Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 1

Chengdu, July 8, 2019

[^0]
Outline

1 Quantum systems: some examples and applications

2 LKB Photon Box

3 Exercise: Quantum Non Demolition (QND) measurement of photons

4 Outline of the lectures and reference books

Controlling quantum degrees of freedom

Some applications

■ Nuclear Magnetic Resonance (NMR) applications;
■ Quantum chemical synthesis;
■ High resolution measurement devices (e.g. atomic/optic clocks);
■ Quantum communication;
■ Quantum computation .
Physics Nobel prize 2012

Serge Haroche

David J. Wineland

Nobel prize: ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems.

Technologies for quantum simulation and computation ${ }^{3}$

© OBrien

© S. Kuhr

© Blatt \& Wineland

Requirement:
Scalable modular architecture
Control software from the very beginning.

[^1]
Quantum computation: towards quantum electronics

D-Wave machine: machines to solve certain huge-dimensional optimization problems (state space of dimension 2^{100}).

Major challenge: Fragility of quantum information versus external noise.
Quantum error correction
We protect quantum information by stabilizing a manifold of quantum states.

1 Quantum systems: some examples and applications

2 LKB Photon Box

3 Exercise: Quantum Non Demolition (QND) measurement of photons

4 Outline of the lectures and reference books

The first experimental realization of a quantum-state feedback:

Theory: I. Dotsenko, Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states. Physical Review A, 2009, 80: 013805-013813. Experiment: C. Sayrin, ..., S. Haroche:
Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477, 73-77.

[^2]
Three quantum features emphasized by the LKB photon box ${ }^{5}$

1 Schrödinger $(\hbar=1)$: wave function $|\psi\rangle$ in Hilbert space \mathcal{H},

$$
\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}|\psi\rangle, \quad \boldsymbol{H}=\boldsymbol{H}_{0}+u \boldsymbol{H}_{1} .
$$

Unitary propagator \boldsymbol{U} solution of $\frac{d}{d t} \boldsymbol{U}=-i \boldsymbol{H} \boldsymbol{U}$ with $\boldsymbol{U}(0)=\boldsymbol{I}$.
2 Origin of dissipation: collapse of the wave packet induced by the measurement of observable \boldsymbol{O} with spectral decomp. $\sum_{\mu} \lambda_{\mu} \boldsymbol{P}_{\mu}$:

■ measurement outcome μ with proba. $\mathbb{P}_{\mu}=\langle\psi| \boldsymbol{P}_{\mu}|\psi\rangle$ depending on $|\psi\rangle$, just before the measurement
■ measurement back-action if outcome $\mu=y$:

$$
|\psi\rangle \mapsto|\psi\rangle_{+}=\frac{\boldsymbol{P}_{y}|\psi\rangle}{\sqrt{\langle\psi| \boldsymbol{P}_{y}|\psi\rangle}}
$$

3 Tensor product for the description of composite systems (S, M):
■ Hilbert space $\mathcal{H}=\mathcal{H}_{s} \otimes \mathcal{H}_{M}$
■ Hamiltonian $\boldsymbol{H}=\boldsymbol{H}_{s} \otimes \boldsymbol{I}_{M}+\boldsymbol{H}_{\text {int }}+\boldsymbol{I}_{\boldsymbol{s}} \otimes \boldsymbol{H}_{M}$
■ observable on sub-system M only: $\boldsymbol{O}=\boldsymbol{I}_{\boldsymbol{S}} \otimes \boldsymbol{O}_{M}$.

[^3]■ System S corresponds to a quantized harmonic oscillator:

$$
\mathcal{H}_{S}=\left\{\sum_{n=0}^{\infty} \psi_{n}|n\rangle \mid\left(\psi_{n}\right)_{n=0}^{\infty} \in I^{2}(\mathbb{C})\right\}
$$

where $|n\rangle$ is the photon-number state with n photons $\left(\left\langle n_{1} \mid n_{2}\right\rangle=\delta_{n_{1}, n_{2}}\right)$.
■ Meter M is a qubit, a 2-level system:

$$
\mathcal{H}_{M}=\left\{\psi_{g}|g\rangle+\psi_{e}|e\rangle \mid \psi_{g}, \psi_{e} \in \mathbb{C}\right\}
$$

where $|g\rangle$ (resp. $|e\rangle$) is the ground (resp. excited) state

$$
(\langle g \mid g\rangle=\langle e \mid e\rangle=1 \text { and }\langle g \mid e\rangle=0)
$$

■ State of the composite system $|\Psi\rangle \in \mathcal{H}_{S} \otimes \mathcal{H}_{M}$:

$$
\begin{aligned}
|\Psi\rangle= & \sum_{n \geq 0}\left(\Psi_{n g}|n\rangle \otimes|g\rangle+\Psi_{n e}|n\rangle \otimes|e\rangle\right) \\
& =\left(\sum_{n \geq 0} \Psi_{n g}|n\rangle\right) \otimes|g\rangle+\left(\sum_{n \geq 0} \Psi_{n e}|n\rangle\right) \otimes|e\rangle, \quad \Psi_{n e}, \Psi_{n g} \in \mathbb{C} .
\end{aligned}
$$

Ortho-normal basis: $(|n\rangle \otimes|g\rangle,|n\rangle \otimes|e\rangle)_{n \in \mathbb{N}}$.

■ When atom comes out B, the quantum state $|\boldsymbol{\Psi}\rangle_{B}$ of the composite system is separable: $|\boldsymbol{\Psi}\rangle_{B}=|\psi\rangle \otimes|g\rangle$.
■ Just before the measurement in D, the state is in general entangled (not separable):

$$
|\boldsymbol{\Psi}\rangle_{R_{2}}=\boldsymbol{U}_{S M}(|\psi\rangle \otimes|g\rangle)=\left(\boldsymbol{M}_{g}|\psi\rangle\right) \otimes|g\rangle+\left(\boldsymbol{M}_{e}|\psi\rangle\right) \otimes|\boldsymbol{e}\rangle
$$

where $\boldsymbol{U}_{S M}=\boldsymbol{U}_{R_{2}} \boldsymbol{U}_{C} \boldsymbol{U}_{R_{1}}$ is a unitary transformation (Schrödinger propagator) defining the measurement operators \boldsymbol{M}_{g} and \boldsymbol{M}_{e} on \mathcal{H}_{s}. Since $\boldsymbol{U}_{S M}$ is unitary, $\boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}+\boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}=\boldsymbol{I}$.

Just before detector D the quantum state is entangled:

$$
|\boldsymbol{\Psi}\rangle_{R_{2}}=\left(\boldsymbol{M}_{g}|\psi\rangle\right) \otimes|g\rangle+\left(\boldsymbol{M}_{e}|\psi\rangle\right) \otimes|\boldsymbol{e}\rangle
$$

Just after outcome y, the state becomes separable ${ }^{6}$:

$$
|\boldsymbol{\Psi}\rangle_{D}=\left(\frac{\boldsymbol{m}_{y}}{\sqrt{\langle\psi| \boldsymbol{M}_{y}^{\dagger} \boldsymbol{M}_{y}|\psi\rangle}}|\psi\rangle\right) \otimes|\boldsymbol{y}\rangle \text {. }
$$

Outcome y obtained with probability $\mathbb{P}_{y}=\langle\psi| \boldsymbol{M}_{y}^{\dagger} \boldsymbol{M}_{y}|\psi\rangle$..
Quantum trajectories (Markov chain, stochastic dynamics):

$$
\left|\psi_{k+1}\right\rangle= \begin{cases}\frac{\boldsymbol{M}_{g}}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}}\left|\psi_{k}\right\rangle, & y_{k}=g \text { with probability }\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle ; \\ \frac{\boldsymbol{M}_{e}}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}}\left|\psi_{k}\right\rangle, & y_{k}=e \text { with probability }\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle ;\end{cases}
$$

with state $\left|\psi_{k}\right\rangle$ and measurement outcome $y_{k} \in\{g, e\}$ at time-step k :

$$
{ }^{6} \text { Measurement operator } \boldsymbol{O}=\boldsymbol{I}_{S} \otimes(|e\rangle\langle e|-|g\rangle\langle g|) .
$$

Goal $|\boldsymbol{\Psi}\rangle_{R_{2}}=\boldsymbol{U}_{R_{2}} \boldsymbol{U}_{C} \boldsymbol{U}_{R_{1}}(|\psi\rangle \otimes|g\rangle)=$?

$$
\begin{aligned}
\boldsymbol{U}_{R_{1}}= & \boldsymbol{I}_{S} \otimes\left(\left(\frac{|g\rangle+|e\rangle}{\sqrt{2}}\right)\langle g|+\left(\frac{|g\rangle-|e\rangle}{\sqrt{2}}\right)\langle e|\right) \\
\boldsymbol{U}_{C}= & e^{-i \frac{\phi_{0}}{2} \boldsymbol{N}} \otimes|g\rangle\langle g|+e^{i \frac{\phi_{0}}{2} \boldsymbol{N}} \otimes|e\rangle\langle e| \\
& \text { where } \boldsymbol{N}|n\rangle=n|n\rangle, \forall n \in \mathbb{N} \text { and } \phi_{0} \in \mathbb{R} . \\
\boldsymbol{U}_{R_{2}}= & \boldsymbol{U}_{R_{1}}
\end{aligned}
$$

1 Show that $\boldsymbol{U}_{R_{1}}(|\psi\rangle \otimes|g\rangle)=\frac{1}{\sqrt{2}}(|\psi\rangle \otimes|g\rangle+|\psi\rangle \otimes|e\rangle)$ and

$$
\boldsymbol{U}_{C} \boldsymbol{U}_{R_{1}}(|\psi\rangle \otimes|g\rangle)=\frac{1}{\sqrt{2}}\left(\left(e^{-i \frac{\phi_{0}}{2} \boldsymbol{N}^{\prime}}|\psi\rangle\right) \otimes|g\rangle+\left(e^{i \frac{\phi_{0}}{2} \boldsymbol{N}}|\psi\rangle\right) \otimes|e\rangle\right) .
$$

2 Show that $|\boldsymbol{\Psi}\rangle_{R_{2}}=\left(\cos \left(\frac{\phi_{0}}{2} \boldsymbol{N}\right)|\psi\rangle\right) \otimes|g\rangle+\left(i \sin \left(\frac{\phi_{0}}{2} \boldsymbol{N}\right)|\psi\rangle\right) \otimes|e\rangle$
3 Deduce that $\boldsymbol{M}_{g}=\cos \left(\frac{\phi_{0}}{2} \boldsymbol{N}\right)$ and $\boldsymbol{M}_{e}=-i \sin \left(\frac{\phi_{0}}{2} \boldsymbol{N}\right)$.
4 Question for Wednesday: write a computer program (e.g. a Scilab or Matlab script) to simulate over 20 sampling steps the attached Markov chain starting from $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ with parameter $\phi_{0}=\pi / 3$ (Quantum Monte-Carlo trajectories).
${ }^{7}$ M. Brune, ... : Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non-demolition measurements and generation of "Schrödinger cat" states . Physical Review A, 45:5193-5214, 1992.

1 Quantum systems: some examples and applications

2 LKB Photon Box

3 Exercise: Quantum Non Demolition (QND) measurement of photons

4 Outline of the lectures and reference books

Monday 1- Introduction (motivating applications; LKB photon-box as prototype of open quantum system). 2- Spring system (harmonic oscillator, spectral decomposition, annihilation/creation operators, coherent state and displacement). 3- Spin system (qubit, Pauli matrices). 4- Composite spin/spring system (tensor product, resonant/dispersive interaction, underlying PDE's).
Tuesday 5-Averaging and rotating waves approximation (first/second order perturbation expansion,) 6-Open-loop control via averaging techniques (resonant control for qubit and Jaynes-Cummings systems)
Wednesday 7- Discrete-time dynamics of the LKB photon box (density operators, measurement imperfection, decoherence, quantum filter) 8- Discrete-time Stochastic Master Equation (SME) (Positive Operator Value Measurement (POVM), Kraus maps and quantum channels, stability and contractions, Schrödinger and Heisenberg points of view). 9- Discrete-time Quantum Non Demolition (QND) measurement (martingales, convergence of Markov processes, Kushner invariance Theorem) 10-Measurement-based feedback and Lyapunov stabilization of photons (LKB photon box with dispersive/resonnant probe atoms, closed-loop Monte-Carlo simulations).
Thursday 11-Continuous-time Stochastic Master Equation (SME) (Wiener processes and Ito calculus, continuous-time measurement, quantum filtering) 12-
Measurement-based feedback stabilization of a qubit (Lyapunov feedback, closed-loop Monte-Carlo simulations)
Friday 13-Lindblad master equation (decoherence models for a qubit and an oscillator) 14- Coherent-feedback stabilization (principle, cat-qubit and multi-photon pumping)

1 Cohen-Tannoudji, C.; Diu, B. \& Laloë, F.: Mécanique Quantique Hermann, Paris, 1977, I\& II (quantum physics: a well known and tutorial textbook)
2 S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006. (quantum physics: spin/spring systems, decoherence, Schrödinger cats, entanglement.)
3 C. Gardiner, P. Zoller: The Quantum World of Ultra-Cold Atoms and Light I\& II. Imperial College Press, 2009. (quantum physics, measurement and contro)
4 Barnett, S. M. \& Radmore, P. M.: Methods in Theoretical Quantum Optics Oxford University Press, 2003. (mathematical physics: many useful operator formulae for spin/spring systems)
5 E. Davies: Quantum Theory of Open Systems. Academic Press, 1976. (mathematical physics: functional analysis aspects when the Hilbert space is of infinite dimension)
6 Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences [3rd ed], Springer, 2004. (tutorial introduction to probability, Markov processes, stochastic differential equations and Ito calculus.)
7 M. Nielsen, I. Chuang: Quantum Computation and Quantum Information. Cambridge University Press, 2000. (tutorial introduction with a computer science and communication view point)

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 2

Chengdu, July 8, 2019

[^4]
Outline

1 Quantum harmonic oscillator: spring model

2 Summary of main formulae

3 Exercise: useful operator identities

1 Quantum harmonic oscillator: spring model

2 Summary of main formulae

3 Exercise: useful operator identities

Classical Hamiltonian formulation of $\frac{d^{2}}{d t^{2}} x=-\omega^{2} x$

$$
\frac{d}{d t} x=\omega p=\frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{d t} p=-\omega x=-\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right) .
$$

Electrical oscillator:
Mechanical oscillator

LC oscillator:
Frictionless spring: $\frac{d^{2}}{d t^{2}} x=-\frac{k}{m} x$.

$$
\frac{d}{d t} I=\frac{V}{L}, \frac{d}{d t} V=-\frac{l}{C}, \quad\left(\frac{d^{2}}{d t^{2}} I=-\frac{1}{L C} I\right) .
$$

Quantum regime

$k_{B} T \ll \hbar \omega$: typically for the photon box experiment in these lectures, $\omega=51 \mathrm{GHz}$ and $T=0.8 \mathrm{~K}$.

Harmonic oscillator ${ }^{3}$: quantization and correspondence principle

$$
\frac{d}{d t} x=\omega p=\frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{d t} p=-\omega x=-\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right)
$$

Quantization: probability wave function $|\psi\rangle_{t} \sim(\psi(x, t))_{x \in \mathbb{R}}$ with $|\psi\rangle_{t} \sim \psi(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ obeys to the Schrödinger equation ($\hbar=1$ in all the lectures)

$$
i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle, \quad \boldsymbol{H}=\omega\left(\boldsymbol{P}^{2}+\boldsymbol{X}^{2}\right)=-\frac{\omega}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega}{2} x^{2}
$$

where \boldsymbol{H} results from \mathbb{H} by replacing x by position operator $\sqrt{2} \boldsymbol{X}$ and p by momentum operator $\sqrt{2} \boldsymbol{P}=-i \frac{\partial}{\partial x}$. \boldsymbol{H} is a Hermitian operator on $L^{2}(\mathbb{R}, \mathbb{C})$, with its domain to be given.

PDE model: $i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\omega}{2} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+\frac{\omega}{2} x^{2} \psi(x, t), \quad x \in \mathbb{R}$.
${ }^{3}$ Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. Mécanique Quantique, volume I\& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.

Oxford University Press, 2003.

Average position $\langle\boldsymbol{X}\rangle_{t}=\langle\psi| \boldsymbol{X}|\psi\rangle$ and momentum $\langle\boldsymbol{P}\rangle_{t}=\langle\psi| \boldsymbol{P}|\psi\rangle$:

$$
\langle\boldsymbol{X}\rangle_{t}=\frac{1}{\sqrt{2}} \int_{-\infty}^{+\infty} x|\psi|^{2} d x, \quad\langle\boldsymbol{P}\rangle_{t}=-\frac{i}{\sqrt{2}} \int_{-\infty}^{+\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x .
$$

Annihilation \boldsymbol{a} and creation operators \boldsymbol{a}^{\dagger} (domains to be given):

$$
\boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right), \quad \boldsymbol{a}^{\dagger}=\boldsymbol{X}-i \boldsymbol{P}=\frac{1}{\sqrt{2}}\left(x-\frac{\partial}{\partial x}\right)
$$

Commutation relationships:

$$
[\boldsymbol{X}, \boldsymbol{P}]=\frac{i}{2} \boldsymbol{I}, \quad\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=\boldsymbol{I}, \quad \boldsymbol{H}=\omega\left(\boldsymbol{P}^{2}+\boldsymbol{X}^{2}\right)=\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right) .
$$

Spectrum of Hamiltonian $\boldsymbol{H}=-\frac{\omega}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega}{2} x^{2}$:
$E_{n}=\omega\left(n+\frac{1}{2}\right), \psi_{n}(x)=\left(\frac{1}{\pi}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} e^{-x^{2} / 2} H_{n}(x), H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}$.

Spectral decomposition of $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ using $\left[a, a^{\dagger}\right]=1$:
■ If $|\psi\rangle$ is an eigenstate associated to eigenvalue $\lambda, \boldsymbol{a}|\psi\rangle$ and $\mathbf{a}^{\dagger}|\psi\rangle$ are also eigenstates associated to $\lambda-1$ and $\lambda+1$.

- $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ is semi-definite positive.

■ The ground state $\left|\psi_{0}\right\rangle$ is necessarily associated to eigenvalue 0 and is given by the Gaussian function $\psi_{0}(x)=\frac{1}{\pi^{1 / 4}} \exp \left(-x^{2} / 2\right)$.
$\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=1$: spectrum of $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ is non-degenerate and is \mathbb{N}.
Fock state with n photons (phonons): the eigenstate of $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ associated to the eigenvalue $n\left(|n\rangle \sim \psi_{n}(x)\right)$:

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=n|n\rangle, \quad \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle, \quad \mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle .
$$

The ground state $|0\rangle$ is called 0 -photon state or vacuum state.
The operator \boldsymbol{a} (resp. \boldsymbol{a}^{\dagger}) is the annihilation (resp. creation) operator since it transfers $|n\rangle$ to $|n-1\rangle$ (resp. $|n+1\rangle$) and thus decreases (resp. increases) the quantum number n by one unit.

Hilbert space of quantum system: $\mathcal{H}=\left\{\sum_{n} c_{n}|n\rangle \mid\left(c_{n}\right) \in \mathcal{R}^{2}(\mathbb{C})\right\} \sim L^{2}(\mathbb{R}, \mathbb{C})$.
Domain of \boldsymbol{a} and $\boldsymbol{a}^{\dagger}:\left\{\sum_{n} c_{n}|n\rangle \mid\left(c_{n}\right) \in h^{1}(\mathbb{C})\right\}$.
Domain of \boldsymbol{H} ot $\boldsymbol{a}^{\dagger} \boldsymbol{a}:\left\{\sum_{n} c_{n}|\eta\rangle \mid\left(c_{n}\right) \in h^{2}(\mathbb{C})\right\}$.

$$
h^{k}(\mathbb{C})=\left\{\left.\left(c_{n}\right) \in I^{2}(\mathbb{C})\left|\sum n^{k}\right| c_{n}\right|^{2}<\infty\right\}, \quad k=1,2 .
$$

Quantization of $\frac{d^{2}}{d t^{2}} x=-\omega^{2} x-\omega \sqrt{2} u,\left(\mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right)+\sqrt{2} u x\right)$

$$
\boldsymbol{H}=\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right)+u\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)
$$

The associated controlled PDE

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\omega}{2} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+\left(\frac{\omega}{2} x^{2}+\sqrt{2} u x\right) \psi(x, t)
$$

Glauber displacement operator \boldsymbol{D}_{α} (unitary) with $\alpha \in \mathbb{C}$:

$$
\boldsymbol{D}_{\alpha}=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \boldsymbol{a}}=e^{2 i \Im \alpha \boldsymbol{X}-2 i \Re \alpha \boldsymbol{P}}
$$

From Baker-Campbell Hausdorf formula, for all operators \boldsymbol{A} and \boldsymbol{B},

$$
e^{\boldsymbol{A}} \boldsymbol{B} e^{-\boldsymbol{A}}=\boldsymbol{B}+[\boldsymbol{A}, \boldsymbol{B}]+\frac{1}{2!}[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]+\frac{1}{3!}[\boldsymbol{A},[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]]+\ldots
$$

we get the Glauber formula ${ }^{4}$ when $[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]=[\boldsymbol{B},[\boldsymbol{A}, \boldsymbol{B}]]=0$:

$$
e^{\boldsymbol{A}+\boldsymbol{B}}=e^{\boldsymbol{A}} e^{\boldsymbol{B}} e^{-\frac{1}{2}[\boldsymbol{A}, \boldsymbol{B}]}
$$

${ }^{4}$ Take s derivative of $e^{s(A+B)}$ and of $e^{S A} e^{s B} e^{-\frac{s^{2}}{2}[A, B]}$.

With $\boldsymbol{A}=\alpha \mathbf{a}^{\dagger}$ and $\boldsymbol{B}=-\alpha^{*} \boldsymbol{a}$, Glauber formula gives:

$$
\begin{aligned}
& \boldsymbol{D}_{\alpha}=e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \boldsymbol{a}}=e^{+\frac{|\alpha|^{2}}{2}} e^{-\alpha^{*} \boldsymbol{a}} \boldsymbol{e}^{\alpha \mathbf{a}^{\dagger}} \\
& \boldsymbol{D}_{-\alpha} \boldsymbol{a} \boldsymbol{D}_{\alpha}=\boldsymbol{a}+\alpha \boldsymbol{I} \text { and } \boldsymbol{D}_{-\alpha} \boldsymbol{a}^{\dagger} \boldsymbol{D}_{\alpha}=\boldsymbol{a}^{\dagger}+\alpha^{*} \boldsymbol{I} .
\end{aligned}
$$

With $\boldsymbol{A}=2 i \Im \alpha \boldsymbol{X} \sim i \sqrt{2} \Im \alpha x$ and $\boldsymbol{B}=-2 \Re \alpha \boldsymbol{P} \sim-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}$, Glauber formula gives ${ }^{5}$:

$$
\begin{aligned}
& \boldsymbol{D}_{\alpha}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} e^{-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}} \\
& \left(\boldsymbol{D}_{\alpha}|\psi\rangle\right)_{x, t}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} \psi(x-\sqrt{2} \Re \alpha, t)
\end{aligned}
$$

${ }^{5}$ Note that the operator $e^{-r \partial / \partial x}$ corresponds to a translation of x by r.

