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Second quantum revolution: Controlling quantum degrees of freedom

Some applications
Nuclear Magnetic Resonance (NMR) applications;

Quantum chemical synthesis;

High resolution measurement devices (e.g. atomic/optic clocks);

Quantum communication (BB84, . . . );

Quantum computation and simulation.

Physics Nobel prize 2012

         Serge Haroche          David J. Wineland 
Nobel prize: ground-breaking experimental methods that enable measuring

and manipulation of individual quantum systems.



Outline of the lectures

Nov. 30 Quantum mechanics from scratch: two-level systems (qubits,spins), harmonic
oscillators (modes, springs), the Haroche photon box.

Dec. 2 Dynamical models: Markov chains and Kraus maps (discrete time), Lindblad
master equation and stochastic master equations (continuous time). Two key
examples: quantum non demolition measurement of photons (discrete time),
homodyne measurement of a qubit (continuous-time).

Dec. 7 Averaging (rotating wave approximation) and singular perturbations (adiabatic
elimination): resonant control of qubits, dispersive and resonant coupling
between qubits and harmonic oscillators, adiabatic elimination of a low-quality
harmonic oscillator.

Dec. 9 Stabilization with a quantum controller: cat-qubit and how a low-quality harmonic
oscillator can stabilize via coherent coupling the quantum information stored in a
high-quality harmonic oscillator.
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2 S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and
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decoherence, Schrödinger cats, entanglement. )

3 C. Gardiner, P. Zoller: The Quantum World of Ultra-Cold Atoms and Light I& II.
Imperial College Press, 2009. (quantum physics, measurement and control)

4 Barnett, S. M. & Radmore, P. M.: Methods in Theoretical Quantum Optics Oxford
University Press, 2003. (mathematical physics: many useful operator formulae
for spin/spring systems )

5 E. Davies: Quantum Theory of Open Systems. Academic Press, 1976.
(mathematical physics: functional analysis aspects when the Hilbert space is of
infinite dimension )

6 Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry, and
the Natural Sciences [3rd ed], Springer, 2004. (tutorial introduction to probability,
Markov processes, stochastic differential equations and Ito calculus. )

7 M. Nielsen, I. Chuang: Quantum Computation and Quantum Information.
Cambridge University Press, 2000. (tutorial introduction with a computer science
and communication view point )



Models of open quantum systems are based on three features5

1 Schrödinger: ℏ = 1, wave funct. |ψ⟩ ∈ H or density op. ρ ∼ |ψ⟩⟨ψ|

d
dt

|ψ⟩ = −iH|ψ⟩, d
dt
ρ = −i[H, ρ], H = H0 + uH1

2 Entanglement and tensor product for composite systems (S,M):

Hilbert space H = HS ⊗HM

Hamiltonian H = HS ⊗ IM + H int + IS ⊗ HM

observable on sub-system M only: O = IS ⊗ OM .

3 Randomness and irreversibility induced by the measurement of
observable O with spectral decomp.

∑
µ λµPµ:

measurement outcome µ with proba. Pµ = ⟨ψ|Pµ|ψ⟩ = Tr (ρPµ)
depending on |ψ⟩, ρ just before the measurement
measurement back-action if outcome µ = y :

|ψ⟩ 7→ |ψ⟩+ =
Py |ψ⟩√
⟨ψ|Py |ψ⟩

, ρ 7→ ρ+ =
PyρPy

Tr (ρPy )

5S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and
Photons. Oxford University Press, 2006.
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2-level system (spin-1/2)

The simplest quantum system: a ground state
|g⟩ of energy ωg ; an excited state |e⟩ of energy
ωe. The quantum state |ψ⟩ ∈ C2 is a linear su-
perposition |ψ⟩ = ψg |g⟩ + ψe|e⟩ and obey to the
Schrödinger equation (ψg and ψe depend on t).

Schrödinger equation for the uncontrolled 2-level system (ℏ = 1, i.e.
energy in frequency unit) :

ı
d
dt

|ψ⟩ = H0|ψ⟩ =
(
ωe|e⟩⟨e|+ ωg |g⟩⟨g|

)
|ψ⟩

where H0 is the Hamiltonian, a Hermitian operator H†
0 = H0.

