Mathematical methods for modeling and control of open quantum systems ${ }^{1}$

Mazyar Mirrahimi ${ }^{2}$, Pierre Rouchon ${ }^{3}$, Alain Sarlette ${ }^{4}$

November 30, 2021
${ }^{1}$ Lecture-notes, slides and Matlab simulation scripts available at: http://cas.ensmp.fr/~rouchon/LIASFMA/index.html
${ }^{2}$ Inria-Paris
${ }^{3}$ Mines ParisTech
${ }^{4}$ Inria-Paris

Outline

1 Introduction

2 Two-level systems (qubits, spins)

3 Quantum harmonic oscillators (modes, springs)

4 The Haroche photon Box

Second quantum revolution: Controlling quantum degrees of freedom

Some applications

■ Nuclear Magnetic Resonance (NMR) applications;

- Quantum chemical synthesis;

■ High resolution measurement devices (e.g. atomic/optic clocks);
■ Quantum communication (BB84, ...);
■ Quantum computation and simulation.
Physics Nobel prize 2012

Serge Haroche

David J. Wineland

Nobel prize: ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems.

Outline of the lectures

Nov. 30 Quantum mechanics from scratch: two-level systems (qubits,spins), harmonic oscillators (modes, springs), the Haroche photon box.
Dec. 2 Dynamical models: Markov chains and Kraus maps (discrete time), Lindblad master equation and stochastic master equations (continuous time). Two key examples: quantum non demolition measurement of photons (discrete time), homodyne measurement of a qubit (continuous-time).
Dec. 7 Averaging (rotating wave approximation) and singular perturbations (adiabatic elimination): resonant control of qubits, dispersive and resonant coupling between qubits and harmonic oscillators, adiabatic elimination of a low-quality harmonic oscillator.

Dec. 9 Stabilization with a quantum controller: cat-qubit and how a low-quality harmonic oscillator can stabilize via coherent coupling the quantum information stored in a high-quality harmonic oscillator.

Reference books

1 Cohen-Tannoudji, C.; Diu, B. \& Laloë, F.: Mécanique Quantique Hermann, Paris, 1977, I\& II (quantum physics: a well known and tutorial textbook)
2 S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006. (quantum physics: spin/spring systems, decoherence, Schrödinger cats, entanglement.)
3 C. Gardiner, P. Zoller: The Quantum World of Ultra-Cold Atoms and Light I\& II. Imperial College Press, 2009. (quantum physics, measurement and contro)
4 Barnett, S. M. \& Radmore, P. M.: Methods in Theoretical Quantum Optics Oxford University Press, 2003. (mathematical physics: many useful operator formulae for spin/spring systems)
5 E. Davies: Quantum Theory of Open Systems. Academic Press, 1976. (mathematical physics: functional analysis aspects when the Hilbert space is of infinite dimension)
6 Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences [3rd ed], Springer, 2004. (tutorial introduction to probability, Markov processes, stochastic differential equations and lto calculus.)
7 M. Nielsen, I. Chuang: Quantum Computation and Quantum Information. Cambridge University Press, 2000. (tutorial introduction with a computer science and communication view point)

Models of open quantum systems are based on three features ${ }^{5}$

1 Schrödinger: $\hbar=1$, wave funct. $|\psi\rangle \in \mathcal{H}$ or density op. $\rho \sim|\psi\rangle\langle\psi|$

$$
\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}|\psi\rangle, \quad \frac{d}{d t} \rho=-i[\boldsymbol{H}, \rho], \quad \boldsymbol{H}=\boldsymbol{H}_{0}+u \boldsymbol{H}_{1}
$$

2 Entanglement and tensor product for composite systems (S, M):
■ Hilbert space $\mathcal{H}=\mathcal{H}_{s} \otimes \mathcal{H}_{M}$
■ Hamiltonian $\boldsymbol{H}=\boldsymbol{H}_{S} \otimes \boldsymbol{I}_{M}+\boldsymbol{H}_{\text {int }}+\boldsymbol{I}_{\boldsymbol{S}} \otimes \boldsymbol{H}_{M}$
■ observable on sub-system M only: $\boldsymbol{O}=\boldsymbol{I}_{\boldsymbol{S}} \otimes \boldsymbol{O}_{M}$.
3 Randomness and irreversibility induced by the measurement of observable \boldsymbol{O} with spectral decomp. $\sum_{\mu} \lambda_{\mu} \boldsymbol{P}_{\mu}$:

■ measurement outcome μ with proba. $\mathbb{P}_{\mu}=\langle\psi| \boldsymbol{P}_{\mu}|\psi\rangle=\operatorname{Tr}\left(\rho \boldsymbol{P}_{\mu}\right)$ depending on $|\psi\rangle, \rho$ just before the measurement

- measurement back-action if outcome $\mu=y$:

$$
|\psi\rangle \mapsto|\psi\rangle_{+}=\frac{\boldsymbol{P}_{y}|\psi\rangle}{\sqrt{\langle\psi| \boldsymbol{P}_{y}|\psi\rangle}}, \quad \rho \mapsto \rho_{+}=\frac{\boldsymbol{P}_{y} \rho \boldsymbol{P}_{y}}{\operatorname{Tr}\left(\rho \boldsymbol{P}_{y}\right)}
$$

[^0]
Outline

1 Introduction

2 Two-level systems (qubits, spins)

3 Quantum harmonic oscillators (modes, springs)

4 The Haroche photon Box

2-level system (spin-1/2)

Schrödinger equation for the uncontrolled 2-level system ($\hbar=1$, i.e. energy in frequency unit) :

$$
\imath \frac{d}{d t}|\psi\rangle=\boldsymbol{H}_{0}|\psi\rangle=\left(\omega_{e}|e\rangle\langle e|+\omega_{g}|g\rangle\langle g|\right)|\psi\rangle
$$

where \boldsymbol{H}_{0} is the Hamiltonian, a Hermitian operator $\boldsymbol{H}_{0}^{\dagger}=\boldsymbol{H}_{0}$.
Energy is defined up to a constant: \boldsymbol{H}_{0} and $\boldsymbol{H}_{0}+\varpi(t) \boldsymbol{I}(\varpi(t) \in \mathbb{R}$ arbitrary) are attached to the same physical system. If $|\psi\rangle$ satisfies $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}_{0}|\psi\rangle$ then $|\chi\rangle=e^{-i \vartheta(t)}|\psi\rangle$ with $\frac{d}{d t} \vartheta=\varpi$ obeys to $i \frac{d}{d t}|\chi\rangle=\left(\boldsymbol{H}_{0}+\varpi \boldsymbol{I}\right)|\chi\rangle$. Thus for any $\vartheta,|\psi\rangle$ and $e^{-i \vartheta}|\psi\rangle$ represent the same physical system: The global phase of a quantum system $|\psi\rangle$ can be chosen arbitrarily at any time.

