}\right) \sigma_{\boldsymbol{X}} \\
& +\left(u_{r} e^{i\left(\left(\omega_{\mathrm{eg}}-\omega_{m}\right) t-\eta_{r}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)}+u_{r}^{*} e^{\left.-i\left(\left(\omega_{\mathrm{eg}}-\omega_{m}\right) t-\eta_{r}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)\right)}\right) \sigma_{\boldsymbol{X}} .
\end{aligned}
$$

Lamb-Dicke parameters:

$$
\eta=\eta_{e g} \approx \eta_{r} \approx \eta_{b} \ll 1
$$

Law-Eberly method: rotating frame

Rotating frame: $|\psi\rangle=e^{-i \omega_{m} t\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)} e^{\frac{-i \omega_{\mathrm{eg}} t}{2} t} \boldsymbol{\sigma}_{\mathbf{z}}|\phi\rangle$

$$
\begin{array}{r}
\boldsymbol{H}_{\mathrm{int}}=e^{i \omega_{m} t\left(\mathbf{a}^{\dagger} \boldsymbol{a}\right)}\left(u e^{i \omega_{\mathrm{eg}} t} e^{-i \eta\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)}+u^{*} e^{-i \omega_{\mathrm{eg}} t} e^{i \eta\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)}\right) \\
e^{-i \omega_{m} t\left(\mathbf{a}^{\dagger} \boldsymbol{a}\right)}\left(e^{i \omega_{\mathrm{eg}} t}|\boldsymbol{e}\rangle\langle\boldsymbol{g}|+e^{-i \omega_{\mathrm{eg}} t}|\boldsymbol{g}\rangle\langle\boldsymbol{e}|\right) \\
+e^{i \omega_{m} t\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}\right)}\left(u_{b} e^{i\left(\omega_{\mathrm{eg}}+\omega_{m}\right) t} e^{-i \eta_{b}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)}+u_{b}^{*} e^{-i\left(\omega_{\mathrm{eg}}+\omega_{m}\right) t} e^{i \eta_{b}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)}\right) \\
+e^{-i \omega_{m} t\left(\mathbf{a}^{\dagger} \boldsymbol{a}\right)}\left(e^{i \omega_{\mathrm{eg}} t}|\boldsymbol{e}\rangle\langle g|+e^{-i \omega_{\mathrm{eg}} t}|\boldsymbol{g}\rangle\langle\boldsymbol{e}|\right) \\
+e^{-i \omega_{m} t\left(\mathbf{a}^{\dagger} \boldsymbol{a}\right)}\left(u_{r} e^{i\left(\omega_{\mathrm{eg}}-\omega_{m}\right) t} e^{-i \eta_{r}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)}+u_{r}^{*} e^{-i\left(\omega_{\mathrm{eg}}-\omega_{m}\right) t} e^{i \eta_{r}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)}\right) \\
\left.e^{i \omega_{\mathrm{eg}} t}|e\rangle\langle g|+e^{-i \omega_{\mathrm{eg}} t}|g\rangle\langle e|\right)
\end{array}
$$

Law-Eberly method: RWA

Commutation of exponentials in (a+ $\left.\mathbf{a}^{\dagger}\right)$ and $\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}\right)$ is non-trivial.

- Approximation $\boldsymbol{e}^{i \epsilon\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)} \approx 1+i \epsilon\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)$ for $\epsilon= \pm \eta, \eta_{b}, \eta_{r}$

Then averaging: neglecting highly oscillating terms of frequencies
$2 \omega_{\mathrm{eg}}, 2 \omega_{\mathrm{eg}} \pm \omega_{m}, 2\left(\omega_{\mathrm{eg}} \pm \omega_{m}\right)$ and $\pm \omega_{m}$, as

$$
|u|,\left|u_{b}\right|,\left|u_{r}\right| \ll \omega_{m},\left|\frac{d}{d t} u\right| \ll \omega_{m}|u|,\left|\frac{d}{d t} u_{b}\right| \ll \omega_{m}\left|u_{b}\right|,\left|\frac{d}{d t} u_{r}\right| \ll \omega_{m}\left|u_{r}\right| .
$$

First order approximation:

$$
\begin{aligned}
\boldsymbol{H}_{\text {rwa }}=u|g\rangle\langle\boldsymbol{e}|+u^{*}|e\rangle\langle g|+\bar{u}_{b} \mathbf{a}|g\rangle\langle e|+ & \bar{u}_{b}^{*} \mathbf{a}^{\dagger}|e\rangle\langle g| \\
& +\bar{u}_{r} \mathbf{a}^{\dagger}|g\rangle\langle e|+\bar{u}_{r}^{*} \boldsymbol{a}|e\rangle\langle g|
\end{aligned}
$$

where

$$
\bar{u}_{b}=-i \eta_{b} u_{b} \quad \text { and } \quad \bar{u}_{r}=-i \eta_{r} u_{r}
$$

$$
\begin{aligned}
i \frac{\partial \phi_{g}}{\partial t} & =\left(u+\frac{\bar{u}_{b}}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)+\frac{\bar{u}_{r}}{\sqrt{2}}\left(x-\frac{\partial}{\partial x}\right)\right) \phi_{e} \\
i \frac{\partial \phi_{e}}{\partial t} & =\left(u^{*}+\frac{\bar{u}_{b}^{*}}{\sqrt{2}}\left(x-\frac{\partial}{\partial x}\right)+\frac{\bar{u}_{r}^{*}}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)\right) \phi_{g}
\end{aligned}
$$