Take $|\psi\rangle$ solution of the controlled Schrödinger equation $i \frac{d}{d t}|\psi\rangle=\left(\omega\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)+u\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)|\psi\rangle$. Set $\langle\mathbf{a}\rangle=\langle\psi| \mathbf{a}|\psi\rangle$. Then

$$
\frac{d}{d t}\langle\boldsymbol{a}\rangle=-i \omega\langle\boldsymbol{a}\rangle-i u .
$$

From $\boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P}$, we have $\langle\boldsymbol{a}\rangle=\langle\boldsymbol{X}\rangle+i\langle\boldsymbol{P}\rangle$ where $\langle\boldsymbol{X}\rangle=\langle\psi| \boldsymbol{X}|\psi\rangle \in \mathbb{R}$ and $\langle\boldsymbol{P}\rangle=\langle\psi| \boldsymbol{P}|\psi\rangle \in \mathbb{R}$. Consequently:

$$
\frac{d}{d t}\langle\boldsymbol{X}\rangle=\omega\langle\boldsymbol{P}\rangle, \quad \frac{d}{d t}\langle\boldsymbol{P}\rangle=-\omega\langle\boldsymbol{X}\rangle-u
$$

Consider the change of frame $|\psi\rangle=e^{-i \theta_{t}} \boldsymbol{D}_{\langle\mathbf{a}\rangle_{t}}|\chi\rangle$ with

$$
\theta_{t}=\int_{0}^{t}\left(\omega|\langle\boldsymbol{a}\rangle|^{2}+u \Re(\langle\boldsymbol{a}\rangle)\right), \quad D_{\langle\mathbf{a}\rangle_{t}}=e^{\langle\mathbf{a}\rangle_{t} \mathbf{a}^{\dagger}-\langle\boldsymbol{a}\rangle_{t}^{*} \boldsymbol{a}},
$$

Then $|\chi\rangle$ obeys to autonomous Schrödinger equation

$$
i \frac{d}{d t}|\chi\rangle=\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{l}{2}\right)|\chi\rangle .
$$

The dynamics of $|\psi\rangle$ can be decomposed into two parts:

- a controllable part of dimension two for $\langle\mathbf{a}\rangle$
$■$ an uncontrollable part of infinite dimension for $|\chi\rangle$.

Coherent states

$$
|\alpha\rangle=\boldsymbol{D}_{\alpha}|0\rangle=e^{-\frac{|\alpha|^{2}}{2}} \sum_{n=0}^{+\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle, \quad \alpha \in \mathbb{C}
$$

are the states reachable from vacuum set. They are also the eigenstate of $\boldsymbol{a}: \mathbf{a}|\alpha\rangle=\alpha|\alpha\rangle$.
A widely known result in quantum optics ${ }^{6}$: classical currents and sources (generalizing the role played by u) only generate classical light (quasi-classical states of the quantized field generalizing the coherent state introduced here) We just propose here a control theoretic interpretation in terms of reachable set from vacuum.

[^5]- Hilbert space:

$$
\mathcal{H}=\left\{\sum_{n \geq 0} \psi_{n}|n\rangle,\left(\psi_{n}\right)_{n \geq 0} \in I^{2}(\mathbb{C})\right\} \equiv L^{2}(\mathbb{R}, \mathbb{C})
$$

■ Quantum state space:

$$
\mathbb{D}=\left\{\rho \in \mathcal{L}(\mathcal{H}), \rho^{\dagger}=\rho, \operatorname{Tr}(\rho)=1, \rho \geq 0\right\} .
$$

■ Operators and commutations:
$\mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle, \mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle ;$
$\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a}, \boldsymbol{N}|n\rangle=n|n\rangle ;$
$\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=\boldsymbol{I}, \boldsymbol{a} f(\boldsymbol{N})=f(\boldsymbol{N}+\boldsymbol{I}) \boldsymbol{a} ;$
$\boldsymbol{D}_{\alpha}=\boldsymbol{e}^{\alpha \boldsymbol{a}^{\dagger}-\alpha^{\dagger}} \boldsymbol{a}$.
$\boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right),[\boldsymbol{X}, \boldsymbol{P}]=\boldsymbol{I} / 2$.
■ Hamiltonian: $\boldsymbol{H} / \hbar=\omega_{c} \mathbf{a}^{\dagger} \boldsymbol{a}+\boldsymbol{u}_{c}\left(\boldsymbol{a}+\boldsymbol{a}^{\dagger}\right)$. (associated classical dynamics:

$$
\left.\frac{d x}{d t}=\omega_{c} p, \frac{d p}{d t}=-\omega_{c} x-\sqrt{2} u_{c}\right) .
$$

■ Classical pure state \equiv coherent state $|\alpha\rangle$

$$
\begin{aligned}
& \alpha \in \mathbb{C}:|\alpha\rangle=\sum_{n \geq 0}\left(e^{-|\alpha|^{2} / 2} \frac{\alpha^{n}}{\sqrt{n!}}\right)|n\rangle ;|\alpha\rangle \equiv \frac{1}{\pi^{1 / 4}} e^{r \sqrt{2} x \Im \alpha} e^{-\frac{(x-\sqrt{2} \Re \alpha)^{2}}{2}} \\
& \boldsymbol{a}|\alpha\rangle=\alpha|\alpha\rangle, \boldsymbol{D}_{\alpha}|0\rangle=|\alpha\rangle .
\end{aligned}
$$

1 Set $\boldsymbol{X}_{\lambda}=\frac{1}{2}\left(e^{-i \lambda} \boldsymbol{a}+e^{i \lambda} \boldsymbol{a}^{\dagger}\right)$ for any angle λ. Show that

$$
\left[\boldsymbol{X}_{\lambda}, \boldsymbol{X}_{\lambda+\frac{\pi}{2}}\right]=\frac{i}{2} \boldsymbol{I} .
$$

2 Prove that, for any $\alpha, \beta, \epsilon \in \mathbb{C}$, we have

$$
\begin{array}{ll}
1 & \boldsymbol{D}_{\alpha+\beta}=e^{\frac{\alpha^{*} \beta-\alpha \beta^{*}}{2}} \boldsymbol{D}_{\alpha} \boldsymbol{D}_{\beta} \\
2 & \boldsymbol{D}_{\alpha+\epsilon} \boldsymbol{D}_{-\alpha}=\left(1+\frac{\alpha \epsilon^{*}-\alpha^{*} \epsilon}{2}\right) \boldsymbol{I}+\epsilon \boldsymbol{a}^{\dagger}-\epsilon^{*} \boldsymbol{a}+\boldsymbol{O}\left(|\epsilon|^{2}\right) \\
3 & \left(\frac{d}{d t} \boldsymbol{D}_{\alpha}\right) \boldsymbol{D}_{-\alpha}=\left(\frac{\alpha \frac{d}{d t} \alpha^{*}-\alpha^{*} \frac{d}{d t} \alpha}{2}\right) \boldsymbol{I}+\left(\frac{d}{d t} \alpha\right) \boldsymbol{a}^{\dagger}-\left(\frac{d}{d t} \alpha^{*}\right) \boldsymbol{a} .
\end{array}
$$

3 Show formally that for any operators \boldsymbol{A} and \boldsymbol{B} on an Hilbert-space \mathcal{H} :

$$
e^{\boldsymbol{A}+\epsilon \boldsymbol{B}}=e^{\boldsymbol{A}}+\epsilon \int_{0}^{1} e^{s \boldsymbol{A}} \boldsymbol{B} e^{(1-s) \boldsymbol{A}} d s+O\left(\epsilon^{2}\right) .
$$

Deduced that for any C^{1} time-varying operator $\boldsymbol{A}(t)$, one has

$$
\frac{d}{d t} e^{\boldsymbol{A}(t)}=\int_{0}^{1} e^{s \boldsymbol{A}(t)}\left(\frac{d \boldsymbol{A}}{d t}(t)\right) e^{(1-s) \boldsymbol{A}(t)} d s .
$$

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 3
Chengdu, July 8, 2019

[^6]
Outline

1 Spin-1/2 system: qubit

2 Bloch sphere description

3 Exercise: propagator for a qubit

The simplest quantum system: a ground state $|g\rangle$ of energy ω_{g}; an excited state $|e\rangle$ of energy ω_{e}. The quantum state $|\psi\rangle \in \mathbb{C}^{2}$ is a linear superposition $|\psi\rangle=\psi_{g}|g\rangle+\psi_{e}|e\rangle$ and obey to the Schrödinger equation (ψ_{g} and ψ_{e} depend on t).
Schrödinger equation for the uncontrolled 2-level system ($\hbar=1$) :

$$
\imath \frac{d}{d t}|\psi\rangle=\boldsymbol{H}_{0}|\psi\rangle=\left(\omega_{e}|e\rangle\langle e|+\omega_{g}|g\rangle\langle g|\right)|\psi\rangle
$$

where \boldsymbol{H}_{0} is the Hamiltonian, a Hermitian operator $\boldsymbol{H}_{0}^{\dagger}=\boldsymbol{H}_{0}$. Energy is defined up to a constant: \boldsymbol{H}_{0} and $\boldsymbol{H}_{0}+\varpi(t) \boldsymbol{I}(\varpi(t) \in \mathbb{R}$ arbitrary) are attached to the same physical system. If $|\psi\rangle$ satisfies $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}_{0}|\psi\rangle$ then $|\chi\rangle=e^{-i \vartheta(t)}|\psi\rangle$ with $\frac{d}{d t} \vartheta=\varpi$ obeys to $i \frac{d}{d t}|\chi\rangle=\left(\boldsymbol{H}_{0}+\varpi \boldsymbol{I}\right)|\chi\rangle$. Thus for any $\vartheta,|\psi\rangle$ and $e^{-i \vartheta}|\psi\rangle$ represent the same physical system: The global phase of a quantum system $|\psi\rangle$ can be chosen arbitrarily at any time.

Take origin of energy such that ω_{g} (resp. ω_{e}) becomes $-\frac{\omega_{e}-\omega_{g}}{2}$ (resp. $\frac{\omega_{e}-\omega_{g}}{2}$) and set $\omega_{\mathrm{eg}}=\omega_{e}-\omega_{g}$
The solution of $i \frac{d}{d t}|\psi\rangle=H_{0}|\psi\rangle=\frac{\omega_{\mathrm{eg}}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)|\psi\rangle$ is

$$
|\psi\rangle_{t}=\psi_{g 0} e^{\frac{i \omega_{\mathrm{eg}} t}{2}}|g\rangle+\psi_{e 0} e^{\frac{-i \omega_{\mathrm{eg}} t}{2}}|e\rangle .
$$

With a classical electromagnetic field described by $u(t) \in \mathbb{R}$, the coherent evolution the controlled Hamiltonian
$\boldsymbol{H}(t)=\frac{\omega_{\mathrm{eg}}}{2} \sigma_{\boldsymbol{z}}+\frac{u(t)}{2} \sigma_{\boldsymbol{x}}=\frac{\omega_{\mathrm{eg}}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+\frac{u(t)}{2}(|e\rangle\langle g|+|g\rangle\langle e|)$
The controlled Schrödinger equation $i \frac{d}{d t}|\psi\rangle=\left(\boldsymbol{H}_{0}+u(t) \boldsymbol{H}_{1}\right)|\psi\rangle$ reads:

$$
i \frac{d}{d t}\binom{\psi_{e}}{\psi_{g}}=\frac{\omega_{\mathrm{eg}}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}+\frac{u(t)}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}
$$

The 3 Pauli Matrices ${ }^{3}$

$$
\sigma_{\boldsymbol{x}}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{\boldsymbol{y}}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{\boldsymbol{z}}=|e\rangle\langle e|-|g\rangle\langle g|
$$

${ }^{3}$ They correspond, up to multiplication by i, to the 3 imaginary quaternions.
$\sigma_{\boldsymbol{x}}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{\boldsymbol{y}}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{\boldsymbol{z}}=|e\rangle\langle e|-|g\rangle\langle g|$ $\sigma_{\boldsymbol{x}}{ }^{2}=\boldsymbol{I}, \quad \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}=i \sigma_{\boldsymbol{z}}, \quad\left[\sigma_{\boldsymbol{x}}, \sigma_{\boldsymbol{y}}\right]=2 i \sigma_{\boldsymbol{z}}, \quad$ circular permutation \ldots

■ Since for any $\theta \in \mathbb{R}, e^{i \theta \sigma_{\boldsymbol{x}}}=\cos \theta+i \sin \theta \sigma_{\boldsymbol{x}}$ (idem for $\sigma_{\boldsymbol{y}}$ and $\boldsymbol{\sigma}_{\boldsymbol{z}}$), the solution of $i \frac{d}{d t}|\psi\rangle=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}|\psi\rangle$ is

$$
|\psi\rangle_{t}=e^{\frac{-i \omega_{\mathrm{eg}} t}{2}} \boldsymbol{\sigma}_{\boldsymbol{z}}|\psi\rangle_{0}=\left(\cos \left(\frac{\omega_{\mathrm{eg}} t}{2}\right) \boldsymbol{I}-i \sin \left(\frac{\omega_{\mathrm{eg}} t}{2}\right) \boldsymbol{\sigma}_{\boldsymbol{z}}\right)|\psi\rangle_{0}
$$

■ For $\alpha, \beta=\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \alpha \neq \beta$ we have

$$
\sigma_{\alpha} e^{i \theta \sigma_{\beta}}=e^{-i \theta \sigma_{\beta}} \sigma_{\alpha}, \quad\left(e^{i \theta \sigma_{\alpha}}\right)^{-1}=\left(e^{i \theta \sigma_{\alpha}}\right)^{\dagger}=e^{-i \theta \sigma_{\alpha}}
$$

and also

$$
e^{-\frac{i \theta}{2} \sigma_{\alpha}} \sigma_{\beta} e^{\frac{i \theta}{2} \sigma_{\alpha}}=e^{-i \theta \sigma_{\alpha}} \sigma_{\boldsymbol{\beta}}=\sigma_{\beta} e^{i \theta \sigma_{\alpha}}
$$

Density matrix and Bloch Sphere

We start from $|\psi\rangle$ that obeys $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle$. We consider the orthogonal projector on $|\psi\rangle, \rho=|\psi\rangle\langle\psi|$, called density operator. Then ρ is an Hermitian operator ≥ 0, that satisfies $\operatorname{Tr}(\rho)=1$, $\rho^{2}=\rho$ and obeys to the Liouville equation:

$$
\frac{d}{d t} \rho=-i[\boldsymbol{H}, \rho] .
$$

For a two level system $|\psi\rangle=\psi_{g}|g\rangle+\psi_{e}|e\rangle$ and

$$
\rho=\frac{I+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}}{2}
$$

where $(x, y, z)=\left(2 \Re\left(\psi_{g} \psi_{e}^{*}\right), 2 \Im\left(\psi_{g} \psi_{e}^{*}\right),\left|\psi_{e}\right|^{2}-\left|\psi_{g}\right|^{2}\right) \in \mathbb{R}^{3}$ represent a vector $\vec{M}=x \vec{i}+y \vec{j}+z \vec{k}$, the Bloch vector, that evolves on the unite sphere of $\mathbb{R}^{3}, \mathbb{S}^{2}$ called the the Bloch Sphere since $\operatorname{Tr}\left(\rho^{2}\right)=x^{2}+y^{2}+z^{2}=1$. The Liouville equation with $\boldsymbol{H}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\frac{u}{2} \sigma_{\boldsymbol{x}}$ reads

$$
\frac{d}{d t} \vec{M}=\left(u \vec{i}+\omega_{\mathrm{eg}} \vec{k}\right) \times \vec{M}
$$

■ Hilbert space:

$$
\mathcal{H}_{M}=\mathbb{C}^{2}=\left\{\psi_{g}|g\rangle+\psi_{e}|e\rangle, \psi_{g}, \psi_{e} \in \mathbb{C}\right\} .
$$

■ Quantum state space:

$$
\mathcal{D}=\left\{\rho \in \mathcal{L}\left(\mathcal{H}_{M}\right), \rho^{\dagger}=\rho, \operatorname{Tr}(\rho)=1, \rho \geq 0\right\}
$$

- Operators and commutations:

$$
\begin{aligned}
& \sigma_{\mathbf{z}}=|g\rangle\langle e|, \sigma_{+}=\sigma_{-}^{\dagger}=|e\rangle\langle g| \\
& \sigma_{\mathbf{x}}=\sigma_{-}+\sigma_{+}=|g\rangle\langle e|+|e\rangle\langle g| ; \\
& \sigma_{\mathbf{y}}=i \sigma_{-}-i \sigma_{+}=i|g\rangle\langle e|-i|e\rangle\langle g| ; \\
& \sigma_{\mathbf{z}}=\sigma_{+} \sigma_{-}-\sigma_{-} \sigma_{+}=|e\rangle\langle e|-|g\rangle\langle g| ; \\
& \sigma_{\mathbf{x}}^{2}=\boldsymbol{I}, \sigma_{\mathbf{x}} \sigma_{\mathbf{y}}=i \sigma_{\mathbf{z}},\left[\sigma_{\mathbf{x}}, \sigma_{\mathbf{y}}\right]=2 i \sigma_{\mathbf{z}}, \ldots
\end{aligned}
$$

■ Hamiltonian: $\boldsymbol{H}_{M}=\omega_{q} \sigma_{\boldsymbol{z}} / 2+\boldsymbol{u}_{q} \boldsymbol{\sigma}_{\boldsymbol{x}}$.
■ Bloch sphere representation:

$$
\mathcal{D}=\left\{\left.\frac{1}{2}\left(\boldsymbol{I}+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}\right) \right\rvert\,(x, y, z) \in \mathbb{R}^{3}, x^{2}+y^{2}+z^{2} \leq 1\right\}
$$

Exercise: propagator for a qubit

Consider $\boldsymbol{H}=\left(u \sigma_{\boldsymbol{x}}+v \sigma_{\boldsymbol{y}}+w \sigma_{\boldsymbol{z}}\right) / 2$ with $(u, v, w) \in \mathbb{R}^{3}$.
1 For (u, v, w) constant and non zero, compute the solutions of

$$
\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}|\psi\rangle, \quad \frac{d}{d t} \boldsymbol{U}=-i \boldsymbol{H} \boldsymbol{U} \text { with } \boldsymbol{U}_{0}=\boldsymbol{I}
$$

in term of $|\psi\rangle_{0}, \boldsymbol{\sigma}=\left(u \sigma_{\boldsymbol{x}}+v \sigma_{\boldsymbol{y}}+w \sigma_{z}\right) / \sqrt{u^{2}+v^{2}+w^{2}}$ and $\omega=\sqrt{u^{2}+v^{2}+w^{2}}$. Indication: use the fact that $\sigma^{2}=I$.

2 Assume that, (u, v, w) depends on t according to $(u, v, w)(t)=\omega(t)(\bar{u}, \bar{v}, \bar{w})$ with $(\bar{u}, \bar{v}, \bar{w}) \in \mathbb{R}^{3} /\{0\}$ constant of length 1. Compute the solutions of

$$
\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}(t)|\psi\rangle, \quad \frac{d}{d t} \boldsymbol{U}=-i \boldsymbol{H}(t) \boldsymbol{U} \text { with } \boldsymbol{U}_{0}=\boldsymbol{I}
$$

in term of $|\psi\rangle_{0}, \bar{\sigma}=\bar{u} \sigma_{\boldsymbol{x}}+\bar{v} \sigma_{\boldsymbol{y}}+\bar{w} \sigma_{\mathbf{z}}$ and $\theta(t)=\int_{0}^{t} \omega$.
3 Explain why (u, v, w) colinear to the constant vector $(\bar{u}, \bar{v}, \bar{w})$ is crucial, for the computations in previous question.

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 4
Chengdu, July 8, 2019

[^7]
Outline

1 Spin/spring systems

2 Exercise: the Jaynes-Cummings propagator

1 Spin/spring systems

2 Exercise: the Jaynes-Cummings propagator

2-level system lives on \mathbb{C}^{2} with $\boldsymbol{H}_{q}=\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}$ oscillator lives on $L^{2}(\mathbb{R}, \mathbb{C}) \sim I^{2}(\mathbb{C})$ with

$$
\begin{array}{r}
\boldsymbol{H}_{c}=-\frac{\omega_{c}}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega_{c}}{2} x^{2} \sim \omega_{c}\left(\boldsymbol{N}+\frac{l}{2}\right) \\
\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a} \text { and } \boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P} \sim \frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)
\end{array}
$$

The composite system lives on the tensor product $\mathbb{C}^{2} \otimes L^{2}(\mathbb{R}, \mathbb{C}) \sim \mathbb{C}^{2} \otimes I^{2}(\mathbb{C})$ with spin-spring Hamiltonian

$$
\boldsymbol{H}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}} \otimes \boldsymbol{I}_{c}+\omega_{c} \boldsymbol{I}_{q} \otimes\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)+i \frac{\Omega}{2} \sigma_{\mathbf{x}} \otimes\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)
$$

with the typical scales $\Omega \ll \omega_{c}, \omega_{\text {eg }}$ and $\left|\omega_{c}-\omega_{\text {eg }}\right| \ll \omega_{c}, \omega_{\text {eg }}$. Shortcut notations:

$$
\boldsymbol{H}=\underbrace{\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}}_{\boldsymbol{H}_{q}}+\underbrace{\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{I}}{2}\right)}_{\boldsymbol{H}_{c}}+\underbrace{i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)}_{\boldsymbol{H}_{\text {int }}}
$$

The Schrödinger system

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2} \boldsymbol{\sigma}_{\mathbf{x}}\left(\mathbf{a}^{\dagger}-\boldsymbol{a}\right)\right)|\psi\rangle
$$

corresponds to two coupled scalar PDE's:

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}-i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{g} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}-i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{e}
\end{aligned}
$$

since $\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a}, \boldsymbol{a}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)$ and $|\psi\rangle=\left(\psi_{e}(x, t), \psi_{g}(x, t)\right)$, $\psi_{g}(., t), \psi_{e}(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ and $\left\|\psi_{g}\right\|^{2}+\left\|\psi_{e}\right\|^{2}=1$.

Exercise: write the PDE for the controlled Hamiltonian

$$
\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{l}{2}\right)+i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\mathbf{a}^{\dagger}-\boldsymbol{a}\right)+u_{c}\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)+u_{q} \sigma_{\mathbf{x}}
$$

where $u_{c}, u_{q} \in \mathbb{R}$ are local control inputs associated to the oscillator and qubit, respectively.

