# Mathematical methods for modeling and control of open quantum systems ${ }^{1}$ 

Mazyar Mirrahimi ${ }^{2}$, Pierre Rouchon ${ }^{3}$, Alain Sarlette ${ }^{4}$

December 2, 2021
${ }^{1}$ Lecture-notes, slides and Matlab simulation scripts available at: http://cas.ensmp.fr/~rouchon/LIASFMA/index.html
${ }^{2}$ Inria-Paris
${ }^{3}$ Mines ParisTech
${ }^{4}$ Inria-Paris

## Outline

1 Structure of dynamical models in discrete time
2 Structure of dynamical models in continuous time
■ Diffusive models
■ Jump models

- Mixed diffusive/jump models

3 Quantum Non Demolition (QND) measurement of photons
■ Monte Carlo simulations and experiments
■ Martingales and convergence of Markov chains

- QND martingales for photons

4 Homodyne measurement of a qubit

## Outline

1 Structure of dynamical models in discrete time

2 Structure of dynamical models in continuous time

- Diffusive models
- Jump models
- Mixed diffusive/jump models

3 Quantum Non Demolition (QND) measurement of photons

- Monte Carlo simulations and experiments
- Martingales and convergence of Markov chains
- QND martingales for photons

4 Homodyne measurement of a qubit

## General structure of Markov model in discrete time

- Any open model of quantum system in discrete time is governed by a Markov chain of the form

$$
\boldsymbol{\rho}_{k+1}=\frac{\mathbb{K}_{y_{k}}\left(\boldsymbol{\rho}_{k}\right)}{\operatorname{Tr}\left(\mathbb{K}_{y_{k}}\left(\boldsymbol{\rho}_{k}\right)\right)},
$$

with the probability $\operatorname{Tr}\left(\mathbb{K}_{y_{k}}\left(\rho_{k}\right)\right)$ to have the measurement outcome $y_{k}$ knowing $\rho_{k}$.

- The structure of the super-operators $\mathbb{K}_{y}$ is as follows. Each $\mathbb{K}_{y}$ is a linear completely positive map (a quantum operation, a partial Kraus map $^{5}$ ) and $\sum_{y} \mathbb{K}_{y}(\boldsymbol{\rho})=\mathbb{K}(\boldsymbol{\rho})$ is a Kraus map, i.e. $\mathbb{K}(\boldsymbol{\rho})=\sum_{\mu} \boldsymbol{K}_{\mu} \boldsymbol{\rho} \boldsymbol{K}_{\mu}^{\dagger}$ with $\sum_{\mu} \boldsymbol{K}_{\mu}^{\dagger} \boldsymbol{K}_{\mu}=\boldsymbol{I}$.
${ }^{5}$ Each $\mathbb{K}_{y}$ admits the expression

$$
\mathbb{K}_{y}(\boldsymbol{\rho})=\sum_{\nu} \boldsymbol{M}_{y, \nu} \boldsymbol{\rho} \boldsymbol{M}_{y, \nu}^{\dagger}
$$

where ( $\boldsymbol{M}_{\boldsymbol{y}, \nu}$ ) are bounded operators on $\mathcal{H}$.

## Schrödinger view point of ensemble average dynamics

- Without measurement record, the quantum state $\rho_{k}$ obeys to the master equation

$$
\boldsymbol{\rho}_{k+1}=\mathbb{K}\left(\boldsymbol{\rho}_{k}\right) .
$$

since $\mathbb{E}\left(\rho_{k+1} \mid \rho_{k}\right)=\mathbb{K}\left(\boldsymbol{\rho}_{k}\right)$ (ensemble average).

- In finite dimension, $\mathbb{K}$ is always a contraction (not strict in general ) for many metrics such as the following ones: for any density operators $\rho$ and $\rho^{\prime}$ we have

$$
\left\|\mathbb{K}(\rho)-\mathbb{K}\left(\rho^{\prime}\right)\right\|_{1} \leq\left\|\rho-\rho^{\prime}\right\|_{1} \text { and } F\left(\mathbb{K}(\rho), \mathbb{K}\left(\rho^{\prime}\right)\right) \geq F\left(\rho, \rho^{\prime}\right)
$$

where the trace norm $\|\bullet\|_{1}$ and fidelity $F$ are given by

$$
\left\|\rho-\rho^{\prime}\right\|_{1} \triangleq \operatorname{Tr}\left(\left|\rho-\rho^{\prime}\right|\right) \text { and } F\left(\rho, \rho^{\prime}\right) \triangleq \operatorname{Tr}\left(\sqrt{\sqrt{\rho} \rho^{\prime} \sqrt{\rho}}\right) .
$$

## Heisenberg view point of ensemble average dynamics

■ The "Heisenberg description" is given by iterates $\boldsymbol{A}_{k+1}=\mathbb{K}^{*}\left(\boldsymbol{A}_{k}\right)$ from an initial bounded Hermitian operator $\boldsymbol{A}_{0}$ of the dual map $\mathbb{K}^{*}$ characterized as follows: $\operatorname{Tr}(\boldsymbol{A} \mathbb{K}(\boldsymbol{\rho}))=\operatorname{Tr}\left(\mathbb{K}^{*}(\boldsymbol{A}) \boldsymbol{\rho}\right)$ for any bounded operator $\boldsymbol{A}$ on $\mathcal{H}$. Thus

$$
\mathbb{K}^{*}(\boldsymbol{A})=\sum_{\mu} \boldsymbol{K}_{\mu}^{\dagger} \boldsymbol{A} \boldsymbol{K}_{\mu} \text { when } \mathbb{K}(\boldsymbol{\rho})=\sum_{\mu} \boldsymbol{K}_{\mu} \boldsymbol{\rho} \boldsymbol{K}_{\mu}^{\dagger}
$$

$\mathbb{K}^{*}$ is an unital map, i.e., $\mathbb{K}^{*}(\boldsymbol{I})=\boldsymbol{I}$, and the image via $\mathbb{K}^{*}$ of any bounded operator is a bounded operator.

