Mathematical methods for modeling and control of open quantum systems¹

Mazyar Mirrahimi², Pierre Rouchon³, Alain Sarlette⁴

November 30, 2021

¹Lecture-notes, slides and Matlab simulation scripts available at: http://cas.ensmp.fr/~rouchon/LIASFMA/index.html

・ロト・日本・山田・山田・山口・

²Inria-Paris ³Mines ParisTech ⁴Inria-Paris

1 Introduction

- 2 Two-level systems (qubits, spins)
- 3 Quantum harmonic oscillators (modes, springs)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

4 The Haroche photon Box

Second quantum revolution: Controlling quantum degrees of freedom

Some applications

- Nuclear Magnetic Resonance (NMR) applications;
- Quantum chemical synthesis;
- High resolution measurement devices (e.g. atomic/optic clocks);
- Quantum communication (BB84, ...);
- Quantum computation and simulation.

Physics Nobel prize 2012

Serge Haroche

David J. Wineland

Nobel prize: ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems.

- Nov. 30 Quantum mechanics from scratch: two-level systems (qubits,spins), harmonic oscillators (modes, springs), the Haroche photon box.
 - Dec. 2 Dynamical models: Markov chains and Kraus maps (discrete time), Lindblad master equation and stochastic master equations (continuous time). Two key examples: quantum non demolition measurement of photons (discrete time), homodyne measurement of a qubit (continuous-time).
 - Dec. 7 Averaging (rotating wave approximation) and singular perturbations (adiabatic elimination): resonant control of qubits, dispersive and resonant coupling between qubits and harmonic oscillators, adiabatic elimination of a low-quality harmonic oscillator.
 - Dec. 9 Stabilization with a quantum controller: cat-qubit and how a low-quality harmonic oscillator can stabilize via coherent coupling the quantum information stored in a high-quality harmonic oscillator.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Reference books

- Cohen-Tannoudji, C.; Diu, B. & Laloë, F.: Mécanique Quantique Hermann, Paris, 1977, I& II (quantum physics: a well known and tutorial textbook)
- 2 S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006. (*quantum physics: spin/spring systems, decoherence, Schrödinger cats, entanglement.*)
- 3 C. Gardiner, P. Zoller: The Quantum World of Ultra-Cold Atoms and Light I& II. Imperial College Press, 2009. (*quantum physics, measurement and control*)
- 4 Barnett, S. M. & Radmore, P. M.: Methods in Theoretical Quantum Optics Oxford University Press, 2003. (mathematical physics: many useful operator formulae for spin/spring systems)
- 5 E. Davies: Quantum Theory of Open Systems. Academic Press, 1976. (mathematical physics: functional analysis aspects when the Hilbert space is of infinite dimension)
- 6 Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences [3rd ed], Springer, 2004. (*tutorial introduction to probability, Markov processes, stochastic differential equations and Ito calculus.*)
- 7 M. Nielsen, I. Chuang: Quantum Computation and Quantum Information. Cambridge University Press, 2000. (*tutorial introduction with a computer science and communication view point*)

1 Schrödinger: $\hbar = 1$, wave funct. $|\psi\rangle \in \mathcal{H}$ or density op. $\rho \sim |\psi\rangle\langle\psi|$

$$\frac{d}{dt}|\psi\rangle = -i\boldsymbol{H}|\psi\rangle, \quad \frac{d}{dt}\rho = -i[\boldsymbol{H},\rho], \quad \boldsymbol{H} = \boldsymbol{H}_0 + u\boldsymbol{H}_1$$

2 Entanglement and tensor product for composite systems (S, M):

- $\blacksquare \text{ Hilbert space } \mathcal{H} = \mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{M}}$
- $\blacksquare \text{ Hamiltonian } \boldsymbol{H} = \boldsymbol{H}_{S} \otimes \boldsymbol{I}_{M} + \boldsymbol{H}_{int} + \boldsymbol{I}_{S} \otimes \boldsymbol{H}_{M}$
- observable on sub-system M only: $O = I_S \otimes O_M$.

3 Randomness and irreversibility induced by the measurement of observable *O* with spectral decomp. $\sum_{\mu} \lambda_{\mu} P_{\mu}$:

measurement outcome μ with proba. $\mathbb{P}_{\mu} = \langle \psi | \mathbf{P}_{\mu} | \psi \rangle = \text{Tr} (\rho \mathbf{P}_{\mu})$ depending on $|\psi\rangle$, ρ just before the measurement

• measurement back-action if outcome $\mu = y$:

$$|\psi\rangle \mapsto |\psi\rangle_{+} = \frac{\mathbf{P}_{\mathbf{y}}|\psi\rangle}{\sqrt{\langle\psi|\mathbf{P}_{\mathbf{y}}|\psi\rangle}}, \quad \rho \mapsto \rho_{+} = \frac{\mathbf{P}_{\mathbf{y}}\rho\mathbf{P}_{\mathbf{y}}}{\operatorname{Tr}\left(\rho\mathbf{P}_{\mathbf{y}}\right)}$$

⁵S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006.

1 Introduction

2 Two-level systems (qubits, spins)

3 Quantum harmonic oscillators (modes, springs)

4 The Haroche photon Box

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣・のへ⊙

2-level system (spin-1/2)

Schrödinger equation for the uncontrolled 2-level system ($\hbar = 1$, i.e. energy in frequency unit) :

$$i \frac{d}{dt} |\psi\rangle = H_0 |\psi\rangle = \left(\omega_e |e\rangle \langle e| + \omega_g |g\rangle \langle g|\right) |\psi\rangle$$

where H_0 is the Hamiltonian, a Hermitian operator $H_0^{\dagger} = H_0$. Energy is defined up to a constant: H_0 and $H_0 + \varpi(t)I(\varpi(t) \in \mathbb{R})$ arbitrary) are attached to the same physical system. If $|\psi\rangle$ satisfies $i\frac{d}{dt}|\psi\rangle = H_0|\psi\rangle$ then $|\chi\rangle = e^{-i\vartheta(t)}|\psi\rangle$ with $\frac{d}{dt}\vartheta = \varpi$ obeys to $i\frac{\partial}{\partial t}|\chi\rangle = (H_0 + \varpi I)|\chi\rangle$. Thus for any ϑ , $|\psi\rangle$ and $e^{-i\vartheta}|\psi\rangle$ represent the same physical system: The global phase of a quantum system $|\psi\rangle$ can be chosen arbitrarily at any time.