The Schrödinger system

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)+i \frac{\Omega}{2} \boldsymbol{\sigma}_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)\right)|\psi\rangle
$$

corresponds also to an infinite set of ODE's

$$
\begin{aligned}
i \frac{d}{d t} \psi_{e, n} & =\left((n+1 / 2) \omega_{c}+\omega_{\mathrm{eg}} / 2\right) \psi_{e, n}+i \frac{\Omega}{2}\left(\sqrt{n} \psi_{g, n-1}-\sqrt{n+1} \psi_{g, n+1}\right) \\
i \frac{d}{d t} \psi_{g, n} & =\left((n+1 / 2) \omega_{c}-\omega_{\mathrm{eg}} / 2\right) \psi_{g, n}+i \frac{\Omega}{2}\left(\sqrt{n} \psi_{e, n-1}-\sqrt{n+1} \psi_{e, n+1}\right)
\end{aligned}
$$

$$
\text { where }|\psi\rangle=\sum_{n=0}^{+\infty} \psi_{g, n}|g, n\rangle+\psi_{e, n}|e, n\rangle, \psi_{g, n}, \psi_{e, n} \in \mathbb{C} .
$$

Exercise: write the infinite set of ODE's for

$$
\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{1}{2}\right)+i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\mathbf{a}^{\dagger}-\boldsymbol{a}\right)+u_{c}\left(\boldsymbol{a}+\boldsymbol{a}^{\dagger}\right)+u_{q} \sigma_{\boldsymbol{x}}
$$

where $u_{c}, u_{q} \in \mathbb{R}$ are local control inputs associated to the oscillator and qubit, respectively.

$$
\boldsymbol{H} \approx \boldsymbol{H}_{\text {disp }}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)-\frac{\chi}{2} \boldsymbol{\sigma}_{\mathbf{z}}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right) \quad \text { with } \chi=\frac{\Omega^{2}}{2\left(\omega_{c}-\omega_{\mathrm{eg}}\right)}
$$

The corresponding PDE is :

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\frac{1}{2}\left(\omega_{c}-\frac{\chi}{2}\right)\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\frac{1}{2}\left(\omega_{c}+\frac{\chi}{2}\right)\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}
\end{aligned}
$$

The propagator, the t-dependant unitary operator \boldsymbol{U} solution of $i \frac{d}{d t} \boldsymbol{U}=\boldsymbol{H} \boldsymbol{U}$ with $\boldsymbol{U}(0)=\boldsymbol{I}$, reads:

$$
\begin{aligned}
\boldsymbol{U}(t)=e^{i \omega_{\mathrm{eg}} t / 2} \exp & \left(-i\left(\omega_{c}+\chi / 2\right) t\left(\boldsymbol{N}+\frac{l}{2}\right)\right) \otimes|g\rangle\langle g| \\
& +e^{-i \omega_{\mathrm{eg}} t / 2} \exp \left(-i\left(\omega_{c}-\chi / 2\right) t\left(\boldsymbol{N}+\frac{l}{2}\right)\right) \otimes|e\rangle\langle\boldsymbol{e}|
\end{aligned}
$$

Exercise: write the infinite set of ODE's attached to the dispersive Hamiltonian $\boldsymbol{H}_{\text {disp }}$.

The Hamiltonian becomes (Jaynes-Cummings Hamiltonian):

$$
\boldsymbol{H} \approx \boldsymbol{H}_{J C}=\frac{\omega}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega\left(\boldsymbol{N}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right) .
$$

The corresponding PDE is :

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega}{2} \psi_{e}+\frac{\omega}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}-i \frac{\Omega}{2 \sqrt{2}}\left(x+\frac{\partial}{\partial x}\right) \psi_{g} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega}{2} \psi_{g}+\frac{\omega}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}+i \frac{\Omega}{2 \sqrt{2}}\left(x-\frac{\partial}{\partial x}\right) \psi_{e}
\end{aligned}
$$

Exercise: Write the infinite set of ODE's attached to the Jaynes-Cummings Hamiltonian \boldsymbol{H}.

For $\boldsymbol{H}_{J C}=\frac{\omega}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega\left(\boldsymbol{N}+\frac{1}{2}\right)+i \frac{\Omega}{2}\left(\boldsymbol{\sigma}_{-} \mathbf{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)$ show that the propagator, the t-dependant unitary operator \boldsymbol{U} solution of $i \frac{d}{d t} \boldsymbol{U}=\boldsymbol{H}_{J C} \boldsymbol{U}$ with $\boldsymbol{U}(0)=\boldsymbol{I}$, reads
$\boldsymbol{U}(t)=e^{-i \omega t\left(\frac{\sigma_{2}}{2}+\boldsymbol{N}+\frac{1}{2}\right)} e^{\frac{\Omega t}{2}\left(\sigma \cdot \mathbf{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)}$ where for any angle θ,

$$
\begin{aligned}
& e^{\theta\left(\sigma \cdot a^{\dagger}-\sigma_{+} \boldsymbol{a}\right)}=|g\rangle\langle g| \otimes \cos (\theta \sqrt{\boldsymbol{N}})+|e\rangle\langle e| \otimes \cos (\theta \sqrt{\boldsymbol{N}+\boldsymbol{I})} \\
& \\
& -\sigma_{+} \otimes \boldsymbol{a} \frac{\sin (\theta \sqrt{\boldsymbol{N}})}{\sqrt{\boldsymbol{N}}}+\sigma_{-} \otimes \frac{\sin (\theta \sqrt{\boldsymbol{N}})}{\sqrt{\boldsymbol{N}}} \mathbf{a}^{\dagger}
\end{aligned}
$$

Hint: show that

$$
\begin{aligned}
{\left[\frac{\sigma_{\mathbf{z}}}{2}+\boldsymbol{N}, \boldsymbol{\sigma} \cdot \boldsymbol{\cdot}^{\dagger}-\sigma_{+} \boldsymbol{a}\right] } & =0 \\
\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)^{2 k} & =(-1)^{k}\left(|g\rangle\langle g| \otimes \boldsymbol{N}^{k}+|\boldsymbol{e}\rangle\langle\boldsymbol{e}| \otimes(\boldsymbol{N}+\boldsymbol{I})^{k}\right) \\
\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)^{2 k+1} & =(-1)^{k}\left(\boldsymbol{\sigma} \otimes \boldsymbol{N}^{k} \mathbf{a}^{\dagger}-\sigma_{+} \otimes \boldsymbol{a} \boldsymbol{N}^{k}\right)
\end{aligned}
$$

and compute de series defining the exponential of an operator.

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 5

Chengdu, July 9, 2019

[^8]
Outline

1 Averaging and quasi-periodic control

2 First and second order averaging recipes

3 Exercise: resonant control of a qubit

1 Averaging and quasi-periodic control

2 First and second order averaging recipes

3 Exercise: resonant control of a qubit

Un-measured quantum system \rightarrow Bilinear Schrödinger equation

$$
i \frac{d}{d t}|\psi\rangle=\left(\boldsymbol{H}_{0}+u(t) \boldsymbol{H}_{1}\right)|\psi\rangle
$$

$\square|\psi\rangle \in \mathcal{H}$ the system's wavefunction with $\||\psi\rangle \|_{\mathcal{H}}=1$;
\square the free Hamiltonian, \boldsymbol{H}_{0}, is a Hermitian operator defined on \mathcal{H};
\square the control Hamiltonian, \boldsymbol{H}_{1}, is a Hermitian operator defined on \mathcal{H};
\square the control $u(t): \mathbb{R}^{+} \mapsto \mathbb{R}$ is a scalar control.
Here we consider the case of finite dimensional \mathcal{H}

We consider the controls of the form

$$
u(t)=\epsilon\left(\sum_{j=1}^{r} \boldsymbol{u}_{j} e^{i \omega_{j} t}+\boldsymbol{u}_{j}^{*} e^{-i \omega_{j} t}\right)
$$

■ $\epsilon>0$ is a small parameter;
■ $\epsilon \boldsymbol{u}_{j}$ is the constant complex amplitude associated to the pulsation $\omega_{j} \geq 0$;

- r stands for the number of independent frequencies $\left(\omega_{j} \neq \omega_{k}\right.$ for $\left.j \neq k\right)$.

We are interested in approximations, for ϵ tending to 0^{+}, of trajectories $t \mapsto\left|\psi_{\epsilon}\right\rangle_{t}$ of

$$
\frac{d}{d t}\left|\psi_{\epsilon}\right\rangle=\left(\boldsymbol{A}_{0}+\epsilon\left(\sum_{j=1}^{r} \boldsymbol{u}_{j} e^{i \omega_{j} t}+\boldsymbol{u}_{j}^{*} e^{-i \omega_{j} t}\right) \boldsymbol{A}_{1}\right)\left|\psi_{\epsilon}\right\rangle
$$

where $\boldsymbol{A}_{0}=-i \boldsymbol{H}_{0}$ and $\boldsymbol{A}_{1}=-i \boldsymbol{H}_{1}$ are skew-Hermitian.

Consider the following change of variables

$$
\left|\psi_{\epsilon}\right\rangle_{t}=e^{\mathbf{A}_{0} t}\left|\phi_{\epsilon}\right\rangle_{t}
$$

The resulting system is said to be in the "interaction frame"

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon \boldsymbol{B}(t)\left|\phi_{\epsilon}\right\rangle
$$

where $\boldsymbol{B}(t)$ is a skew-Hermitian operator whose time-dependence is almost periodic:

$$
B(t)=\sum_{i=1}^{r} \boldsymbol{u}_{j} e^{i \omega_{j} t} e^{-\boldsymbol{A}_{0} t} \boldsymbol{A}_{1} e^{\boldsymbol{A}_{0} t}+\boldsymbol{u}_{j}^{*} e^{-i \omega_{j} t} e^{-\boldsymbol{A}_{0} t} \boldsymbol{A}_{1} e^{\boldsymbol{A}_{0} t}
$$

Main idea
We can write

$$
\boldsymbol{B}(t)=\overline{\boldsymbol{B}}+\frac{d}{d t} \widetilde{\boldsymbol{B}}(t),
$$

where $\overline{\boldsymbol{B}}$ is a constant skew-Hermitian matrix and $\tilde{\boldsymbol{B}}(t)$ is a bounded almost periodic skew-Hermitian matrix.

Multi-frequency averaging: first order

Consider the two systems

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon\left(\overline{\boldsymbol{B}}+\frac{d}{d t} \widetilde{\boldsymbol{B}}(t)\right)\left|\phi_{\epsilon}\right\rangle
$$

and

$$
\frac{d}{d t}\left|\phi_{\epsilon}^{1^{\mathrm{st}}}\right\rangle=\epsilon \overline{\boldsymbol{B}}\left|\phi_{\epsilon}^{1 \mathrm{st}}\right\rangle
$$

initialized at the same state $\left|\phi_{\epsilon}^{1 \mathrm{st}}\right\rangle_{0}=\left|\phi_{\epsilon}\right\rangle_{0}$.
Theorem: first order approximation (Rotating Wave Approximation)
Consider the functions $\left|\phi_{\epsilon}\right\rangle$ and $\left|\phi_{\epsilon}^{1^{\text {st }}}\right\rangle$ initialized at the same state and following the above dynamics. Then, there exist $M>0$ and $\eta>0$ such that for all $\epsilon \in] 0, \eta$ [we have

$$
\max _{t \in\left[0, \frac{1}{\epsilon}\right]} \|\left|\phi_{\epsilon}\right\rangle_{t}-\left|\phi_{\epsilon}^{1 \mathrm{st}}\right\rangle_{t} \| \leq M \epsilon
$$

Proof's idea

Almost periodic change of variables:

$$
\left|\chi_{\epsilon}\right\rangle=(1-\epsilon \widetilde{\boldsymbol{B}}(t))\left|\phi_{\epsilon}\right\rangle
$$

well-defined for $\epsilon>0$ sufficiently small.
The dynamics can be written as

$$
\frac{d}{d t}\left|\chi_{\epsilon}\right\rangle=\left(\epsilon \overline{\boldsymbol{B}}+\epsilon^{2} \boldsymbol{F}(\epsilon, t)\right)\left|\chi_{\epsilon}\right\rangle
$$

where $\boldsymbol{F}(\epsilon, t)$ is uniformly bounded in time.

More precisely, the dynamics of $\left|\chi_{\epsilon}\right\rangle$ is given by

$$
\frac{d}{d t}\left|\chi_{\epsilon}\right\rangle=\left(\epsilon \overline{\boldsymbol{B}}+\epsilon^{2}[\overline{\boldsymbol{B}}, \widetilde{\boldsymbol{B}}(t)]-\epsilon^{2} \widetilde{\boldsymbol{B}}(t) \frac{d}{d t} \widetilde{\boldsymbol{B}}(t)+\epsilon^{3} \boldsymbol{E}(\epsilon, t)\right)\left|\chi_{\epsilon}\right\rangle
$$

- $E(\epsilon, t)$ is still almost periodic but its entries are no more linear combinations of time-exponentials;
- $\widetilde{\boldsymbol{B}}(t) \frac{d}{d t} \widetilde{\boldsymbol{B}}(t)$ is an almost periodic operator whose entries are linear combinations of oscillating time-exponentials.
We can write

$$
\widetilde{\boldsymbol{B}}(t)=\frac{d}{d t} \widetilde{\boldsymbol{C}}(t) \quad \text { and } \quad \widetilde{\boldsymbol{B}}(t) \frac{d}{d t} \widetilde{\boldsymbol{B}}(t)=\overline{\boldsymbol{D}}+\frac{d}{d t} \widetilde{\boldsymbol{D}}(t)
$$

where $\widetilde{\boldsymbol{C}}(t)$ and $\widetilde{\boldsymbol{D}}(t)$ are almost periodic. We have

$$
\frac{d}{d t}\left|\chi_{\epsilon}\right\rangle=\left(\epsilon \overline{\boldsymbol{B}}-\epsilon^{2} \overline{\boldsymbol{D}}+\epsilon^{2} \frac{d}{d t}([\overline{\boldsymbol{B}}, \widetilde{\boldsymbol{C}}(t)]-\widetilde{\boldsymbol{D}}(t))+\epsilon^{3} \boldsymbol{E}(\epsilon, t)\right)\left|\chi_{\epsilon}\right\rangle
$$

where the skew-Hermitian operators $\overline{\boldsymbol{B}}$ and $\overline{\boldsymbol{D}}$ are constants and the other ones $\widetilde{\boldsymbol{C}}, \widetilde{\boldsymbol{D}}$, and \boldsymbol{E} are almost periodic.

Consider the two systems

$$
\frac{d}{d t}\left|\phi_{\epsilon}\right\rangle=\epsilon\left(\overline{\boldsymbol{B}}+\frac{d}{d t} \widetilde{\boldsymbol{B}}(t)\right)\left|\phi_{\epsilon}\right\rangle,
$$

and

$$
\frac{d}{d t}\left|\phi_{\epsilon}^{2 n d}\right\rangle=\left(\epsilon \overline{\boldsymbol{B}}-\epsilon^{2} \overline{\boldsymbol{D}}\right)\left|\phi_{\epsilon}^{2^{n d}}\right\rangle
$$

initialized at the same state $\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle_{0}=\left|\phi_{\epsilon}\right\rangle_{0}$.

Theorem: second order approximation

Consider the functions $\left|\phi_{\epsilon}\right\rangle$ and $\left|\phi_{\epsilon}^{2^{\text {nd }}}\right\rangle$ initialized at the same state and following the above dynamics. Then, there exist $M>0$ and $\eta>0$ such that for all $\epsilon \in] 0, \eta$ [we have

$$
\max _{t \in\left[0, \frac{1}{\epsilon}\right]} \|\left|\phi_{\epsilon}\right\rangle_{t}-\left|\phi_{\epsilon}^{2^{2 n d}}\right\rangle_{t} \| \leq M \epsilon^{2}
$$

Proof's idea

Another almost periodic change of variables

$$
\left|\xi_{\epsilon}\right\rangle=\left(\boldsymbol{I}-\epsilon^{2}([\overline{\boldsymbol{B}}, \widetilde{\boldsymbol{C}}(t)]-\widetilde{\boldsymbol{D}}(t))\right)\left|\chi_{\epsilon}\right\rangle .
$$

The dynamics can be written as

$$
\frac{d}{d t}\left|\xi_{\epsilon}\right\rangle=\left(\epsilon \overline{\boldsymbol{B}}-\epsilon^{2} \overline{\boldsymbol{D}}+\epsilon^{3} \boldsymbol{F}(\epsilon, t)\right)\left|\xi_{\epsilon}\right\rangle
$$

where $\epsilon \overline{\boldsymbol{B}}-\epsilon^{2} \overline{\boldsymbol{D}}$ is skew Hermitian and \boldsymbol{F} is almost periodic and therefore uniformly bounded in time.

1 Averaging and quasi-periodic control

2 First and second order averaging recipes

3 Exercise: resonant control of a qubit

Schrödinger dynamics $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}(t)|\psi\rangle$, with

$$
\boldsymbol{H}(t)=\boldsymbol{H}_{0}+\sum_{k=1}^{m} u_{k}(t) \boldsymbol{H}_{k}, \quad u_{k}(t)=\sum_{j=1}^{r} \boldsymbol{u}_{k, j} e^{i \omega_{j} t}+\boldsymbol{u}_{k, j}^{*} e^{-i \omega_{j} t}
$$

The Hamiltonian in interaction frame

$$
\boldsymbol{H}_{\text {int }}(t)=\sum_{k, j}\left(\boldsymbol{u}_{k, j} e^{i \omega_{j} t}+\boldsymbol{u}_{k, j}^{*} e^{-i \omega_{j} t}\right) e^{i \boldsymbol{H}_{0} t} \boldsymbol{H}_{k} e^{-i \boldsymbol{H}_{0} t}
$$

We define the first order Hamiltonian

$$
\boldsymbol{H}_{\mathrm{rwa}}^{\mathrm{st}}=\overline{\boldsymbol{H}_{\mathrm{int}}}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \boldsymbol{H}_{\mathrm{int}}(t) d t
$$

and the second order Hamiltonian

$$
\boldsymbol{H}_{\mathrm{rwa}}^{\mathrm{n}^{\mathrm{nd}}}=\boldsymbol{H}_{\mathrm{rwa}}^{\mathrm{st}}-i\left(\boldsymbol{H}_{\mathrm{int}}-\overline{\boldsymbol{H}_{\mathrm{int}}}\right)\left(\int_{t}\left(\boldsymbol{H}_{\mathrm{int}}-\overline{\boldsymbol{H}_{\mathrm{int}}}\right)\right)
$$

Choose the amplitudes $\boldsymbol{u}_{k, j}$ and the frequencies ω_{j} such that the propagators of $\boldsymbol{H}_{\mathrm{rwa}}^{1 \mathrm{st}}$ or $\boldsymbol{H}_{\mathrm{rwa}}^{\text {nd }}$ admit simple explicit forms that are used to find $t \mapsto u(t)$ steering $|\psi\rangle$ from one location to another one.
$\ln i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\frac{u}{2} \boldsymbol{\sigma}_{\mathbf{x}}\right)|\psi\rangle$, take a resonant control $u(t)=\boldsymbol{u} e^{i \omega_{\mathrm{eg}} t}+\boldsymbol{u}^{*} e^{-i \omega_{\mathrm{eg}} t}$ with \boldsymbol{u} slowly varying complex amplitude $\left|\frac{d}{d t} \boldsymbol{u}\right| \ll \omega_{\text {eg }}|\boldsymbol{u}|$. Set $H_{0}=\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}$ and $\epsilon H_{1}=\frac{u}{2} \sigma_{x}$

1 Consider $|\psi\rangle=e^{-\frac{i \omega_{\mathrm{eg}} t}{2} \sigma_{\mathrm{z}}}|\phi\rangle$ and show that $i \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\mathrm{int}}|\phi\rangle$ with

$$
\overbrace{-}^{\sigma_{+}=|e\rangle\langle g|} \overbrace{-}^{\sigma=|g\rangle\langle e|}
$$

$\boldsymbol{H}_{\mathrm{int}}=\frac{u(t)}{2} e^{i \omega_{\mathrm{eg}} t} \overbrace{\frac{\sigma_{\boldsymbol{x}}+i \sigma_{\boldsymbol{y}}}{2}}^{2}+\frac{u(t)}{2} e^{-i \omega_{\mathrm{eg}} t} \frac{\overbrace{\boldsymbol{\sigma _ { x }}-i \sigma_{y}}^{2}}{2}$.
2 Show that up to second order terms one has $i \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\mathrm{rwa}}^{\mathrm{st}}|\phi\rangle$ with $\boldsymbol{H}_{\mathrm{rwa}}^{1 \mathrm{st}}=\frac{\boldsymbol{u}^{*} \boldsymbol{\sigma}_{+}+\boldsymbol{u} \boldsymbol{\sigma}_{\boldsymbol{\sigma}}}{2}$.
3 Take constant control $\boldsymbol{u}=\Omega_{r} e^{i \theta}$ for $t \in[0, T], T>0$. Show that $|\phi\rangle$ is solution of $(\Sigma): i \frac{d}{d t}|\phi\rangle=\frac{\Omega_{r}\left(\cos \theta \sigma_{\mathbf{x}}+\sin \theta \sigma_{y}\right)}{2}|\phi\rangle$.
4 Set $\Theta_{r}=\frac{\Omega_{r}}{2} T$. Show that the solution at T of the propagator $\boldsymbol{U}_{t} \in \operatorname{SU}(2)$, $i \frac{d}{d t} \boldsymbol{U}=\frac{\Omega_{r}\left(\cos \theta \sigma_{\boldsymbol{x}}+\sin \theta \sigma_{\boldsymbol{y}}\right)}{2} \boldsymbol{U}, \boldsymbol{U}_{0}=\boldsymbol{I}$ is given by

$$
\boldsymbol{U}_{T}=\cos \Theta_{r} \boldsymbol{I}-i \sin \Theta_{r}\left(\cos \theta \boldsymbol{\sigma}_{\mathbf{x}}+\sin \theta \boldsymbol{\sigma}_{\mathbf{y}}\right)
$$

5 Take a wave function $|\bar{\phi}\rangle$. Show that exist Ω_{r} and θ such that $U_{T}|g\rangle=e^{i \alpha}|\bar{\phi}\rangle$, where α is some global phase.
6 Prove that for any given two wave functions $\left|\phi_{a}\right\rangle$ and $\left|\phi_{b}\right\rangle$ exists a piece-wise constant control $[0,2 T] \ni t \mapsto \boldsymbol{u}(t) \in \mathbb{C}$ such that the solution of (Σ) with $|\phi\rangle_{0}=\left|\phi_{a}\right\rangle$ satisfies $|\phi\rangle_{T}=e^{i \beta}\left|\phi_{b}\right\rangle$ for some global phase β.

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 6

Chengdu, July 9, 2019

[^9]Schrödinger dynamics $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}(t)|\psi\rangle$, with

$$
\boldsymbol{H}(t)=\boldsymbol{H}_{0}+\sum_{k=1}^{m} u_{k}(t) \boldsymbol{H}_{k}, \quad u_{k}(t)=\sum_{j=1}^{r} \boldsymbol{u}_{k, j} e^{i \omega_{j} t}+\boldsymbol{u}_{k, j}^{*} e^{-i \omega_{j} t}
$$

The Hamiltonian in interaction frame

$$
\boldsymbol{H}_{\text {int }}(t)=\sum_{k, j}\left(\boldsymbol{u}_{k, j} e^{i \omega_{j} t}+\boldsymbol{u}_{k, j}^{*} e^{-i \omega_{j} t}\right) e^{i \boldsymbol{H}_{0} t} \boldsymbol{H}_{k} e^{-i \boldsymbol{H}_{0} t}
$$

We define the first order Hamiltonian

$$
\boldsymbol{H}_{\mathrm{rwa}}^{\mathrm{st}}=\overline{\boldsymbol{H}_{\mathrm{int}}}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \boldsymbol{H}_{\mathrm{int}}(t) d t
$$

and the second order Hamiltonian

$$
\boldsymbol{H}_{\mathrm{rwa}}^{\mathrm{n}^{\mathrm{nd}}}=\boldsymbol{H}_{\mathrm{rwa}}^{\mathrm{st}}-i\left(\boldsymbol{H}_{\mathrm{int}}-\overline{\boldsymbol{H}_{\mathrm{int}}}\right)\left(\int_{t}\left(\boldsymbol{H}_{\mathrm{int}}-\overline{\boldsymbol{H}_{\mathrm{int}}}\right)\right)
$$

Choose the amplitudes $\boldsymbol{u}_{k, j}$ and the frequencies ω_{j} such that the propagators of $\boldsymbol{H}_{\mathrm{rwa}}^{1 \mathrm{st}}$ or $\boldsymbol{H}_{\mathrm{rwa}}^{\text {nd }}$ admit simple explicit forms that are used to find $t \mapsto u(t)$ steering $|\psi\rangle$ from one location to another one.