Energy is defined up to a constant: H0 and H0 +ϖ(t)I (ϖ(t) ∈ R
arbitrary) are attached to the same physical system. If |ψ⟩ satisfies
i d

dt |ψ⟩ = H0|ψ⟩ then |χ⟩ = e−iϑ(t)|ψ⟩ with d
dt ϑ = ϖ obeys to

i d
dt |χ⟩ = (H0 +ϖI)|χ⟩. Thus for any ϑ, |ψ⟩ and e−iϑ|ψ⟩ represent the

same physical system: The global phase of a quantum system |ψ⟩
can be chosen arbitrarily at any time.



The controlled 2-level system

Take origin of energy such that ωg (resp. ωe) becomes −ωe−ωg
2

(resp. ωe−ωg
2 ) and set ωeg = ωe − ωg

The solution of i d
dt |ψ⟩ = H0|ψ⟩ = ωeg

2 (|e⟩⟨e| − |g⟩⟨g|)|ψ⟩ is

|ψ⟩t = ψg0e
iωegt

2 |g⟩+ ψe0e
−iωegt

2 |e⟩.
With a classical electromagnetic field described by u(t) ∈ R,
the coherent evolution the controlled Hamiltonian

H(t) =
ωeg

2
σz+

u(t)
2

σx =
ωeg

2
(|e⟩⟨e|−|g⟩⟨g|)+u(t)

2
(|e⟩⟨g|+|g⟩⟨e|)

The controlled Schrödinger equation i d
dt |ψ⟩ = (H0 + u(t)H1)|ψ⟩

reads:

i
d
dt

(
ψe
ψg

)
=
ωeg

2

(
1 0
0 −1

)(
ψe
ψg

)
+

u(t)
2

(
0 1
1 0

)(
ψe
ψg

)
.

The 3 Pauli Matrices6

σx = |e⟩⟨g|+ |g⟩⟨e|, σy = −i |e⟩⟨g|+ i |g⟩⟨e|, σz = |e⟩⟨e|−|g⟩⟨g|
6They correspond, up to multiplication by i , to the 3 imaginary quaternions.



Pauli matrices and some formula

σx = |e⟩⟨g|+ |g⟩⟨e|, σy = −i |e⟩⟨g|+ i |g⟩⟨e|, σz = |e⟩⟨e| − |g⟩⟨g|
σx

2 = I , σxσy = iσz , [σx ,σy ] = 2iσz , circular permutation . . .

Since for any θ ∈ R, eiθσx = cos θ + i sin θσx (idem for σy
and σz ), the solution of i d

dt |ψ⟩ =
ωeg
2 σz |ψ⟩ is

|ψ⟩t = e
−iωegt

2 σz |ψ⟩0 =

(
cos

(
ωegt

2

)
I − i sin

(
ωegt

2

)
σz

)
|ψ⟩0

For α, β = x , y , z, α ̸= β we have

σαeiθσβ = e−iθσβσα,
(

eiθσα

)−1
=
(

eiθσα

)†
= e−iθσα .

and also

e− iθ
2 σασβe

iθ
2 σα = e−iθσασβ = σβeiθσα



Density matrix and Bloch Sphere

We start from |ψ⟩ that obeys i d
dt |ψ⟩ = H|ψ⟩. We consider the orthogonal

projector on |ψ⟩, ρ = |ψ⟩⟨ψ|, called density operator. Then ρ is an Hermitian
operator ≥ 0, that satisfies Tr (ρ) = 1, ρ2 = ρ and obeys to the Liouville
equation:

d
dt
ρ = −i[H, ρ].

For a two level system |ψ⟩ = ψg |g⟩+ ψe|e⟩ and

ρ =
I + xσx + yσy + zσz

2

where (x , y , z) = (2ℜ(ψgψ
∗
e ), 2ℑ(ψgψ

∗
e ), |ψe|2 − |ψg |2) ∈ R3 represent a

vector M⃗, the Bloch vector, that evolves on the unite sphere of R3, S2 called
the the Bloch Sphere since Tr

(
ρ2) = x2 + y2 + z2 = 1.

The Liouville equation with H =
ωeg

2 σz + u
2σx reads

d
dt

M⃗ = (u⃗i + ωegk⃗)× M⃗.



Exercise

Consider H = (uσx + vσy + wσz)/2 with (u, v ,w) ∈ R3.