The controlled 2-level system

Take origin of energy such that ω_g (resp. ω_e) becomes $-\frac{\omega_e - \omega_g}{2}$ (resp. $\frac{\omega_e - \omega_g}{2}$) and set $\omega_{eg} = \omega_e - \omega_g$ The solution of $i\frac{d}{dt}|\psi\rangle = H_0|\psi\rangle = \frac{\omega_{eg}}{2}(|e\rangle\langle e| - |g\rangle\langle g|)|\psi\rangle$ is

$$|\psi\rangle_t = \psi_{g0} e^{\frac{\omega_{eg}t}{2}} |g\rangle + \psi_{e0} e^{\frac{-\omega_{eg}t}{2}} |e\rangle$$

With a classical electromagnetic field described by $u(t) \in \mathbb{R}$, the coherent evolution the controlled Hamiltonian

$$\boldsymbol{H}(t) = \frac{\omega_{eg}}{2} \boldsymbol{\sigma_{z}} + \frac{u(t)}{2} \boldsymbol{\sigma_{x}} = \frac{\omega_{eg}}{2} (|\boldsymbol{e}\rangle\langle\boldsymbol{e}| - |\boldsymbol{g}\rangle\langle\boldsymbol{g}|) + \frac{u(t)}{2} (|\boldsymbol{e}\rangle\langle\boldsymbol{g}| + |\boldsymbol{g}\rangle\langle\boldsymbol{e}|)$$
The controlled Schrödinger equation $i\frac{d}{dt}|\psi\rangle = (\boldsymbol{H}_{0} + u(t)\boldsymbol{H}_{1})|\psi\rangle$
reads:

$$i\frac{d}{dt}\begin{pmatrix}\psi_{e}\\\psi_{g}\end{pmatrix} = \frac{\omega_{eg}}{2}\begin{pmatrix}1&0\\0&-1\end{pmatrix}\begin{pmatrix}\psi_{e}\\\psi_{g}\end{pmatrix} + \frac{u(t)}{2}\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}\psi_{e}\\\psi_{g}\end{pmatrix}.$$

The 3 Pauli Matrices⁶

 $\underline{\sigma_{\mathbf{x}} = |\mathbf{e}\rangle\langle \mathbf{g}| + |\mathbf{g}\rangle\langle \mathbf{e}|, \ \sigma_{\mathbf{y}} = -i|\mathbf{e}\rangle\langle \mathbf{g}| + i|\mathbf{g}\rangle\langle \mathbf{e}|, \ \sigma_{\mathbf{z}} = |\mathbf{e}\rangle\langle \mathbf{e}| - |\mathbf{g}\rangle\langle \mathbf{g}|$

⁶They correspond, up to multiplication by *i*, to the 3 imaginary quaternions.

$$\sigma_{\mathbf{X}} = |\mathbf{e}\rangle\langle \mathbf{g}| + |\mathbf{g}\rangle\langle \mathbf{e}|, \ \sigma_{\mathbf{y}} = -i|\mathbf{e}\rangle\langle \mathbf{g}| + i|\mathbf{g}\rangle\langle \mathbf{e}|, \ \sigma_{\mathbf{z}} = |\mathbf{e}\rangle\langle \mathbf{e}| - |\mathbf{g}\rangle\langle \mathbf{g}|$$

$$\sigma_{\mathbf{x}}^{2} = \mathbf{I}, \quad \sigma_{\mathbf{x}}\sigma_{\mathbf{y}} = i\sigma_{\mathbf{z}}, \quad [\sigma_{\mathbf{x}}, \sigma_{\mathbf{y}}] = 2i\sigma_{\mathbf{z}}, \text{ circular permutation } \dots$$

Since for any $\theta \in \mathbb{R}$, $e^{i\theta\sigma_{\mathbf{X}}} = \cos\theta + i\sin\theta\sigma_{\mathbf{X}}$ (idem for $\sigma_{\mathbf{Y}}$ and $\sigma_{\mathbf{z}}$), the solution of $i\frac{d}{dt}|\psi\rangle = \frac{\omega_{eg}}{2}\sigma_{\mathbf{z}}|\psi\rangle$ is

$$|\psi\rangle_t = e^{-i\omega_{eg}t} \sigma_z |\psi\rangle_0 = \left(\cos\left(\frac{\omega_{eg}t}{2}\right)I - i\sin\left(\frac{\omega_{eg}t}{2}\right)\sigma_z\right) |\psi\rangle_0$$

For $\alpha, \beta = x, y, z, \alpha \neq \beta$ we have

$$\sigma_{lpha} e^{i heta \sigma_{eta}} = e^{-i heta \sigma_{eta}} \sigma_{lpha}, \qquad \left(e^{i heta \sigma_{lpha}}
ight)^{-1} = \left(e^{i heta \sigma_{lpha}}
ight)^{\dagger} = e^{-i heta \sigma_{lpha}}.$$

and also

$$e^{-rac{i heta}{2}\sigma_lpha}\sigma_eta e^{rac{i heta}{2}\sigma_lpha}=e^{-i heta\sigma_lpha}\sigma_eta=\sigma_eta e^{i heta\sigma_lpha}$$

We start from $|\psi\rangle$ that obeys $i\frac{d}{dt}|\psi\rangle = \boldsymbol{H}|\psi\rangle$. We consider the orthogonal projector on $|\psi\rangle$, $\rho = |\psi\rangle\langle\psi|$, called density operator. Then ρ is an Hermitian operator ≥ 0 , that satisfies Tr (ρ) = 1, $\rho^2 = \rho$ and obeys to the Liouville equation:

$$\frac{d}{dt}
ho = -i[\boldsymbol{H},
ho].$$

For a two level system $|\psi\rangle=\psi_g|g
angle+\psi_e|e
angle$ and

$$\rho = \frac{I + x\sigma_x + y\sigma_y + z\sigma_z}{2}$$

where $(x, y, z) = (2\Re(\psi_g\psi_e^*), 2\Im(\psi_g\psi_e^*), |\psi_e|^2 - |\psi_g|^2) \in \mathbb{R}^3$ represent a vector \vec{M} , the Bloch vector, that evolves on the unite sphere of \mathbb{R}^3 , \mathbb{S}^2 called the the Bloch Sphere since Tr $(\rho^2) = x^2 + y^2 + z^2 = 1$. The Liouville equation with $\boldsymbol{H} = \frac{\omega_{eg}}{2}\sigma_z + \frac{u}{2}\sigma_x$ reads

$$\frac{d}{dt}\vec{M} = (u\vec{i} + \omega_{\rm eg}\vec{k}) \times \vec{M}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Exercise

Consider
$$\boldsymbol{H} = (u\sigma_{\boldsymbol{x}} + v\sigma_{\boldsymbol{y}} + w\sigma_{\boldsymbol{z}})/2$$
 with $(u, v, w) \in \mathbb{R}^3$.