- When $\mathcal{H}$ is of finite dimension, we have, for any Hermitian operator $\boldsymbol{A}$ :

$$
\lambda_{\min }(\boldsymbol{A}) \leq \lambda_{\min }\left(\mathbb{K}^{*}(\boldsymbol{A})\right) \leq \lambda_{\max }\left(\mathbb{K}^{*}(\boldsymbol{A})\right) \leq \lambda_{\max }(\boldsymbol{A})
$$

where $\lambda_{\min }$ and $\lambda_{\max }$ correspond to the smallest and largest eigenvalues.
■ If $\overline{\boldsymbol{A}}=\mathbb{K}^{*}(\overline{\boldsymbol{A}})$, then $\operatorname{Tr}\left(\boldsymbol{\rho}_{k} \overline{\boldsymbol{A}}\right)=\operatorname{Tr}\left(\rho_{0} \overline{\boldsymbol{A}}\right)$ is a constant of motion of $\rho$.

## Convergence in Schrödinger and Heisenberg pictures

Take a Kraus map $\mathbb{K}$ and its adjoint unital map $\mathbb{K}^{*}$. When $\mathcal{H}$ is of finite dimension, the following two statements are equivalent :

- Global convergence towards the fixed point $\bar{\rho}=\mathbb{K}(\bar{\rho})$ of $\boldsymbol{\rho}_{k+1}=\mathbb{K}\left(\boldsymbol{\rho}_{k}\right)$ : for any initial density operator $\rho_{0}, \lim _{k \rightarrow+\infty} \boldsymbol{\rho}_{k}=\bar{\rho}$.
- Global convergence of $\boldsymbol{A}_{k+1}=\mathbb{K}^{*}\left(\boldsymbol{A}_{k}\right)$ : there exists a unique density operator $\bar{\rho}$ such that, for any initial bounded operator $\boldsymbol{A}_{0}$, $\lim _{k \mapsto+\infty} A_{k}=\operatorname{Tr}\left(A_{0} \bar{\rho}\right)$ I.


## Discrete-time Stochastic Master Equations (SME)

Trace preserving Kraus map $\boldsymbol{K}_{u}$ depending on the classical control input $u$ :

$$
\boldsymbol{K}_{u}(\boldsymbol{\rho})=\sum_{\xi} \boldsymbol{M}_{u, \xi} \boldsymbol{\rho} \boldsymbol{M}_{u, \xi}^{\dagger} \text { with } \sum_{\xi} \boldsymbol{M}_{u, \xi}^{\dagger} \boldsymbol{M}_{u, \xi}=\boldsymbol{I} .
$$

Take a left stochastic matrix $\left[\eta_{y, \xi}\right]\left(\eta_{y, \xi} \geq 0\right.$ and $\left.\sum_{y} \eta_{y, \xi} \equiv 1, \forall \xi\right)$ and set $\boldsymbol{K}_{u, y}(\boldsymbol{\rho})=\sum_{\xi} \eta_{y, \xi} \boldsymbol{M}_{u, \xi} \boldsymbol{\rho} \boldsymbol{M}_{u, \xi}^{\dagger}$. The associated Markov chain reads:

$$
\boldsymbol{\rho}_{k+1}=\frac{\boldsymbol{K}_{u_{k}, y_{k}}\left(\boldsymbol{\rho}_{k}\right)}{\operatorname{Tr}\left(\boldsymbol{K}_{u_{k}, y_{k}}\left(\boldsymbol{\rho}_{k}\right)\right)} \quad \text { measurement } y_{k} \text { with probability } \operatorname{Tr}\left(\boldsymbol{K}_{u_{k}, y_{k}}\left(\boldsymbol{\rho}_{k}\right)\right) .
$$

Classical input $u$, hidden state $\rho$, measured output $y$.
Ensemble average given by $\boldsymbol{K}_{u}$ since $\mathbb{E}\left(\boldsymbol{\rho}_{k+1} \mid \boldsymbol{\rho}_{k}, u_{k}\right)=\boldsymbol{K}_{u_{k}}\left(\boldsymbol{\rho}_{k}\right)$.
Markov model useful for:
1 Monte-Carlo simulations of quantum trajectories (decoherence, measurement back-action).
2 quantum filtering and parameter estimation: e.g. to get the quantum state $\rho_{k}$ from $\rho_{0}$ and ( $y_{0}, \ldots, y_{k-1}$ ) (Belavkin quantum filter developed for diffusive models).
3 feedback design and Monte-Carlo closed-loop simulations

## Outline

1 Structure of dynamical models in discrete time
2 Structure of dynamical models in continuous time ■ Diffusive models

- Jump models
- Mixed diffusive/jump models

3 Quantum Non Demolition (QND) measurement of photons - Monte Carlo simulations and experiments

- Martingales and convergence of Markov chains
- QND martingales for photons

4 Homodyne measurement of a qubit

## Classical //O dynamics for diffusive Stochastic Master Equation ${ }^{6}$



Continuous-time models: stochastic differential systems (Itō formulation) density operator $\rho\left(\rho^{\dagger}=\rho, \rho \geq 0, \operatorname{Tr}(\rho)=1\right)$ as state ( $\hbar \equiv 1$ here):

$$
\begin{aligned}
d \boldsymbol{\rho}_{t}=\left(-i\left[\boldsymbol{H}_{0}+u_{t} \boldsymbol{H}_{1}, \boldsymbol{\rho}_{t}\right]\right. & \left.+\sum_{\nu=d, m} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\frac{\mathbf{I}}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)\right) d t \\
& +\sqrt{\eta_{m}}\left(\boldsymbol{L}_{m} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{m}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}_{m}+\boldsymbol{L}_{m}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \boldsymbol{\rho}_{t}\right) d W_{t}
\end{aligned}
$$

driven by the Wiener process $W_{t}$, with measurement $y_{t}$,

$$
d y_{t}=\sqrt{\eta_{m}} \operatorname{Tr}\left(\left(\boldsymbol{L}_{m}+\boldsymbol{L}_{m}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) d t+d W_{t} \quad \text { detection efficiencies } \eta_{m} \in[0,1]
$$

Measurement backaction: $d \rho$ and $d y$ share the same noises $d W$. Very different from the Kalman I/O state-space description widely used in control engineering.

[^0]
## Markov process under continuous measurement



Inverse setup of photon-box: photons read out a qubit.

## Two major differences

- measurement output taking values from a continuum of possible outcomes

$$
d y_{t}=\sqrt{\eta} \operatorname{Tr}\left(\left(\boldsymbol{L}+\boldsymbol{L}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) d t+d W_{t} .
$$

- Time continuous dynamics.