Outline

1 Averaging of spin/spring systems
■ The spin/spring model
■ Resonant interaction (Jaynes-Cummings system)
■ Dispersive interaction

2 Exercise: control of the Jaynes-Cummings system

Outline

1 Averaging of spin/spring systems
■ The spin/spring model
■ Resonant interaction (Jaynes-Cummings system)
■ Dispersive interaction

2 Exercise: control of the Jaynes-Cummings system

The Schrödinger system

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2} \sigma_{\mathbf{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)\right)|\psi\rangle
$$

corresponds to two coupled scalar PDE's:

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}-i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{g} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}-i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{e}
\end{aligned}
$$

since $\boldsymbol{a}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)$ and $|\psi\rangle$ corresponds to $\left(\psi_{e}(x, t), \psi_{g}(x, t)\right)$ where $\psi_{e}(., t), \psi_{g}(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ and $\left\|\psi_{e}\right\|^{2}+\left\|\psi_{g}\right\|^{2}=1$.
$\ln \frac{\boldsymbol{H}}{\hbar}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{1}}{2}\right)+i \frac{\Omega}{2} \boldsymbol{\sigma}_{\boldsymbol{X}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right), \omega_{\mathrm{eg}}=\omega_{c}=\omega$ with $|\Omega| \ll \omega$. Then $\boldsymbol{H}=\boldsymbol{H}_{0}+\epsilon \boldsymbol{H}_{1}$ where ϵ is a small parameter and

$$
\begin{aligned}
& \frac{\boldsymbol{H}_{0}}{\hbar}=\frac{\omega}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right) \\
& \epsilon \frac{\boldsymbol{H}_{1}}{\hbar}=i \frac{\Omega}{2} \boldsymbol{\sigma}_{\boldsymbol{x}}\left(\mathbf{a}^{\dagger}-\boldsymbol{a}\right) .
\end{aligned}
$$

$\boldsymbol{H}_{\text {int }}$ is obtained by setting $|\psi\rangle=e^{-i \omega t\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)} e^{\frac{-i \omega t}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}}|\phi\rangle$ in $i \hbar \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle$ to get $i \hbar \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\text {int }}|\phi\rangle$ with

$$
\frac{\boldsymbol{H}_{\mathrm{int}}}{\hbar}=i \frac{\Omega}{2}\left(e^{-i \omega t} \boldsymbol{\sigma}_{-}+e^{i \omega t} \boldsymbol{\sigma}_{+}\right)\left(\boldsymbol{e}^{i \omega t} \boldsymbol{a}^{\dagger}-e^{-i \omega t} \boldsymbol{a}\right)
$$

where we used

$$
e^{i \theta} \boldsymbol{\sigma}_{\mathbf{z}} \sigma_{\boldsymbol{x}} e^{-\frac{i \theta}{2} \boldsymbol{\sigma}_{\mathbf{z}}}=e^{-i \theta} \boldsymbol{\sigma}+e^{i \theta} \boldsymbol{\sigma}_{+}, \quad e^{i \theta\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)} \boldsymbol{a} e^{-i \theta\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)}=e^{-i \theta} \boldsymbol{a}
$$

The secular terms in $\boldsymbol{H}_{\text {int }}$ are given by (RWA, first order approximation) $\boldsymbol{H}_{\mathrm{rwa}}^{1 \text { st }} / \hbar=i \frac{\Omega}{2}\left(\boldsymbol{\sigma}_{-} \mathbf{a}^{\dagger}-\sigma_{+} \mathbf{a}\right)$. Since quantum state $|\phi\rangle=e^{+i \omega t\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)} e^{\frac{+i \omega t}{2} \boldsymbol{\sigma}_{\mathbf{z}}}|\psi\rangle$ obeys approximatively to $i \hbar \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\text {rwa }}^{1 \text { st }}|\phi\rangle$, the original quantum state $|\psi\rangle$ is governed by

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \boldsymbol{a}^{\dagger}-\boldsymbol{\sigma}_{+} \boldsymbol{a}\right)\right)|\psi\rangle
$$

The Jaynes-Cummings Hamiltonian $\left(\omega_{\mathrm{eg}}=\omega_{C}=\omega\right.$) reads:

$$
\boldsymbol{H}_{J C} / \hbar=\frac{\omega}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \mathbf{a}^{\dagger}-\boldsymbol{\sigma}_{+} \boldsymbol{a}\right)
$$

The corresponding PDE is :

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega}{2} \psi_{e}+\frac{\omega}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}-i \frac{\Omega}{2 \sqrt{2}}\left(x-\frac{\partial}{\partial x}\right) \psi_{g} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega}{2} \psi_{g}+\frac{\omega}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}+i \frac{\Omega}{2 \sqrt{2}}\left(x+\frac{\partial}{\partial x}\right) \psi_{e}
\end{aligned}
$$

$$
\frac{\boldsymbol{H}}{\hbar}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{1}}{2}\right)+i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)
$$

with $|\Omega| \ll\left|\omega_{\text {eg }}-\omega_{c}\right| \ll \omega_{\text {eg }}, \omega_{c}$.
Then $\boldsymbol{H}=\boldsymbol{H}_{0}+\epsilon \boldsymbol{H}_{1}$ where ϵ is a small parameter and

$$
\frac{\boldsymbol{H}_{0}}{\hbar}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{l}}{2}\right), \quad \epsilon \frac{\boldsymbol{H}_{1}}{\hbar}=i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)
$$

$\boldsymbol{H}_{\text {int }}$ is obtained by setting $|\psi\rangle=e^{-i \omega_{c} t\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)} e^{\frac{-i \omega_{\mathrm{eg}} t}{2} \boldsymbol{\sigma}_{\mathbf{z}}}|\phi\rangle$ in $i \hbar \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle$ to get $i \hbar \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\text {int }}|\phi\rangle$ with

$$
\begin{aligned}
& \frac{\boldsymbol{H}_{\mathrm{int}}}{\hbar}=i \frac{\Omega}{2}\left(e^{-i \omega_{\mathrm{eg}} t} \boldsymbol{\sigma}+e^{i \omega_{\mathrm{eg}} t} \boldsymbol{\sigma}_{+}\right)\left(e^{i \omega_{c} t} \boldsymbol{a}^{\dagger}-e^{-i \omega_{c} t} \boldsymbol{a}\right) \\
= & i \frac{\Omega}{2}\left(e^{i\left(\omega_{c}-\omega_{\mathrm{eg}}\right) t} \boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-e^{-i\left(\omega_{c}-\omega_{\mathrm{eg}}\right) t} \boldsymbol{\sigma}_{+} \boldsymbol{a}+\boldsymbol{e}^{i\left(\omega_{c}+\omega_{\mathrm{eg}}\right) t} \boldsymbol{\sigma}_{+} \boldsymbol{a}^{\dagger}-e^{-i\left(\omega_{c}+\omega_{\mathrm{eg}}\right) t} \boldsymbol{\sigma} \boldsymbol{a}\right)
\end{aligned}
$$

Thus $\boldsymbol{H}_{\mathrm{rwa}}^{1 \mathrm{st}}=\overline{\boldsymbol{H}_{\text {int }}}=0$: no secular term. We have to compute $\boldsymbol{H}_{\mathrm{rwa}}^{2 \mathrm{nd}}=\overline{\boldsymbol{H}_{\mathrm{int}}}-\bar{i} \overline{\left(\boldsymbol{H}_{\mathrm{int}}-\overline{\boldsymbol{H}_{\mathrm{int}}}\right)\left(\int_{t}\left(\boldsymbol{H}_{\mathrm{int}}-\overline{\boldsymbol{H}_{\mathrm{int}}}\right)\right)}$ where $\int_{t}\left(\boldsymbol{H}_{\mathrm{int}}-\overline{\boldsymbol{H}_{\mathrm{int}}} / \hbar\right.$ corresponds to

$$
\frac{\Omega}{2}\left(\frac{e^{i\left(\omega_{c}-\omega_{\mathrm{eg}}\right) t}}{\omega_{c}-\omega_{\mathrm{eg}}} \boldsymbol{\sigma}_{-} \boldsymbol{a}^{\dagger}+\frac{e^{-i\left(\omega_{c}-\omega_{\mathrm{eg}}\right) t}}{\omega_{c}-\omega_{\mathrm{eg}}} \boldsymbol{\sigma}_{+} \boldsymbol{a}+\frac{e^{i\left(\omega_{c}+\omega_{\mathrm{eg}}\right) t}}{\omega_{c}+\omega_{\mathrm{eg}}} \boldsymbol{\sigma}_{+} \boldsymbol{a}^{\dagger}+\frac{e^{-i\left(\omega_{c}+\omega_{\mathrm{eg}}\right) t}}{\omega_{c}+\omega_{\mathrm{eg}}} \boldsymbol{\sigma} \cdot \boldsymbol{a}\right)
$$

Dispersive spin/spring Hamiltonian and associated PDE

The secular terms in $\boldsymbol{H}_{\mathrm{rwa}}^{\mathrm{n}^{\text {nd }}}$ are

$$
\frac{\Omega^{2}}{4\left(\omega_{c}-\omega_{\mathrm{eg}}\right)}\left(\boldsymbol{\sigma}_{-} \boldsymbol{\sigma}_{+} \boldsymbol{a}^{\dagger} \boldsymbol{a}-\boldsymbol{\sigma}_{+} \boldsymbol{\sigma}_{-} \boldsymbol{a} \boldsymbol{a}^{\dagger}\right)+\frac{\Omega^{2}}{4\left(\omega_{c}+\omega_{\mathrm{eg}}\right)}\left(-\boldsymbol{\sigma}_{\boldsymbol{-}} \boldsymbol{\sigma}_{+} \boldsymbol{a} \boldsymbol{a}^{\dagger}+\sigma_{+} \boldsymbol{\sigma}_{-} \boldsymbol{a}^{\dagger} \boldsymbol{a}\right)
$$

Since $|\Omega| \ll\left|\omega_{\mathrm{eg}}-\omega_{c}\right| \ll \omega_{\mathrm{eg}}, \omega_{c}$, we have $\frac{\Omega^{2}}{4\left(\omega_{c}+\omega_{\mathrm{eg}}\right)} \ll \frac{\Omega^{2}}{4\left(\omega_{c}-\omega_{\mathrm{eg}}\right)}$

$$
\boldsymbol{H}_{\mathrm{rwa}}^{2 \mathrm{nd}} / \hbar \approx-\frac{\Omega^{2}}{4\left(\omega_{c}-\omega_{\mathrm{eg}}\right)}\left(\boldsymbol{\sigma}_{\boldsymbol{z}}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)+\frac{\boldsymbol{l}}{2}\right) .
$$

Since quantum state $|\phi\rangle=e^{+i \omega_{c} t\left(\boldsymbol{N}+\frac{1}{2}\right)} e^{\frac{+i \omega_{\text {eg }} t}{2} \sigma_{z}}|\psi\rangle$ obeys approximatively to $i \hbar \frac{d}{d t}|\phi\rangle=\boldsymbol{H}_{\text {rwa }}^{2 \text { nd }}|\phi\rangle$, the original quantum state $|\psi\rangle$ is governed by $i \frac{d}{d t}|\psi\rangle=\left(\frac{\boldsymbol{H}_{\text {disp }}}{\hbar}-\frac{\Omega^{2}}{8\left(\omega_{c}-\omega_{\text {eg }}\right)}\right)|\psi\rangle$ with

$$
\boldsymbol{H}_{\text {disp }} / \hbar=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)-\frac{\chi}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right) \quad \text { and } \chi=\frac{\Omega^{2}}{2\left(\omega_{c}-\omega_{\mathrm{eg}}\right)}
$$

The corresponding PDE is :

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\frac{1}{2}\left(\omega_{c}-\frac{\chi}{2}\right)\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\frac{1}{2}\left(\omega_{c}+\frac{\chi}{2}\right)\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}
\end{aligned}
$$

1 Averaging of spin/spring systems

- The spin/spring model
- Resonant interaction (Jaynes-Cummings system)

■ Dispersive interaction

2 Exercise: control of the Jaynes-Cummings system

Exercise: control of the Jaynes-Cummings system

Consider the spin-spring model with $\Omega \ll|\omega|$:

$$
\frac{H}{\hbar}=\frac{\omega}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)+i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)+u\left(\boldsymbol{a}+\boldsymbol{a}^{\dagger}\right)
$$

with a real control input $u(t) \in \mathbb{R}$:
1 Show that with the resonant control $u(t)=\boldsymbol{u} e^{-i \omega t}+\boldsymbol{u}^{*} e^{+i \omega t}$ with complex amplitude \boldsymbol{u} such that $|\boldsymbol{u}| \ll \omega$, the first order RWA approximation yields to the following dynamics in the interaction frame

$$
i \frac{d}{d t}|\psi\rangle=\left(i \frac{\Omega}{2}\left(\boldsymbol{\sigma}_{-} \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)+\boldsymbol{u}^{\dagger}+\boldsymbol{u}^{*} \boldsymbol{a}\right)|\psi\rangle
$$

2 Set $\mathbf{v} \in \mathbb{C}$ solution of $\frac{d}{d t} \mathbf{v}=-i \boldsymbol{u}$ and consider the following change of frame $|\phi\rangle=D_{-\mathbf{v}}|\psi\rangle$ with the displacement operator $D_{-\mathbf{v}}=e^{-\mathbf{v a} \mathbf{a}^{\dagger}+\mathbf{v}^{*} \mathbf{a}}$. Show that, up to a global phase change, we have, with $\tilde{\mathbf{u}}=i \frac{\Omega}{2} \mathbf{v}$,

$$
i \frac{d}{d t}|\phi\rangle=\left(\frac{i \Omega}{2}\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)+\left(\tilde{\boldsymbol{u}} \sigma_{+}+\tilde{\boldsymbol{u}}^{*} \boldsymbol{\sigma}\right)\right)|\phi\rangle
$$

3 Take the orthonormal basis $\{|g, n\rangle,|e, n\rangle\}$ with $n \in \mathbb{N}$ being the photon number and where for instance $|g, n\rangle$ stands for the tensor product $|g\rangle \otimes|n\rangle$. Set $|\phi\rangle=\sum_{n} \phi_{g, n}|g, n\rangle+\phi_{e, n}|e, n\rangle$ with $\phi_{g, n}, \phi_{e, n} \in \mathbb{C}$ depending on t and $\sum_{n}\left|\phi_{g, n}\right|^{2}+\left|\phi_{e, n}\right|^{2}=1$. Show that, for $n \geq 0$
$i \frac{d}{d t} \phi_{g, n+1}=i \frac{\Omega}{2} \sqrt{n+1} \phi_{e, n}+\tilde{\boldsymbol{u}}^{*} \phi_{e, n+1}, \quad i \frac{d}{d t} \phi_{e, n}=-i \frac{\Omega}{2} \sqrt{n+1} \phi_{g, n+1}+\tilde{\boldsymbol{u}} \phi_{g, n}$ and $i \frac{d}{d t} \phi_{g, 0}=\tilde{\boldsymbol{u}}^{*} \phi_{e, 0}$.
4 Assume that $|\phi\rangle_{0}=|g, 0\rangle$. Construct an open-loop control $[0, T] \ni t \mapsto \tilde{\boldsymbol{u}}(t)$ such that $|\phi\rangle_{T} \approx|g, 1\rangle$ (hint: use an impulse for $t \in[0, \epsilon]$ followed by 0 on $[\epsilon, T]$ with $\epsilon \ll T$ and well chosen T).
5 Generalize the above open-loop control when the goal state $|\phi\rangle_{T}$ is $|g, n\rangle$ with any arbitrary photon number n.

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 7 Chengdu, July 10, 2019

[^10]
Outline

1 Discrete-time dynamics of the LKB photon box
■ General structure based on three quantum features

- Dispersive probe qubits
- Resonant probe qubits

■ Density operator to cope with measurement imperfections

2 Exercise: Markov process including detection errors

Three quantum features emphasized by the LKB photon box ${ }^{3}$

1 Schrödinger $(\hbar=1)$: wave function $|\psi\rangle$ in Hilbert space \mathcal{H},

$$
\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}|\psi\rangle, \quad \boldsymbol{H}=\boldsymbol{H}_{0}+u \boldsymbol{H}_{1} .
$$

Unitary propagator \boldsymbol{U} solution of $\frac{d}{d t} \boldsymbol{U}=-i \boldsymbol{H} \boldsymbol{U}$ with $\boldsymbol{U}(0)=I$.
2 Origin of dissipation: collapse of the wave packet induced by the measurement of observable \boldsymbol{O} with spectral decomp. $\sum_{\mu} \lambda_{\mu} \boldsymbol{P}_{\mu}$:

■ measurement outcome μ with proba. $\mathbb{P}_{\mu}=\langle\psi| \boldsymbol{P}_{\mu}|\psi\rangle$ depending on $|\psi\rangle$, just before the measurement

- measurement back-action if outcome $\mu=y$:

$$
|\psi\rangle \mapsto|\psi\rangle_{+}=\frac{\boldsymbol{P}_{y}|\psi\rangle}{\sqrt{\langle\psi| \boldsymbol{P}_{y}|\psi\rangle}}
$$

3 Tensor product for the description of composite systems (S, M):
■ Hilbert space $\mathcal{H}=\mathcal{H}_{s} \otimes \mathcal{H}_{M}$
■ Hamiltonian $\boldsymbol{H}=\boldsymbol{H}_{s} \otimes \boldsymbol{I}_{M}+\boldsymbol{H}_{\text {int }}+\boldsymbol{I}_{\boldsymbol{s}} \otimes \boldsymbol{H}_{M}$

- observable on sub-system M only: $\boldsymbol{O}=\boldsymbol{I}_{\boldsymbol{S}} \otimes \boldsymbol{O}_{M}$.
${ }^{3}$ S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities and Photons. Oxford Graduate Texts, 2006.

■ System S corresponds to a quantized harmonic oscillator:

$$
\mathcal{H}_{S}=\mathcal{H}_{c}=\left\{\sum_{n=0}^{\infty} c_{n}|n\rangle \mid\left(c_{n}\right)_{n=0}^{\infty} \in I^{2}(\mathbb{C})\right\}
$$

where $|n\rangle$ represents the Fock state associated to exactly n photons inside the cavity
■ Meter M is a qubit, a 2-level system: $\mathcal{H}_{M}=\mathcal{H}_{a}=\mathbb{C}^{2}$, each atom admits two energy levels and is described by a wave function $c_{g}|g\rangle+c_{e}|e\rangle$ with $\left|c_{g}\right|^{2}+\left|c_{e}\right|^{2}=1$;
■ State of the full system $|\Psi\rangle \in \mathcal{H}_{S} \otimes \mathcal{H}_{M}=\mathcal{H}_{c} \otimes \mathcal{H}_{a}$:

$$
|\Psi\rangle=\sum_{n=0}^{+\infty} c_{n g}|n\rangle \otimes|g\rangle+c_{n e}|n\rangle \otimes|e\rangle, \quad c_{n e}, c_{n g} \in \mathbb{C}
$$

Ortho-normal basis: $(|n\rangle \otimes|g\rangle,|n\rangle \otimes|e\rangle)_{n \in \mathbb{N}}$.

■ When atom comes out $B,|\Psi\rangle_{B}$ of the full system is separable $|\Psi\rangle_{B}=|\psi\rangle \otimes|g\rangle$.
■ Just before the measurement in D, the state is in general entangled (not separable):

$$
|\Psi\rangle_{R_{2}}=\boldsymbol{U}_{S M}(|\psi\rangle \otimes|g\rangle)=\left(\boldsymbol{M}_{g}|\psi\rangle\right) \otimes|g\rangle+\left(\boldsymbol{M}_{\boldsymbol{e}}|\psi\rangle\right) \otimes|\boldsymbol{e}\rangle
$$

where $\boldsymbol{U}_{S M}$ is a unitary transformation (Schrödinger propagator) defining the linear measurement operators \boldsymbol{M}_{g} and \boldsymbol{M}_{e} on \mathcal{H}_{S}. Since $\boldsymbol{U}_{S M}$ is unitary, $\boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}+\boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}=\boldsymbol{I}$.

Just before D, the field/atom state is entangled:

$$
\boldsymbol{M}_{g}|\psi\rangle \otimes|g\rangle+\boldsymbol{M}_{e}|\psi\rangle \otimes|\boldsymbol{e}\rangle
$$

Denote by $\mu \in\{g, e\}$ the measurement outcome in detector D : with probability $\mathbb{P}_{\mu}=\langle\psi| \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu}|\psi\rangle$ we get μ. Just after the measurement outcome $\mu=y$, the state becomes separable:

$$
|\Psi\rangle_{D}=\frac{1}{\sqrt{\mathbb{P}_{y}}}\left(\boldsymbol{M}_{y}|\psi\rangle\right) \otimes|\boldsymbol{y}\rangle=\left(\frac{\boldsymbol{M}_{\boldsymbol{y}}}{\sqrt{\langle\psi| \boldsymbol{M}_{y}^{\dagger} \boldsymbol{M}_{y}|\psi\rangle}}|\psi\rangle\right) \otimes|\boldsymbol{y}\rangle .
$$

Markov process: $\left|\psi_{k}\right\rangle \equiv|\psi\rangle_{t=k \Delta t}, k \in \mathbb{N}, \Delta t$ sampling period,

$$
\left|\psi_{k+1}\right\rangle= \begin{cases}\frac{\boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}} & \text { with } y_{k}=g, \text { probability } \mathbb{P}_{g}=\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle ; \\ \frac{\boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\top} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}} & \text { with } y_{k}=e, \text { probability } \mathbb{P}_{e}=\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle .\end{cases}
$$

$$
\begin{aligned}
\boldsymbol{U}_{R_{1}} & =\left(\frac{|g\rangle+|e\rangle}{\sqrt{2}}\right)\langle g|+\left(\frac{|g\rangle-|e\rangle}{\sqrt{2}}\right)\langle e| \\
\boldsymbol{U}_{R_{2}} & =\left(\frac{|g\rangle+e^{-i \phi_{R}}|e\rangle}{\sqrt{2}}\right)\langle g|+\left(\frac{e^{i \phi_{R}}|g\rangle-|e\rangle}{\sqrt{2}}\right)\langle e| \\
\boldsymbol{U}_{C} & =e^{-i \frac{\phi_{0}}{2} \boldsymbol{N}}|g\rangle\langle g|+e^{i \frac{\phi_{0}}{2} \boldsymbol{N}}|e\rangle\langle e|
\end{aligned}
$$

where ϕ_{0} and ϕ_{R} are constant parameters.
The measurement operators \boldsymbol{M}_{g} and \boldsymbol{M}_{e} are the following bounded operators:

$$
\boldsymbol{M}_{g}=\cos \left(\frac{\phi_{R}+\phi_{0} \boldsymbol{N}}{2}\right), \quad \boldsymbol{M}_{e}=\sin \left(\frac{\phi_{R}+\phi_{0} \boldsymbol{N}}{2}\right)
$$

up to irrelevant global phases.
Exercise: prove the above formulae for \boldsymbol{M}_{g} and $\boldsymbol{M}_{\boldsymbol{e}}$.

$$
\boldsymbol{U}_{R_{1}}=e^{-i \frac{\theta_{1}}{2} \boldsymbol{\sigma}_{\boldsymbol{y}}}=\cos \left(\frac{\theta_{1}}{2}\right)+\sin \left(\frac{\theta_{1}}{2}\right)(|g\rangle\langle e|-|e\rangle\langle g|) \quad \text { and } \quad \boldsymbol{U}_{R_{2}}=\boldsymbol{I}
$$ and

$$
\begin{aligned}
\boldsymbol{U}_{C}=|g\rangle\langle g| \cos & \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}}\right)+|e\rangle\langle e| \cos \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}+\boldsymbol{I}}\right) \\
& +|g\rangle\langle e|\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right) \boldsymbol{a}^{\dagger}-|e\rangle\langle g| \boldsymbol{a}\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right)
\end{aligned}
$$

The measurement operators \boldsymbol{M}_{g} and \boldsymbol{M}_{e} are the following bounded operators:

$$
\begin{aligned}
& \boldsymbol{M}_{g}=\cos \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}}\right)-\sin \left(\frac{\theta_{1}}{2}\right)\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right) \boldsymbol{a}^{\dagger} \\
& \boldsymbol{M}_{e}=-\sin \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}+1}\right)-\cos \left(\frac{\theta_{1}}{2}\right) \boldsymbol{a}\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right)
\end{aligned}
$$

Exercise: Show that $\boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}+\boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}=\boldsymbol{I}$.