For (u, v, w) constant and non zero, compute the solutions of

$$rac{d}{dt}|\psi
angle=-im{H}|\psi
angle, \quad rac{d}{dt}m{U}=-im{H}m{U}$$
 with $m{U}_0=m{I}$

in term of $|\psi\rangle_0$, $\sigma = (u\sigma_x + v\sigma_y + w\sigma_z)/\sqrt{u^2 + v^2 + w^2}$ and $\omega = \sqrt{u^2 + v^2 + w^2}$. Indication: use the fact that $\sigma^2 = I$.

2 Assume that, (u, v, w) depends on t according to (u, v, w)(t) = ω(t)(ū, v̄, w̄) with (ū, v̄, w̄) ∈ ℝ³/{0} constant of length 1. Compute the solutions of

$$\frac{d}{dt}|\psi\rangle = -i\boldsymbol{H}(t)|\psi\rangle, \quad \frac{d}{dt}\boldsymbol{U} = -i\boldsymbol{H}(t)\boldsymbol{U}$$
 with $\boldsymbol{U}_0 = \boldsymbol{I}$

in term of $|\psi\rangle_0$, $\overline{\sigma} = \overline{u}\sigma_x + \overline{v}\sigma_y + \overline{w}\sigma_z$ and $\theta(t) = \int_0^t \omega$.

3 Explain why (u, v, w) colinear to the constant vector $(\bar{u}, \bar{v}, \bar{w})$ is crucial, for the computations in previous question.

Hilbert space:

$$\mathcal{H}_{M} = \mathbb{C}^{2} = \Big\{ \psi_{g} | g \rangle + \psi_{e} | e \rangle, \ \psi_{g}, \psi_{e} \in \mathbb{C} \Big\}.$$

- Quantum state space: $\mathcal{D} = \{ \rho \in \mathcal{L}(\mathcal{H}_M), \rho^{\dagger} = \rho, \operatorname{Tr}(\rho) = 1, \rho \ge 0 \}.$
- Operators and commutations: $\sigma_{\mathbf{c}} = |g\rangle \langle \mathbf{e}|, \sigma_{\mathbf{+}} = \sigma_{\mathbf{\cdot}}^{\dagger} = |\mathbf{e}\rangle \langle g|$ $\sigma_{\mathbf{x}} = \sigma_{\mathbf{\cdot}} + \sigma_{\mathbf{+}} = |g\rangle \langle \mathbf{e}| + |\mathbf{e}\rangle \langle g|;$ $\sigma_{\mathbf{y}} = i\sigma_{\mathbf{\cdot}} - i\sigma_{\mathbf{+}} = i|g\rangle \langle \mathbf{e}| - i|\mathbf{e}\rangle \langle g|;$ $\sigma_{\mathbf{z}} = \sigma_{\mathbf{+}}\sigma_{\mathbf{\cdot}} - \sigma_{\mathbf{\cdot}}\sigma_{\mathbf{+}} = |\mathbf{e}\rangle \langle \mathbf{e}| - |g\rangle \langle g|;$ $\sigma_{\mathbf{x}}^{2} = \mathbf{I}, \sigma_{\mathbf{x}}\sigma_{\mathbf{y}} = i\sigma_{\mathbf{z}}, [\sigma_{\mathbf{x}}, \sigma_{\mathbf{y}}] = 2i\sigma_{\mathbf{z}}, \dots$
- Hamiltonian: $\boldsymbol{H}_M = \omega_q \sigma_z / 2 + \boldsymbol{u}_q \sigma_x$.
- Bloch sphere representation: $\mathcal{D} = \left\{ \frac{1}{2} \left(\mathbf{I} + x \sigma_{\mathbf{x}} + y \sigma_{\mathbf{y}} + z \sigma_{\mathbf{z}} \right) \mid (x, y, z) \in \mathbb{R}^3, \ x^2 + y^2 + z^2 \leq 1 \right\}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 Introduction

2 Two-level systems (qubits, spins)

3 Quantum harmonic oscillators (modes, springs)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

4 The Haroche photon Box

Harmonic oscillator

Classical Hamiltonian formulation of $\frac{d^2}{dt^2}x = -\omega^2 x$

$$\frac{d}{dt}x = \omega p = \frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{dt}p = -\omega x = -\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H} = \frac{\omega}{2}(p^2 + x^2).$$

Electrical oscillator:

Frictionless spring: $\frac{d^2}{dt^2}x = -\frac{k}{m}x$.

LC oscillator:

$$\frac{d}{dt}I = \frac{V}{L}, \frac{d}{dt}V = -\frac{I}{C}, \quad (\frac{d^2}{dt^2}I = -\frac{1}{LC}I).$$

Quantum regime

 $k_BT \ll \hbar\omega$: typically for the photon box experiment in these lectures, $\omega = 51 GHz$ and T = 0.8K.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Harmonic oscillator⁷: quantization and correspondence principle

$$\frac{d}{dt}x = \omega \boldsymbol{p} = \frac{\partial \mathbb{H}}{\partial \boldsymbol{p}}, \quad \frac{d}{dt}\boldsymbol{p} = -\omega x = -\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H} = \frac{\omega}{2}(\boldsymbol{p}^2 + x^2).$$

Quantization: probability wave function $|\psi\rangle_t \sim (\psi(x, t))_{x \in \mathbb{R}}$ with $|\psi\rangle_t \sim \psi(., t) \in L^2(\mathbb{R}, \mathbb{C})$ obeys to the Schrödinger equation $(\hbar = 1 \text{ in all the lectures})$

$$i\frac{d}{dt}|\psi\rangle = H|\psi\rangle, \quad H = \frac{\omega}{2}(P^2 + X^2) = -\frac{\omega}{2}\frac{\partial^2}{\partial x^2} + \frac{\omega}{2}x^2$$

where **H** results from \mathbb{H} by replacing *x* by position operator **X** and *p* by momentum operator $\mathbf{P} = -i\frac{\partial}{\partial x}$. **H** is a Hermitian operator on $L^2(\mathbb{R}, \mathbb{C})$, with its domain to be given.