The controlled 2-level system

Take origin of energy such that ω_{g} (resp. ω_{e}) becomes $-\frac{\omega_{e}-\omega_{g}}{2}$ (resp. $\frac{\omega_{e}-\omega_{g}}{2}$) and set $\omega_{\mathrm{eg}}=\omega_{e}-\omega_{g}$
The solution of $i \frac{d}{d t}|\psi\rangle=H_{0}|\psi\rangle=\frac{\omega_{\mathrm{eg}}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)|\psi\rangle$ is

$$
|\psi\rangle_{t}=\psi_{g 0} e^{\frac{i \omega_{\mathrm{eg}} t}{2}}|g\rangle+\psi_{e 0} e^{\frac{-i \omega_{\mathrm{eg}} t}{2}}|e\rangle .
$$

With a classical electromagnetic field described by $u(t) \in \mathbb{R}$, the coherent evolution the controlled Hamiltonian

$$
\boldsymbol{H}(t)=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\frac{u(t)}{2} \sigma_{\boldsymbol{x}}=\frac{\omega_{\mathrm{eg}}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+\frac{u(t)}{2}(|e\rangle\langle g|+|g\rangle\langle e|)
$$

The controlled Schrödinger equation $i \frac{d}{d t}|\psi\rangle=\left(\boldsymbol{H}_{0}+u(t) \boldsymbol{H}_{1}\right)|\psi\rangle$ reads:

$$
i \frac{d}{d t}\binom{\psi_{e}}{\psi_{g}}=\frac{\omega_{\mathrm{eg}}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}+\frac{u(t)}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}
$$

The 3 Pauli Matrices ${ }^{6}$

$$
\sigma_{\boldsymbol{x}}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{\boldsymbol{y}}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{\boldsymbol{z}}=|e\rangle\langle e|-|g\rangle\langle g|
$$

${ }^{6}$ They correspond, up to multiplication by i, to the 3 imaginary quaternions.

$$
\sigma_{\boldsymbol{x}}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{\boldsymbol{y}}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{\boldsymbol{z}}=|e\rangle\langle e|-|g\rangle\langle g|
$$

$$
\sigma_{\boldsymbol{x}}^{2}=\boldsymbol{I}, \quad \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}=i \sigma_{\boldsymbol{z}}, \quad\left[\sigma_{\boldsymbol{x}}, \sigma_{\boldsymbol{y}}\right]=2 i \sigma_{\boldsymbol{z}}, \quad \text { circular permutation } \ldots
$$

■ Since for any $\theta \in \mathbb{R}, e^{i \theta \sigma_{x}}=\cos \theta+i \sin \theta \sigma_{\boldsymbol{x}}$ (idem for $\sigma_{\boldsymbol{y}}$ and $\boldsymbol{\sigma}_{\boldsymbol{z}}$), the solution of $i \frac{d}{d t}|\psi\rangle=\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}|\psi\rangle$ is

$$
|\psi\rangle_{t}=e^{\frac{-i \omega_{\mathrm{eg}} t}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}}|\psi\rangle_{0}=\left(\cos \left(\frac{\omega_{\mathrm{eg}} t}{2}\right) \boldsymbol{I}-i \sin \left(\frac{\omega_{\mathrm{eg}} t}{2}\right) \boldsymbol{\sigma}_{\boldsymbol{z}}\right)|\psi\rangle_{0}
$$

■ For $\alpha, \beta=\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \alpha \neq \beta$ we have

$$
\sigma_{\alpha} e^{i \theta \sigma_{\beta}}=e^{-i \theta \sigma_{\beta}} \sigma_{\alpha}, \quad\left(e^{i \theta \sigma_{\alpha}}\right)^{-1}=\left(e^{i \theta \sigma_{\alpha}}\right)^{\dagger}=e^{-i \theta \sigma_{\alpha}}
$$

and also

$$
e^{-\frac{i \theta}{2} \sigma_{\alpha}} \sigma_{\boldsymbol{\beta}} e^{\frac{i \theta}{2} \sigma_{\alpha}}=e^{-i \theta \sigma_{\alpha}} \sigma_{\boldsymbol{\beta}}=\boldsymbol{\sigma}_{\boldsymbol{\beta}} e^{i \theta \sigma_{\alpha}}
$$

We start from $|\psi\rangle$ that obeys $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle$. We consider the orthogonal projector on $|\psi\rangle, \rho=|\psi\rangle\langle\psi|$, called density operator. Then ρ is an Hermitian operator ≥ 0, that satisfies $\operatorname{Tr}(\rho)=1, \rho^{2}=\rho$ and obeys to the Liouville equation:

$$
\frac{d}{d t} \rho=-i[\boldsymbol{H}, \rho] .
$$

For a two level system $|\psi\rangle=\psi_{g}|g\rangle+\psi_{e}|e\rangle$ and

$$
\rho=\frac{I+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}}{2}
$$

where $(x, y, z)=\left(2 \Re\left(\psi_{g} \psi_{e}^{*}\right), 2 \Im\left(\psi_{g} \psi_{e}^{*}\right),\left|\psi_{e}\right|^{2}-\left|\psi_{g}\right|^{2}\right) \in \mathbb{R}^{3}$ represent a vector \vec{M}, the Bloch vector, that evolves on the unite sphere of $\mathbb{R}^{3}, \mathbb{S}^{2}$ called the the Bloch Sphere since $\operatorname{Tr}\left(\rho^{2}\right)=x^{2}+y^{2}+z^{2}=1$.
The Liouville equation with $\boldsymbol{H}=\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\frac{\mu}{2} \boldsymbol{\sigma}_{\mathbf{x}}$ reads

$$
\frac{d}{d t} \vec{M}=\left(u \vec{i}+\omega_{\mathrm{eg}} \vec{k}\right) \times \vec{M} .
$$