## Stochastic master equation: Markov process under continuous measurement

$$
\begin{aligned}
d \boldsymbol{\rho}_{t} & =\left(-i\left[\boldsymbol{H}, \boldsymbol{\rho}_{t}\right]+\sum_{\nu} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)\right) d t \\
& +\sum_{\nu} \sqrt{\eta_{\nu}}\left(\boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \boldsymbol{\rho}_{t}\right) d W_{\nu, t}
\end{aligned}
$$

where $W_{\nu, t}$ are independent Wiener processes, associated to measured signals with efficiencies $\eta_{\nu} \in[0,1]$ :

$$
d y_{\nu, t}=d W_{\nu, t}+\sqrt{\eta_{\nu}} \operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) d t
$$

Wiener process $W_{t}$ :
■ $W_{0}=0$;
■ $t \rightarrow W_{t}$ is almost surely everywhere continuous;
■ For $0 \leq s_{1}<t_{1} \leq s_{2}<t_{2}, W_{t_{1}}-W_{s_{1}}$ and $W_{t_{2}}-W_{s_{2}}$ are independent random variables satisfying $W_{t}-W_{s} \sim N(0, t-s)$.

## Average dynamics: Lindblad master equation

$d \mathbb{E}\left(\rho_{t}\right)=$
$\left(-i\left[\boldsymbol{H}, \mathbb{E}\left(\boldsymbol{\rho}_{t}\right)\right]+\sum_{\nu} \boldsymbol{L}_{\nu} \mathbb{E}\left(\boldsymbol{\rho}_{t}\right) \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \mathbb{E}\left(\boldsymbol{\rho}_{t}\right)+\mathbb{E}\left(\boldsymbol{\rho}_{t}\right) \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)\right) d t$.

## Ito stochastic calculus

Given a diffusive Stochastic Differential Equation (SDE)

$$
d X_{t}=F\left(X_{t}, t\right) d t+\sum_{\nu} G_{\nu}\left(X_{t}, t\right) d W_{\nu, t},
$$

we have the following chain rule:

## Ito's rule

Defining $f_{t}=f\left(X_{t}\right)$ a $C^{2}$ function of $X$, we have

$$
\begin{aligned}
& d f_{t}=\left(\left.\frac{\partial f}{\partial X}\right|_{X_{t}} F\left(X_{t}, t\right)+\left.\frac{1}{2} \sum_{\nu} \frac{\partial^{2} f}{\partial X^{2}}\right|_{X_{t}}\left(G_{\nu}\left(X_{t}, t\right), G_{\nu}\left(X_{t}, t\right)\right)\right) d t \\
&+\left.\sum_{\nu} \frac{\partial f}{\partial X}\right|_{X_{t}} G_{\nu}\left(X_{t}, t\right) d W_{\nu, t} .
\end{aligned}
$$

Furthermore

$$
\frac{d}{d t} \mathbb{E}\left(f_{t}\right)=\mathbb{E}\left(\left.\frac{\partial f}{\partial X}\right|_{X_{t}} F\left(X_{t}, t\right)+\left.\frac{1}{2} \sum_{\nu} \frac{\partial^{2} f}{\partial X^{2}}\right|_{X_{t}}\left(G_{\nu}\left(X_{t}, t\right), G_{\nu}\left(X_{t}, t\right)\right)\right)
$$

Link to partial Kraus maps (1)

$$
\begin{aligned}
d \rho_{t} & =\left(-i\left[\boldsymbol{H}, \boldsymbol{\rho}_{t}\right]+\sum_{\nu} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)\right) d t \\
& +\sum_{\nu} \sqrt{\eta_{\nu}}\left(\boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \boldsymbol{\rho}_{t}\right) d W_{\nu, t}
\end{aligned}
$$

equivalent to

$$
\boldsymbol{\rho}_{t+d t}=\frac{\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} d t}{\operatorname{Tr}\left(\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} d t\right)}
$$

with

$$
\boldsymbol{M}_{d y_{t}}=\boldsymbol{I}+\left(-i \boldsymbol{H}-\frac{1}{2} \sum_{\nu} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right) d t+\sum_{\nu} \sqrt{\eta_{\nu}} d y_{\nu, t} \boldsymbol{L}_{\nu}
$$

Moreover, defining $d y_{\nu, t}=s_{\nu, t} \sqrt{d t}$ :

$$
\mathbb{P}\left(\left(s_{\nu, t} \in\left[s_{\nu}, s_{\nu}+d s_{\nu}\right]\right)_{\nu} \mid \boldsymbol{\rho}_{t}\right)=\operatorname{Tr}\left(\boldsymbol{M}_{s \sqrt{d t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{s \sqrt{d t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} d t\right) \prod_{\nu} \frac{e^{-\frac{s_{\nu}^{2}}{2}} d s_{\nu}}{\sqrt{2 \pi}} .
$$

## Example of Ito calculations

With $d y_{t}=\operatorname{Tr}\left(\left(\boldsymbol{L}+\boldsymbol{L}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) d t+d W_{t}$

$$
d \rho_{t}=\left(\boldsymbol{L} \rho_{t} \boldsymbol{L}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}^{\dagger} \boldsymbol{L} \rho_{t}+\rho_{t} \boldsymbol{L}^{\dagger} \boldsymbol{L}\right)\right) d t+\left(\boldsymbol{L} \rho_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}+\boldsymbol{L}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \boldsymbol{\rho}_{t}\right) d W_{t}
$$

reads

$$
\boldsymbol{\rho}_{t+d t}=\frac{\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}\right)}
$$

where $\boldsymbol{M}_{d y_{t}}=\boldsymbol{I}-\frac{d t}{2} \boldsymbol{L}^{\dagger} \boldsymbol{L}+d y_{t} \boldsymbol{L}$ and where one uses expansion including first order terms in dt and lto rules

$$
d \rho_{t}=\rho_{t+d t}-\rho_{t}, \quad d W_{t}=O(\sqrt{d t}), \quad d W_{t}^{2}=d t, \quad d t d W_{t}=0, \ldots
$$

## Link to partial Kraus maps (2)

■ $\mathbb{P}$ defines a probability density up to a correction of order $d t^{2}$ :

$$
\int \mathbb{P}\left(s_{t} \in[s, s+d s] \mid \rho_{t}\right)=1+O\left(d t^{2}\right)
$$

■ Mean value of measured signal

$$
\int s_{\nu} \mathbb{P}\left(s_{t} \in[s, s+d s] \mid \rho_{t}\right)=\sqrt{\eta_{\nu}} \operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \sqrt{d t}+O\left(d t^{3 / 2}\right)
$$

■ Variance of measured signal

$$
\int s_{\nu}^{2} \mathbb{P}\left(s_{t} \in[s, s+d s] \mid \rho_{t}\right)=1+O(d t)
$$

Compatible with $d y_{\nu, t}=d W_{\nu, t}+\sqrt{\eta_{\nu}} \operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) d t$.