PDE model:
$$i\frac{\partial\psi}{\partial t}(x,t) = -\frac{\omega}{2}\frac{\partial^2\psi}{\partial x^2}(x,t) + \frac{\omega}{2}x^2\psi(x,t), \quad x \in \mathbb{R}.$$

⁷Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. *Mécanique Quantique*, volume I& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. *Methods in Theoretical Quantum Optics*.
Oxford University Press, 2003.

Average position $\langle \mathbf{X} \rangle_t = \langle \psi | \mathbf{X} | \psi \rangle$ and momentum $\langle \mathbf{P} \rangle_t = \langle \psi | \mathbf{P} | \psi \rangle$:

$$\langle \boldsymbol{X} \rangle_t = \int_{-\infty}^{+\infty} x |\psi|^2 dx, \quad \langle \boldsymbol{P} \rangle_t = -i \int_{-\infty}^{+\infty} \psi^* \frac{\partial \psi}{\partial x} dx.$$

Annihilation a and creation operators a^{\dagger} (domains to be given):

$$\boldsymbol{a} = \frac{1}{\sqrt{2}}(\boldsymbol{X} + i\boldsymbol{P}) = \frac{1}{\sqrt{2}}\left(x + \frac{\partial}{\partial x}\right), \quad \boldsymbol{a}^{\dagger} = \frac{1}{\sqrt{2}}(\boldsymbol{X} - i\boldsymbol{P}) = \frac{1}{\sqrt{2}}\left(x - \frac{\partial}{\partial x}\right)$$

Commutation relationships:

$$[\mathbf{X}, \mathbf{P}] = i\mathbf{I}, \quad [\mathbf{a}, \mathbf{a}^{\dagger}] = \mathbf{I}, \quad \mathbf{H} = \frac{\omega}{2}(\mathbf{P}^2 + \mathbf{X}^2) = \omega\left(\mathbf{a}^{\dagger}\mathbf{a} + \frac{\mathbf{I}}{2}\right).$$

Set $X_{\theta} = \frac{1}{\sqrt{2}} \left(e^{-i\theta} a + e^{i\theta} a^{\dagger} \right)$ for any angle θ :

$$\left[\boldsymbol{X}_{\theta}, \boldsymbol{X}_{\theta+\frac{\pi}{2}}\right] = i\boldsymbol{I}.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ─∃ ─のへで

Spectrum of Hamiltonian $H = -\frac{\omega}{2} \frac{\partial^2}{\partial x^2} + \frac{\omega}{2} x^2$:

$$E_n = \omega(n + \frac{1}{2}), \ \psi_n(x) = \left(\frac{1}{\pi}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} e^{-x^2/2} H_n(x), \ H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

Spectral decomposition of $a^{\dagger}a$ using $[a, a^{\dagger}] = 1$:

- If $|\psi\rangle$ is an eigenstate associated to eigenvalue λ , $\boldsymbol{a}|\psi\rangle$ and $\boldsymbol{a}^{\dagger}|\psi\rangle$ are also eigenstates associated to $\lambda 1$ and $\lambda + 1$.
- **a**[†]**a** is semi-definite positive.
- The ground state $|\psi_0\rangle$ is necessarily associated to eigenvalue 0 and is given by the Gaussian function $\psi_0(x) = \frac{1}{\pi^{1/4}} \exp(-x^2/2)$.

 $[a, a^{\dagger}] = 1$: spectrum of $a^{\dagger}a$ is non-degenerate and is \mathbb{N} .

Fock state with *n* photons (phonons): the eigenstate of $\mathbf{a}^{\dagger}\mathbf{a}$ associated to the eigenvalue $n(|n\rangle \sim \psi_n(x))$:

$$\boldsymbol{a}^{\dagger}\boldsymbol{a}|n
angle=n|n
angle, \quad \boldsymbol{a}|n
angle=\sqrt{n}\;|n-1
angle, \quad \boldsymbol{a}^{\dagger}|n
angle=\sqrt{n+1}\;|n+1
angle.$$

The ground state $|0\rangle$ is called 0-photon state or vacuum state.

The operator **a** (resp. \mathbf{a}^{\dagger}) is the annihilation (resp. creation) operator since it transfers $|n\rangle$ to $|n-1\rangle$ (resp. $|n+1\rangle$) and thus decreases (resp. increases) the quantum number *n* by one unit.

Hilbert space of quantum system: $\mathcal{H} = \{\sum_{n} c_{n} | n \rangle | (c_{n}) \in l^{2}(\mathbb{C})\} \sim L^{2}(\mathbb{R}, \mathbb{C}).$ Domain of **a** and \mathbf{a}^{\dagger} : $\{\sum_{n} c_{n} | n \rangle | (c_{n}) \in h^{1}(\mathbb{C})\}.$ Domain of **H** ot $\mathbf{a}^{\dagger}\mathbf{a}$: $\{\sum_{n} c_{n} | n \rangle | (c_{n}) \in h^{2}(\mathbb{C})\}.$

$$h^{k}(\mathbb{C}) = \{(c_{n}) \in l^{2}(\mathbb{C}) \mid \sum n^{k} |c_{n}|^{2} < \infty\}, \qquad k = 1, 2.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Harmonic oscillator: displacement operator

Quantization of
$$\frac{d^2}{dt^2}x = -\omega^2 x - \omega\sqrt{2}u$$
, $(\mathbb{H} = \frac{\omega}{2}(p^2 + x^2) + \sqrt{2}ux)$
$$\boldsymbol{H} = \omega\left(\boldsymbol{a}^{\dagger}\boldsymbol{a} + \frac{\mathbf{I}}{2}\right) + u(\boldsymbol{a} + \boldsymbol{a}^{\dagger}).$$

The associated controlled PDE

$$i\frac{\partial\psi}{\partial t}(x,t) = -\frac{\omega}{2}\frac{\partial^2\psi}{\partial x^2}(x,t) + \left(\frac{\omega}{2}x^2 + \sqrt{2}ux\right)\psi(x,t).$$

Glauber displacement operator D_{α} (unitary) with $\alpha \in \mathbb{C}$:

$$\boldsymbol{D}_{lpha} = \boldsymbol{e}^{lpha \boldsymbol{a}^{\dagger} - lpha^{*} \boldsymbol{a}} = \boldsymbol{e}^{\sqrt{2}i\Im lpha \boldsymbol{X} - \sqrt{2}i\Re lpha \boldsymbol{P}}$$

From Baker-Campbell Hausdorf formula, for all operators A and B,

$$e^{A}Be^{-A} = B + [A, B] + \frac{1}{2!}[A, [A, B]] + \frac{1}{3!}[A, [A, [A, B]]] + \dots$$

we get the Glauber formula⁸ when $[\mathbf{A}, [\mathbf{A}, \mathbf{B}]] = [\mathbf{B}, [\mathbf{A}, \mathbf{B}]] = 0$:

$$e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}}e^{\mathbf{B}}e^{-\frac{1}{2}[\mathbf{A},\mathbf{B}]}.$$

⁸Take s derivative of $e^{s(A+B)}$ and of $e^{sA} e^{sB} e^{-\frac{s^2}{2}[A,B]}$.