Consider $\boldsymbol{H}=\left(u \sigma_{\boldsymbol{x}}+v \sigma_{\boldsymbol{y}}+w \sigma_{\boldsymbol{z}}\right) / 2$ with $(u, v, w) \in \mathbb{R}^{3}$.
1 For (u, v, w) constant and non zero, compute the solutions of

$$
\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}|\psi\rangle, \quad \frac{d}{d t} \boldsymbol{U}=-i \boldsymbol{H} \boldsymbol{U} \text { with } \boldsymbol{U}_{0}=\boldsymbol{I}
$$

in term of $|\psi\rangle_{0}, \sigma=\left(u \sigma_{\boldsymbol{x}}+v \sigma_{\boldsymbol{y}}+w \sigma_{\boldsymbol{z}}\right) / \sqrt{u^{2}+v^{2}+w^{2}}$ and $\omega=\sqrt{u^{2}+v^{2}+w^{2}}$. Indication: use the fact that $\sigma^{2}=I$.
2 Assume that, (u, v, w) depends on t according to $(u, v, w)(t)=\omega(t)(\bar{u}, \bar{v}, \bar{w})$ with $(\bar{u}, \bar{v}, \bar{w}) \in \mathbb{R}^{3} /\{0\}$ constant of length 1. Compute the solutions of

$$
\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}(t)|\psi\rangle, \quad \frac{d}{d t} \boldsymbol{U}=-i \boldsymbol{H}(t) \boldsymbol{U} \text { with } \boldsymbol{U}_{0}=\boldsymbol{I}
$$

in term of $|\psi\rangle_{0}, \bar{\sigma}=\bar{u} \sigma_{\mathbf{x}}+\bar{v} \sigma_{\boldsymbol{y}}+\bar{w} \sigma_{\mathbf{z}}$ and $\theta(t)=\int_{0}^{t} \omega$.
3 Explain why (u, v, w) colinear to the constant vector $(\bar{u}, \bar{v}, \bar{w})$ is crucial, for the computations in previous question.

Summary: 2-level system, i.e. a qubit (spin-half system)

■ Hilbert space:

$$
\mathcal{H}_{M}=\mathbb{C}^{2}=\left\{\psi_{g}|g\rangle+\psi_{e}|e\rangle, \psi_{g}, \psi_{e} \in \mathbb{C}\right\} .
$$

■ Quantum state space:

$$
\mathcal{D}=\left\{\rho \in \mathcal{L}\left(\mathcal{H}_{M}\right), \rho^{\dagger}=\rho, \operatorname{Tr}(\rho)=1, \rho \geq 0\right\} .
$$

- Operators and commutations:

$$
\begin{aligned}
& \sigma_{\mathbf{-}}=|g\rangle\langle e|, \sigma_{+}=\sigma_{-}^{\dagger}=|e\rangle\langle g| \\
& \sigma_{\boldsymbol{x}}=\sigma_{-}+\sigma_{+}=|g\rangle\langle e|+|e\rangle\langle g| ; \\
& \sigma_{\boldsymbol{y}}=i \sigma_{-}-i \sigma_{+}=i|g\rangle\langle e|-i|e\rangle\langle g| ; \\
& \sigma_{\mathbf{z}}=\sigma_{+} \sigma_{-}-\sigma_{-} \sigma_{+}=|e\rangle\langle e|-|g\rangle\langle g| ; \\
& \sigma_{\mathbf{x}}{ }^{2}=\boldsymbol{I}, \sigma_{\mathbf{x}} \sigma_{\mathbf{y}}=i \sigma_{\mathbf{z}},\left[\sigma_{\boldsymbol{x}}, \sigma_{\mathbf{y}}\right]=2 i \sigma_{\mathbf{z}}, \ldots .
\end{aligned}
$$

■ Hamiltonian: $\boldsymbol{H}_{M}=\omega_{q} \sigma_{\boldsymbol{z}} / 2+\boldsymbol{u}_{q} \sigma_{\boldsymbol{x}}$.
■ Bloch sphere representation:

$$
\mathcal{D}=\left\{\left.\frac{1}{2}\left(I+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}\right) \right\rvert\,(x, y, z) \in \mathbb{R}^{3}, x^{2}+y^{2}+z^{2} \leq 1\right\}
$$

Outline

1 Introduction

2 Two-level systems (qubits, spins)

3 Quantum harmonic oscillators (modes, springs)

4 The Haroche photon Box

Harmonic oscillator

Classical Hamiltonian formulation of $\frac{d^{2}}{d t^{2}} x=-\omega^{2} x$

$$
\frac{d}{d t} x=\omega p=\frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{d t} p=-\omega x=-\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right)
$$

Electrical oscillator:
Mechanical oscillator

LC oscillator:
Frictionless spring: $\frac{d^{2}}{d t^{2}} x=-\frac{k}{m} x$.

$$
\frac{d}{d t} I=\frac{V}{L}, \frac{d}{d t} V=-\frac{I}{C}, \quad\left(\frac{d^{2}}{d t^{2}} I=-\frac{1}{L C} I\right) .
$$

Quantum regime

$k_{B} T \ll \hbar \omega$: typically for the photon box experiment in these lectures, $\omega=51 \mathrm{GHz}$ and $T=0.8 \mathrm{~K}$.