1 For (u, v ,w) constant and non zero, compute the solutions of

d
dt

|ψ⟩ = −iH|ψ⟩, d
dt

U = −iHU with U0 = I

in term of |ψ⟩0, σ = (uσx + vσy + wσz)/
√

u2 + v2 + w2 and
ω =

√
u2 + v2 + w2. Indication: use the fact that σ2 = I .

2 Assume that, (u, v ,w) depends on t according to
(u, v ,w)(t) = ω(t)(ū, v̄ , w̄) with (ū, v̄ , w̄) ∈ R3/{0} constant of
length 1. Compute the solutions of

d
dt

|ψ⟩ = −iH(t)|ψ⟩, d
dt

U = −iH(t)U with U0 = I

in term of |ψ⟩0, σ = ūσx + v̄σy + w̄σz and θ(t) =
∫ t

0 ω.

3 Explain why (u, v ,w) colinear to the constant vector (ū, v̄ , w̄) is
crucial, for the computations in previous question.



Summary: 2-level system, i.e. a qubit (spin-half system)

Hilbert space:
HM = C2 =

{
ψg |g⟩+ ψe|e⟩, ψg , ψe ∈ C

}
.

Quantum state space:
D = {ρ ∈ L(HM), ρ† = ρ,Tr (ρ) = 1, ρ ≥ 0} .
Operators and commutations:
σ- = |g⟩⟨e|, σ+ = σ-

† = |e⟩⟨g|
σx = σ- + σ+ = |g⟩⟨e|+ |e⟩⟨g|;
σy = iσ- − iσ+ = i |g⟩⟨e| − i |e⟩⟨g|;
σz = σ+σ- − σ-σ+ = |e⟩⟨e| − |g⟩⟨g|;
σx

2 = I , σxσy = iσz , [σx ,σy ] = 2iσz , . . .

Hamiltonian: HM = ωqσz/2 + uqσx .

Bloch sphere representation:
D =

{
1
2

(
I + xσx + yσy + zσz

) ∣∣ (x , y , z) ∈ R3, x2 + y2 + z2 ≤ 1
}

|g

|e
ωq

uq
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Harmonic oscillator

Classical Hamiltonian formulation of d2

dt2 x = −ω2x

d
dt

x = ωp =
∂H
∂p

,
d
dt

p = −ωx = −∂H
∂x

, H =
ω

2
(p2 + x2).

Mechanical oscillator

Frictionless spring: d2

dt2 x = − k
m x .

Electrical oscillator:

L C

I
+

−

V

LC oscillator:

d
dt

I =
V
L
,

d
dt

V = − I
C
, (

d2

dt2 I = − 1
LC

I).

Quantum regime

kBT ≪ ℏω : typically for the photon box experiment in these lectures,
ω = 51GHz and T = 0.8K .



Harmonic oscillator7: quantization and correspondence principle
d
dt x = ωp = ∂H

∂p ,
d
dt p = −ωx = −∂H

∂x , H = ω
2 (p

2 + x2).

Quantization: probability wave function |ψ⟩t ∼ (ψ(x , t))x∈R with
|ψ⟩t ∼ ψ( , t) ∈ L2(R,C) obeys to the Schrödinger equation
(ℏ = 1 in all the lectures)

i
d
dt

|ψ⟩ = H|ψ⟩, H =
ω

2
(P2 + X 2) = −ω

2
∂2

∂x2 +
ω

2
x2

where H results from H by replacing x by position operator X
and p by momentum operator P = −i ∂∂x . H is a Hermitian
operator on L2(R,C), with its domain to be given.

PDE model: i ∂ψ∂t (x , t) = −ω
2
∂2ψ
∂x2 (x , t) + ω

2 x2ψ(x , t), x ∈ R.

7Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. Mécanique
Quantique, volume I& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.
Oxford University Press, 2003.



Harmonic oscillator: annihilation and creation operators

Average position ⟨X ⟩t = ⟨ψ|X |ψ⟩ and momentum ⟨P⟩t = ⟨ψ|P|ψ⟩:

⟨X ⟩t =

∫ +∞

−∞
x |ψ|2dx , , ⟨P⟩t = −i

∫ +∞

−∞
ψ∗ ∂ψ

∂x
dx .