■ With pure state $\boldsymbol{\rho}=|\psi\rangle\langle\psi|$, we have

$$
\boldsymbol{\rho}_{+}=\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|=\frac{1}{\operatorname{Tr}\left(\boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}\right)} \boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}
$$

when the atom collapses in $\mu=g$, e with proba. $\operatorname{Tr}\left(\boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}\right)$.
■ Detection efficiency: the probability to detect the atom is $\eta \in[0,1]$. Three possible outcomes for $y: y=g$ if detection in g, $y=e$ if detection in e and $y=0$ if no detection.

The only possible update is based on ρ : expectation $\boldsymbol{\rho}_{+}$of $\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|$ knowing ρ and the outcome $y \in\{g, e, 0\}$.

$$
\boldsymbol{\rho}_{+}= \begin{cases}\frac{\boldsymbol{M}_{g} \rho \boldsymbol{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{\rho} \rho \boldsymbol{M}_{g}\right)} & \text { if } y=g, \text { probability } \eta \operatorname{Tr}\left(\boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}\right) \\ \frac{\boldsymbol{M}_{e} \rho \boldsymbol{M}_{\dot{e}}}{\operatorname{Tr}\left(\boldsymbol{M}_{\rho} \boldsymbol{\boldsymbol { M } _ { e }}\right)} & \text { if } y=e, \text { probability } \eta \operatorname{Tr}\left(\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}\right) \\ \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger} & \text { if } y=0, \operatorname{probability} 1-\eta\end{cases}
$$

For $\eta=0: \boldsymbol{\rho}_{+}=\boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}=\mathbb{K}(\boldsymbol{\rho})=\mathbb{E}\left(\boldsymbol{\rho}_{+} \mid \boldsymbol{\rho}\right)$ defines a Kraus map.

- \mathcal{H} separable Hilbert space. Pure states $|\psi\rangle$ are unitary vectors of \mathcal{H} also called (probability amplitude) wave functions.
- $\mathcal{L}(\mathcal{H})$ is the space of linear operators from \mathcal{H} to \mathcal{H} : it contains the spaces of

■ bounded operators (Banach space $\mathcal{B}(\mathcal{H})$ with sup-norm)

- compact operators (space $\mathcal{K}^{c}(\mathcal{H})$)

■ Hilbert-Schmidt operators (Hilbert space $\mathcal{K}^{2}(\mathcal{H})$ with the Frobenius norm)
■ trace class operators (Banach space $\mathcal{K}^{1}(\mathcal{H})$ with the trace norm).
■ the most general quantum state ρ is non negative Hermitian trace class operator of trace one. ρ live in a closed convex subset of $\mathcal{K}^{1}(\mathcal{H})$.
If $\operatorname{Tr}\left(\boldsymbol{\rho}^{2}\right)=1$ then $\boldsymbol{\rho}=|\psi\rangle\langle\psi|$ where $|\psi\rangle$ is pure state.
For \mathcal{H} of finite dimension, these operator spaces coincide. For \mathcal{H} of infinite dimension, they are all different:

$$
\operatorname{dim} \mathcal{H}=\infty \quad \Rightarrow \quad \mathcal{K}^{1}(\mathcal{H}) \varsubsetneqq \mathcal{K}^{2}(\mathcal{H}) \varsubsetneqq \mathcal{K}^{c}(\mathcal{H}) \varsubsetneqq \mathcal{B}(\mathcal{H}) \varsubsetneqq \mathcal{L}(\mathcal{H}) .
$$

■ With pure state $\boldsymbol{\rho}=|\psi\rangle\langle\psi|$, we have

$$
\boldsymbol{\rho}_{+}=\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|=\frac{1}{\operatorname{Tr}\left(\boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}\right)} \boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}
$$

when the atom collapses in $\mu=g$, e with proba. $\operatorname{Tr}\left(\boldsymbol{M}_{\mu} \boldsymbol{\rho} \boldsymbol{M}_{\mu}^{\dagger}\right)$.
■ Detection error rates: $\mathbb{P}(y=e / \mu=g)=\eta_{g} \in[0,1]$ the probability of erroneous assignation to e when the atom collapses in $g ; \mathbb{P}(y=g / \mu=e)=\eta_{e} \in[0,1]$ (given by the contrast of the Ramsey fringes).

Bayesian law: expectation $\boldsymbol{\rho}_{+}$of $\left|\psi_{+}\right\rangle\left\langle\psi_{+}\right|$knowing ρ and the imperfect detection y.
$\boldsymbol{\rho}_{+}=\left\{\begin{array}{l}\frac{\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right)} \text { if } y=g, \text { prob. } \operatorname{Tr}\left(\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right) ; \\ \frac{\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right)} \text { if } y=\boldsymbol{e}, \operatorname{prob.} \operatorname{Tr}\left(\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right) .\end{array}\right.$
ρ_{+}does not remain pure: the quantum state ρ_{+}becomes a mixed state; $\left|\psi_{+}\right\rangle$becomes physically irrelevant.

We get
$\boldsymbol{\rho}_{+}= \begin{cases}\frac{\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right)}, & \text { with prob. } \operatorname{Tr}\left(\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right) ; \\ \frac{\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right)} & \text { with prob. } \operatorname{Tr}\left(\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right) .\end{cases}$
Key point:
$\operatorname{Tr}\left(\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right)$ and $\operatorname{Tr}\left(\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}\right)$
are the probabilities to detect $y=g$ and e, knowing ρ. Reformulation with quantum maps : set

$$
\begin{gathered}
\mathbb{K}_{g}(\boldsymbol{\rho})=\left(1-\eta_{g}\right) \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\eta_{e} \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}, \quad \mathbb{K}_{e}(\boldsymbol{\rho})=\eta_{g} \boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\left(1-\eta_{e}\right) \boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger} . \\
\boldsymbol{\rho}_{+}=\frac{\mathbb{K}_{y}(\boldsymbol{\rho})}{\operatorname{Tr}\left(\mathbb{K}_{y}(\boldsymbol{\rho})\right)} \quad \text { when we detect } y
\end{gathered}
$$

The probability to detect y knowing ρ is $\operatorname{Tr}\left(\mathbb{K}_{y}(\rho)\right)$.
We have the following Kraus map:

$$
\mathbb{E}\left(\rho_{+} \mid \rho\right)=\mathbb{K}_{g}(\rho)+\mathbb{K}_{e}(\boldsymbol{\rho})=\mathbb{K}(\boldsymbol{\rho})=\boldsymbol{M}_{g} \boldsymbol{\rho} \boldsymbol{M}_{g}^{\dagger}+\boldsymbol{M}_{e} \boldsymbol{\rho} \boldsymbol{M}_{e}^{\dagger}
$$

Exercise: Markov process including detection errors

Consider a set of N bounded operators \boldsymbol{M}_{μ} on an Hilbert space \mathcal{H} such that $\sum_{\mu} \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu}=\boldsymbol{I}$. Take the ideal Markov process $\boldsymbol{\rho}_{k+1}=\frac{\boldsymbol{M}_{\mu} \boldsymbol{\rho}_{k} \boldsymbol{M}_{\mu}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{\mu} \boldsymbol{\rho}_{k} \boldsymbol{M}_{\mu}^{\dagger}\right)}$ and ideal measurement outcomes $\mu \in\{1, \ldots, N\}$ of probability $\operatorname{Tr}\left(\boldsymbol{M}_{\mu} \boldsymbol{\rho}_{k} \boldsymbol{M}_{\mu}^{\dagger}\right)$. Assume that the real measurement process provides N_{d} different values $y \in\left\{1, \ldots, N_{d}\right\}$ correlated to the ideal measurement μ via the following conditional classical probabilities $\mathbb{P}(y \mid \mu)=\eta_{y, \mu} \in[0,1]$ where η is a left stochastic matrix $\left(\sum_{y} \eta_{y, \mu}=1\right.$ for each μ).
Denote by $\widehat{\rho}_{k}$ the expectation value of ρ_{k} knowing ρ_{0} and the real measurement outcomes y_{0}, \ldots, y_{k-1} at steps $0, \ldots, k-1$. Consider the un-normalized ideal quantum state

$$
\boldsymbol{\xi}_{\mu_{0}, \ldots, \mu_{k}}=\boldsymbol{M}_{\mu_{k}} \ldots \boldsymbol{M}_{\mu_{0}} \boldsymbol{\rho}_{0} \boldsymbol{M}_{\mu_{0}}^{\dagger} \ldots \boldsymbol{M}_{\mu_{k}}^{\dagger}
$$

associated to the ideal outcomes μ_{0}, \ldots, μ_{k}.
1 Show that $\mathbb{P}\left(\mu_{0}, \ldots, \mu_{k} \mid \rho_{0}\right)=\operatorname{Tr}\left(\boldsymbol{\xi}_{\mu_{0}, \ldots, \mu_{k}}\right)$.
2 Using Bayes law, prove that

$$
\mathbb{P}\left(y_{0}, \ldots, y_{k} \mid \rho_{0}\right)=\sum_{\mu_{k}=1}^{N} \ldots \sum_{\mu_{0}=1}^{N} \eta_{y_{0}, \mu_{0}} \ldots \eta_{y_{k}, \mu_{k}} \operatorname{Tr}\left(\boldsymbol{\xi}_{\mu_{0}, \ldots, \mu_{k}}\right) .
$$

3 Using Bayes law, prove also that

$$
\mathbb{P}\left(\mu_{0}, \ldots, \mu_{k} \mid y_{0}, \ldots, y_{k}, \rho_{0}\right)=\frac{\eta_{y_{0}, \mu_{0}} \ldots \eta_{y_{k}, \mu_{k}} \operatorname{Tr}\left(\boldsymbol{\xi}_{\mu_{0}, \ldots, \mu_{k}}\right)}{\mathbb{P}\left(y_{0}, \ldots, y_{k} \mid \rho_{0}\right)}
$$

4 Prove for $\ell=1, \ldots, k-1$ that $\widehat{\boldsymbol{\rho}}_{\ell+1}=\frac{\sum_{\mu=1}^{N} \eta_{\boldsymbol{y}_{\ell}, \mu} \boldsymbol{M}_{\mu} \widehat{\boldsymbol{\rho}}_{\ell} \boldsymbol{M}_{\mu}^{\dagger}}{\operatorname{Tr}\left(\sum_{\mu=1}^{N} \eta_{\boldsymbol{y}_{\ell}, \mu} \boldsymbol{M}_{\mu} \widehat{\boldsymbol{\rho}}_{\ell} \boldsymbol{M}_{\mu}^{\dagger}\right)}$ and that $\mathbb{P}\left(y_{\ell} \mid y_{0}, \ldots, y_{\ell-1}, \boldsymbol{\rho}_{0}\right)=\operatorname{Tr}\left(\sum_{\mu=1}^{N} \eta_{y_{\ell}, \mu} \boldsymbol{M}_{\mu}^{\dagger} \widehat{\boldsymbol{\rho}}_{\ell} \boldsymbol{M}_{\mu}\right)$ (hint: use the un-normalized estimate $\widehat{\boldsymbol{\xi}}_{y_{0}, \ldots, y_{\ell}}$ colinear to $\widehat{\boldsymbol{\rho}}_{\ell+1}$).

Quantum Control ${ }^{1}$ International Graduate School on Control
 www.eeci-igsc.eu

Pierre Rouchon²

Lecture 8
Chengdu, July 10, 2019

[^11]
Outline

1 Quantum measurement and filtering
■ Projective measurement
■ Positive Operator Valued Measurement (POVM)
■ Stochastic process attached to POVM
■ Quantum Filtering

2 Convergence issues with Schrödinger and Heisenberg pictures

3 Exercise: cooling with resonant qubits in $|g\rangle$

Outline

1 Quantum measurement and filtering

- Projective measurement
- Positive Operator Valued Measurement (POVM)
- Stochastic process attached to POVM
- Quantum Filtering

2 Convergence issues with Schrödinger and Heisenberg pictures

3 Exercise: cooling with resonant qubits in $|g\rangle$

For the system defined on Hilbert space \mathcal{H}, take
■ an observable \boldsymbol{O} (Hermitian operator) defined on \mathcal{H} :

$$
\boldsymbol{O}=\sum_{\nu} \lambda_{\nu} \boldsymbol{P}_{\nu}
$$

where λ_{ν} 's are the eigenvalues of \boldsymbol{O} and \boldsymbol{P}_{ν} is the projection operator over the associated eigenspace.

- a quantum state given by the wave function $|\psi\rangle$ in \mathcal{H}.

Projective measurement of the physical observable $\boldsymbol{O}=\sum_{\nu} \lambda_{\nu} \boldsymbol{P}_{\nu}$ for the quantum state $|\psi\rangle$:
1 The probability of obtaining the value λ_{ν} is given by $\mathbb{P}_{\nu}=\langle\psi| \boldsymbol{P}_{\nu}|\psi\rangle$; note that $\sum_{\nu} \mathbb{P}_{\nu}=1$ as $\sum_{\nu} \boldsymbol{P}_{\nu}=\boldsymbol{I}_{\mathcal{H}}\left(\boldsymbol{I}_{\mathcal{H}}\right.$ represents the identity operator of $\mathcal{H})$.
2 After the measurement, the conditional (a posteriori) state $\left|\psi_{+}\right\rangle$ of the system, given the outcome λ_{ν}, is

$$
\left|\psi_{+}\right\rangle=\frac{\boldsymbol{P}_{\nu}|\psi\rangle}{\sqrt{\mathbb{P}_{\nu}}} \quad \text { (collapse of the wave packet). }
$$

System S of interest (a quantized electromagnetic field) interacts with the meter M (a probe atom), and the experimenter measures projectively the meter M (the probe atom). Need for a Composite system: $\mathcal{H}_{S} \otimes \mathcal{H}_{M}$ where \mathcal{H}_{S} and \mathcal{H}_{M} are Hilbert spaces of S and M. Measurement process in three successive steps:

1 Initially the quantum state is separable

$$
\mathcal{H}_{S} \otimes \mathcal{H}_{M} \ni|\Psi\rangle=\left|\psi_{S}\right\rangle \otimes\left|\psi_{M}\right\rangle
$$

with a well defined and known state $\left|\psi_{M}\right\rangle$ for M.
2 Then a Schrödinger evolution during a small time (unitary operator $\left.\boldsymbol{U}_{S, M}\right)$ of the composite system from $\left|\psi_{S}\right\rangle \otimes\left|\psi_{M}\right\rangle$ and producing $\boldsymbol{U}_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\psi_{M}\right\rangle\right)$, entangled in general.
3 Finally a projective measurement of the meter M :
$\boldsymbol{O}_{M}=\boldsymbol{I}_{S} \otimes\left(\sum_{\nu} \lambda_{\nu} \boldsymbol{P}_{\nu}\right)$ the measured observable for the meter. Projection operator \boldsymbol{P}_{ν} is a rank-1 projection in \mathcal{H}_{M} over the eigenstate $\left|\xi_{\nu}\right\rangle \in \mathcal{H}_{M}: \boldsymbol{P}_{\nu}=\left|\xi_{\nu}\right\rangle\left\langle\xi_{\nu}\right|$.

Define the measurement operators \boldsymbol{M}_{ν} via

$$
\forall\left|\psi_{S}\right\rangle \in \mathcal{H}_{S}, \quad \boldsymbol{U}_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\psi_{M}\right\rangle\right)=\sum_{\nu}\left(\boldsymbol{M}_{\nu}\left|\psi_{S}\right\rangle\right) \otimes\left|\xi_{\nu}\right\rangle .
$$

Then $\sum_{\nu} \boldsymbol{M}_{\nu}^{\dagger} \boldsymbol{M}_{\nu}=\boldsymbol{I}_{\boldsymbol{S}}$. The set $\left\{\boldsymbol{M}_{\nu}\right\}$ defines a Positive Operator Valued Measurement (POVM). In $\mathcal{H}_{S} \otimes \mathcal{H}_{M}$, projective measurement of $\boldsymbol{O}_{M}=\boldsymbol{I}_{\boldsymbol{S}} \otimes\left(\sum_{\nu} \lambda_{\nu} \boldsymbol{P}_{\nu}\right)$ with quantum state $\boldsymbol{U}_{S, M}\left(\left|\psi_{S}\right\rangle \otimes\left|\psi_{M}\right\rangle\right)$:
1 The probability of obtaining the value λ_{ν} is given by

$$
\mathbb{P}_{\nu}=\left\langle\psi_{\boldsymbol{S}}\right| \boldsymbol{M}_{\nu}^{\dagger} \boldsymbol{M}_{\nu}\left|\psi_{\boldsymbol{S}}\right\rangle
$$

2 After the measurement, the conditional (a posteriori) state of the system, given the outcome ν, is

$$
\left|\psi_{S,+}\right\rangle=\frac{\boldsymbol{M}_{\nu}\left|\psi_{S}\right\rangle}{\sqrt{\mathbb{P}_{\nu}}}
$$

- To the POVM $\left(\boldsymbol{M}_{\nu}\right)$ on \mathcal{H}_{S} is attached a stochastic process of quantum state $|\psi\rangle$

$$
\left|\psi_{+}\right\rangle=\frac{\boldsymbol{M}_{\nu}|\psi\rangle}{\sqrt{\mathbb{P}_{\nu}}} \text { with probability } \mathbb{P}_{\nu}=\langle\psi| \boldsymbol{M}_{\nu}^{\dagger} \boldsymbol{M}_{\nu}|\psi\rangle
$$

- For any observable \boldsymbol{A} on \mathcal{H}_{s}, its conditional expectation value after the transition knowing the state $|\psi\rangle$

$$
\mathbb{E}\left(\left\langle\psi_{+}\right| \boldsymbol{A}\left|\psi_{+}\right\rangle||\psi\rangle)=\langle\psi|\left(\sum_{\nu} \boldsymbol{M}_{\nu}^{\dagger} \boldsymbol{A} \boldsymbol{M}_{\nu}\right)|\psi\rangle=\operatorname{Tr}(\boldsymbol{A} \boldsymbol{K}(|\psi\rangle\langle\psi|))\right.
$$

with Kraus map $\boldsymbol{K}(\rho)=\sum_{\nu} \boldsymbol{M}_{\nu} \rho \boldsymbol{M}_{\nu}^{\dagger}$ with $\rho=|\psi\rangle\langle\psi|$ density operator corresponding to $|\psi\rangle$.

- Imperfection and errors described by left stochastic matrix ($\eta_{y, \nu}$) where $\eta_{y, \nu}$ is the probability of detector outcome y knowing that the ideal detection $\nu\left(\sum_{y} \eta_{y, \nu} \equiv 1\right)$. Then Bayes law yields

$$
\mathbb{E}\left(\rho_{+} \mid \rho, \boldsymbol{y}\right)=\frac{\boldsymbol{K}_{y}(\rho)}{\operatorname{Tr}\left(\boldsymbol{K}_{y}(\rho)\right)}
$$

with completely positive linear maps $\boldsymbol{K}_{y}(\rho)=\sum_{\nu} \eta_{\boldsymbol{y}, \nu} \boldsymbol{M}_{\nu} \rho \boldsymbol{M}_{\nu}^{\dagger}$ depending on y. Probability to detect y knowing ρ is $\operatorname{Tr}\left(\boldsymbol{K}_{y}(\rho)\right.$.

Stochastic Master Equation (SME) and quantum filtering

Discrete-time models are Markov processes

$$
\rho_{k+1}=\frac{\boldsymbol{K}_{y_{k}}\left(\rho_{k}\right)}{\operatorname{Tr}\left(\boldsymbol{K}_{y_{k}}\left(\rho_{k}\right)\right)} \text {, with proba. } \mathbb{P}_{y_{k}}\left(\rho_{k}\right)=\operatorname{Tr}\left(\boldsymbol{K}_{y_{k}}\left(\rho_{k}\right)\right)
$$

where each \boldsymbol{K}_{y} is a linear completely positive map depending on the measurement outcomes. $\boldsymbol{K}=\sum_{y} \boldsymbol{K}_{y}$ corresponds to a Kraus maps (ensemble average, quantum channel)

$$
\mathbb{E}\left(\rho_{k+1} \mid \rho_{k}\right)=\boldsymbol{K}\left(\rho_{k}\right)=\sum_{y} \boldsymbol{K}_{y}\left(\rho_{k}\right)
$$

Quantum filtering (Belavkin quantum filters)

data: initial estimation $\hat{\rho}_{0}$ of the quantum state ρ at step $k=0$, past measurement outcomes y_{l} for $I \in\{0, \ldots, k-1\}$;
goal: estimation $\hat{\rho}_{k}$ of ρ at step k via the recurrence (quantum filter)

$$
\hat{\rho}_{l+1}=\frac{\boldsymbol{K}_{y_{l}}\left(\hat{\rho}_{l}\right)}{\operatorname{Tr}\left(\boldsymbol{K}_{y_{l}}\left(\hat{\rho}_{l}\right)\right)}, \quad I=0, \ldots, k-1 .
$$

stability If the initial estimate $\hat{\rho}_{0}$ of ρ differs from ρ_{0}, then $\hat{\rho}_{k}$, the quantum-filter state at step k tends to converge to ρ_{k} (the fidelity $F(\rho, \hat{\rho}) \triangleq \operatorname{Tr}(\sqrt{\sqrt{\rho} \hat{\rho} \sqrt{\rho}})$ between ρ and $\hat{\rho}$ is a sub-martingale ${ }^{3}$).
${ }^{3}$ PR: Fidelity is a Sub-Martingale for Discrete-Time Quantum Filters. IEEE Transactions on Automatic Control, 2011, 56, 2743-2747.