Harmonic oscillator ${ }^{7}$: quantization and correspondence principle

$$
\frac{d}{d t} x=\omega p=\frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{d t} p=-\omega x=-\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right)
$$

Quantization: probability wave function $|\psi\rangle_{t} \sim(\psi(x, t))_{x \in \mathbb{R}}$ with $|\psi\rangle_{t} \sim \psi(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ obeys to the Schrödinger equation ($\hbar=1$ in all the lectures)

$$
i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle, \quad \boldsymbol{H}=\frac{\omega}{2}\left(\boldsymbol{P}^{2}+\boldsymbol{X}^{2}\right)=-\frac{\omega}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega}{2} x^{2}
$$

where \boldsymbol{H} results from \mathbb{H} by replacing x by position operator \boldsymbol{X} and p by momentum operator $\boldsymbol{P}=-i \frac{\partial}{\partial x}$. \boldsymbol{H} is a Hermitian operator on $L^{2}(\mathbb{R}, \mathbb{C})$, with its domain to be given.

PDE model: $i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\omega}{2} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+\frac{\omega}{2} x^{2} \psi(x, t), \quad x \in \mathbb{R}$.
${ }^{7}$ Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. Mécanique Quantique, volume I\& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.

Oxford University Press, 2003.

Harmonic oscillator: annihilation and creation operators

Average position $\langle\boldsymbol{X}\rangle_{t}=\langle\psi| \boldsymbol{X}|\psi\rangle$ and momentum $\langle\boldsymbol{P}\rangle_{t}=\langle\psi| \boldsymbol{P}|\psi\rangle$:

$$
\langle\boldsymbol{X}\rangle_{t}=\int_{-\infty}^{+\infty} x|\psi|^{2} d x,, \quad\langle\boldsymbol{P}\rangle_{t}=-i \int_{-\infty}^{+\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x .
$$

Annihilation \boldsymbol{a} and creation operators \boldsymbol{a}^{\dagger} (domains to be given):

$$
\boldsymbol{a}=\frac{1}{\sqrt{2}}(\boldsymbol{X}+i \boldsymbol{P})=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right), \quad \mathbf{a}^{\dagger}=\frac{1}{\sqrt{2}}(\boldsymbol{X}-i \boldsymbol{P})=\frac{1}{\sqrt{2}}\left(x-\frac{\partial}{\partial x}\right)
$$

Commutation relationships:

$$
[\boldsymbol{X}, \boldsymbol{P}]=i \boldsymbol{I}, \quad\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=\boldsymbol{I}, \quad \boldsymbol{H}=\frac{\omega}{2}\left(\boldsymbol{P}^{2}+\boldsymbol{X}^{2}\right)=\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right) .
$$

Set $\boldsymbol{X}_{\theta}=\frac{1}{\sqrt{2}}\left(e^{-i \theta} \boldsymbol{a}+\boldsymbol{e}^{i \theta} \mathbf{a}^{\dagger}\right)$ for any angle θ :

$$
\left[\boldsymbol{X}_{\theta}, \boldsymbol{X}_{\theta+\frac{\pi}{2}}\right]=i \boldsymbol{I} .
$$

Harmonic oscillator: spectral decomposition and Fock states

Spectrum of Hamiltonian $\boldsymbol{H}=-\frac{\omega}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega}{2} x^{2}$:
$E_{n}=\omega\left(n+\frac{1}{2}\right), \psi_{n}(x)=\left(\frac{1}{\pi}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} e^{-x^{2} / 2} H_{n}(x), H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}$.

Spectral decomposition of $\mathbf{a}^{\dagger} \boldsymbol{a}$ using $\left[\mathbf{a}, \boldsymbol{a}^{\dagger}\right]=1$:
■ If $|\psi\rangle$ is an eigenstate associated to eigenvalue $\lambda, \mathbf{a}|\psi\rangle$ and $\mathbf{a}^{\dagger}|\psi\rangle$ are also eigenstates associated to $\lambda-1$ and $\lambda+1$.

- $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ is semi-definite positive.
- The ground state $\left|\psi_{0}\right\rangle$ is necessarily associated to eigenvalue 0 and is given by the Gaussian function $\psi_{0}(x)=\frac{1}{\pi^{1 / 4}} \exp \left(-x^{2} / 2\right)$.

Harmonic oscillator: spectral decomposition and Fock states

$\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=1$: spectrum of $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ is non-degenerate and is \mathbb{N}.
Fock state with n photons (phonons): the eigenstate of $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ associated to the eigenvalue $n\left(|n\rangle \sim \psi_{n}(x)\right)$:

$$
\mathbf{a}^{\dagger} \boldsymbol{a}|n\rangle=n|n\rangle, \quad \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle, \quad \mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle .
$$

The ground state $|0\rangle$ is called 0 -photon state or vacuum state.
The operator \boldsymbol{a} (resp. \boldsymbol{a}^{\dagger}) is the annihilation (resp. creation) operator since it transfers $|n\rangle$ to $|n-1\rangle$ (resp. $|n+1\rangle$) and thus decreases (resp. increases) the quantum number n by one unit.

Hilbert space of quantum system: $\mathcal{H}=\left\{\sum_{n} c_{n}|n\rangle \mid\left(c_{n}\right) \in I^{2}(\mathbb{C})\right\} \sim L^{2}(\mathbb{R}, \mathbb{C})$.
Domain of \boldsymbol{a} and $\boldsymbol{a}^{\dagger}:\left\{\sum_{n} c_{n}|n\rangle \mid\left(c_{n}\right) \in h^{1}(\mathbb{C})\right\}$.
Domain of \boldsymbol{H} ot $\boldsymbol{a}^{\dagger} \boldsymbol{a}:\left\{\sum_{n} c_{n}|\eta\rangle \mid\left(c_{n}\right) \in h^{2}(\mathbb{C})\right\}$.

$$
h^{k}(\mathbb{C})=\left\{\left.\left(c_{n}\right) \in I^{2}(\mathbb{C})\left|\sum n^{k}\right| c_{n}\right|^{2}<\infty\right\}, \quad k=1,2 .
$$

Harmonic oscillator: displacement operator

Quantization of $\frac{d^{2}}{d t^{2}} x=-\omega^{2} x-\omega \sqrt{2} u,\left(\mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right)+\sqrt{2} u x\right)$

$$
\boldsymbol{H}=\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{l}}{2}\right)+u\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right) .
$$