Annihilation a and creation operators a† (domains to be given):

a = 1√
2
(X + iP) = 1√

2

(
x +

∂

∂x

)
, a† = 1√

2
(X − iP) = 1√

2

(
x − ∂

∂x

)
Commutation relationships:

[X ,P] = i I , [a, a†] = I , H =
ω

2
(P2 + X 2) = ω

(
a†a +

I
2

)
.

Set X θ = 1√
2

(
e−iθa + eiθa†) for any angle θ:[

X θ,X θ+
π
2

]
= i I .



Harmonic oscillator: spectral decomposition and Fock states

Spectrum of Hamiltonian H = −ω
2
∂2

∂x2 + ω
2 x2 :

En = ω(n+
1
2
), ψn(x) =

(
1
π

)1/4 1√
2nn!

e−x2/2Hn(x), Hn(x) = (−1)nex2 dn

dxn e−x2
.

Spectral decomposition of a†a using [a,a†] = 1:

If |ψ⟩ is an eigenstate associated to eigenvalue λ, a|ψ⟩ and a†|ψ⟩
are also eigenstates associated to λ− 1 and λ+ 1.

a†a is semi-definite positive.

The ground state |ψ0⟩ is necessarily associated to eigenvalue 0
and is given by the Gaussian function ψ0(x) = 1

π1/4 exp(−x2/2).



Harmonic oscillator: spectral decomposition and Fock states

[a, a†] = 1: spectrum of a†a is non-degenerate and is N.

Fock state with n photons (phonons): the eigenstate of a†a associated to the
eigenvalue n (|n⟩ ∼ ψn(x)):

a†a|n⟩ = n|n⟩, a|n⟩ =
√

n |n − 1⟩, a†|n⟩ =
√

n + 1 |n + 1⟩.

The ground state |0⟩ is called 0-photon state or vacuum state.

The operator a (resp. a†) is the annihilation (resp. creation) operator since it
transfers |n⟩ to |n − 1⟩ (resp. |n + 1⟩) and thus decreases (resp. increases)
the quantum number n by one unit.

Hilbert space of quantum system: H = {
∑

n cn|n⟩ | (cn) ∈ l2(C)} ∼ L2(R,C).
Domain of a and a†: {

∑
n cn|n⟩ | (cn) ∈ h1(C)}.

Domain of H ot a†a: {
∑

n cn|n⟩ | (cn) ∈ h2(C)}.

hk (C) = {(cn) ∈ l2(C) |
∑

nk |cn|2 <∞}, k = 1, 2.



Harmonic oscillator: displacement operator

Quantization of d2

dt2 x = −ω2x − ω
√

2u, (H = ω
2 (p

2 + x2) +
√

2ux)

H = ω

(
a†a +

I
2

)
+ u(a + a†).

The associated controlled PDE

i
∂ψ

∂t
(x , t) = −ω

2
∂2ψ

∂x2 (x , t) +
(

ω
2 x2 +

√
2ux

)
ψ(x , t).

Glauber displacement operator Dα (unitary) with α ∈ C:

Dα = eαa†−α∗a = e
√

2iℑαX−
√

2iℜαP

From Baker-Campbell Hausdorf formula, for all operators A and B,

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + . . .

we get the Glauber formula8 when [A, [A,B]] = [B, [A,B]] = 0:

eA+B = eA eB e− 1
2 [A,B].

8Take s derivative of es(A+B) and of esA esB e− s2

2 [A,B].



Harmonic oscillator: identities resulting from Glauber formula

With A = αa† and B = −α∗a, Glauber formula gives:

Dα = e−
|α|2

2 eαa†e−α∗a = e+
|α|2

2 e−α∗aeαa†

D−αaDα = a + αI and D−αa†Dα = a† + α∗I .

With A =
√

2iℑαX ∼ i
√

2ℑαx and B = −
√

2ıℜαP ∼ −
√

2ℜα ∂
∂x , Glauber

formula gives9:

Dα = e−iℜαℑα ei
√

2ℑαx e−
√

2ℜα ∂
∂x

(Dα|ψ⟩)x,t = e−iℜαℑα ei
√

2ℑαxψ(x −
√

2ℜα, t)

Exercise: Prove that, for any α, β, ϵ ∈ C, we have

Dα+β = e
α∗β−αβ∗

2 DαDβ

Dα+ϵD−α =
(

1 + αϵ∗−α∗ϵ
2

)
I + ϵa† − ϵ∗a + O(|ϵ|2)(

d
dt

Dα

)
D−α =

(
α d

dt α
∗−α∗ d

dt α

2

)
I +

(
d
dt
α

)
a† −

(
d
dt
α∗

)
a.