## Link to partial Kraus maps (3)

$$
\begin{aligned}
d \rho_{t} & =\left(-i\left[\boldsymbol{H}, \boldsymbol{\rho}_{t}\right]+\sum_{\nu} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)\right) d t \\
& +\sum_{\nu} \sqrt{\eta_{\nu}}\left(\boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \boldsymbol{\rho}_{t}\right) d W_{\nu, t}
\end{aligned}
$$

equivalent to

$$
\rho_{t+d t}=\frac{\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} d t}{\operatorname{Tr}\left(\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} d t\right)}
$$

■ Indicates that the solution remains in the space of semi-definite positive Hermitian matrices;

- Provides a time-discretized numerical scheme preserving non-negativity of $\rho$.


## Theorem

The above master equation admits a unique solution remaining for all $t \geq 0$ in $\left\{\rho \in \mathbb{C}^{N \times N}: \rho=\rho^{\dagger}, \rho \geq 0, \operatorname{Tr}(\rho)=1\right\}$.

## Outline

1 Structure of dynamical models in discrete time
2 Structure of dynamical models in continuous time

- Diffusive models

■ Jump models

- Mixed diffusive/jump models

3 Quantum Non Demolition (QND) measurement of photons - Monte Carlo simulations and experiments - Martingales and convergence of Markov chains - QND martingales for photons

4 Homodyne measurement of a qubit

## Jump SME

With Poisson process $\boldsymbol{N}(\boldsymbol{t}),\langle\boldsymbol{d} \boldsymbol{N}(\boldsymbol{t})\rangle=\left(\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V \rho_{t} V^{\dagger}\right)\right) d t$, and detection imperfections modeled by $\bar{\theta} \geq 0$ (shot-noise rate) and $\bar{\eta} \in[0,1]$ (detection efficiency), the quantum state $\rho_{t}$ is usually mixed and obeys to

$$
\begin{aligned}
d \rho_{t}=( & \left.-i\left[H, \rho_{t}\right]+V_{\rho_{t}} V^{\dagger}-\frac{1}{2}\left(V^{\dagger} V \rho_{t}+\rho_{t} V^{\dagger} V\right)\right) d t \\
& +\left(\frac{\bar{\theta} \rho_{t}+\bar{\eta} V_{\rho_{t}} V^{\dagger}}{\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V_{\rho_{t}} V^{\dagger}\right)}-\rho_{t}\right)\left(\boldsymbol{d}(t)-\left(\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V_{\rho_{t}} V^{\dagger}\right)\right) d t\right)
\end{aligned}
$$

With proba. $1-\left(\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V \rho_{t} V^{\dagger}\right)\right) d t, d N(t)=0$ and

$$
\rho_{t+d t}=\frac{M_{0} \rho_{t} M_{0}^{\dagger}+(1-\bar{\eta}) V \rho_{t} V^{\dagger} d t}{\operatorname{Tr}\left(M_{0} \rho_{t} M_{0}^{\dagger}+(1-\bar{\eta}) V_{\rho} V^{\dagger} d t\right)}
$$

with $M_{0}=I-\left(i H+\frac{1}{2} V^{\dagger} V\right) d t$.
With proba. $\left(\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V \rho_{t} V^{\dagger}\right)\right) d t, N(t+d t)-\boldsymbol{N}(t)=1$ and

$$
\rho_{t+d t}=\frac{M_{0} \tilde{\rho}_{t} M_{0}^{\dagger}+(1-\bar{\eta}) V \tilde{\rho}_{t} V^{\dagger} d t}{\operatorname{Tr}\left(M_{0} \tilde{\rho}_{t} M_{0}^{\dagger}+(1-\bar{\eta}) V \tilde{\rho}_{t} V^{\dagger} d t\right)} \text { with } \tilde{\rho}_{t}=\frac{\bar{\theta} \rho_{t}+\bar{\eta} V \rho_{t} V^{\dagger}}{\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V_{\rho_{t}} V^{\dagger}\right)} .
$$

## Outline

1 Structure of dynamical models in discrete time
2 Structure of dynamical models in continuous time

- Diffusive models
- Jump models

■ Mixed diffusive/jump models

3 Quantum Non Demolition (QND) measurement of photons - Monte Carlo simulations and experiments

- Martingales and convergence of Markov chains
- QND martingales for photons

4 Homodyne measurement of a qubit

## Diffusive-jump SME

The quantum state $\rho_{t}$ is usually mixed and obeys to

$$
\begin{gathered}
d \rho_{t}=\left(-i\left[H, \rho_{t}\right]+L \rho_{t} L^{\dagger}-\frac{\mathbf{1}}{2}\left(L^{\dagger} L \rho_{t}+\rho_{t} L^{\dagger} L\right)+V \rho_{t} V^{\dagger}-\frac{\mathbf{1}}{2}\left(V^{\dagger} V \rho_{t}+\rho_{t} V^{\dagger} V\right)\right) d t \\
+\sqrt{\eta}\left(L \rho_{t}+\rho_{t} L^{\dagger}-\operatorname{Tr}\left(\left(L+L^{\dagger}\right) \rho_{t}\right) \rho_{t}\right) d W_{t} \\
+\left(\frac{\bar{\theta} \rho_{t}+\bar{\eta} V \rho_{t} V^{\dagger}}{\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V_{t} V^{\dagger}\right)}-\rho_{t}\right)\left(\boldsymbol{d N}(t)-\left(\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V \rho_{t} V^{\dagger}\right)\right) d t\right)
\end{gathered}
$$