The associated controlled PDE

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\omega}{2} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+\left(\frac{\omega}{2} x^{2}+\sqrt{2} u x\right) \psi(x, t) .
$$

Glauber displacement operator \boldsymbol{D}_{α} (unitary) with $\alpha \in \mathbb{C}$:

$$
\boldsymbol{D}_{\alpha}=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \boldsymbol{a}}=e^{\sqrt{2} i \Im \alpha \boldsymbol{X}-\sqrt{2} i \Re \alpha \boldsymbol{P}}
$$

From Baker-Campbell Hausdorf formula, for all operators \boldsymbol{A} and \boldsymbol{B},

$$
e^{\boldsymbol{A}} \boldsymbol{B} e^{-\boldsymbol{A}}=\boldsymbol{B}+[\boldsymbol{A}, \boldsymbol{B}]+\frac{1}{2!}[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]+\frac{1}{3!}[\boldsymbol{A},[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]]+\ldots
$$

we get the Glauber formula ${ }^{8}$ when $[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]=[\boldsymbol{B},[\boldsymbol{A}, \boldsymbol{B}]]=0$:

$$
e^{\boldsymbol{A}+\boldsymbol{B}}=e^{\boldsymbol{A}} e^{\boldsymbol{B}} e^{-\frac{1}{2}[A, B]} .
$$

${ }^{8}$ Take s derivative of $e^{s(\boldsymbol{A}+\boldsymbol{B})}$ and of $e^{s \boldsymbol{A}} e^{s \boldsymbol{B}} e^{-\frac{s^{2}}{2}[\boldsymbol{A}, \boldsymbol{B}]}$.

Harmonic oscillator: identities resulting from Glauber formula

With $\boldsymbol{A}=\alpha \mathbf{a}^{\dagger}$ and $\boldsymbol{B}=-\alpha^{*} \boldsymbol{a}$, Glauber formula gives:

$$
\begin{aligned}
& \boldsymbol{D}_{\alpha}=e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha \boldsymbol{a}^{\dagger}} e^{-\alpha^{*} \boldsymbol{a}}=e^{+\frac{|\alpha|^{2}}{2}} e^{-\alpha^{*} \boldsymbol{a}} e^{\alpha \boldsymbol{a}^{\dagger}} \\
& \boldsymbol{D}_{-\alpha} \boldsymbol{a} \boldsymbol{D}_{\alpha}=\boldsymbol{a}+\alpha \boldsymbol{I} \quad \text { and } \quad \boldsymbol{D}_{-\alpha} \boldsymbol{a}^{\dagger} \boldsymbol{D}_{\alpha}=\boldsymbol{a}^{\dagger}+\alpha^{*} \boldsymbol{I} .
\end{aligned}
$$

With $\boldsymbol{A}=\sqrt{2} i \Im \alpha \boldsymbol{X} \sim i \sqrt{2} \Im \alpha x$ and $\boldsymbol{B}=-\sqrt{2} \Re \alpha \boldsymbol{P} \sim-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}$, Glauber formula gives ${ }^{9}$:

$$
\begin{aligned}
& \boldsymbol{D}_{\alpha}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} e^{-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}} \\
& \left(\boldsymbol{D}_{\alpha}|\psi\rangle\right)_{x, t}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} \psi(x-\sqrt{2} \Re \alpha, t)
\end{aligned}
$$

Exercise: Prove that, for any $\alpha, \beta, \epsilon \in \mathbb{C}$, we have

$$
\begin{aligned}
& \boldsymbol{D}_{\alpha+\beta}=e^{\frac{\alpha^{*} \beta-\alpha \beta^{*}}{2}} \boldsymbol{D}_{\alpha} \boldsymbol{D}_{\beta} \\
& \boldsymbol{D}_{\alpha+\epsilon} \boldsymbol{D}_{-\alpha}=\left(1+\frac{\alpha \epsilon^{*}-\alpha^{*} \epsilon}{2}\right) \boldsymbol{I}+\epsilon \boldsymbol{a}^{\dagger}-\epsilon^{*} \boldsymbol{a}+\boldsymbol{O}\left(|\epsilon|^{2}\right) \\
& \left(\frac{d}{d t} \boldsymbol{D}_{\alpha}\right) \boldsymbol{D}_{-\alpha}=\left(\frac{\alpha d \alpha^{*}-\alpha^{*} \frac{d}{d t} \alpha}{2}\right) \boldsymbol{I}+\left(\frac{d}{d t} \alpha\right) \boldsymbol{a}^{\dagger}-\left(\frac{d}{d t} \alpha^{*}\right) \boldsymbol{a} .
\end{aligned}
$$

${ }^{9}$ Remember that $e^{r \partial / \partial x}(f(x)) \equiv f(x+r)$.

Harmonic oscillator: lack of controllability

Take $|\psi\rangle$ solution of the controlled Schrödinger equation
$i \frac{d}{d t}|\psi\rangle=\left(\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)+u\left(\boldsymbol{a}+\boldsymbol{a}^{\dagger}\right)\right)|\psi\rangle$. Set $\langle\boldsymbol{a}\rangle=\langle\psi| \mathbf{a}|\psi\rangle$. Then

$$
\frac{d}{d t}\langle\boldsymbol{a}\rangle=-i \omega\langle\boldsymbol{a}\rangle-i u .
$$

From $\boldsymbol{a}=\frac{\boldsymbol{X}+i \boldsymbol{P}}{\sqrt{2}}$, we have $\langle\boldsymbol{a}\rangle=\frac{\langle\boldsymbol{X}\rangle+i\langle\boldsymbol{P}\rangle}{\sqrt{2}}$ where $\langle\boldsymbol{X}\rangle=\langle\psi| \boldsymbol{X}|\psi\rangle \in \mathbb{R}$ and $\langle\boldsymbol{P}\rangle=\langle\psi| \boldsymbol{P}|\psi\rangle \in \mathbb{R}$. Consequently:

$$
\frac{d}{d t}\langle\boldsymbol{X}\rangle=\omega\langle\boldsymbol{P}\rangle, \quad \frac{d}{d t}\langle\boldsymbol{P}\rangle=-\omega\langle\boldsymbol{X}\rangle-\sqrt{2} u .
$$