9Remember that er∂/∂x(f (x)) ≡ f (x + r).



Harmonic oscillator: lack of controllability

Take |ψ⟩ solution of the controlled Schrödinger equation
i d

dt |ψ⟩ =
(
ω
(
a†a + I

2

)
+ u(a + a†)

)
|ψ⟩. Set ⟨a⟩ = ⟨ψ|a|ψ⟩. Then

d
dt

⟨a⟩ = −iω ⟨a⟩ − iu.

From a = X+iP√
2

, we have ⟨a⟩ = ⟨X⟩+i⟨P⟩√
2

where ⟨X ⟩ = ⟨ψ|X |ψ⟩ ∈ R and
⟨P⟩ = ⟨ψ|P|ψ⟩ ∈ R. Consequently:

d
dt

⟨X ⟩ = ω ⟨P⟩ , d
dt

⟨P⟩ = −ω ⟨X ⟩ −
√

2u.

Consider the change of frame |ψ⟩ = e−iθt D⟨a⟩t
|χ⟩ with

θt =

∫ t

0

(
ω| ⟨a⟩ |2 + uℜ(⟨a⟩)

)
, D⟨a⟩t

= e⟨a⟩t a
†−⟨a⟩∗t a,

Then |χ⟩ obeys to autonomous Schrödinger equation

i
d
dt

|χ⟩ = ω
(

a†a + I
2

)
|χ⟩.

The dynamics of |ψ⟩ can be decomposed into two parts:

a controllable part of dimension two for ⟨a⟩
an uncontrollable part of infinite dimension for |χ⟩.



Harmonic oscillator: coherent states as reachable ones from |0⟩

Coherent states

|α⟩ = Dα|0⟩ = e−
|α|2

2

+∞∑
n=0

αn
√

n!
|n⟩, α ∈ C

are the states reachable from vacuum set. They are also the eigenstate of a:

a|α⟩ = α|α⟩.

A widely known result in quantum optics10: classical currents and sources
(generalizing the role played by u) only generate classical light
(quasi-classical states of the quantized field generalizing the coherent state
introduced here)
We just propose here a control theoretic interpretation in terms of reachable
set from vacuum.

10See complement BIII , page 217 of C. Cohen-Tannoudji, J. Dupont-Roc,
and G. Grynberg. Photons and Atoms: Introduction to Quantum
Electrodynamics. Wiley, 1989.



Summary for the quantum harmonic oscillator

Hilbert space:
H =

{∑
n≥0 ψn|n⟩, (ψn)n≥0 ∈ l2(C)

}
≡ L2(R,C)

Quantum state space:
D = {ρ ∈ L(H), ρ† = ρ,Tr (ρ) = 1, ρ ≥ 0} .
Operators and commutations:
a|n⟩ = √

n |n-1⟩, a†|n⟩ =
√

n + 1|n + 1⟩;
N = a†a, N |n⟩ = n|n⟩;
[a,a†] = I , af (N) = f (N + I)a;
Dα = eαa†−α†a.
a = X+iP√

2
= 1√

2

(
x + ∂

∂x

)
, [X ,P] = ıI .

Hamiltonian: H/ℏ = ωca†a + uc(a + a†).
(associated classical dynamics:
dx
dt = ωcp, dp

dt = −ωcx −
√

2uc).

Quasi-classical pure state ≡ coherent state |α⟩
α ∈ C : |α⟩ =∑n≥0

(
e−|α|2/2 αn

√
n!

)
|n⟩; |α⟩ ≡ 1

π1/4 eı
√

2xℑαe− (x−
√

2ℜα)2

2

a|α⟩ = α|α⟩, Dα|0⟩ = |α⟩.

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.
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The first experimental realization of a quantum state feedback

The photon box of the Laboratoire Kastler-Brossel (LKB):
group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune.

u y

11

Stabilization of a quantum state with exactly n = 0, 1, 2, 3, . . . photon(s).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.

Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

11Courtesy of Igor Dotsenko. Sampling period ∆t ≈ 80 µs.



Composite system built with an harmonic oscillator and a qubit.