With $\boldsymbol{d} \boldsymbol{y}_{\boldsymbol{t}}=\sqrt{\eta} \operatorname{Tr}\left(\left(L+L^{\dagger}\right) \rho_{t}\right) d t+\boldsymbol{d} W_{t}$ and $\boldsymbol{d} \boldsymbol{N}(\boldsymbol{t})=\mathbf{0}$ with proba $1-\left(\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V_{\rho_{t}} V^{\dagger}\right)\right) d t$

$$
\rho_{t+d t}=\frac{M_{d y_{t}} \rho_{t} M_{d y_{t}}^{\dagger}+(1-\eta) L \rho_{t} L^{\dagger} d t+(1-\bar{\eta}) V_{\rho_{t}} V^{\dagger} d t}{\operatorname{Tr}\left(M_{d y_{t}} \rho_{t} M_{d y_{t}}^{\dagger}+(1-\eta) L \rho_{t} L^{\dagger} d t+(1-\bar{\eta}) V_{\rho_{t}} V^{\dagger} d t\right)}
$$

with $M_{d y_{t}}=I-\left(i H+\frac{1}{2} L^{\dagger} L+\frac{1}{2} V^{\dagger} V\right) d t+\sqrt{\eta} d y_{t} L$.
For $\boldsymbol{N}(\boldsymbol{t}+\boldsymbol{d t})-\boldsymbol{N}(\boldsymbol{t})=\mathbf{1}$ of proba. $\left(\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V_{\rho_{t}} V^{\dagger}\right)\right) d t$ we have

$$
\rho_{t+d t}=\frac{M_{d y_{t}} \tilde{\rho}_{t} M_{d y_{t}}^{\dagger}+(1-\eta) L \tilde{\rho}_{t} L^{\dagger} d t+(1-\bar{\eta}) V \tilde{\rho}_{t} V^{\dagger} d t}{\operatorname{Tr}\left(M_{d y_{t}} \tilde{\rho}_{t} M_{d y_{t}}^{\dagger}+(1-\eta) L \tilde{\rho}_{t} L^{\dagger} d t+(1-\bar{\eta}) V \tilde{\rho}_{t} V^{\dagger} d t\right)} \text { with } \tilde{\rho}_{t}=\frac{\bar{\theta} \rho_{t}+\bar{\eta} V \rho_{t} V^{\dagger}}{\bar{\theta}+\bar{\eta} \operatorname{Tr}\left(V \rho_{t} V^{\dagger}\right)}
$$

## General diffusive-jump SME

The quantum state $\rho_{t}$ is usually mixed and obeys to

$$
\begin{gathered}
d \rho_{t}=\left(-i\left[H, \rho_{t}\right]+\sum_{\nu} L_{\nu} \rho_{t} L_{\nu}^{\dagger}-\frac{1}{2}\left(L_{\nu}^{\dagger} L_{\nu} \rho_{t}+\rho_{t} L_{\nu}^{\dagger} L_{\nu}\right)+V_{\mu} \rho_{t} V_{\mu}^{\dagger}-\frac{1}{2}\left(V_{\mu}^{\dagger} V_{\mu} \rho_{t}+\rho_{t} V_{\mu}^{\dagger} V_{\mu}\right)\right) d t \\
+\sum_{\nu} \sqrt{\eta_{\nu}}\left(L_{\nu} \rho_{t}+\rho_{t} L_{\nu}^{\dagger}-\operatorname{Tr}\left(\left(L_{\nu}+L_{\nu}^{\dagger}\right) \rho_{t}\right) \rho_{t}\right) d W_{\nu, t} \\
+\sum_{\mu}\left(\frac{\bar{\theta}_{\mu} \rho_{t}+\sum_{\mu^{\prime}} \bar{\eta}_{\mu, \mu^{\prime}} V_{\mu^{\prime}} \rho_{t} V_{\mu^{\prime}}^{\dagger}}{\bar{\theta}_{\mu}+\sum_{\mu^{\prime}} \bar{\eta}_{\mu, \mu^{\prime}} \operatorname{Tr}\left(V_{\mu^{\prime}} \rho_{t} V_{\mu^{\prime}}^{\dagger}\right)}-\rho_{t}\right)\left(d N_{\mu}(t)-\left(\bar{\theta}_{\mu}+\sum_{\mu^{\prime}} \bar{\eta}_{\mu, \mu^{\prime}} \operatorname{Tr}\left(V_{\mu^{\prime}} \rho_{t} V_{\mu^{\prime}}^{\dagger}\right)\right) d t\right)
\end{gathered}
$$

where $\eta_{\nu} \in[0,1], \bar{\theta}_{\mu}, \bar{\eta}_{\mu, \mu^{\prime}} \geq 0$ with $\bar{\eta}_{\mu^{\prime}}=\sum_{\mu} \bar{\eta}_{\mu, \mu^{\prime}} \leq 1$ are parameters modelling measurements imperfections.
When $\forall \mu, d N_{\mu}(t)=0$, we have

$$
\rho_{t+d t}=\frac{M_{d y_{t}} \rho_{t} M_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) L_{\nu} \rho_{t} L_{\nu}^{\dagger} d t+\sum_{\mu}\left(1-\bar{\eta}_{\mu}\right) V_{\mu} \rho_{t} V_{\mu}^{\dagger} d t}{\operatorname{Tr}\left(M_{d y_{t}} \rho_{t} M_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) L_{\nu} \rho_{t} L_{\nu}^{\dagger} d t+\sum_{\mu}\left(1-\bar{\eta}_{\mu}\right) V_{\mu} \rho_{t} V_{\mu}^{\dagger} d t\right)}
$$

with $M_{d y_{t}}=I-\left(i H+\frac{1}{2} \sum_{\nu} L_{\nu}^{\dagger} L_{\nu}+\frac{1}{2} \sum_{\mu} V_{\mu}^{\dagger} V_{\mu}\right) d t+\sum_{\nu} \sqrt{\eta_{\nu}} d y_{\nu t} L_{\nu}$ and where
$\boldsymbol{d} \boldsymbol{y}_{\nu, \boldsymbol{t}}=\sqrt{\eta_{\nu}} \operatorname{Tr}\left(\left(L_{\nu}+L_{\nu}^{\dagger}\right) \rho_{t}\right) d t+d W_{\nu, t}$.
If, for some $\mu, \boldsymbol{N}_{\mu}(\boldsymbol{t}+\boldsymbol{d t})-\boldsymbol{N}_{\mu}(\boldsymbol{t})=\mathbf{1}$, we have a similar transition rule
$\rho_{t+d t}=\frac{M_{d y_{t}} \tilde{\rho}_{t} M_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) L_{\nu} \tilde{\rho}_{t} L_{\nu}^{\dagger} d t+\sum_{\mu^{\prime}}\left(1-\bar{\eta}_{\mu^{\prime}}\right) V_{\mu^{\prime}} \tilde{\rho}_{t} V_{\mu^{\prime}}^{\dagger} d t}{\operatorname{Tr}\left(M_{d y_{t}} \tilde{\rho}_{t} M_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) L_{\nu} \tilde{\rho}_{t} L_{\nu}^{\dagger} d t+\sum_{\mu^{\prime}}\left(1-\bar{\eta}_{\mu^{\prime}}\right) V_{\mu^{\prime}} \tilde{\rho}_{t} V_{\mu^{\prime}}^{\dagger} d t\right)}$ with $\tilde{\rho}_{t}=\frac{\bar{\theta}_{\mu} \rho_{t}+\sum_{\mu^{\prime}} \bar{\eta}_{\mu, \mu^{\prime}} v_{\mu^{\prime}} \rho_{t} v_{\mu^{\prime}}^{\dagger}}{\bar{\theta}_{\mu}+\sum_{\mu^{\prime}} \bar{\eta}_{\mu, \mu^{\prime}} \operatorname{Tr}\left(V_{\mu^{\prime}} \rho_{t} v_{\mu^{\prime}}^{\dagger}\right)}$.