Consider the change of frame $|\psi\rangle=e^{-i \theta_{t}} \boldsymbol{D}_{\langle\mathbf{a}\rangle_{t}}|\chi\rangle$ with

$$
\theta_{t}=\int_{0}^{t}\left(\omega|\langle\boldsymbol{a}\rangle|^{2}+u \Re(\langle\boldsymbol{a}\rangle)\right), \quad D_{\langle\boldsymbol{a}\rangle_{t}}=e^{\langle\mathbf{a}\rangle_{t} \boldsymbol{a}^{+}-\langle\boldsymbol{a}\rangle_{t}^{*} \boldsymbol{a}},
$$

Then $|\chi\rangle$ obeys to autonomous Schrödinger equation

$$
i \frac{d}{d t}|\chi\rangle=\omega\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)|\chi\rangle .
$$

The dynamics of $|\psi\rangle$ can be decomposed into two parts:

- a controllable part of dimension two for $\langle\mathbf{a}\rangle$
- an uncontrollable part of infinite dimension for $|\chi\rangle$.

Harmonic oscillator: coherent states as reachable ones from $|0\rangle$

Coherent states

$$
|\alpha\rangle=\boldsymbol{D}_{\alpha}|0\rangle=e^{-\frac{|\alpha|^{2}}{2}} \sum_{n=0}^{+\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle, \quad \alpha \in \mathbb{C}
$$

are the states reachable from vacuum set. They are also the eigenstate of \boldsymbol{a} :

$$
\mathbf{a}|\alpha\rangle=\alpha|\alpha\rangle
$$

A widely known result in quantum optics ${ }^{10}$: classical currents and sources (generalizing the role played by u) only generate classical light (quasi-classical states of the quantized field generalizing the coherent state introduced here)
We just propose here a control theoretic interpretation in terms of reachable set from vacuum.

[^1]
Summary for the quantum harmonic oscillator

■ Hilbert space:

$$
\mathcal{H}=\left\{\sum_{n \geq 0} \psi_{n}|n\rangle,\left(\psi_{n}\right)_{n \geq 0} \in I^{2}(\mathbb{C})\right\} \equiv L^{2}(\mathbb{R}, \mathbb{C})
$$

■ Quantum state space:
$\mathbb{D}=\left\{\rho \in \mathcal{L}(\mathcal{H}), \rho^{\dagger}=\rho, \operatorname{Tr}(\rho)=1, \rho \geq 0\right\}$.
■ Operators and commutations:
$\mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle, \mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle ;$
$\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a}, \boldsymbol{N}|n\rangle=n|n\rangle ;$
$\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=\boldsymbol{I}, \boldsymbol{a} f(\boldsymbol{N})=f(\boldsymbol{N}+\boldsymbol{I}) \mathbf{a} ;$
$\boldsymbol{D}_{\alpha}=\boldsymbol{e}^{\alpha \boldsymbol{a}^{\dagger}-\alpha^{\dagger} \boldsymbol{a}}$.
$\boldsymbol{a}=\frac{\boldsymbol{x}+i \boldsymbol{P}}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right),[\boldsymbol{X}, \boldsymbol{P}]=\imath \boldsymbol{l}$.
■ Hamiltonian: $\boldsymbol{H} / \hbar=\omega_{c} \mathbf{a}^{\dagger} \boldsymbol{a}+\boldsymbol{u}_{c}\left(\boldsymbol{a}+\boldsymbol{a}^{\dagger}\right)$. (associated classical dynamics:

$$
\left.\frac{d x}{d t}=\omega_{c} p, \frac{d p}{d t}=-\omega_{c} x-\sqrt{2} u_{c}\right) .
$$

■ Quasi-classical pure state \equiv coherent state $|\alpha\rangle$

$$
\begin{aligned}
& \alpha \in \mathbb{C}:|\alpha\rangle=\sum_{n \geq 0}\left(e^{-|\alpha|^{2} / 2} \frac{\alpha^{n}}{\sqrt{n!}}\right)|n\rangle ;|\alpha\rangle \equiv \frac{1}{\pi^{1 / 4}} e^{r \sqrt{2} x \Im \alpha} e^{-\frac{(x-\sqrt{2} \Re \alpha)^{2}}{2}} \\
& \boldsymbol{a}|\alpha\rangle=\alpha|\alpha\rangle, \boldsymbol{D}_{\alpha}|0\rangle=|\alpha\rangle .
\end{aligned}
$$

Outline

1 Introduction

2 Two-level systems (qubits, spins)

3 Quantum harmonic oscillators (modes, springs)

4 The Haroche photon Box

The first experimental realization of a quantum state feedback

The photon box of the Laboratoire Kastler-Brossel (LKB): group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune.

Stabilization of a quantum state with exactly $n=0,1,2,3, \ldots$ photon(s).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.
Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.
H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
${ }^{11}$ Courtesy of Igor Dotsenko. Sampling period $\Delta t \approx 80 \mu s$.

■ System S corresponds to a quantized harmonic oscillator:

$$
\mathcal{H}_{S}=\mathcal{H}_{c}=\left\{\sum_{n=0}^{\infty} c_{n}|n\rangle \mid\left(c_{n}\right)_{n=0}^{\infty} \in I^{2}(\mathbb{C})\right\}
$$

where $|n\rangle$ represents the Fock state associated to exactly n photons inside the cavity
■ Meter M is a qu-bit, a 2-level system (idem $1 / 2$ spin system) : $\mathcal{H}_{M}=\mathcal{H}_{a}=\mathbb{C}^{2}$, each atom admits two energy levels and is described by a wave function $c_{g}|g\rangle+c_{e}|e\rangle$ with $\left|c_{g}\right|^{2}+\left|c_{e}\right|^{2}=1$; atoms leaving B are all in state $|g\rangle$
■ State of the full system $|\Psi\rangle \in \mathcal{H}_{S} \otimes \mathcal{H}_{M}=\mathcal{H}_{c} \otimes \mathcal{H}_{a}$:

$$
|\Psi\rangle=\sum_{n=0}^{+\infty} c_{n g}|n\rangle \otimes|g\rangle+c_{n e}|n\rangle \otimes|e\rangle, \quad c_{n e}, c_{n g} \in \mathbb{C}
$$

Ortho-normal basis: $(|n\rangle \otimes|g\rangle,|n\rangle \otimes|e\rangle)_{n \in \mathbb{N}}$.