System S corresponds to a quantized harmonic oscillator:

HS = Hc =

{ ∞∑
n=0

cn|n⟩
∣∣∣∣ (cn)

∞
n=0 ∈ l2(C)

}
,

where |n⟩ represents the Fock state associated to exactly n
photons inside the cavity
Meter M is a qu-bit, a 2-level system (idem 1/2 spin
system) : HM = Ha = C2, each atom admits two energy
levels and is described by a wave function cg |g⟩+ ce|e⟩
with |cg |2 + |ce|2 = 1; atoms leaving B are all in state |g⟩
State of the full system |Ψ⟩ ∈ HS ⊗HM = Hc ⊗Ha:

|Ψ⟩ =
+∞∑
n=0

cng |n⟩ ⊗ |g⟩+ cne|n⟩ ⊗ |e⟩, cne, cng ∈ C.

Ortho-normal basis: (|n⟩ ⊗ |g⟩, |n⟩ ⊗ |e⟩)n∈N.



The Markov model (1)

C

B

D

R 1
R 2

B R 2

When atom comes out B, |Ψ⟩B of the full system is separable
|Ψ⟩B = |ψ⟩ ⊗ |g⟩.
Just before the measurement in D, the state is in general
entangled (not separable):

|Ψ⟩R2 = USM
(
|ψ⟩ ⊗ |g⟩

)
=
(
Mg |ψ⟩

)
⊗ |g⟩+

(
Me|ψ⟩

)
⊗ |e⟩

where USM is a unitary transformation (Schrödinger propagator)
defining the linear measurement operators Mg and Me on HS.
Since USM is unitary, M†

gMg + M†
eMe = I .



The Markov model (2)

Just before D, the field/atom state is entangled:

Mg |ψ⟩ ⊗ |g⟩+ Me|ψ⟩ ⊗ |e⟩

Denote by µ ∈ {g,e} the measurement outcome in detector D: with
probability Pµ =

〈
ψ|M†

µMµ|ψ
〉

we get µ. Just after the measurement
outcome µ = y , the state becomes separable:

|Ψ⟩D = 1√
Py

(My |ψ⟩)⊗ |y⟩ =
(

My√
⟨ψ|M†

y My |ψ⟩
|ψ⟩
)

⊗ |y⟩.

Markov process: |ψk ⟩ ≡ |ψ⟩t=k∆t , k ∈ N, ∆t sampling period,

|ψk+1⟩ =


Mg |ψk ⟩√

⟨ψk |M†
g Mg |ψk⟩

with yk = g, probability Pg =
〈
ψk |M†

gMg |ψk

〉
;

Me|ψk ⟩√
⟨ψk |M†

e Me|ψk⟩
with yk = e, probability Pe =

〈
ψk |M†

eMe|ψk

〉
.



Markov process with detection inefficiency

With pure state ρ = |ψ⟩⟨ψ|, we have

ρ+ = |ψ+⟩⟨ψ+| =
1

Tr
(

MµρM†
µ

)MµρM†
µ

when the atom collapses in µ = g,e with proba. Tr
(

MµρM†
µ

)
.

Detection efficiency: the probability to detect the atom is
η ∈ [0,1]. Three possible outcomes for y : y = g if detection in g,
y = e if detection in e and y = 0 if no detection.

The only possible update is based on ρ: expectation ρ+ of |ψ+⟩⟨ψ+|
knowing ρ and the outcome y ∈ {g,e,0}.

ρ+ =


MgρM†

g
Tr(MgρMg)

if y = g, probability ηTr (MgρMg)

MeρM†
e

Tr(MeρMe)
if y = e, probability ηTr (MeρMe)

MgρM†
g + MeρM†

e if y = 0, probability 1 − η

For η = 0: ρ+ = MgρM†
g + MeρM†

e = K(ρ) = E
(
ρ+ | ρ

)
defines a

Kraus map.



LKB photon-box: Markov process with detection errors (1)

With pure state ρ = |ψ⟩⟨ψ|, we have

ρ+ = |ψ+⟩⟨ψ+| =
1

Tr
(

MµρM†
µ

)MµρM†
µ

when the atom collapses in µ = g,e with proba. Tr
(

MµρM†
µ

)
.