Harmonic oscillator: identities resulting from Glauber formula

With $\mathbf{A} = \alpha \mathbf{a}^{\dagger}$ and $\mathbf{B} = -\alpha^* \mathbf{a}$, Glauber formula gives:

$$D_{\alpha} = e^{-\frac{|\alpha|^2}{2}} e^{\alpha a^{\dagger}} e^{-\alpha^* a} = e^{+\frac{|\alpha|^2}{2}} e^{-\alpha^* a} e^{\alpha a^{\dagger}}$$
$$D_{-\alpha} a D_{\alpha} = a + \alpha I \text{ and } D_{-\alpha} a^{\dagger} D_{\alpha} = a^{\dagger} + \alpha^* I.$$

With $\mathbf{A} = \sqrt{2}i\Im\alpha\mathbf{X} \sim i\sqrt{2}\Im\alpha x$ and $\mathbf{B} = -\sqrt{2}i\Re\alpha\mathbf{P} \sim -\sqrt{2}\Re\alpha\frac{\partial}{\partial x}$, Glauber formula gives⁹:

$$\begin{split} \mathbf{D}_{\alpha} &= \mathbf{e}^{-i\Re\alpha\Im\alpha} \; \mathbf{e}^{i\sqrt{2}\Im\alpha x} \mathbf{e}^{-\sqrt{2}\Re\alpha\frac{\partial}{\partial x}} \\ & (\mathbf{D}_{\alpha}|\psi\rangle)_{x,t} = \mathbf{e}^{-i\Re\alpha\Im\alpha} \; \mathbf{e}^{i\sqrt{2}\Im\alpha x} \psi(x - \sqrt{2}\Re\alpha, t) \end{split}$$

Exercise: Prove that, for any $\alpha, \beta, \epsilon \in \mathbb{C}$, we have

$$\begin{aligned} \mathbf{D}_{\alpha+\beta} &= \mathbf{e}^{\frac{\alpha^*\beta-\alpha\beta^*}{2}} \mathbf{D}_{\alpha} \mathbf{D}_{\beta} \\ \mathbf{D}_{\alpha+\epsilon} \mathbf{D}_{-\alpha} &= \left(1 + \frac{\alpha\epsilon^*-\alpha^*\epsilon}{2}\right) \mathbf{I} + \epsilon \mathbf{a}^{\dagger} - \epsilon^* \mathbf{a} + \mathbf{O}(|\epsilon|^2) \\ &\left(\frac{d}{dt} \mathbf{D}_{\alpha}\right) \mathbf{D}_{-\alpha} = \left(\frac{\alpha \frac{d}{dt} \alpha^* - \alpha^* \frac{d}{dt} \alpha}{2}\right) \mathbf{I} + \left(\frac{d}{dt} \alpha\right) \mathbf{a}^{\dagger} - \left(\frac{d}{dt} \alpha^*\right) \mathbf{a}. \end{aligned}$$

⁹Remember that $e^{r\partial/\partial x}(f(x)) \equiv f(x+r)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Harmonic oscillator: lack of controllability

Take $|\psi\rangle$ solution of the controlled Schrödinger equation $i\frac{d}{dt}|\psi\rangle = \left(\omega\left(\mathbf{a}^{\dagger}\mathbf{a} + \frac{1}{2}\right) + u(\mathbf{a} + \mathbf{a}^{\dagger})\right)|\psi\rangle$. Set $\langle \mathbf{a} \rangle = \langle \psi | \mathbf{a} | \psi \rangle$. Then $\frac{d}{dt}\langle \mathbf{a} \rangle = -i\omega \langle \mathbf{a} \rangle - iu$.

From $\boldsymbol{a} = \frac{\boldsymbol{X} + i\boldsymbol{P}}{\sqrt{2}}$, we have $\langle \boldsymbol{a} \rangle = \frac{\langle \boldsymbol{X} \rangle + i\langle \boldsymbol{P} \rangle}{\sqrt{2}}$ where $\langle \boldsymbol{X} \rangle = \langle \psi | \boldsymbol{X} | \psi \rangle \in \mathbb{R}$ and $\langle \boldsymbol{P} \rangle = \langle \psi | \boldsymbol{P} | \psi \rangle \in \mathbb{R}$. Consequently:

$$\frac{d}{dt} \left\langle \boldsymbol{X} \right\rangle = \omega \left\langle \boldsymbol{P} \right\rangle, \quad \frac{d}{dt} \left\langle \boldsymbol{P} \right\rangle = -\omega \left\langle \boldsymbol{X} \right\rangle - \sqrt{2}u.$$

Consider the change of frame $|\psi\rangle = e^{-i\theta_t} D_{\langle a \rangle_t} |\chi\rangle$ with

$$heta_t = \int_0^t \left(\omega |\langle \pmb{a} \rangle|^2 + u \Re(\langle \pmb{a} \rangle)
ight), \quad D_{\langle \pmb{a}
angle_t} = \pmb{e}^{\langle \pmb{a}
angle_t \pmb{a}^\dagger - \langle \pmb{a}
angle_t^* \pmb{a}},$$

Then $|\chi\rangle$ obeys to autonomous Schrödinger equation

$$i \frac{d}{dt} |\chi\rangle = \omega \left(\boldsymbol{a}^{\dagger} \boldsymbol{a} + \frac{\boldsymbol{I}}{2} \right) |\chi\rangle.$$

The dynamics of $|\psi\rangle$ can be decomposed into two parts:

- a controllable part of dimension two for (a)
- an uncontrollable part of infinite dimension for $|\chi\rangle$.

Coherent states

$$|lpha
angle = \pmb{D}_{lpha}|0
angle = \pmb{e}^{-rac{|lpha|^2}{2}}\sum_{n=0}^{+\infty}rac{lpha^n}{\sqrt{n!}}|\pmb{n}
angle, \quad lpha\in\mathbb{C}$$

are the states reachable from vacuum set. They are also the eigenstate of a:

 $\boldsymbol{a}|\alpha\rangle = \alpha |\alpha\rangle.$

A widely known result in quantum optics¹⁰: classical currents and sources (generalizing the role played by u) only generate classical light (quasi-classical states of the quantized field generalizing the coherent state introduced here)

We just propose here a control theoretic interpretation in terms of reachable set from vacuum.