Outline

1 Quantum measurement and filtering

- Projective measurement
- Positive Operator Valued Measurement (POVM)
- Stochastic process attached to POVM
- Quantum Filtering

2 Convergence issues with Schrödinger and Heisenberg pictures

3 Exercise: cooling with resonant qubits in $|g\rangle$

- Any open model of quantum system in discrete time is governed by a Markov chain of the form

$$
\rho_{k+1}=\frac{\mathbb{K}_{y_{k}}\left(\rho_{k}\right)}{\operatorname{Tr}\left(\mathbb{K}_{y_{k}}\left(\rho_{k}\right)\right)},
$$

with the probability $\operatorname{Tr}\left(\mathbb{K}_{y_{k}}\left(\rho_{k}\right)\right)$ to have the measurement outcome y_{k} knowing ρ_{k-1}.
■ The structure of the super-operators \mathbb{K}_{y} is as follows. Each \mathbb{K}_{y} is a linear completely positive map (a quantum operation, a partial Kraus map 4) and $\sum_{y} \mathbb{K}_{y}(\rho)=\mathbb{K}(\rho)$ is a Kraus map, i.e. $\mathbb{K}(\boldsymbol{\rho})=\sum_{\mu} \boldsymbol{K}_{\mu} \boldsymbol{\rho} \boldsymbol{K}_{\mu}^{\dagger}$ with $\sum_{\mu} \boldsymbol{K}_{\mu}^{\dagger} \boldsymbol{K}_{\mu}=\boldsymbol{I}$.
${ }^{4}$ Each \mathbb{K}_{y} admits the expression

$$
\mathbb{K}_{y}(\boldsymbol{\rho})=\sum_{\mu} \boldsymbol{K}_{y, \mu} \boldsymbol{\rho} \boldsymbol{K}_{y, \mu}^{\dagger}
$$

where $\left(\boldsymbol{K}_{\boldsymbol{y}, \mu}\right)$ are bounded operators on \mathcal{H}.

■ Without measurement record, the quantum state ρ_{k} obeys to the master equation

$$
\boldsymbol{\rho}_{k+1}=\mathbb{K}\left(\boldsymbol{\rho}_{k}\right) .
$$

since $\mathbb{E}\left(\rho_{k+1} \mid \rho_{k}\right)=\mathbb{K}\left(\boldsymbol{\rho}_{k}\right)$ (ensemble average).
$■ \mathbb{K}$ is always a contraction (not strict in general) for the following two such metrics. For any density operators ρ and ρ^{\prime} we have

$$
\left\|\mathbb{K}(\rho)-\mathbb{K}\left(\rho^{\prime}\right)\right\|_{1} \leq\left\|\rho-\rho^{\prime}\right\|_{1} \text { and } F\left(\mathbb{K}(\rho), \mathbb{K}\left(\rho^{\prime}\right)\right) \geq F\left(\rho, \rho^{\prime}\right)
$$

where the trace norm $\|\bullet\|_{1}$ and fidelity F are given by

$$
\left\|\rho-\rho^{\prime}\right\|_{1} \triangleq \operatorname{Tr}\left(\left|\rho-\rho^{\prime}\right|\right) \text { and } F\left(\rho, \rho^{\prime}\right) \triangleq \operatorname{Tr}\left(\sqrt{\sqrt{\rho} \rho^{\prime} \sqrt{\rho}}\right)
$$

1 Unitary invariance: for any unitary operator $U\left(U^{\dagger} U=I\right)$, $D\left(U_{\rho} U^{\dagger}, U \rho^{\prime} U^{\dagger}\right)=D\left(\rho, \rho^{\prime}\right)$.
2 For any density operators ρ and ρ^{\prime},

$$
\begin{gathered}
D\left(\rho, \rho^{\prime}\right)=\max _{\substack{P \text { such that }}} \operatorname{Tr}\left(P\left(\rho-\rho^{\prime}\right)\right) . \\
0 \leq P=P^{\dagger} \leq 1
\end{gathered}
$$

3 Triangular inequality: for any density operators ρ, ρ^{\prime} and $\rho^{\prime \prime}$

$$
D\left(\rho, \rho^{\prime \prime}\right) \leq D\left(\rho, \rho^{\prime}\right)+D\left(\rho^{\prime}, \rho^{\prime \prime}\right) .
$$

Complement: Kraus maps are contractions for several "distances"5

For any Kraus map $\rho \mapsto \boldsymbol{K}(\rho)=\sum_{\mu} M_{\mu} \rho M_{\mu}^{\dagger}\left(\sum_{\mu} M_{\mu}^{\dagger} M_{\mu}=I\right)$ $d(\boldsymbol{K}(\rho), \boldsymbol{K}(\sigma)) \leq d(\rho, \sigma)$ with

- trace distance: $d_{t r}(\rho, \sigma)=\frac{1}{2} \operatorname{Tr}(|\rho-\sigma|)$.

■ Bures distance: $d_{B}(\rho, \sigma)=\sqrt{1-F(\rho, \sigma)}$ with fidelity $F(\rho, \sigma)=\operatorname{Tr}(\sqrt{\sqrt{\rho} \sigma \sqrt{\rho}})$.

■ Chernoff distance: $d_{C}(\rho, \sigma)=\sqrt{1-Q(\rho, \sigma)}$ where $Q(\rho, \sigma)=\min _{0 \leq s \leq 1} \operatorname{Tr}\left(\rho^{s} \sigma^{1-s}\right)$.
■ Relative entropy: $d_{S}(\rho, \sigma)=\sqrt{\operatorname{Tr}(\rho(\log \rho-\log \sigma))}$.
■ χ^{2}-divergence: $d_{\chi^{2}}(\rho, \sigma)=\sqrt{\operatorname{Tr}\left((\rho-\sigma) \sigma^{-\frac{1}{2}}(\rho-\sigma) \sigma^{-\frac{1}{2}}\right)}$.
■ Hilbert's projective metric: if $\operatorname{supp}(\rho)=\operatorname{supp}(\sigma)$
$d_{h}(\rho, \sigma)=\log \left(\left\|\rho^{-\frac{1}{2}} \sigma \rho^{-\frac{1}{2}}\right\|_{\infty}\left\|\sigma^{-\frac{1}{2}} \rho \sigma^{-\frac{1}{2}}\right\|_{\infty}\right)$
otherwise $d_{h}(\rho, \sigma)=+\infty$.
${ }^{5}$ A good summary in M.J. Kastoryano PhD thesis: Quantum Markov Chain Mixing and Dissipative Engineering. University of Copenhagen, December 2011.

The Schrödinger approach $d_{h}(\rho, \sigma)=\log \left(\left\|\rho^{-\frac{1}{2}} \sigma \rho^{-\frac{1}{2}}\right\|_{\infty}\left\|\sigma^{-\frac{1}{2}} \rho \sigma^{-\frac{1}{2}}\right\|_{\infty}\right)$

$$
\boldsymbol{K}(\rho)=\sum M_{\mu} \rho M_{\mu}^{\dagger}, \quad \sum M_{\mu}^{\dagger} M_{\mu}=1
$$

Contraction ratio: $\tanh \left(\frac{\Delta(\boldsymbol{K})}{4}\right)$ with $\Delta(\boldsymbol{K})=\max _{\rho, \sigma>0} d_{h}(\boldsymbol{K}(\rho), \boldsymbol{K}(\sigma))$ The Heisenberg approach (dual of Schrödinger approach):

$$
\boldsymbol{K}^{*}(A)=\sum M_{\mu}^{\dagger} A M_{\mu}, \quad \boldsymbol{K}^{*}(I)=I
$$

"Contraction of the spectrum":

$$
\lambda_{\min }(\boldsymbol{A}) \leq \lambda_{\min }\left(\boldsymbol{K}^{*}(\boldsymbol{A})\right) \leq \lambda_{\max }\left(\boldsymbol{K}^{*}(\boldsymbol{A})\right) \leq \lambda_{\max }(\boldsymbol{A})
$$

${ }^{6}$ R. Sepulchre et al.: Consensus in non-commutative spaces. CDC 2010.
${ }^{7}$ D. Reeb et al.: Hilbert's projective metric in quantum information theory. J. Math. Phys. 52, 082201 (2011).

- The "Heisenberg description" is given by iterates $\boldsymbol{A}_{k+1}=\mathbb{K}^{*}\left(\boldsymbol{A}_{k}\right)$ from an initial bounded Hermitian operator \boldsymbol{A}_{0} of the the dual map \mathbb{K}^{*} characterized as follows: $\operatorname{Tr}(\boldsymbol{A} \mathbb{K}(\boldsymbol{\rho}))=\operatorname{Tr}\left(\mathbb{K}^{*}(\boldsymbol{A}) \boldsymbol{\rho}\right)$ for any bounded operator \boldsymbol{A} on \mathcal{H}. Thus

$$
\mathbb{K}^{*}(\boldsymbol{A})=\sum_{\mu} \boldsymbol{K}_{\mu}^{\dagger} \boldsymbol{A} \boldsymbol{K}_{\mu} \text { when } \mathbb{K}(\boldsymbol{\rho})=\sum_{\mu} \boldsymbol{K}_{\mu} \boldsymbol{\rho} \boldsymbol{K}_{\mu}^{\dagger} .
$$

\mathbb{K}^{*} is an unital map, i.e., $\mathbb{K}^{*}(\boldsymbol{I})=\boldsymbol{I}$, and the image via \mathbb{K}^{*} of any bounded operator is a bounded operator.

- When \mathcal{H} is of finite dimension, we have, for any Hermitian operator \boldsymbol{A} :

$$
\begin{equation*}
\lambda_{\min }(\boldsymbol{A}) \leq \lambda_{\min }\left(\mathbb{K}^{*}(\boldsymbol{A})\right) \leq \lambda_{\max }\left(\mathbb{K}^{*}(\boldsymbol{A})\right) \leq \lambda_{\max }(\tag{A}
\end{equation*}
$$

where $\lambda_{\text {min }}$ and $\lambda_{\max }$ correspond to the smallest and largest eigenvalues ${ }^{8}$.

- If $\overline{\boldsymbol{A}}=\mathbb{K}^{*}(\overline{\boldsymbol{A}})$, then $\operatorname{Tr}\left(\boldsymbol{\rho}_{k} \overline{\boldsymbol{A}}\right)=\operatorname{Tr}\left(\rho_{0} \overline{\boldsymbol{A}}\right)$ is a constant of motion of ρ.
${ }^{8}$ R. Sepulchre et al.: Consensus in non-commutative spaces. Decision and Control (CDC), 2010 49th IEEE Conference on,2010, 6596-6601.

Take a Kraus map \mathbb{K} and its adjoint unital map \mathbb{K}^{*}. When \mathcal{H} is of finite dimension, the following two statements are equivalent :

■ Global convergence towards the fixed point $\bar{\rho}=\mathbb{K}(\bar{\rho})$ of $\rho_{k+1}=\mathbb{K}\left(\rho_{k}\right)$: for any initial density operator ρ_{0}, $\lim _{k \mapsto+\infty} \rho_{k}=\bar{\rho}$ for the trace norm $\|\bullet\|_{1}$.
■ Global convergence of $\boldsymbol{A}_{k+1}=\mathbb{K}^{*}\left(\boldsymbol{A}_{k}\right)$: there exists a unique density operator $\bar{\rho}$ such that, for any initial bounded operator $\boldsymbol{A}_{0}, \lim _{k \mapsto+\infty} A_{k}=\operatorname{Tr}\left(A_{0} \overline{\boldsymbol{\rho}}\right) \boldsymbol{I}$ for the sup norm on the bounded operators on \mathcal{H}.

Exercise: cooling with resonant qubits in $|g\rangle$.

Consider the quantum channel $\boldsymbol{\rho}_{k+1}=\mathbb{K}\left(\boldsymbol{\rho}_{k}\right) \triangleq \boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}+\boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}$ with Kraus operators given by

$$
\boldsymbol{M}_{g}=\cos \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}}\right), \quad \boldsymbol{M}_{e}=\boldsymbol{a}\left(\frac{\sin \left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right)
$$

where \boldsymbol{a} is the annihilation operator, $\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a}$ and $\Theta>0$ is a parameter. Take the Fock basis $(|n\rangle)_{n \in \mathbb{N}}$. The density operator ρ is said to be supported in the subspace $\{|n\rangle\}_{n=0}^{m^{\text {max }}}$ when, for all $n>n^{\max }, \rho|n\rangle=0$.
1 Verify that $\boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}+\boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{\boldsymbol{e}}=\boldsymbol{I}$.
2 Show that

$$
\operatorname{Tr}\left(\boldsymbol{N} \rho_{k+1}\right)=\operatorname{Tr}\left(\boldsymbol{N} \rho_{k}\right)-\operatorname{Tr}\left(\sin ^{2}\left(\frac{\Theta}{2} \sqrt{\boldsymbol{N}}\right) \boldsymbol{\rho}_{k}\right) .
$$

3 Assume that for any integer $0<n \leq n^{\max }, \Theta \sqrt{n} / \pi$ is not an integer. Then prove that ρ_{k} tends to the vacuum state $|0\rangle\langle 0|$ whatever its initial condition with support in $\{|n\rangle\}_{n=0}^{m_{n-0}^{\text {max }}}$.
4 When $\Theta \sqrt{n} / \pi$ is an integer for some $0<\bar{n} \leq n^{\max }$, describe the possible Ω-limit sets for ρ_{k} for any initial condition ρ_{0} with support in $\{|n\rangle\}_{n=0}^{n^{\text {max }}}$.

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 9
 Chengdu, July 10, 2019

[^12]1 QND measurements of photons
■ Monte Carlo simulations and experiments
■ Martingales and convergence of Markov chains

- QND martingales for photons

2 Exercise: QND measurement of photons

1 QND measurements of photons
■ Monte Carlo simulations and experiments

- Martingales and convergence of Markov chains
- QND martingales for photons

2 Exercise: QND measurement of photons

Markov process: $\left|\psi_{k}\right\rangle \equiv|\psi\rangle_{t=k \Delta t}, k \in \mathbb{N}, \Delta t$ sampling period,

$$
\left|\psi_{k+1}\right\rangle= \begin{cases}\frac{\boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\top} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle}} & \text { with } y_{k}=g, \text { probability } \mathbb{P}_{g}=\left\langle\psi_{k}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k}\right\rangle ; \\ \frac{\boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}{\sqrt{\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\top} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle}} & \text { with } y_{k}=e, \text { probability } \mathbb{P}_{e}=\left\langle\psi_{k}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k}\right\rangle,\end{cases}
$$

with

$$
\boldsymbol{M}_{g}=\cos \left(\frac{\phi_{0} \boldsymbol{N}+\phi_{R}}{2}\right), \quad \boldsymbol{M}_{e}=\sin \left(\frac{\phi_{0} \boldsymbol{N}+\phi_{R}}{2}\right) .
$$

QND measurement of photons

Markov process: density operator $\rho_{k}=\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ as state.

$$
\rho_{k+1}= \begin{cases}\frac{\boldsymbol{M}_{g} \rho_{\rho_{k}} \boldsymbol{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{\boldsymbol{\prime}} \rho_{k} \boldsymbol{M}_{g}^{\dagger}\right)} & \text { with } y_{k}=g, \text { probability } \mathbb{P}_{g}=\operatorname{Tr}\left(\boldsymbol{M}_{g} \rho_{k} \boldsymbol{M}_{g}^{\dagger}\right) ; \\ \frac{\boldsymbol{M}_{e} \rho_{k} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{e} \rho_{k} \boldsymbol{M}_{e}^{\dagger}\right)} & \text { with } y_{k}=e, \text { probability } \mathbb{P}_{\boldsymbol{e}}=\operatorname{Tr}\left(\boldsymbol{M}_{e} \rho_{k} \boldsymbol{M}_{e}^{\dagger}\right),\end{cases}
$$

with

$$
\boldsymbol{M}_{g}=\cos \left(\frac{\phi_{0} \boldsymbol{N}+\phi_{R}}{2}\right), \quad \boldsymbol{M}_{e}=\sin \left(\frac{\phi_{0} \boldsymbol{N}+\phi_{R}}{2}\right) .
$$

Quantum Monte Carlo simulations:
Matlab script: IdealModelPhotonBox.m

Experimental data

Quantum Non-Demolition (QND) measurement

The measurement operators $\boldsymbol{M}_{g, e}$ commute with the photon-number observable \boldsymbol{N} : photon-number states $|n\rangle\langle n|$ are fixed points of the measurement process. We say that the measurement is QND for the observable \boldsymbol{N}.

100 Monte-Carlo simulations of $\operatorname{Tr}\left(\rho_{k}|3\rangle\langle 3|\right)$ versus k
Fidelity between ρ_{κ} and the Fock state ξ_{3}

Convergence of a random process

Consider (X_{k}) a sequence of random variables defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values in a metric space \mathcal{X}. The random process X_{k} is said to,

1 converge in probability towards the random variable X if for all $\epsilon>0$,

$$
\lim _{k \rightarrow \infty} \mathbb{P}\left(\left|X_{k}-X\right|>\epsilon\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\omega \in \Omega| | X_{k}(\omega)-X(\omega) \mid>\epsilon\right)=0 ;
$$

$\left[\right.$ Deterministic analogue with measurable real-valued functions $X(\omega)$ and $X_{k}(\omega)$ of $\omega \in \Omega \equiv \mathbb{R}$ and
$p(\omega) \geq 0$ a probability density versus the Lebesgue measure $d \omega\left(\int_{\mathbb{R}} p(\omega) d \omega=1\right.$):
$\lim _{k \mapsto+\infty} \int_{\mathbb{R}} I_{\epsilon}\left(\left|X_{k}(\omega)-X(\omega)\right|\right) p(\omega) d \omega=0$ with $I_{\epsilon}(x)=1$ (resp. 0) for $|X|>\epsilon$ (resp. $|x| \leq \epsilon$).]
2 converge almost surely towards the random variable X if

$$
\mathbb{P}\left(\lim _{k \rightarrow \infty} X_{k}=X\right)=\mathbb{P}\left(\omega \in \Omega \mid \lim _{k \rightarrow \infty} X_{k}(\omega)=X(\omega)\right)=1
$$

$\left[\forall \omega \in \mathbb{R} / W\right.$ with $W \subset \mathbb{R}$ of zero measure $\left(\int_{W} p(\omega) d \omega=0\right)$, we have $\left.\lim _{k \mapsto+\infty} X_{k}(\omega)=X(\omega).\right]$
3 converge in mean towards the random variable X if $\lim _{k \rightarrow \infty} \mathbb{E}\left(\left|X_{k}-X\right|\right)=0$.

$$
\left[\lim _{k \mapsto+\infty} \int_{\mathbb{R}}\left|X_{k}(\omega)-X(\omega)\right| p(\omega) d \omega=0\right]
$$

Some definitions

Markov process

The sequence $\left(X_{k}\right)_{k=1}^{\infty}$ is called a Markov process, if for all k and ℓ satisfying $k>\ell$ and any measurable function $f(x)$ with $\sup _{x}|f(x)|<\infty$,

$$
\mathbb{E}\left(f\left(X_{k}\right) \mid X_{1}, \ldots, X_{\ell}\right)=\mathbb{E}\left(f\left(X_{k}\right) \mid X_{\ell}\right)
$$

Martingales

The sequence $\left(X_{k}\right)_{k=1}^{\infty}$ is called respectively a supermartingale, a submartingale or a martingale, if $\mathbb{E}\left(\left|X_{k}\right|\right)<\infty$ for $k=1,2, \cdots$, and

$$
\mathbb{E}\left(X_{k} \mid X_{1}, \ldots, X_{\ell}\right) \leq X_{\ell} \quad(\mathbb{P} \text { almost surely }), \quad k \geq \ell
$$

or

$$
\mathbb{E}\left(X_{k} \mid X_{1}, \ldots, X_{\ell}\right) \geq X_{\ell} \quad(\mathbb{P} \text { almost surely }), \quad k \geq \ell
$$

or finally,

$$
\mathbb{E}\left(X_{k} \mid X_{1}, \ldots, X_{\ell}\right)=X_{\ell} \quad(\mathbb{P} \text { almost surely }), \quad k \geq \ell
$$

H.J. Kushner invariance Theorem

Let $\left\{X_{k}\right\}$ be a Markov chain on the compact state space S. Suppose that there exists a non-negative function $V(x)$ satisfying
$\mathbb{E}\left(V\left(X_{k+1}\right) \mid X_{k}=x\right)-V(x)=-\sigma(x)$, where $\sigma(x) \geq 0$ is a positive continuous function of x. Then the ω-limit set (in the sense of almost sure convergence) of X_{k} is included in the following set

$$
I=\{X \mid \sigma(X)=0\} .
$$

Trivially, the same result holds true for the case where $\mathbb{E}\left(V\left(X_{k+1}\right) \mid X_{k}=x\right)-V(x)=\sigma(x)$ with $\sigma(x) \geq 0$ and $V(x)$ bounded from above ($V\left(X_{k}\right)$ is a submartingale),.

Stochastic version of Lasalle invariance principle for Lyapunov function of deterministic dynamics.

Asymptotic behavior

Theorem

Consider for $\boldsymbol{M}_{g}=\cos \left(\frac{\phi_{0} \boldsymbol{N}+\phi_{\boldsymbol{R}}}{2}\right)$ and $\boldsymbol{M}_{e}=\sin \left(\frac{\phi_{0} \boldsymbol{N}+\phi_{\boldsymbol{R}}}{2}\right)$

$$
\boldsymbol{\rho}_{k+1}= \begin{cases}\frac{\boldsymbol{M}_{g} \boldsymbol{\rho}_{\boldsymbol{k}} \boldsymbol{M}_{g}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}\right)} & \text { with } y_{k}=g, \text { probability } \mathbb{P}_{g}=\operatorname{Tr}\left(\boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}\right) ; \\ \frac{\boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}\right)} & \text { with } y_{k}=\boldsymbol{e}, \text { probability } \mathbb{P}_{\boldsymbol{e}}=\operatorname{Tr}\left(\boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}\right),\end{cases}
$$

with an initial density matrix ρ_{0} defined on the subspace span $\left\{|n\rangle \mid n=0,1, \cdots, n^{\max }\right\}$. Also, assume the non-degeneracy assumption $\forall n \neq m \in\left\{0,1, \cdots, n^{\max }\right\}, \cos ^{2}\left(\varphi_{m}\right) \neq \cos ^{2}\left(\varphi_{n}\right)$ where $\varphi_{n}=\frac{\phi_{0} n+\phi_{R}}{2}$.
Then

- for any $n \in\left\{0, \ldots, n^{\max }\right\}, \operatorname{Tr}\left(\rho_{k}|n\rangle\langle n|\right)=\langle n| \rho_{k}|n\rangle$ is a martingale
- ρ_{k} converges with probability 1 to one of the $n^{\max }+1$ Fock state $|n\rangle\langle n|$ with $n \in\left\{0, \ldots, n^{\max }\right\}$.
- the probability to converge towards the Fock state $|n\rangle\langle n|$ is given by $\operatorname{Tr}\left(\rho_{0}|n\rangle\langle n|\right)=\langle n| \rho_{0}|n\rangle$.
- For any function $f, V_{f}(\rho)=\operatorname{Tr}(f(\boldsymbol{N}) \rho)$ is a martingale:
$\mathbb{E}\left(V_{f}\left(\rho_{k+1}\right) \mid \rho_{k}\right)=V_{f}\left(\rho_{k}\right)$.
- $V(\rho)=\sum_{n \neq m} \sqrt{\langle n| \rho|n\rangle\langle m| \rho|m\rangle}$ is a strict super-martingale:

$$
\begin{aligned}
& \mathbb{E}\left(V\left(\rho_{k+1}\right) \mid \rho_{k}\right) \\
& \quad=\sum_{n \neq m}\left(\left|\cos \phi_{n} \cos \phi_{m}\right|+\left|\sin \phi_{n} \sin \phi_{m}\right|\right) \sqrt{\langle n| \rho_{k}|n\rangle\langle m| \rho_{k}|m\rangle}
\end{aligned}
$$

$$
\leq r V\left(\rho_{k}\right)
$$

with $r=\max _{n \neq m}\left(\left|\cos \phi_{n} \cos \phi_{m}\right|+\left|\sin \phi_{n} \sin \phi_{m}\right|\right)$ and $r<1$.