## Outline

1 Structure of dynamical models in discrete time
2 Structure of dynamical models in continuous time

- Diffusive models
- Jump models
- Mixed diffusive/jump models

3 Quantum Non Demolition (QND) measurement of photons

- Monte Carlo simulations and experiments

■ Martingales and convergence of Markov chains
■ QND martingales for photons

4 Homodyne measurement of a qubit

## LKB photon box : open-loop dynamics ideal model



Markov process: $\left|\psi_{k}\right\rangle \equiv|\psi\rangle_{t=k \Delta t}, k \in \mathbb{N}, \Delta t$ sampling period,

$$
\left|\psi_{k+1}\right\rangle= \begin{cases}\frac{\boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}} & \text { with } y_{k}=g, \text { probability } \mathbb{P}_{g}=\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle ; \\ \frac{\boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\top} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}} & \text { with } y_{k}=\boldsymbol{e}, \text { probability } \mathbb{P}_{e}=\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle,\end{cases}
$$

with

$$
\boldsymbol{M}_{g}=\cos \left(\varphi_{0}+\boldsymbol{N} \vartheta\right), \quad \boldsymbol{M}_{e}=\sin \left(\varphi_{0}+\boldsymbol{N} \vartheta\right) .
$$

## QND measurement of photons

Markov process: density operator $\rho_{k}=\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ as state.

$$
\rho_{k+1}= \begin{cases}\frac{\boldsymbol{M}_{\boldsymbol{g}} \rho_{k} \boldsymbol{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{k} \rho_{k} \boldsymbol{M}_{g}^{\dagger}\right)} & \text { with } y_{k}=g, \text { probability } \mathbb{P}_{g}=\operatorname{Tr}\left(\boldsymbol{M}_{g} \rho_{k} \boldsymbol{M}_{g}^{\dagger}\right) ; \\ \frac{\boldsymbol{M}_{e} \rho_{k} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{e} \rho_{k} \boldsymbol{M}_{e}^{\dagger}\right)} & \text { with } y_{k}=\boldsymbol{e}, \text { probability } \mathbb{P}_{\boldsymbol{e}}=\operatorname{Tr}\left(\boldsymbol{M}_{e} \rho_{k} \boldsymbol{M}_{e}^{\dagger}\right),\end{cases}
$$

with

$$
\boldsymbol{M}_{g}=\cos \left(\varphi_{0}+\boldsymbol{N} \vartheta\right), \quad \boldsymbol{M}_{e}=\sin \left(\varphi_{0}+\boldsymbol{N} \vartheta\right) .
$$

Quantum Monte Carlo simulations (2 Matlab scripts):
IdealQNDphoton.m RealisticQNDphoton.m

## Experimental data

## Quantum Non-Demolition (QND) measurement

The measurement operators $\boldsymbol{M}_{g, e}$ commute with the photon-number observable $\boldsymbol{N}$ : photon-number states $|n\rangle\langle n|$ are fixed points of the measurement process. We say that the measurement is QND for the observable $\boldsymbol{N}$.

## Asymptotic behavior: numerical simulations

100 Monte-Carlo simulations of $\operatorname{Tr}\left(\rho_{k}|3\rangle\langle 3|\right)$ versus $k$
Fidelity between $\rho_{K}$ and the Fock state $\xi_{3}$


## Convergence of a random process

Consider $\left(X_{k}\right)$ a sequence of random variables defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values in a metric space $\mathcal{X}$. The random process $X_{k}$ is said to,

1 converge in probability towards the random variable $X$ if for all $\epsilon>0$,

$$
\lim _{k \rightarrow \infty} \mathbb{P}\left(\left|X_{k}-X\right|>\epsilon\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\omega \in \Omega| | X_{k}(\omega)-X(\omega) \mid>\epsilon\right)=0
$$

2 converge almost surely towards the random variable $X$ if

$$
\mathbb{P}\left(\lim _{k \rightarrow \infty} X_{k}=X\right)=\mathbb{P}\left(\omega \in \Omega \mid \lim _{k \rightarrow \infty} X_{k}(\omega)=X(\omega)\right)=1
$$

3 converge in mean towards the random variable $X$ if $\lim _{k \rightarrow \infty} \mathbb{E}\left(\left|X_{k}-X\right|\right)=0$.

## Some definitions

## Markov process

The sequence $\left(X_{k}\right)_{k=1}^{\infty}$ is called a Markov process, if for all $k$ and $\ell$ satisfying $k>\ell$ and any measurable function $f(x)$ with $\sup _{x}|f(x)|<\infty$,

$$
\mathbb{E}\left(f\left(X_{k}\right) \mid X_{1}, \ldots, X_{\ell}\right)=\mathbb{E}\left(f\left(X_{k}\right) \mid X_{\ell}\right)
$$

## Martingales

The sequence $\left(X_{k}\right)_{k=1}^{\infty}$ is called respectively a supermartingale, a submartingale or a martingale, if $\mathbb{E}\left(\left|X_{k}\right|\right)<\infty$ for $k=1,2, \cdots$, and

$$
\mathbb{E}\left(X_{k} \mid X_{1}, \ldots, X_{\ell}\right) \leq X_{\ell} \quad(\mathbb{P} \text { almost surely }), \quad k \geq \ell
$$

or

$$
\mathbb{E}\left(X_{k} \mid X_{1}, \ldots, X_{\ell}\right) \geq X_{\ell} \quad(\mathbb{P} \text { almost surely }), \quad k \geq \ell
$$

or finally,

$$
\mathbb{E}\left(X_{k} \mid X_{1}, \ldots, X_{\ell}\right)=X_{\ell} \quad(\mathbb{P} \text { almost surely }), \quad k \geq \ell
$$