¹⁰See complement B_{III} , page 217 of C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. *Photons and Atoms: Introduction to Quantum Electrodynamics.* Wiley, 1989.

■ Hilbert space: $\mathcal{H} = \left\{ \sum_{n \ge 0} \psi_n | n \rangle, \ (\psi_n)_{n \ge 0} \in l^2(\mathbb{C}) \right\} \equiv L^2(\mathbb{R}, \mathbb{C})$

Quantum state space: $\mathbb{D} = \{ \rho \in \mathcal{L}(\mathcal{H}), \rho^{\dagger} = \rho, \operatorname{Tr}(\rho) = 1, \rho \ge 0 \}.$

• Operators and commutations: $\mathbf{a}|n\rangle = \sqrt{n} |\mathbf{n}-\mathbf{1}\rangle, \ \mathbf{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle;$ $\mathbf{N} = \mathbf{a}^{\dagger}\mathbf{a}, \ \mathbf{N}|n\rangle = n|n\rangle;$ $[\mathbf{a}, \mathbf{a}^{\dagger}] = \mathbf{I}, \ \mathbf{a}f(\mathbf{N}) = f(\mathbf{N}+\mathbf{I})\mathbf{a};$ $\mathbf{D}_{\alpha} = e^{\alpha \mathbf{a}^{\dagger}-\alpha^{\dagger}\mathbf{a}}.$ $\mathbf{a} = \frac{\mathbf{X}+i\mathbf{P}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\mathbf{X} + \frac{\partial}{\partial \mathbf{x}}\right), \ [\mathbf{X}, \mathbf{P}] = i\mathbf{I}.$

■ Hamiltonian: $\boldsymbol{H}/\hbar = \omega_c \boldsymbol{a}^{\dagger} \boldsymbol{a} + \boldsymbol{u}_c (\boldsymbol{a} + \boldsymbol{a}^{\dagger}).$ (associated classical dynamics: $\frac{dx}{dt} = \omega_c \boldsymbol{p}, \ \frac{dp}{dt} = -\omega_c \boldsymbol{x} - \sqrt{2}\boldsymbol{u}_c).$

• Quasi-classical pure state \equiv coherent state $|\alpha\rangle$

$$\begin{aligned} \alpha \in \mathbb{C} : \ |\alpha\rangle &= \sum_{n \ge 0} \left(e^{-|\alpha|^2/2} \frac{\alpha^n}{\sqrt{n!}} \right) |n\rangle; \ |\alpha\rangle \equiv \frac{1}{\pi^{1/4}} e^{i\sqrt{2}x\Im\alpha} e^{-\frac{(x-\sqrt{2}\Re\alpha)^2}{2}} \\ a|\alpha\rangle &= \alpha|\alpha\rangle, \ \boldsymbol{D}_{\alpha}|0\rangle = |\alpha\rangle. \end{aligned}$$

 $|\mathbf{n}\rangle$

1 Introduction

- 2 Two-level systems (qubits, spins)
- 3 Quantum harmonic oscillators (modes, springs)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

4 The Haroche photon Box

The first experimental realization of a quantum state feedback

The photon box of the Laboratoire Kastler-Brossel (LKB): group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune.

Stabilization of a quantum state with exactly $n = 0, 1, 2, 3, \dots$ photon(s). Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011. Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009. R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013. H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

¹¹Courtesy of Igor Dotsenko. Sampling period $\Delta t \approx 80 \mu s$. The second seco

Composite system built with an harmonic oscillator and a qubit.

System S corresponds to a quantized harmonic oscillator:

$$\mathcal{H}_{\mathcal{S}} = \mathcal{H}_{\mathcal{C}} = \left\{ \sum_{n=0}^{\infty} c_n | n \rangle \mid (c_n)_{n=0}^{\infty} \in l^2(\mathbb{C}) \right\},$$

where $|n\rangle$ represents the Fock state associated to exactly *n* photons inside the cavity

• Meter *M* is a qu-bit, a 2-level system (idem 1/2 spin system) : $\mathcal{H}_M = \mathcal{H}_a = \mathbb{C}^2$, each atom admits two energy levels and is described by a wave function $c_g |g\rangle + c_e |e\rangle$ with $|c_g|^2 + |c_e|^2 = 1$; atoms leaving *B* are all in state $|g\rangle$

State of the full system $|\Psi\rangle \in \mathcal{H}_{S} \otimes \mathcal{H}_{M} = \mathcal{H}_{c} \otimes \mathcal{H}_{a}$:

$$|\Psi
angle = \sum_{n=0}^{+\infty} c_{ng} |n
angle \otimes |g
angle + c_{ne} |n
angle \otimes |e
angle, \quad c_{ne}, c_{ng} \in \mathbb{C}.$$

 $\text{Ortho-normal basis: } (|n\rangle \otimes |g\rangle, |n\rangle \otimes |e\rangle)_{n \in \mathbb{N}}.$

The Markov model (1)

- When atom comes out *B*, $|\Psi\rangle_B$ of the full system is separable $|\Psi\rangle_B = |\psi\rangle \otimes |g\rangle$.
- Just before the measurement in D, the state is in general entangled (not separable):

$$|\Psi
angle_{ extsf{B}_2} = oldsymbol{U}_{ extsf{SM}}ig(|\psi
angle\otimes|g
angleig) = ig(oldsymbol{M}_g|\psi
angleig)\otimes|g
angle + ig(oldsymbol{M}_e|\psi
angleig)\otimes|e
angle$$

where \boldsymbol{U}_{SM} is a unitary transformation (Schrödinger propagator) defining the linear measurement operators \boldsymbol{M}_g and \boldsymbol{M}_e on \mathcal{H}_S . Since \boldsymbol{U}_{SM} is unitary, $\boldsymbol{M}_g^{\dagger}\boldsymbol{M}_g + \boldsymbol{M}_e^{\dagger}\boldsymbol{M}_e = \boldsymbol{I}$. Just before *D*, the field/atom state is **entangled**:

 $m{M}_{m{g}}|\psi
angle\otimes|m{g}
angle+m{M}_{m{e}}|\psi
angle\otimes|m{e}
angle$