- $V(\rho) \geq 0$ and $V(\rho)=0$ means that exists n such that $\rho=|n\rangle\langle n|$.

Interpretation: for large $k, V\left(\rho_{k}\right)$ is very close to 0 , thus very close to $|n\rangle\langle n|$ ("pure state" = maximal information state) for an a priori random n. Information extracted by measurement makes state "less uncertain" a posteriori but not more predictable a priori.

Exercise: QND measurement of photons

We consider QND measurement of photons: detection $y \in\{e, g\}$ and Kraus operators

$$
\boldsymbol{M}_{g}=\cos \left(\frac{\phi_{0}}{2} \boldsymbol{N}\right), \quad \boldsymbol{M}_{e}=\sin \left(\frac{\phi_{0}}{2} \boldsymbol{N}\right)
$$

with ϕ_{0} parameter.
1 Take $\boldsymbol{\rho}_{k+1}=\frac{\boldsymbol{M}_{y_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{y_{k}}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{y_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{y_{k}}^{\dagger}\right)}$ with $y_{k} \in\{g, \boldsymbol{e}\}$ of probability $\operatorname{Tr}\left(\boldsymbol{M}_{y_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{y_{k}}^{\dagger}\right)$.
1 Take $\phi_{0}=\pi / 4$ and assume that $\rho_{0}|n\rangle=0$ for $n>4$. Prove the almost sure convergence towards one of the Fock state $|n\rangle$, for $n \leq 4$.
2 More generally, under which condition on ϕ_{0} do we have, for any ρ such that $\rho_{0}|n\rangle=0$ for $n>n^{\text {max }}$, almost sure convergence towards one of the Fock state $|n\rangle$, for $n \leq n^{\text {max }}$.
3 Take $n^{\max }=4$ photons and $\phi_{0}=\pi / 4$. Write a computer program (e.g. a Scilab or Matlab script) to simulate over 100 sampling steps the Markov process starting from $\rho_{0}=\frac{1}{5} \sum_{n=0}^{n^{\max }}|n\rangle\langle n|$. Check via the statistics over 1000 realizations that the probability to converge to $|n\rangle\langle n|$ is close to $1 / 5$ for $n \in\{0,1,2,3,4\}$.
2 Re-consider the above three questions with the Markov process
$\boldsymbol{\rho}_{k+1}= \begin{cases}\frac{(1-\eta) \boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}+\eta \boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left((1-\eta) \boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}+\eta \boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}\right)}, & \text { with } y_{k}=g \text { of probability } \operatorname{Tr}\left((1-\eta) \boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}+\eta \boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}\right) ; \\ \frac{\eta \boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}+(1-\eta) \boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}\left(\eta \boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}+(1-\eta) \boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}\right)} & \text { with } y_{k}=e \text { of probability } \operatorname{Tr}\left(\eta \boldsymbol{M}_{g} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g}^{\dagger}+(1-\eta) \boldsymbol{M}_{e} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e}^{\dagger}\right) .\end{cases}$
including a symmetric detection error rate $\eta=1 / 10$.

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 10
 Chengdu, July 10, 2019

[^13]
Outline

1 Feedback stabilization of photon number states

Outline

1 Feedback stabilization of photon number states

Measurement-based feedback

Measurement-based feedback: controller is classical; measurement back-action on the system \mathcal{S} is stochastic (collapse of the wave-packet); the measured output y is a classical signal; the control input u is a classical variable appearing in some controlled Schrödinger equation; $u(t)$ depends on the past measurements $y(\tau), \tau \leq t$.

Nonlinear hidden-state stochastic systems: convergence analysis, Lyapunov exponents, dynamic output feedback, delays, robustness, ...
Short sampling times limit feedback complexity

Quantum state feedback

Question: how to stabilize deterministically a single photon-number state $|\bar{n}\rangle\langle\bar{n}|$? Markov chain with classical control input u :

$$
\boldsymbol{\rho}_{k+1}= \begin{cases}\frac{\boldsymbol{M}_{g, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g, u_{k}}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{g, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g, u_{k}}^{\dagger}\right)} & \text { if } y_{k}=g, \text { probability } \operatorname{Tr}\left(\boldsymbol{M}_{g, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g, u_{k}}^{\dagger}\right) \\ \frac{\boldsymbol{M}_{e, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e, u_{k}}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{e, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e, u_{k}}^{\dagger}\right)} & \text { if } y_{k}=e, \text { probability } \operatorname{Tr}\left(\boldsymbol{M}_{e, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e, u_{k}}^{\dagger}\right)\end{cases}
$$

where the Kraus operators depend on the control input $u^{3}\left(\phi_{0}, \phi_{R}, \theta_{0}\right)$ constant parameters.
dispersive interaction for $u=0$:

$$
\boldsymbol{M}_{g, 0}=\cos \left(\frac{\phi_{0} \boldsymbol{N}+\phi_{R}}{2}\right) \text { and } \boldsymbol{M}_{e, 0}=\sin \left(\frac{\phi_{0} \boldsymbol{N}+\phi_{R}}{2}\right),
$$

resonant interaction with atom prepared in $|e\rangle$ for $u=1$:

$$
\boldsymbol{M}_{g, 1}=\frac{\sin \left(\frac{\theta_{0}}{2} \sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}} \mathbf{a}^{\dagger} \text { and } \boldsymbol{M}_{e, 1}=\cos \left(\frac{\theta_{0}}{2} \sqrt{\boldsymbol{N}+\boldsymbol{I}}\right)
$$

resonant interaction with atom prepared in $|g\rangle$ for $u=-1$:

$$
\boldsymbol{M}_{g,-1}=\cos \left(\frac{\theta_{0}}{2} \sqrt{\boldsymbol{N}}\right) \text { and } \boldsymbol{M}_{e,-1}=-\boldsymbol{a} \frac{\sin \left(\frac{\theta_{0}}{2} \sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}
$$

[^14]
Lyapunov function and quantum-state feedback

Idea: open-loop martingale

$$
V(\rho)=\operatorname{Tr}(\rho f(\boldsymbol{N}))
$$

with f : $[0,+\infty[\mapsto[0,+\infty[$ strictly decreasing on $[0, \bar{n}]$, strictly increasing on $[\bar{n},+\infty$ [and $f(\bar{n})=0$ as candidate of closed-loop super-martingale with u_{k} function of ρ_{k}.

Coefficients $f(n)$ of the control Lyapunov function

$$
\begin{aligned}
u_{k}=\Gamma\left(\boldsymbol{\rho}_{k}\right): & =\underset{u \in\{-1,0,1\}}{\operatorname{argmin}}\left\{\mathbb{E}\left(V\left(\rho_{k+1}\right) \mid \rho_{k}, u_{k}=u\right)\right\} \\
& =\underset{u \in\{-1,0,1\}}{\operatorname{argmin}}\left\{\operatorname{Tr}\left(\left(\boldsymbol{M}_{g, u} \rho_{k} \boldsymbol{M}_{g, u}^{\dagger}+\boldsymbol{M}_{e, u} \rho_{k} \boldsymbol{M}_{e, u}^{\dagger}\right) f(\boldsymbol{N})\right)\right\}
\end{aligned}
$$

Closed-loop simulations IdealFeedbackPhotonBox.m: truncation to $n^{\max }=7$ photons of the Hilbert space, $\bar{n}=3, f(n)=(n-\bar{n})^{2}$, $\phi_{0}=\pi / 7, \phi_{R}=0, \theta_{0}=\frac{2 \pi}{\sqrt{n^{\max }+1}}$.

Three possible outcomes:
■ zero photon annihilation during ΔT : Kraus operator $\boldsymbol{M}_{0}=\boldsymbol{I}-\frac{\Delta T}{2} \boldsymbol{L}_{-1}^{\dagger} \boldsymbol{L}_{-1}-\frac{\Delta T}{2} \boldsymbol{L}_{1}^{\dagger} \boldsymbol{L}_{1}$, probability $\approx \operatorname{Tr}\left(\boldsymbol{M}_{0} \boldsymbol{\rho} \boldsymbol{M}_{0}^{\dagger}\right)$ with back action $\rho_{t+\Delta T} \approx \frac{M_{0} \rho_{t} M_{0}^{\dagger}}{\operatorname{Tr}\left(M_{0} \rho M_{0}^{\dagger}\right)}$.

- one photon annihilation during ΔT : Kraus operator $\boldsymbol{M}_{-1}=\sqrt{\Delta T} \boldsymbol{L}_{-1}$, probability $\approx \operatorname{Tr}\left(\boldsymbol{M}_{-1} \rho \boldsymbol{M}_{-1}^{\dagger}\right)$ with back action $\rho_{t+\Delta T} \approx \frac{\boldsymbol{M}_{-1} \rho_{t} \boldsymbol{M}_{-1}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{-1} \rho \boldsymbol{M}_{-1}^{\dagger}\right)}$
- one photon creation during ΔT : Kraus operator $\boldsymbol{M}_{1}=\sqrt{\Delta T} \boldsymbol{L}_{1}$, probability $\approx \operatorname{Tr}\left(\boldsymbol{M}_{1} \rho \boldsymbol{M}_{1}^{\dagger}\right)$ with back action $\rho_{t+\Delta T} \approx \frac{\boldsymbol{M}_{1} \rho_{t} \boldsymbol{M}_{1}^{\dagger}}{\operatorname{Tr}\left(\boldsymbol{M}_{1} \rho \boldsymbol{M}_{1}^{\dagger}\right)}$
where

$$
\boldsymbol{L}_{-1}=\sqrt{\frac{1+n_{\text {th }}}{T_{\text {cav }}}} \mathbf{a}, \quad \boldsymbol{L}_{1}=\sqrt{\frac{n_{\text {th }}}{T_{\text {cav }}}} \mathbf{a}^{\dagger}
$$

are the Lindbald operators associated to cavity decoherence : $T_{\text {cav }}$ the photon life time, $\Delta T \ll T_{\text {cav }}$ the sampling period and $n_{t h}$ is the average of thermal photon(s) (vanishes with the environment temperature) ($\frac{\Delta T}{T_{\text {cav }}} \approx 5 \times 10^{-4}, n_{\text {th }} \approx 0.05$ for the LKB photon box).

Transition model with control u_{k} from ρ_{k} to ρ_{k+1} via $\rho_{k+\frac{1}{2}}$: measurement back-action ($\eta \in[0,1]$ detection error probability and $\eta_{\text {eff }} \in[0,1]$ detection efficiency)

$$
\boldsymbol{\rho}_{k+\frac{1}{2}}= \begin{cases}\frac{(1-\eta) \boldsymbol{M}_{g, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g, u_{k}}^{\dagger}+\eta \boldsymbol{M}_{e, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e, u_{k}}^{\dagger}}{\operatorname{Tr}\left((1-\eta) \boldsymbol{M}_{g, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g, u_{k}}^{\dagger}+\eta \boldsymbol{M}_{e, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{\left.e, u_{k}\right)}^{\dagger}\right)}, & \text { prob. } \eta_{\text {eff }} \operatorname{Tr}\left((1-\eta) \boldsymbol{M}_{g, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g, u_{k}}^{\dagger}+\eta \boldsymbol{M}_{e, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e, u_{k}}^{\dagger}\right) ; \\ \frac{\eta \boldsymbol{M}_{g, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g, u_{k}}^{\dagger}+(1-\eta) \boldsymbol{M}_{e, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e, u_{k}}^{\dagger}}{\operatorname{Tr}\left(\eta \boldsymbol{M}_{g, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g, u_{k}}^{\dagger}+(1-\eta) \boldsymbol{M}_{e, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{\left.e, u_{k}\right)}^{\dagger}\right)} & \text { prob. } \eta_{\text {eff }} \operatorname{Tr}\left(\eta \boldsymbol{M}_{g, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g, u_{k}}^{\dagger}+(1-\eta) \boldsymbol{M}_{e, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e, u_{k}}^{\dagger}\right) \\ \boldsymbol{M}_{g, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{g, u_{k}}^{\dagger}+\boldsymbol{M}_{e, u_{k}} \boldsymbol{\rho}_{k} \boldsymbol{M}_{e, u_{k}}^{\dagger} & \text { prob. (1- } \left.\eta_{e f f}\right)\end{cases}
$$

is completed by cavity decoherence during the small sampling time ΔT :

$$
\rho_{k+1}=M_{-1} \rho_{k+\frac{1}{2}} M_{-1}^{\dagger}+M_{0} \rho_{k+\frac{1}{2}} M_{0}^{\dagger}+\boldsymbol{M}_{1} \rho_{k+\frac{1}{2}} M_{1}^{\dagger} .
$$

Model used in simulation to test the robustness of the Lyapunov feedback $u_{k}=\Gamma\left(\boldsymbol{\rho}_{k}\right)$ with $\eta=1 / 10, \eta_{\text {eff }}=4 / 10, \frac{\Delta T}{T_{\text {cav }}} \approx 5 \times 10^{-4}$ and $n_{\text {th }} \approx 0.05$

Closed-loop experimental results

Zhou et al. Field locked to Fock state by quantum feedback with single photon corrections. Physical Review Letter, 2012, 108, 243602.

See the closed-loop quantum Monte Carlo simulations of the Matlab script: RealisticFeedbackPhotonBox.m.

Quantum Control ${ }^{1}$ International Graduate School on Control
 www.eeci-igsc.eu

Pierre Rouchon ${ }^{2}$

Lecture 11
 Chengdu, July 11, 2019

[^15]
Outline

1 Reminder: discret-time stochastic master equation

2 Time-continuous stochastic master equations

Discrete-time Stochastic Master Equations (SME)

Trace preserving Kraus map \boldsymbol{K}_{u} depending on the classical control input u :

$$
\boldsymbol{K}_{u}(\boldsymbol{\rho})=\sum_{\mu} \boldsymbol{M}_{u, \mu} \boldsymbol{\rho} \boldsymbol{M}_{u, \mu}^{\dagger} \quad \text { with } \quad \sum_{\mu} \boldsymbol{M}_{u, \mu}^{\dagger} \boldsymbol{M}_{u, \mu}=\boldsymbol{I} .
$$

Take a left stochastic matrix $\left[\eta_{y, \mu}\right]$ ($\eta_{y, \mu} \geq 0$ and $\sum_{y} \eta_{y, \mu} \equiv 1, \forall \mu$) and set $\boldsymbol{K}_{u, y}(\boldsymbol{\rho})=\sum_{\mu} \eta_{y, \mu} \boldsymbol{M}_{u, \mu} \boldsymbol{\rho} \boldsymbol{M}_{u, \mu}^{\dagger}$. The associated Markov chain reads:

$$
\boldsymbol{\rho}_{k+1}=\frac{\boldsymbol{K}_{u_{k}, y_{k}}\left(\boldsymbol{\rho}_{k}\right)}{\operatorname{Tr}\left(\boldsymbol{K}_{u_{k}, y_{k}}\left(\boldsymbol{\rho}_{k}\right)\right)} \quad \text { measurement } y_{k} \text { with probability } \operatorname{Tr}\left(\boldsymbol{K}_{u_{k}, y_{k}}\left(\boldsymbol{\rho}_{k}\right)\right) \text {. }
$$

Classical input u, hidden state ρ, measured output y.
Ensemble average given by \boldsymbol{K}_{u} since $\mathbb{E}\left(\boldsymbol{\rho}_{k+1} \mid \boldsymbol{\rho}_{k}, u_{k}\right)=\boldsymbol{K}_{u_{k}}\left(\boldsymbol{\rho}_{k}\right)$. Markov model useful for:

1 Monte-Carlo simulations of quantum trajectories (decoherence, measurement back-action).
2 quantum filtering to get the quantum state ρ_{k} from ρ_{0} and (y_{0}, \ldots, y_{k-1}) (Belavkin quantum filter developed for diffusive models).
3 feedback design and Monte-Carlo closed-loop simulations.

Outline

1 Reminder: discret-time stochastic master equation

2 Time-continuous stochastic master equations

Inverse setup of photon-box: photons read out a qubit.

Two major differences

- measurement output taking values from a continuum of possible outcomes

$$
d y_{t}=\sqrt{\eta} \operatorname{Tr}\left(\left(\boldsymbol{L}+\boldsymbol{L}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) d t+d W_{t}
$$

- Time continuous dynamics.

$$
\begin{aligned}
d \rho_{t} & =\left(-\frac{i}{\hbar}\left[\boldsymbol{H}, \boldsymbol{\rho}_{t}\right]+\sum_{\nu} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)\right) d t \\
& +\sum_{\nu} \sqrt{\eta_{\nu}}\left(\boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\rho_{t} \boldsymbol{L}_{\nu}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \rho_{t}\right) d W_{\nu, t}
\end{aligned}
$$

where $W_{\nu, t}$ are independent Wiener processes, associated to measured signals

$$
d y_{\nu, t}=d W_{\nu, t}+\sqrt{\eta_{\nu}} \operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) d t .
$$

Wiener process W_{t} :

- $W_{0}=0$;

■ $t \rightarrow W_{t}$ is almost surely everywhere continuous;
■ For $0 \leq s_{1}<t_{1} \leq s_{2}<t_{2}, W_{t_{1}}-W_{s_{1}}$ and $W_{t_{2}}-W_{s_{2}}$ are independent random variables satisfying $W_{t}-W_{s} \sim N(0, t-s)$.

Average dynamics: Lindblad master equation

$d \mathbb{E}\left(\rho_{t}\right)=$
$\left(-\frac{i}{\hbar}\left[\boldsymbol{H}, \mathbb{E}\left(\boldsymbol{\rho}_{t}\right)\right]+\sum_{\nu} \boldsymbol{L}_{\nu} \mathbb{E}\left(\boldsymbol{\rho}_{t}\right) \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \mathbb{E}\left(\boldsymbol{\rho}_{t}\right)+\mathbb{E}\left(\boldsymbol{\rho}_{t}\right) \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)\right) d t$.

Itō stochastic calculus

Given a SDE

$$
d X_{t}=F\left(X_{t}, t\right) d t+\sum_{\nu} G_{\nu}\left(X_{t}, t\right) d W_{\nu, t}
$$

we have the following chain rule:

Itō's rule

Defining $f_{t}=f\left(X_{t}\right)$ a C^{2} function of X, we have

$$
\begin{aligned}
& d f_{t}=\left(\left.\frac{\partial f}{\partial X}\right|_{X_{t}} F\left(X_{t}, t\right)+\left.\frac{1}{2} \sum_{\nu} \frac{\partial^{2} f}{\partial X^{2}}\right|_{X_{t}}\left(G_{\nu}\left(X_{t}, t\right), G_{\nu}\left(X_{t}, t\right)\right)\right) d t \\
&+\left.\sum_{\nu} \frac{\partial f}{\partial X}\right|_{X_{t}} G_{\nu}\left(X_{t}, t\right) d W_{\nu, t} .
\end{aligned}
$$

Furthermore

$$
\frac{d}{d t} \mathbb{E}\left(f_{t}\right)=\mathbb{E}\left(\left.\frac{\partial f}{\partial X}\right|_{X_{t}} F\left(X_{t}, t\right)+\left.\frac{1}{2} \sum_{\nu} \frac{\partial^{2} f}{\partial X^{2}}\right|_{X_{t}}\left(G_{\nu}\left(X_{t}, t\right), G_{\nu}\left(X_{t}, t\right)\right)\right) .
$$

Link to partial Kraus maps (1)

$$
\begin{aligned}
d \rho_{t} & =\left(-\frac{i}{\hbar}\left[\boldsymbol{H}, \boldsymbol{\rho}_{t}\right]+\sum_{\nu} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)\right) d t \\
& +\sum_{\nu} \sqrt{\eta_{\nu}}\left(\boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \boldsymbol{\rho}_{t}\right) d W_{\nu, t}
\end{aligned}
$$

equivalent to

$$
\rho_{t+d t}=\frac{\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} d t}{\operatorname{Tr}\left(\boldsymbol{M}_{d y_{t} t} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} d t\right)}
$$

with

$$
\boldsymbol{M}_{d y_{t}}=\boldsymbol{I}+\left(-\frac{i}{\hbar} \boldsymbol{H}-\frac{1}{2} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right) d \boldsymbol{t}+\sum_{\nu} \sqrt{\eta_{\nu}} d y_{\nu, \boldsymbol{t}} \boldsymbol{L}_{\nu} .
$$

Moreover, defining $d y_{\nu, t}=s_{\nu, t} \sqrt{d t}$:

- \mathbb{P} defines a probability density up to a correction of order $d t^{2}$:

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \mathbb{P}\left(s_{t} \in \prod_{\nu}\left[s_{\nu}, s_{\nu}+d s_{\nu}\right] \mid \rho_{t}\right) \prod_{\nu} d s_{\nu}=1+O\left(d t^{2}\right)
$$

- Mean value of measured signal

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} s_{\nu} \mathbb{P}\left(s_{t} \in \prod_{\nu}\left[s_{\nu}, s_{\nu}+d s_{\nu}\right] \mid \rho_{t}\right) \prod_{\nu} d s_{\nu}=\sqrt{\eta_{\nu}} \operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \sqrt{d t}+O\left(d t^{3 / 2}\right)
$$

- Variance of measured signal

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} s_{\nu}^{2} \mathbb{P}\left(s_{t} \in \prod_{\nu}\left[s_{\nu}, s_{\nu}+d s_{\nu}\right] \mid \rho_{t}\right) \prod_{\nu} d s_{\nu}=1+O(d t)
$$

Compatible with $d y_{\nu, t}=s_{\nu, t} \sqrt{d t}=d W_{\nu, t}+\sqrt{\eta_{\nu}} \operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) d t$.

$$
\begin{aligned}
d \rho_{t} & =\left(-\frac{i}{\hbar}\left[\boldsymbol{H}, \rho_{t}\right]+\sum_{\nu} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)\right) d t \\
& +\sum_{\nu} \sqrt{\eta_{\nu}}\left(\boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t}+\rho_{t} \boldsymbol{L}_{\nu}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}_{\nu}+\boldsymbol{L}_{\nu}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \boldsymbol{\rho}_{t}\right) d W_{\nu, t}
\end{aligned}
$$

equivalent to

$$
\rho_{t+d t}=\frac{\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} d t}{\operatorname{Tr}\left(\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_{t} \boldsymbol{L}_{\nu}^{\dagger} d t\right)}
$$

- Indicates that the solution remains in the space of semi-definite positive Hermitian matrices;
- Provides a time-discretized numerical scheme preserving non-negativity of ρ.