## Martingales asymptotic behavior

## H.J. Kushner invariance Theorem

Let $\left\{X_{k}\right\}$ be a Markov chain on the compact state space $S$. Suppose that there exists a non-negative function $V(x)$ satisfying
$\mathbb{E}\left(V\left(X_{k+1}\right) \mid X_{k}=x\right)-V(x)=-\sigma(x)$, where $\sigma(x) \geq 0$ is a positive continuous function of $x$. Then the $\omega$-limit set (in the sense of almost sure convergence) of $X_{k}$ is included in the following set

$$
I=\{X \mid \sigma(X)=0\}
$$

Trivially, the same result holds true for the case where
$\mathbb{E}\left(V\left(X_{k+1}\right) \mid X_{k}=x\right)-V(x)=\sigma(x)$ with $\sigma(x) \geq 0$ and $V(x)$ bounded from above $\left(V\left(X_{k}\right)\right.$ is a submartingale),.

Stochastic version of Lasalle invariance principle for Lyapunov function of deterministic dynamics.

## Asymptotic behavior

## Theorem

Consider for $\boldsymbol{M}_{g}=\cos \left(\varphi_{0}+\boldsymbol{N} v\right)$ and $\boldsymbol{M}_{e}=\sin \left(\varphi_{0}+\boldsymbol{N} v\right)$

$$
\boldsymbol{\rho}_{k+1}= \begin{cases}\frac{\boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}\right)} & \text { with } y_{k}=g, \text { probability } \mathbb{P}_{g}=\operatorname{Tr}\left(\boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}\right) ; \\ \frac{\boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}\right)} & \text { with } y_{k}=\boldsymbol{e}, \text { probability } \mathbb{P}_{e}=\operatorname{Tr}\left(\boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}\right),\end{cases}
$$

with an initial density matrix $\rho_{0}$ defined on the subspace span $\left\{|n\rangle \mid n=0,1, \cdots, n^{\max }\right\}$. Also, assume the non-degeneracy assumption $\forall n \neq m \in\left\{0,1, \cdots, n^{\max }\right\}, \cos ^{2}\left(\varphi_{m}\right) \neq \cos ^{2}\left(\varphi_{n}\right)$ where $\varphi_{n}=\varphi_{0}+n \vartheta$.
Then
■ for any $n \in\left\{0, \ldots, n^{\max }\right\}, \operatorname{Tr}\left(\rho_{k}|n\rangle\langle n|\right)=\langle n| \rho_{k}|n\rangle$ is a martingale

- $\rho_{k}$ converges with probability 1 to one of the $n^{\text {max }}+1$ Fock state $|n\rangle\langle n|$ with $n \in\left\{0, \ldots, n^{\max }\right\}$.
- the probability to converge towards the Fock state $|n\rangle\langle n|$ is given by $\operatorname{Tr}\left(\rho_{0}|n\rangle\langle n|\right)=\langle n| \rho_{0}|n\rangle$.


## Proof based on QND super-martingales

■ For any function $f, V_{f}(\rho)=\operatorname{Tr}(f(\boldsymbol{N}) \rho)$ is a martingale:
$\mathbb{E}\left(V_{f}\left(\rho_{k+1}\right) \mid \rho_{k}\right)=V_{f}\left(\rho_{k}\right)$.
■ $V(\rho)=\sum_{n \neq m} \sqrt{\langle n| \rho|n\rangle\langle m| \rho|m\rangle}$ is a strict super-martingale:

$$
\begin{aligned}
& \mathbb{E}\left(V\left(\rho_{k+1}\right) \mid \rho_{k}\right) \\
& \quad=\sum_{n \neq m}\left(\left|\cos \phi_{n} \cos \phi_{m}\right|+\left|\sin \phi_{n} \sin \phi_{m}\right|\right) \sqrt{\langle n| \rho|n\rangle\langle m| \rho|m\rangle}
\end{aligned}
$$

$$
\leq r V\left(\rho_{k}\right)
$$

with $r=\max _{n \neq m}\left(\left|\cos \phi_{n} \cos \phi_{m}\right|+\left|\sin \phi_{n} \sin \phi_{m}\right|\right)$ and $r<1$.
■ $V(\rho) \geq 0$ and $V(\rho)=0$ means that exists $n$ such that $\rho=|n\rangle\langle n|$.

Interpretation: for large $k, V\left(\rho_{k}\right)$ is very close to 0 , thus very close to $|n\rangle\langle n|$ ("pure state" = maximal information state) for an a priori random $n$. Information extracted by measurement makes state "less uncertain" a posteriori but not more predictable a priori.

## Exercice

Consider the Markov chain $\boldsymbol{\rho}_{k+1}=\boldsymbol{M}_{y_{k}}\left(\boldsymbol{\rho}_{k}\right) \boldsymbol{M}_{y_{k}}^{\dagger} / \operatorname{Tr}\left(\boldsymbol{M}_{y_{k}}\left(\boldsymbol{\rho}_{k}\right) \boldsymbol{M}_{y_{k}}^{\dagger}\right)$ where $y_{k}=g\left(\right.$ resp. $\left.y_{k}=e\right)$ with probability $p_{g, k}=\operatorname{Tr}\left(\boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}\right)$ (resp.
$p_{e, k}=\operatorname{Tr}\left(\boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}\right)$ ). The Kraus operators are given by

$$
\begin{aligned}
& \boldsymbol{M}_{g}=\cos \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\theta}{2} \sqrt{\boldsymbol{N}}\right)-\sin \left(\frac{\theta_{1}}{2}\right)\left(\frac{\sin \left(\frac{\theta}{2} \sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right) \boldsymbol{a}^{\dagger} \\
& \boldsymbol{M}_{e}=-\sin \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}+1}\right)-\cos \left(\frac{\theta_{1}}{2}\right) \boldsymbol{a}\left(\frac{\sin \left(\frac{\theta}{2} \sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right)
\end{aligned}
$$

with $\theta_{1}=0$. Assume the initial state to be defined on the subspace $\{|n\rangle\}_{n=0}^{\max ^{\text {max }}}$ and that the cavity state at step $k$ is described by the density operator $\rho_{k}$.
1 Show that

$$
\mathbb{E}\left(\operatorname{Tr}\left(\boldsymbol{N} \rho_{k+1}\right) \mid \boldsymbol{\rho}_{k}\right)=\operatorname{Tr}\left(\boldsymbol{N} \boldsymbol{\rho}_{k}\right)-\operatorname{Tr}\left(\sin ^{2}\left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}}\right) \boldsymbol{\rho}_{k}\right) .
$$

2 Assume that for any integer $n, \Theta \sqrt{n} / \pi$ is irrational. Then prove that almost surely $\boldsymbol{\rho}_{k}$ tends to the vacuum state $|0\rangle\langle 0|$ whatever its initial condition is.
3 When $\Theta \sqrt{n} / \pi$ is rational for some integer $n$, describe the possible $\omega$-limit sets for $\rho_{k}$.