Denote by $\mu \in \{g, e\}$ the measurement outcome in detector *D*: with probability $\mathbb{P}_{\mu} = \left\langle \psi | \mathbf{M}_{\mu}^{\dagger} \mathbf{M}_{\mu} | \psi \right\rangle$ we get μ . Just after the measurement outcome $\mu = \mathbf{y}$, the state becomes separable:

$$|\Psi\rangle_{D} = \frac{1}{\sqrt{\mathbb{P}_{y}}} (\boldsymbol{M}_{y}|\psi\rangle) \otimes |y\rangle = \left(\frac{\boldsymbol{M}_{y}}{\sqrt{\langle\psi|\boldsymbol{M}_{y}^{\dagger}\boldsymbol{M}_{y}|\psi\rangle}}|\psi\rangle\right) \otimes |y\rangle.$$

Markov process: $|\psi_k\rangle \equiv |\psi\rangle_{t=k\Delta t}$, $k \in \mathbb{N}$, Δt sampling period,

$$|\psi_{k+1}\rangle = \begin{cases} \frac{\mathbf{M}_{g}|\psi_{k}\rangle}{\sqrt{\langle\psi_{k}|\mathbf{M}_{g}^{\dagger}\mathbf{M}_{g}|\psi_{k}\rangle}} & \text{with } y_{k} = g, \text{ probability } \mathbb{P}_{g} = \langle\psi_{k}|\mathbf{M}_{g}^{\dagger}\mathbf{M}_{g}|\psi_{k}\rangle;\\ \frac{\mathbf{M}_{e}|\psi_{k}\rangle}{\sqrt{\langle\psi_{k}|\mathbf{M}_{e}^{\dagger}\mathbf{M}_{e}|\psi_{k}\rangle}} & \text{with } y_{k} = e, \text{ probability } \mathbb{P}_{e} = \langle\psi_{k}|\mathbf{M}_{e}^{\dagger}\mathbf{M}_{e}|\psi_{k}\rangle. \end{cases}$$

Markov process with detection inefficiency

• With pure state $\rho = |\psi\rangle\langle\psi|$, we have

$$oldsymbol{
ho}_+ = |\psi_+
angle \langle \psi_+| = rac{1}{\operatorname{Tr}\left(oldsymbol{M}_\mu
ho oldsymbol{M}_\mu^\dagger
ight)} oldsymbol{M}_\mu
ho oldsymbol{M}_\mu^\dagger$$

when the atom collapses in $\mu = g$, *e* with proba. Tr $(\mathbf{M}_{\mu} \rho \mathbf{M}_{\mu}^{\dagger})$.

■ Detection efficiency: the probability to detect the atom is η ∈ [0, 1]. Three possible outcomes for y: y = g if detection in g, y = e if detection in e and y = 0 if no detection.

The only possible update is based on ρ : expectation ρ_+ of $|\psi_+\rangle\langle\psi_+|$ knowing ρ and the outcome $y \in \{g, e, 0\}$.

$$\boldsymbol{\rho}_{+} = \begin{cases} \frac{\boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}}{\mathsf{Tr}(\boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g})} & \text{if } y = g, \text{ probability } \eta \operatorname{Tr}(\boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}) \\ \frac{\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}}{\mathsf{Tr}(\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e})} & \text{if } y = e, \text{ probability } \eta \operatorname{Tr}(\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}) \\ \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger} + \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger} & \text{if } y = 0, \text{ probability } 1 - \eta \end{cases}$$

For $\eta = 0$: $\rho_+ = M_g \rho M_g^{\dagger} + M_e \rho M_e^{\dagger} = \mathbb{K}(\rho) = \mathbb{E}(\rho_+ | \rho)$ defines a Kraus map.

LKB photon-box: Markov process with detection errors (1)

• With pure state $\rho = |\psi\rangle\langle\psi|$, we have

$$oldsymbol{
ho}_+ = |\psi_+
angle \langle \psi_+| = rac{1}{\operatorname{Tr}\left(oldsymbol{M}_\mu
ho oldsymbol{M}_\mu^\dagger
ight)} oldsymbol{M}_\mu
ho oldsymbol{M}_\mu^\dagger$$

when the atom collapses in $\mu = g$, *e* with proba. Tr $(\mathbf{M}_{\mu} \rho \mathbf{M}_{\mu}^{\dagger})$.

■ Detection error rates: P(y = e/μ = g) = η_g ∈ [0, 1] the probability of erroneous assignation to *e* when the atom collapses in g; P(y = g/μ = e) = η_e ∈ [0, 1] (given by the contrast of the Ramsey fringes).

Bayesian law: expectation ρ_+ of $|\psi_+\rangle\langle\psi_+|$ knowing ρ and the imperfect detection *y*.

$$\boldsymbol{\rho}_{+} = \begin{cases} \frac{(1-\eta_g)\boldsymbol{M}_g\boldsymbol{\rho}\boldsymbol{M}_g^{\dagger} + \eta_e\boldsymbol{M}_e\boldsymbol{\rho}\boldsymbol{M}_e^{\dagger}}{\mathsf{Tr}\big((1-\eta_g)\boldsymbol{M}_g\boldsymbol{\rho}\boldsymbol{M}_g^{\dagger} + \eta_e\boldsymbol{M}_e\boldsymbol{\rho}\boldsymbol{M}_e^{\dagger}\big)} \text{if } \boldsymbol{y} = \boldsymbol{g}, \text{ prob. } \mathsf{Tr}\left((1-\eta_g)\boldsymbol{M}_g\boldsymbol{\rho}\boldsymbol{M}_g^{\dagger} + \eta_e\boldsymbol{M}_e\boldsymbol{\rho}\boldsymbol{M}_e^{\dagger}\right); \\ \frac{\eta_g\boldsymbol{M}_g\boldsymbol{\rho}\boldsymbol{M}_g^{\dagger} + (1-\eta_e)\boldsymbol{M}_e\boldsymbol{\rho}\boldsymbol{M}_e^{\dagger}}{\mathsf{Tr}\big(\eta_g\boldsymbol{M}_g\boldsymbol{\rho}\boldsymbol{M}_g^{\dagger} + (1-\eta_e)\boldsymbol{M}_e\boldsymbol{\rho}\boldsymbol{M}_e^{\dagger}\big)} \text{if } \boldsymbol{y} = \boldsymbol{e}, \text{ prob. } \mathsf{Tr}\left(\eta_g\boldsymbol{M}_g\boldsymbol{\rho}\boldsymbol{M}_g^{\dagger} + (1-\eta_e)\boldsymbol{M}_e\boldsymbol{\rho}\boldsymbol{M}_e^{\dagger}\right). \end{cases}$$

 ρ_+ does not remain pure: the quantum state ρ_+ becomes a mixed state; $|\psi_+\rangle$ becomes physically irrelevant.