The Markov model (1)

■ When atom comes out $B,|\Psi\rangle_{B}$ of the full system is separable $|\Psi\rangle_{B}=|\psi\rangle \otimes|g\rangle$.
\square Just before the measurement in D, the state is in general entangled (not separable):

$$
|\Psi\rangle_{R_{2}}=\boldsymbol{U}_{S M}(|\psi\rangle \otimes|g\rangle)=\left(\boldsymbol{M}_{g}|\psi\rangle\right) \otimes|g\rangle+\left(\boldsymbol{M}_{\boldsymbol{e}}|\psi\rangle\right) \otimes|\boldsymbol{e}\rangle
$$

where $\boldsymbol{U}_{S M}$ is a unitary transformation (Schrödinger propagator) defining the linear measurement operators \boldsymbol{M}_{g} and \boldsymbol{M}_{e} on \mathcal{H}_{s}. Since $\boldsymbol{U}_{S M}$ is unitary, $\boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}+\boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{\boldsymbol{e}}=\boldsymbol{I}$.

Just before D, the field/atom state is entangled:

$$
\boldsymbol{M}_{g}|\psi\rangle \otimes|g\rangle+\boldsymbol{M}_{e}|\psi\rangle \otimes|\boldsymbol{e}\rangle
$$

Denote by $\mu \in\{g, e\}$ the measurement outcome in detector D : with probability $\mathbb{P}_{\mu}=\langle\psi| \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu}|\psi\rangle$ we get μ. Just after the measurement outcome $\mu=y$, the state becomes separable:

$$
|\Psi\rangle_{D}=\frac{1}{\sqrt{\mathbb{P}_{y}}}\left(\boldsymbol{M}_{y}|\psi\rangle\right) \otimes|\boldsymbol{y}\rangle=\left(\frac{\boldsymbol{M}_{\boldsymbol{y}}}{\sqrt{\langle\psi| \boldsymbol{M}_{y}^{\dagger} \boldsymbol{M}_{y}|\psi\rangle}}|\psi\rangle\right) \otimes|\boldsymbol{y}\rangle .
$$

Markov process: $\left|\psi_{k}\right\rangle \equiv|\psi\rangle_{t=k \Delta t}, k \in \mathbb{N}, \Delta t$ sampling period,

$$
\left|\psi_{k+1}\right\rangle= \begin{cases}\frac{\boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}} & \text { with } y_{k}=g, \text { probability } \mathbb{P}_{g}=\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle ; \\ \frac{\boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}} & \text { with } y_{k}=e, \text { probability } \mathbb{P}_{e}=\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle .\end{cases}
$$

■ With pure state $\boldsymbol{\rho}=|\psi\rangle\langle\psi|$, we have

$$
\boldsymbol{\rho}_{+}=\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|=\frac{1}{\operatorname{Tr}\left(\boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}\right)} \boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}
$$

when the atom collapses in $\mu=g, \boldsymbol{e}$ with proba. $\operatorname{Tr}\left(\boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}\right)$.

- Detection efficiency: the probability to detect the atom is $\eta \in[0,1]$. Three possible outcomes for $y: y=g$ if detection in g, $y=e$ if detection in e and $y=0$ if no detection.
The only possible update is based on ρ : expectation $\boldsymbol{\rho}_{+}$of $\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|$ knowing ρ and the outcome $y \in\{g, e, 0\}$.

$$
\boldsymbol{\rho}_{+}= \begin{cases}\frac{\boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}\right)} & \text { if } y=g, \text { probability } \eta \operatorname{Tr}\left(\boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}\right) \\ \frac{\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}\right)} & \text { if } y=e, \text { probability } \eta \operatorname{Tr}\left(\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}\right) \\ \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger} \quad \text { if } y=0, \text { probability } 1-\eta\end{cases}
$$

For $\eta=0: \boldsymbol{\rho}_{+}=\boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}=\mathbb{K}(\boldsymbol{\rho})=\mathbb{E}\left(\boldsymbol{\rho}_{+} \mid \boldsymbol{\rho}\right)$ defines a Kraus map.

LKB photon-box: Markov process with detection errors (1)

■ With pure state $\boldsymbol{\rho}=|\psi\rangle\langle\psi|$, we have

$$
\boldsymbol{\rho}_{+}=\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|=\frac{1}{\operatorname{Tr}\left(\boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}\right)} \boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}
$$

when the atom collapses in $\mu=g$, e with proba. $\operatorname{Tr}\left(\boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}\right)$.
■ Detection error rates: $\mathbb{P}(y=e / \mu=g)=\eta_{g} \in[0,1]$ the probability of erroneous assignation to e when the atom collapses in $g ; \mathbb{P}(y=g / \mu=e)=\eta_{e} \in[0,1]$ (given by the contrast of the Ramsey fringes).
Bayesian law: expectation $\boldsymbol{\rho}_{+}$of $\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|$knowing $\boldsymbol{\rho}$ and the imperfect detection y.
$\boldsymbol{\rho}_{+}=\left\{\begin{array}{l}\frac{\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right)} \text { if } y=g, \text { prob. } \operatorname{Tr}\left(\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right) ; \\ \frac{\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right)} \text { if } y=e, \text { prob. } \operatorname{Tr}\left(\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right) .\end{array}\right.$
ρ_{+}does not remain pure: the quantum state ρ_{+}becomes a mixed state; $\left|\psi_{+}\right\rangle$becomes physically irrelevant.