Detection error rates: P(y = e/µ = g) = ηg ∈ [0,1] the
probability of erroneous assignation to e when the atom
collapses in g; P(y = g/µ = e) = ηe ∈ [0,1] (given by the
contrast of the Ramsey fringes).

Bayesian law: expectation ρ+ of |ψ+⟩⟨ψ+| knowing ρ and the
imperfect detection y .

ρ+ =


(1−ηg)MgρM†

g+ηeMeρM†
e

Tr((1−ηg)MgρM†
g+ηeMeρM†

e)
if y = g, prob. Tr

(
(1 − ηg)MgρM†

g + ηeMeρM†
e

)
;

ηgMgρM†
g+(1−ηe)MeρM†

e

Tr(ηgMgρM†
g+(1−ηe)MeρM†

e)
if y = e, prob. Tr

(
ηgMgρM†

g + (1 − ηe)MeρM†
e

)
.

ρ+ does not remain pure: the quantum state ρ+ becomes a mixed
state; |ψ+⟩ becomes physically irrelevant.



LKB photon-box: Markov process with detection errors (2)

We get

ρ+ =


(1−ηg)MgρM†

g+ηeMeρM†
e

Tr((1−ηg)MgρM†
g+ηeMeρM†

e)
, with prob. Tr

(
(1 − ηg)MgρM†

g + ηeMeρM†
e

)
;

ηgMgρM†
g+(1−ηe)MeρM†

e

Tr(ηgMgρM†
g+(1−ηe)MeρM†

e)
with prob. Tr

(
ηgMgρM†

g + (1 − ηe)MeρM†
e

)
.

Key point:

Tr
(
(1 − ηg)MgρM†

g + ηeMeρM†
e

)
and Tr

(
ηgMgρM†

g + (1 − ηe)MeρM†
e

)
are the probabilities to detect y = g and e, knowing ρ.
Generalization by merging a Kraus map K (ρ) =

∑
µ MµρM†

µ where∑
µ M†

µMµ = I with a left stochastic matrix (ηµ′,µ):

ρ+ =

∑
µ ηy,µMµρM†

µ

Tr
(∑

µ ηy,µMµρM†
µ

) when we detect y = µ′.

The probability to detect y = µ′ knowing ρ is Tr
(∑

µ ηy,µMµρM†
µ

)
.



Photon-box full model: 6 × 21 left stochastic matrix (ηµ′,µ)

ρk+1 = 1
Tr(

∑
µ ηyk ,µMµρk M†

µ)

(∑
µ ηyk ,µMµρk M†

µ

)
where

we have a total of m = 3 × 7 = 21 Kraus operators Mµ. The
"jumps" are labeled by µ = (µa, µc) with
µa ∈ {no,g,e,gg,ge,eg,ee} labeling atom related jumps and
µc ∈ {o,+,−} cavity decoherence jumps.

we have only m′ = 6 real detection possibilities
y = µ′ ∈ {no,g,e,gg,ge,ee} corresponding respectively to no
detection, a single detection in g, a single detection in e, a
double detection both in g, a double detection one in g and the
other in e, and a double detection both in e.

µ′ \ µ (no, µc ) (g, µc ) (e, µc ) (gg, µc ) (ee, µc ) (ge, µc ) (eg, µc )

no 1 1 − ϵd 1 − ϵd (1 − ϵd )
2 (1 − ϵd )

2 (1 − ϵd )
2

g 0 ϵd (1 − ηg ) ϵdηe 2ϵd (1 − ϵd )(1 − ηg ) 2ϵd (1 − ϵd )ηe ϵd (1 − ϵd )(1 − ηg + ηe )

e 0 ϵdηg ϵd (1 − ηe ) 2ϵd (1 − ϵd )ηg 2ϵd (1 − ϵd )(1 − ηe ) ϵd (1 − ϵd )(1 − ηe + ηg )

gg 0 0 0 ϵ2
d
(1 − ηg )

2 ϵ2
d
η2

e
ϵ2

d
ηe (1 − ηg )

ge 0 0 0 2ϵ2
d
ηg (1 − ηg ) 2ϵ2

d
ηe (1 − ηe ) ϵ2

d
((1 − ηg )(1 − ηe ) + ηgηe )

ee 0 0 0 ϵ2
d
η2

g
ϵ2

d
(1 − ηe )

2 ϵ2
d
ηg (1 − ηe )
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