We get

$$\rho_{+} = \begin{cases} \frac{(1-\eta_{g})\boldsymbol{M}_{g}\rho\boldsymbol{M}_{g}^{\dagger}+\eta_{e}\boldsymbol{M}_{e}\rho\boldsymbol{M}_{e}^{\dagger}}{\mathrm{Tr}((1-\eta_{g})\boldsymbol{M}_{g}\rho\boldsymbol{M}_{g}^{\dagger}+\eta_{e}\boldsymbol{M}_{e}\rho\boldsymbol{M}_{e}^{\dagger})}, & \text{with prob. } \mathrm{Tr}\left((1-\eta_{g})\boldsymbol{M}_{g}\rho\boldsymbol{M}_{g}^{\dagger}+\eta_{e}\boldsymbol{M}_{e}\rho\boldsymbol{M}_{e}^{\dagger}\right); \\ \frac{\eta_{g}\boldsymbol{M}_{g}\rho\boldsymbol{M}_{g}^{\dagger}+(1-\eta_{e})\boldsymbol{M}_{e}\rho\boldsymbol{M}_{e}^{\dagger}}{\mathrm{Tr}(\eta_{g}\boldsymbol{M}_{g}\rho\boldsymbol{M}_{g}^{\dagger}+(1-\eta_{e})\boldsymbol{M}_{e}\rho\boldsymbol{M}_{e}^{\dagger})} & \text{with prob. } \mathrm{Tr}\left(\eta_{g}\boldsymbol{M}_{g}\rho\boldsymbol{M}_{g}^{\dagger}+(1-\eta_{e})\boldsymbol{M}_{e}\rho\boldsymbol{M}_{e}^{\dagger}\right). \end{cases}$$

Key point:

$$\operatorname{Tr}\left((1-\eta_g)\boldsymbol{M}_g\rho\boldsymbol{M}_g^{\dagger}+\eta_e\boldsymbol{M}_e\rho\boldsymbol{M}_e^{\dagger}\right) \text{ and } \operatorname{Tr}\left(\eta_g\boldsymbol{M}_g\rho\boldsymbol{M}_g^{\dagger}+(1-\eta_e)\boldsymbol{M}_e\rho\boldsymbol{M}_e^{\dagger}\right)$$

are the probabilities to detect y = g and e, knowing ρ . **Generalization** by merging a Kraus map $\mathbf{K}(\rho) = \sum_{\mu} \mathbf{M}_{\mu} \rho \mathbf{M}_{\mu}^{\dagger}$ where $\sum_{\mu} \mathbf{M}_{\mu}^{\dagger} \mathbf{M}_{\mu} = \mathbf{I}$ with a left stochastic matrix $(\eta_{\mu',\mu})$:

$$\rho_{+} = \frac{\sum_{\mu} \eta_{y,\mu} \boldsymbol{M}_{\mu} \rho \boldsymbol{M}_{\mu}^{\dagger}}{\operatorname{Tr} \left(\sum_{\mu} \eta_{y,\mu} \boldsymbol{M}_{\mu} \rho \boldsymbol{M}_{\mu}^{\dagger} \right)} \quad \text{when we detect } \boldsymbol{y} = \mu'.$$

The probability to detect $y = \mu'$ knowing ρ is $\operatorname{Tr}\left(\sum_{\mu} \eta_{y,\mu} \mathbf{M}_{\mu} \rho \mathbf{M}_{\mu}^{\dagger}\right)$.

Photon-box full model: 6 × 21 left stochastic matrix ($\eta_{\mu',\mu}$)

$$\rho_{k+1} = \frac{1}{\operatorname{Tr}(\sum_{\mu} \eta_{\mathbf{y}_{k},\mu} \mathbf{M}_{\mu} \rho_{k} \mathbf{M}_{\mu}^{\dagger})} \left(\sum_{\mu} \eta_{\mathbf{y}_{k},\mu} \mathbf{M}_{\mu} \rho_{k} \mathbf{M}_{\mu}^{\dagger} \right)$$
 where

- we have a total of $m = 3 \times 7 = 21$ Kraus operators M_{μ} . The "jumps" are labeled by $\mu = (\mu^a, \mu^c)$ with $\mu^a \in \{no, g, e, gg, ge, eg, ee\}$ labeling atom related jumps and $\mu^c \in \{o, +, -\}$ cavity decoherence jumps.
- we have only m' = 6 real detection possibilities $\mathbf{y} = \mu' \in \{no, g, e, gg, ge, ee\}$ corresponding respectively to no detection, a single detection in g, a single detection in e, a double detection both in g, a double detection one in g and the other in e, and a double detection both in e.

$\mu' \setminus \mu$	(no, μ^c)	(g, μ^c)	(e, μ^{c})	(gg,μ^{c})	(ee, μ°)	$(ge,\mu^{\circ})~(eg,\mu^{\circ})$
no	1	$1 - \epsilon_d$	$1 - \epsilon_d$	$(1 - \epsilon_d)^2$	$(1 - \epsilon_d)^2$	$(1 - \epsilon_d)^2$
g	0	$\epsilon_d(1 - \eta_g)$	$\epsilon_d \eta_o$	$2\epsilon_d(1-\epsilon_d)(1-\eta_g)$	$2\epsilon_d(1-\epsilon_d)\eta_e$	$\epsilon_d(1 - \epsilon_d)(1 - \eta_g + \eta_g)$
θ	0	$\epsilon_d \eta_g$	$\epsilon_d(1 - \eta_o)$	$2\epsilon_d(1 - \epsilon_d)\eta_g$	$2\epsilon_d(1 - \epsilon_d)(1 - \eta_a)$	$\epsilon_d(1 - \epsilon_d)(1 - \eta_o + \eta_g)$
<i>99</i>	0	0	0	$\epsilon_d^2 (1 - \eta_g)^2$	$\epsilon_d^2 \eta_e^2$	$\epsilon_{_d}^2\eta_{_g}(1-\eta_{_g})$
ge	0	0	0	$2\epsilon_g^2\eta_g(1-\eta_g)$	$2\epsilon_d^2\eta_s(1-\eta_s)$	$\epsilon_d^2((1 - \eta_g)(1 - \eta_e) + \eta_g \eta_e)$
00	0	0	0	$\epsilon_{_d}^2\eta_{_g}^2$	$\epsilon_d^2 (1 - \eta_e)^2$	$\epsilon_d^2 \eta_g (1 - \eta_s)$