LKB photon-box: Markov process with detection errors (2)

We get
$\rho_{+}= \begin{cases}\frac{\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \rho \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \rho \boldsymbol{M}_{e}^{\dagger}\right)}, & \text { with prob. } \operatorname{Tr}\left(\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \rho \boldsymbol{M}_{e}^{\dagger}\right) ; \\ \frac{\eta_{g} \boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \rho \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\eta_{g} \boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \rho \boldsymbol{M}_{e}^{\dagger}\right)} & \text { with prob. } \operatorname{Tr}\left(\eta_{g} \boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \rho \boldsymbol{M}_{e}^{\dagger}\right) .\end{cases}$
Key point:
$\operatorname{Tr}\left(\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \rho \boldsymbol{M}_{e}^{\dagger}\right)$ and $\operatorname{Tr}\left(\eta_{g} \boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \rho \boldsymbol{M}_{e}^{\dagger}\right)$
are the probabilities to detect $y=g$ and e, knowing ρ. Generalization by merging a Kraus map $\boldsymbol{K}(\rho)=\sum_{\mu} \boldsymbol{M}_{\mu} \rho \boldsymbol{M}_{\mu}^{\dagger}$ where $\sum_{\mu} \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu}=\boldsymbol{I}$ with a left stochastic matrix $\left(\eta_{\mu^{\prime}, \mu}\right)$:

$$
\rho_{+}=\frac{\sum_{\mu} \eta_{y, \mu} \boldsymbol{M}_{\mu} \rho \boldsymbol{M}_{\mu}^{\dagger}}{\operatorname{Tr}\left(\sum_{\mu} \eta_{y, \mu} \boldsymbol{M}_{\mu} \rho \boldsymbol{M}_{\mu}^{\dagger}\right)} \quad \text { when we detect } y=\mu^{\prime} \text {. }
$$

The probability to detect $y=\mu^{\prime}$ knowing ρ is $\operatorname{Tr}\left(\sum_{\mu} \eta_{\boldsymbol{y}, \mu} \boldsymbol{M}_{\mu} \rho \boldsymbol{M}_{\underline{\underline{\underline{\mu}}}}^{\dagger}\right)$.

Photon-box full model: 6×21 left stochastic matrix $\left(\eta_{\mu^{\prime}, \mu}\right)$

$$
\boldsymbol{\rho}_{\boldsymbol{k}+\boldsymbol{1}}=\frac{1}{\operatorname{Tr}\left(\sum_{\mu} \eta_{\boldsymbol{y}_{\boldsymbol{k}}, \mu} \boldsymbol{M}_{\mu} \boldsymbol{\rho}_{\boldsymbol{k}} \boldsymbol{\boldsymbol { \mu }}_{\mu}^{\dagger}\right)}\left(\sum_{\mu} \eta_{\boldsymbol{y}_{\boldsymbol{k}}, \mu} \boldsymbol{M}_{\mu} \boldsymbol{\rho}_{\boldsymbol{k}} \boldsymbol{M}_{\mu}^{\dagger}\right) \text { where }
$$

■ we have a total of $m=3 \times 7=21$ Kraus operators M_{μ}. The "jumps" are labeled by $\mu=\left(\mu^{a}, \mu^{c}\right)$ with $\mu^{a} \in\{n o, g, e, g g, g e, e g, e e\}$ labeling atom related jumps and $\mu^{c} \in\{0,+,-\}$ cavity decoherence jumps.

■ we have only $m^{\prime}=6$ real detection possibilities $\boldsymbol{y}=\mu^{\prime} \in\{n o, g, e, g g, g e, e e\}$ corresponding respectively to no detection, a single detection in g, a single detection in e, a double detection both in g, a double detection one in g and the other in e, and a double detection both in e.

$\mu^{\prime} \backslash \mu$	$\left(n o, \mu^{c}\right)$	$\left(g, \mu^{c}\right)$	$\left(e, \mu^{c}\right)$	$\left(g g, \mu^{c}\right)$	$\left(e e, \mu^{c}\right)$	$\left(g e, \mu^{c}\right)\left(e g, \mu^{c}\right)$
$n o$	1	$1-\epsilon_{d}$	$1-\epsilon_{d}$	$\left(1-\epsilon_{d}\right)^{2}$	$\left(1-\epsilon_{d}\right)^{2}$	$\left(1-\epsilon_{d}\right)^{2}$
g	0	$\epsilon_{d}\left(1-\eta_{g}\right)$	$\epsilon_{d} \eta_{e}$	$2 \epsilon_{d}\left(1-\epsilon_{d}\right)\left(1-\eta_{g}\right)$	$2 \epsilon_{d}\left(1-\epsilon_{d}\right) \eta_{e}$	$\epsilon_{d}\left(1-\epsilon_{d}\right)\left(1-\eta_{g}+\eta_{e}\right)$
e	0	$\epsilon_{d} \eta_{g}$	$\epsilon_{d}\left(1-\eta_{e}\right)$	$2 \epsilon_{d}\left(1-\epsilon_{d}\right) \eta_{g}$	$2 \epsilon_{d}\left(1-\epsilon_{d}\right)\left(1-\eta_{e}\right)$	$\epsilon_{d}\left(1-\epsilon_{d}\right)\left(1-\eta_{e}+\eta_{g}\right)$
$g g$	0	0	0	$\epsilon_{d}^{2}\left(1-\eta_{g}\right)^{2}$	$\epsilon_{d}^{2} \eta_{e}^{2}$	$\epsilon_{d}^{2} \eta_{e}\left(1-\eta_{g}\right)$
$g e$	0	0	0	$2 \epsilon_{d}^{2} \eta_{g}\left(1-\eta_{g}\right)$	$2 \epsilon_{d}^{2} \eta_{e}\left(1-\eta_{e}\right)$	$\epsilon_{d}^{2}\left(\left(1-\eta_{g}\right)\left(1-\eta_{e}\right)+\eta_{g} \eta_{e}\right)$
$e e$	0	0	$\epsilon_{d}^{2} \eta_{g}^{2}$	$\epsilon_{d}^{2}\left(1-\eta_{e}\right)^{2}$	$\epsilon_{d}^{2} \eta_{g}\left(1-\eta_{e}\right)$	

[^0]: ${ }^{5}$ S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006.

[^1]: ${ }^{10}$ See complement $B_{I I I}$, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, 1989.