## Outline

1 Structure of dynamical models in discrete time
2 Structure of dynamical models in continuous time

- Diffusive models
- Jump models
- Mixed diffusive/jump models

3 Quantum Non Demolition (QND) measurement of photons - Monte Carlo simulations and experiments

- Martingales and convergence of Markov chains
- QND martingales for photons

4 Homodyne measurement of a qubit

## Dispersive measurement of a qubit


$K$

Inverse setup of photon-box: photons read out a qubit.

## Approximate model

Cavity's dynamics are removed (singular perturbation techniques) to achieve a qubit SME:

$$
\begin{aligned}
d \rho_{t}= & -i\left[\boldsymbol{H}, \rho_{t}\right] d t+\frac{\Gamma_{m}}{4}\left(\sigma_{\boldsymbol{z}} \rho_{t} \boldsymbol{\sigma}_{\mathbf{z}}-\rho_{t}\right) d t \\
& \quad+\frac{\sqrt{\eta \Gamma_{m}}}{2}\left(\sigma_{\boldsymbol{z}} \rho_{t}+\rho_{t} \sigma_{\mathbf{z}}-2 \operatorname{Tr}\left(\sigma_{\boldsymbol{z}} \rho_{t}\right) \rho_{t}\right) d W_{t} \\
d y_{t}=d W_{t}+ & \sqrt{\eta \Gamma_{m}} \operatorname{Tr}\left(\boldsymbol{\sigma}_{\mathbf{z}} \rho_{t}\right) d t
\end{aligned}
$$

## Quantum Non-Demolition measurement

$$
\begin{aligned}
d \rho_{t}= & -i\left[\boldsymbol{H}, \rho_{t}\right] d t+\frac{\Gamma_{m}}{4}\left(\sigma_{\boldsymbol{z}} \rho_{t} \boldsymbol{\sigma}_{\mathbf{z}}-\rho_{t}\right) d t \\
& \quad+\frac{\sqrt{\eta \Gamma_{m}}}{2}\left(\boldsymbol{\sigma}_{\mathbf{z}} \rho_{t}+\rho_{t} \boldsymbol{\sigma}_{\mathbf{z}}-2 \operatorname{Tr}\left(\sigma_{\boldsymbol{z}} \rho_{t}\right) \rho_{t}\right) d W_{t}, \\
d y_{t}=d W_{t}+ & \sqrt{\eta \Gamma_{m}} \operatorname{Tr}\left(\boldsymbol{\sigma}_{\mathbf{z}} \rho_{t}\right) d t .
\end{aligned}
$$

Uncontrolled case: $\boldsymbol{H}=\omega_{\mathrm{eg}} \sigma_{\boldsymbol{z}} / 2$.
Interpretation as a Markov process with Kraus operators

$$
\begin{aligned}
\boldsymbol{M}_{d y_{t}} & =\boldsymbol{I}-\left(i \frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\frac{\Gamma_{m}}{8} \boldsymbol{I}\right) d t+\frac{\sqrt{\eta \Gamma_{m}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}} d y_{t}, \\
\sqrt{(1-\eta) d t} \boldsymbol{L} & =\frac{\sqrt{(1-\eta) \Gamma_{m} d t}}{2} \boldsymbol{\sigma}_{\mathbf{z}} .
\end{aligned}
$$

## QND measurement

Kraus operators $\boldsymbol{M}_{d y_{t}}$ and $\sqrt{(1-\eta) d t} \boldsymbol{L}$ commute with observable $\boldsymbol{\sigma}_{\mathbf{z}}$ : qubit states $|g\rangle\langle g|$ and $|e\rangle\langle e|$ are fixed points of the measurement process. The measurement is QND for the observable $\sigma_{\boldsymbol{z}}$.

## QND measurement: asymptotic behavior

## Theorem

Consider the SME

$$
\begin{aligned}
& d \rho_{t}=-i\left[\boldsymbol{H}, \rho_{t}\right] d t+\frac{\Gamma_{m}}{4}\left(\sigma_{z} \rho_{t} \boldsymbol{\sigma}_{\mathbf{z}}-\rho_{t}\right) d t \\
&+\frac{\sqrt{\eta \Gamma m}}{2}\left(\sigma_{z} \rho_{t}+\rho_{t} \sigma_{\mathbf{z}}-2 \operatorname{Tr}\left(\sigma_{z} \rho_{t}\right) \rho_{t}\right) d W_{t}
\end{aligned}
$$

with $\boldsymbol{H}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}$ and $\eta>0$.
■ For any initial state $\rho_{0}$, the solution $\rho_{t}$ converges almost surely as $t \rightarrow \infty$ to one of the states $|g\rangle\langle g|$ or $|e\rangle\langle e|$.
■ The probability of convergence to $|g\rangle\langle g|$ (respectively $|e\rangle\langle e|)$ is given by $p_{g}=\operatorname{Tr}\left(|g\rangle\langle g| \rho_{0}\right)$ (respectively $\left.\operatorname{Tr}\left(|e\rangle\langle e| \rho_{0}\right)\right)$.

- The convergence rate is given by $\eta \Gamma_{M} / 2$.

Proof based on the Lyapunov function $V(\rho)=\sqrt{1-\operatorname{Tr}^{2}\left(\sigma_{z} \rho\right)}$ with

$$
\frac{d}{d t} \mathbb{E}(V(\rho))=-\frac{\eta \Gamma_{M}}{2} \mathbb{E}(V(\rho))
$$

Monte Carlo simulations: IdealQNDqubit.m RealisticQNDqubit.m


[^0]:    ${ }^{6}$ A. Barchielli, M. Gregoratti (2009): Quantum Trajectories and Measurements in Continuous Time: the Diffusive Case. Springer Verlag.