Dynamics:

$$
\begin{aligned}
i \frac{d}{d t} \phi_{g, n} & =u \phi_{e, n}+\bar{u}_{r} \sqrt{n} \phi_{e, n-1}+\bar{u}_{b} \sqrt{n+1} \phi_{e, n+1} \\
i \frac{d}{d t} \phi_{e, n} & =u^{*} \phi_{g, n}+\bar{u}_{r}^{*} \sqrt{n+1} \phi_{g, n+1}+\bar{u}_{b}^{*} \sqrt{n} \phi_{g, n-1}
\end{aligned}
$$

Physical interpretation:

Law-Eberly method: spectral controllability

Truncation to n-phonon space:

$$
\mathcal{H}_{n}=\operatorname{span}\{|g, 0\rangle,|e, 0\rangle, \ldots,|g, n\rangle,|e, n\rangle\}
$$

We consider $|\phi\rangle_{0},|\phi\rangle_{T} \in \mathcal{H}_{n}$ and we look for u, \bar{u}_{b} and \bar{u}_{r}, s.t.

$$
\text { for }|\phi\rangle(t=0)=|\phi\rangle_{0} \text { we have }|\phi\rangle(t=T)=|\phi\rangle_{T} .
$$

■ If u^{1}, \bar{u}_{b}^{1} and \bar{u}_{r}^{1} bring $|\phi\rangle_{0}$ to $|g, 0\rangle$ at time $T / 2$,
\square and u^{2}, \bar{u}_{b}^{2} and \bar{u}_{r}^{2} bring $|\phi\rangle_{T}$ to $|g, 0\rangle$ at time $T / 2$, then

$$
\begin{aligned}
& u=u^{1}, \quad u_{b}=u_{b}^{1}, \quad u_{r}=u_{r}^{1} \quad \text { for } t \in[0, T / 2] \\
& u=-u^{2}, \quad u_{b}=-u_{b}^{2}, \quad u_{r}=-u_{r}^{2} \quad \text { for } t \in[T / 2, T]
\end{aligned}
$$

bring $|\phi\rangle_{0}$ to $|\phi\rangle_{T}$ at time T.

Take $\left|\phi_{0}\right\rangle \in \mathcal{H}_{n}$ and $\bar{T}>0$:
\square For $t \in\left[0, \frac{\bar{T}}{2}\right], \bar{u}_{r}(t)=\bar{u}_{b}(t)=0$, and

$$
\bar{u}(t)=\frac{2 i}{\bar{T}} \arctan \left|\frac{\phi_{e, n}(0)}{\phi_{g, n}(0)}\right| e^{i \arg \left(\phi_{g, n}(0) \phi_{e, n}^{*}(0)\right)}
$$

implies $\phi_{e, n}(\bar{T} / 2)=0$;
■ For $t \in\left[\frac{\bar{T}}{2}, \bar{T}\right], \bar{u}_{b}(t)=\bar{u}(t)=0$, and

$$
\bar{u}_{r}(t)=\frac{2 i}{\bar{T} \sqrt{n}} \arctan \left|\frac{\phi_{g, n}\left(\frac{\bar{T}}{2}\right)}{\phi_{e, n-1}(\bar{T})}\right| e^{i \arg \left(\phi_{g, n}\left(\frac{\bar{T}}{2}\right) \phi_{e, n-1}^{*}\left(\frac{\bar{T}}{2}\right)\right)}
$$

implies that $\phi_{e, n}(\bar{T})=0$ and that $\phi_{g, n}(\bar{T})=0$.
The two pulses \bar{u} and \bar{u}_{r} lead to some $|\phi\rangle(\bar{T}) \in \mathcal{H}_{n-1}$.

Law-Eberly method

Repeating n times, we have

$$
|\phi\rangle(n \bar{T}) \in \mathcal{H}_{0}=\operatorname{span}\{|g, 0\rangle,\langle e, 0|\} .
$$

■ for $t \in\left[n \bar{T},\left(n+\frac{1}{2}\right) \bar{T}\right]$, the control

$$
\begin{aligned}
& \bar{u}_{r}(t)=\bar{u}_{b}(t)=0, \\
& \bar{u}(t)=\frac{2 i}{\bar{T}} \arctan \left|\frac{\phi_{e, 0}(n \bar{T})}{\phi_{g, 0}(\bar{T} \bar{T})}\right| e^{i \arg \left(\phi_{g, 0}(n \bar{T}) \phi_{e, 0}^{*}(n \bar{T})\right)}
\end{aligned}
$$

implies $|\phi\rangle_{\left(n+\frac{1}{2}\right) \bar{T}}=e^{i \theta}|g, 0\rangle$.