Theorem

The above master equation admits a unique solution in $\left\{\rho \in \mathbb{C}^{N \times N}: \rho=\rho^{\dagger}, \rho \geq 0, \operatorname{Tr}(\rho)=1\right\}$.

The quantum state ρ_{t} is usually mixed and obeys to (measurement outcomes in blue)

$$
\begin{gathered}
d \rho_{t}=\left(-i\left[H, \rho_{t}\right]+\sum_{\nu} L_{\nu} \rho_{t} L_{\nu}^{\dagger}-\frac{1}{2}\left(L_{\nu}^{\dagger} L_{\nu} \rho_{t}+\rho_{t} L_{\nu}^{\dagger} L_{\nu}\right)+V_{\mu} \rho_{t} V_{\mu}^{\dagger}-\frac{1}{2}\left(V_{\mu}^{\dagger} V_{\mu} \rho_{t}+\rho_{t} V_{\mu}^{\dagger} V_{\mu}\right)\right) d t \\
+\sum_{\nu} \sqrt{\eta_{\nu}}\left(L_{\nu} \rho_{t}+\rho_{t} L_{\nu}^{\dagger}-\operatorname{Tr}\left(\left(L_{\nu}+L_{\nu}^{\dagger}\right) \rho_{t}\right) \rho_{t}\right) d W_{\nu, t} \\
+\sum_{\mu}\left(\frac{\bar{\theta}_{\mu} \rho_{t}+\sum_{\mu^{\prime}} \bar{\eta}_{\mu, \mu^{\prime}} V_{\mu} \rho_{t} V_{\mu}^{\dagger}}{\bar{\theta}_{\mu}+\sum_{\mu^{\prime}} \bar{\eta}_{\mu, \mu^{\prime}} \operatorname{Tr}\left(V_{\mu^{\prime}} \rho_{t} V_{\mu^{\prime}}^{\dagger}\right)}-\rho_{t}\right)\left(d N_{\mu}(t)-\left(\bar{\theta}_{\mu}+\sum_{\mu^{\prime}} \bar{\eta}_{\mu, \mu^{\prime}} \operatorname{Tr}\left(V_{\mu^{\prime}} \rho_{t} V_{\mu^{\prime}}^{\dagger}\right)\right) d t\right)
\end{gathered}
$$

where $\eta_{\nu} \in[0,1], \bar{\theta}_{\mu}, \bar{\eta}_{\mu, \mu^{\prime}} \geq 0$ with $\bar{\eta}_{\mu^{\prime}}=\sum_{\mu} \bar{\eta}_{\mu, \mu^{\prime}} \leq 1$ are parameters modelling measurements imperfections.

If, for some $\mu, \boldsymbol{N}_{\mu}(\boldsymbol{t}+\boldsymbol{d} \boldsymbol{t})-\boldsymbol{N}_{\mu}(\boldsymbol{t})=\mathbf{1}$, we have $\rho_{t+d t}=\frac{\bar{\theta}_{\mu} \rho_{t}+\sum_{\mu^{\prime}} \bar{\eta}_{\mu, \mu^{\prime}} V_{\mu^{\prime}} \rho_{t} V_{\mu^{\prime}}^{\dagger}}{\bar{\theta}_{\mu}+\sum_{\mu^{\prime}} \bar{\eta}_{\mu, \mu^{\prime}} \operatorname{Tr}\left(V_{\mu^{\prime}} \rho_{t} V_{\mu^{\prime}}^{\dagger}\right)}$.
When $\forall \mu, d N_{\mu}(t)=0$, we have

$$
\rho_{t+d t}=\frac{M_{d y_{t}} \rho_{t} M_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) L_{\nu} \rho_{t} L_{\nu}^{\dagger} d t+\sum_{\mu}\left(1-\bar{\eta}_{\mu}\right) V_{\mu} \rho_{t} V_{\mu}^{\dagger} d t}{\operatorname{Tr}\left(M_{d y_{t}} \rho_{t} M_{d y_{t}}^{\dagger}+\sum_{\nu}\left(1-\eta_{\nu}\right) L_{\nu} \rho_{t} L_{\nu}^{\dagger} d t+\sum_{\mu}\left(1-\bar{\eta}_{\mu}\right) V_{\mu} \rho_{t} V_{\mu}^{\dagger} d t\right)}
$$

with $M_{d y_{t}}=I+\left(-i H-\frac{1}{2} \sum_{\nu} L_{\nu}^{\dagger} L_{\nu}+\frac{1}{2} \sum_{\mu}\left(\bar{\eta}_{\mu} \operatorname{Tr}\left(V_{\mu} \rho_{t} V_{\mu}^{\dagger}\right) I-V_{\mu}^{\dagger} V_{\mu}\right)\right) d t+\sum_{\nu} \sqrt{\eta_{\nu}} d y_{\nu t} L_{\nu}$ and where $d y_{\nu, t}=\sqrt{\eta_{\nu}} \operatorname{Tr}\left(\left(L_{\nu}+L_{\nu}^{\dagger}\right) \rho_{t}\right) d t+d W_{\nu, t}$.

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 12
 Chengdu, July 11, 2019

[^16]
Outline

1 QND measurement of a qubit and asymptotic behavior

2 Exercise: continuous-time QND measurement

Outline

1 QND measurement of a qubit and asymptotic behavior

2 Exercise: continuous-time QND measurement

Inverse setup of photon-box: photons read out a qubit.

Approximate model

Cavity's dynamics are removed (singular perturbation techniques) to achieve a qubit SME:

$$
\begin{aligned}
& d \rho_{t}=-\frac{i}{\hbar}\left[\boldsymbol{H}, \rho_{t}\right] d t+\frac{\Gamma_{m}}{4}\left(\sigma_{\mathbf{z}} \rho_{t} \sigma_{\mathbf{z}}-\rho_{t}\right) d t \\
& \quad+\frac{\sqrt{\eta \Gamma_{m}}}{2}\left(\sigma_{\mathbf{z}} \rho_{t}+\rho_{t} \sigma_{\mathbf{z}}-2 \operatorname{Tr}\left(\sigma_{\mathbf{z}} \rho_{t}\right) \rho_{t}\right) d W_{t} \\
& d y_{t}= d W_{t}+ \\
& \sqrt{\eta \Gamma_{m}} \operatorname{Tr}\left(\sigma_{\mathbf{z}} \rho_{t}\right) d t .
\end{aligned}
$$

Quantum Non-Demolition measurement

$$
\begin{aligned}
d \rho_{t}= & -\frac{i}{\hbar}\left[\boldsymbol{H}, \rho_{t}\right] d t+\frac{\Gamma_{m}}{4}\left(\sigma_{\boldsymbol{z}} \rho_{t} \sigma_{\mathbf{z}}-\rho_{t}\right) d t \\
& \quad+\frac{\sqrt{\eta \Gamma_{m}}}{2}\left(\sigma_{\boldsymbol{z}} \rho_{t}+\rho_{t} \sigma_{\mathbf{z}}-2 \operatorname{Tr}\left(\sigma_{\boldsymbol{z}} \rho_{t}\right) \rho_{t}\right) d W_{t}, \\
d y_{t}= & d W_{t}+\sqrt{\eta \Gamma_{m}} \operatorname{Tr}\left(\sigma_{\boldsymbol{z}} \rho_{t}\right) d t .
\end{aligned}
$$

Uncontrolled case: $\boldsymbol{H} / \hbar=\omega_{\text {eg }} \boldsymbol{\sigma}_{\boldsymbol{z}} / 2$.
Interpretation as a Markov process with Kraus operators

$$
\begin{aligned}
\boldsymbol{M}_{d y_{t}} & =\boldsymbol{I}-\left(i \frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\frac{\Gamma_{m}}{8} \boldsymbol{I}\right) d t+\frac{\sqrt{\eta \Gamma_{m}}}{2} \boldsymbol{\sigma}_{\mathbf{z}} d y_{t}, \\
\sqrt{(1-\eta) d t} \boldsymbol{L} & =\frac{\sqrt{(1-\eta) \Gamma_{m} d t}}{2} \boldsymbol{\sigma}_{\mathbf{z}} .
\end{aligned}
$$

QND measurement

Kraus operators $\boldsymbol{M}_{d y_{t}}$ and $\sqrt{(1-\eta) d t} \boldsymbol{L}$ commute with observable $\boldsymbol{\sigma}_{\mathbf{z}}$: qubit states $|g\rangle\langle g|$ and $|e\rangle\langle e|$ are fixed points of the measurement process. The measurement is QND for the observable $\sigma_{\boldsymbol{z}}$.

QND measurement: asymptotic behavior

Theorem

Consider the SME

$$
\begin{aligned}
d \rho_{t}=-\frac{i}{\hbar}\left[\boldsymbol{H}, \rho_{t}\right] d t+\frac{\Gamma_{m}}{4}\left(\sigma_{z} \rho_{t} \sigma_{z}-\rho_{t}\right) d t & \\
& +\frac{\sqrt{\eta \Gamma_{m}}}{2}\left(\sigma_{z} \rho_{t}+\rho_{t} \sigma_{z}-2 \operatorname{Tr}\left(\sigma_{z} \rho_{t}\right) \rho_{t}\right) d W_{t}
\end{aligned}
$$

with $\boldsymbol{H}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}$ and $\eta>0$.
■ For any initial state ρ_{0}, the solution ρ_{t} converges almost surely as $t \rightarrow \infty$ to one of the states $|g\rangle\langle g|$ or $|e\rangle\langle e|$.
■ The probability of convergence to $|g\rangle\langle g|$ (respectively $|e\rangle\langle e|)$ is given by $p_{g}=\operatorname{Tr}\left(|g\rangle\langle g| \rho_{0}\right)$ (respectively $\left.\operatorname{Tr}\left(|e\rangle\langle e| \rho_{0}\right)\right)$.

- The convergence rate is given by $\eta \Gamma_{M} / 2$.

Proof based on the Lyapunov function $V(\rho)=\sqrt{\operatorname{Tr}\left(\sigma_{z}^{2} \rho\right)-\operatorname{Tr}^{2}\left(\sigma_{z} \rho\right)}$ with

$$
\frac{d}{d t} \mathbb{E}(V(\rho))=-\frac{\eta \Gamma_{M}}{2} \mathbb{E}(V(\rho))
$$

Matlab open-loop simulations: RealisticModelQubit.m

Quantum feedback

Question: how to stabilize deterministically a single qubit state $|g\rangle\langle g|$ or $|e\rangle\langle e|$?
Controlled SME:

$$
\begin{aligned}
d \rho_{t}=-\frac{i}{\hbar}\left[\boldsymbol{H}, \rho_{t}\right] d t+ & \frac{\Gamma_{m}}{4}\left(\sigma_{\boldsymbol{z}} \rho_{t} \sigma_{\boldsymbol{z}}-\rho_{t}\right) d t \\
& +\frac{\sqrt{\eta \Gamma_{m}}}{2}\left(\sigma_{\boldsymbol{z}} \rho_{t}+\rho_{r} \sigma_{\boldsymbol{z}}-2 \operatorname{Tr}\left(\sigma_{\boldsymbol{z}} \rho_{t}\right) \rho_{t}\right) d W_{t},
\end{aligned}
$$

with
$\boldsymbol{H}=\frac{u\left(\rho_{t}\right)}{2} \sigma_{\boldsymbol{x}}+\frac{v\left(\rho_{t}\right)}{2} \sigma_{\mathbf{y}}$,
$u=g \operatorname{sign}\left(\operatorname{Tr}\left(\rho \sigma_{\mathbf{y}}\right)\right)\left(1-\operatorname{Tr}\left(\rho \sigma_{\mathbf{z}}\right)\right), \quad v=-g \operatorname{sign}\left(\operatorname{Tr}\left(\rho \sigma_{\mathbf{x}}\right)\right)\left(1-\operatorname{Tr}\left(\rho \sigma_{\mathbf{z}}\right)\right)$
stabilizes with gain $g>0$ large enough the target state $\rho_{\text {tag }}=|e\rangle\langle e|$ (based on the control Lyapunov function $1-\operatorname{Tr}\left(\rho \sigma_{z}\right)$).

Matlab closed-loop simulations: RealisticFeedbackQubit.m

Exercise: continuous-time QND measurement ${ }^{3}$

Take a finite dimensional Hilbert space $\mathcal{H}=\mathbb{C}^{n}$ with the Hermitian operator L of spectral decomposition $L=\sum_{k=1}^{d} \lambda_{k} \Pi_{k}$ where $\lambda_{1}, \ldots \lambda_{d}$ are the distinct $(d \leq n)$, real eigenvalues of L with corresponding orthogonal projection operators Π_{1}, \ldots, Π_{d} resolving the identity, i.e. $\sum_{k=1}^{d} \Pi_{k}=\boldsymbol{I}$. Assume that the density operator ρ obeys to

$$
d \rho=\left(L \rho L-\left(L^{2} \rho+\rho L^{2}\right) / 2\right) d t+\sqrt{\eta}(L \rho+\rho L-2 \operatorname{Tr}(L \rho) \rho) d W
$$

with diffusive measurement $d y=2 \sqrt{\eta} \operatorname{Tr}(L \rho) d t+d W$ and $\eta>0$.
1 For each k, set $p_{k}(\rho)=\operatorname{Tr}\left(\rho \Pi_{k}\right)$. Show that

$$
d p_{k}=2 \sqrt{\eta}\left(\lambda_{k}-\sum_{k^{\prime}=1}^{d} \lambda_{k^{\prime}} p_{k^{\prime}}\right) p_{k} d W
$$

2 Deduce that $\xi_{k}=\sqrt{p_{k}}$ obeys to

$$
d \xi_{k}=-\frac{1}{2} \eta\left(\lambda_{k}-\varpi(\xi)\right)^{2} \xi_{k} d t+\sqrt{\eta}\left(\lambda_{k}-\varpi(\xi)\right) \xi_{k} d W
$$

with $\varpi(\xi)=\sum_{k=1}^{d} \lambda_{k} \xi_{k}^{2}$
3 Prove that

$$
d\left(\xi_{k} \xi_{k^{\prime}}\right)==-\frac{1}{2} \eta\left(\lambda_{k}-\lambda_{k^{\prime}}\right)^{2} \xi_{k^{\prime}} \xi_{k} d t+\sqrt{\eta}\left(\lambda_{k}+\lambda_{k^{\prime}}-2 \varpi(\xi)\right) \xi_{k} \xi_{k^{\prime}} d W
$$

4 Set $V(\rho)=\sum_{1 \leq k<k^{\prime} \leq d} \sqrt{p_{k}(\rho)} \sqrt{p_{k^{\prime}}(\rho)}$. Show that $\mathbb{E}(d V \mid \rho)=-\frac{\eta}{2} \sum_{k^{\prime}=1}^{d} \sum_{k^{\prime}<k}\left(\lambda_{k}-\lambda_{k^{\prime}}\right)^{2} \xi_{k} \xi_{k^{\prime}} d t \leq-\frac{\eta}{2}\left(\min _{k^{\prime}, k \neq k^{\prime}}\left(\lambda_{k}-\lambda_{k^{\prime}}\right)^{2}\right) V(\rho) d t$.
5 Conclude that $\mathbb{E}\left(V\left(\rho_{t}\right) \perp \rho_{0}\right)<V\left(\rho_{0}\right) e^{-r t}$ with $r>0$ to be defined.
${ }^{3}$ G. Cardona, A. Sarlette,PR: Exponential stabilization of quantum systems under continuous non-demolition measurements. https://arxiv.org/abs/1906.07403

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 13
Chengdu, July 12, 2019

[^17]
Outline

1 Lindblad master equation

2 Driven and damped qubit

3 Driven and damped harmonic oscillator

4 Complements
■ Oscillator with thermal photon(s)

- Wigner function

1 Lindblad master equation

2 Driven and damped qubit

3 Driven and damped harmonic oscillator

4 Complements
■ Oscillator with thermal photon(s)

- Wigner function

$$
\frac{d}{d t} \rho=-\frac{i}{\hbar}[\boldsymbol{H}, \rho]+\sum_{\nu} \boldsymbol{L}_{\nu} \rho \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \rho+\rho \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right) \triangleq \mathcal{L}(\rho)
$$

where

- \boldsymbol{H} is the Hamiltonian that could depend on t (Hermitian operator on the underlying Hilbert space \mathcal{H})
■ the \boldsymbol{L}_{ν} 's are operators on \mathcal{H} that are not necessarily Hermitian.

Qualitative properties (\mathcal{H} of finite dimension):

1 Positivity and trace conservation: if ρ_{0} is a density operator, then $\rho(t)$ remains a density operator for all $t>0$.
2 For any $t \geq 0$, the propagator $e^{t \mathcal{L}}$ is a Kraus map: exists a collection of operators $\left(M_{\mu, t}\right)$ such that $\sum_{\mu} M_{\mu, t}^{\dagger} M_{\mu, t}=I$ with $e^{t \mathcal{L}}(\rho)=\sum_{\mu} M_{\mu, t} \rho M_{\mu, t}^{\dagger}$ (Kraus theorem characterizing completely positive linear maps).
3 Contraction for many distances such as the nuclear distance: take two trajectories ρ and ρ^{\prime}; for any $0 \leq t_{1} \leq t_{2}$,

$$
\operatorname{Tr}\left(\left|\rho\left(t_{2}\right)-\rho^{\prime}\left(t_{2}\right)\right|\right) \leq \operatorname{Tr}\left(\left|\rho\left(t_{1}\right)-\rho^{\prime}\left(t_{1}\right)\right|\right)
$$

where for any Hermitian operator $A,|A|=\sqrt{A^{2}}$ and $\operatorname{Tr}(|A|)$ corresponds to the sum of the absolute values of its eigenvalues.

$$
\begin{aligned}
\boldsymbol{\rho}_{k+1} & =\sum_{\mu} \boldsymbol{M}_{\mu} \boldsymbol{\rho}_{k} \boldsymbol{M}_{\mu}^{\dagger} \quad \text { with } \quad \sum_{\mu} \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu}=\boldsymbol{I} \\
\frac{d}{d t} \boldsymbol{\rho} & =-\frac{i}{\hbar}[\boldsymbol{H}, \boldsymbol{\rho}]+\sum_{\nu} \boldsymbol{L}_{\nu} \boldsymbol{\rho} \boldsymbol{L}_{\nu}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \boldsymbol{\rho}+\boldsymbol{\rho} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right)
\end{aligned}
$$

Take $d t>0$ small. Set

$$
\boldsymbol{M}_{d t, 0}=\boldsymbol{I}-d t\left(\frac{i}{\hbar} \boldsymbol{H}+\frac{1}{2} \sum_{\nu} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu}\right), \quad \boldsymbol{M}_{d t, \nu}=\sqrt{d t} \boldsymbol{L}_{\nu}
$$

Since $\rho(t+d t)=\rho(t)+d t\left(\frac{d}{d t} \rho(t)\right)+O\left(d t^{2}\right)$, we have

$$
\boldsymbol{\rho}(t+d t)=\boldsymbol{M}_{d t, 0} \boldsymbol{\rho}(t) \boldsymbol{M}_{d t, 0}^{\dagger}+\sum_{\nu} \boldsymbol{M}_{d t, \nu} \boldsymbol{\rho}(t) \boldsymbol{M}_{d t, \nu}^{\dagger}+O\left(d t^{2}\right)
$$

Since $\boldsymbol{M}_{d t, 0}^{\dagger} \boldsymbol{M}_{d t, 0}+\sum_{\nu} \boldsymbol{M}_{d t, \nu}^{\dagger} \boldsymbol{M}_{d t, \nu}=\boldsymbol{I}+\mathbf{O}\left(d t^{2}\right)$ the super-operator

$$
\boldsymbol{\rho} \mapsto \boldsymbol{M}_{d t, 0} \boldsymbol{\rho} \boldsymbol{M}_{d t, 0}^{\dagger}+\sum_{\nu} \boldsymbol{M}_{d t, \nu} \boldsymbol{\rho} \boldsymbol{M}_{d t, \nu}^{\dagger}
$$

can be seen as an infinitesimal Kraus map.

1 Lindblad master equation

2 Driven and damped qubit

3 Driven and damped harmonic oscillator

4 Complements
■ Oscillator with thermal photon(s)

- Wigner function

Controlled Lindblad master equation

$$
\begin{aligned}
& \frac{d}{d t} \rho=-i\left[\frac{\Delta}{2} \sigma_{\mathbf{z}}, \rho\right]+\left[u \sigma_{+}-u^{*} \sigma_{\mathbf{\sigma}}, \rho\right] \\
& +\frac{1}{T_{1}}\left(\boldsymbol{\sigma}_{-} \rho \sigma_{+}-\frac{1}{2}\left(\sigma_{+} \sigma_{-} \rho+\rho \sigma_{+} \sigma_{-}\right)\right)+\frac{1}{2 T_{\phi}}\left(\boldsymbol{\sigma}_{\boldsymbol{z}} \rho \boldsymbol{\sigma}_{\boldsymbol{z}}-\rho\right)
\end{aligned}
$$

with

- Coherent drive of complex amplitude u at a pulsation $\omega_{e g}+\Delta$ detuned by Δ with respect to the qubit pulsation $\omega_{e g}$.
- T_{1} life-time of the excited state $|e\rangle$.
- T_{ϕ} dephasing time destroying the coherence $\langle e| \rho|g\rangle$.

Exercise: For $u=0$ show that $\lim _{t \mapsto+\infty} \rho(t)=|g\rangle\langle g|$.

1 Lindblad master equation

2 Driven and damped qubit

3 Driven and damped harmonic oscillator

4 Complements
■ Oscillator with thermal photon(s)

- Wigner function

Dynamics in the $\left(x^{\prime}, p^{\prime}\right)$ phase plane with $\omega \gg \kappa, \sqrt{u_{1}^{2}+u_{2}^{2}}$:

$$
\frac{d}{d t} x^{\prime}=\omega p^{\prime}, \quad \frac{d}{d t} p^{\prime}=-\omega x^{\prime}-\kappa p^{\prime}-2 u_{1} \sin (\omega t)+2 u_{2} \cos (\omega t)
$$

Define the frame rotating at ω by $\left(x^{\prime}, p^{\prime}\right) \mapsto(x, p)$ with

$$
x^{\prime}=\cos (\omega t) x+\sin (\omega t) p, \quad p^{\prime}=-\sin (\omega t) x+\cos (\omega t) p
$$

Removing highly oscillating terms (rotating wave approximation), from

$$
\begin{aligned}
& \frac{d}{d t} x=-\kappa \sin ^{2}(\omega t) x+2 u_{1} \sin ^{2}(\omega t)+\left(\kappa p-2 u_{2}\right) \sin (\omega t) \cos (\omega t) \\
& \frac{d}{d t} p=-\kappa \cos ^{2}(\omega t) p+2 u_{2} \cos ^{2}(\omega t)+\left(\kappa x-2 u_{1}\right) \sin (\omega t) \cos (\omega t)
\end{aligned}
$$

we get, with $\alpha=x+i p$ and $u=u_{1}+i u_{2}$:

$$
\frac{d}{d t} \alpha=-\frac{\kappa}{2} \alpha+u
$$

With $x^{\prime}+i p^{\prime}=\alpha^{\prime}=e^{-i \omega t} \alpha$, we have $\frac{d}{d t} \alpha^{\prime}=-\left(\frac{\kappa}{2}+i \omega\right) \alpha^{\prime}+u e^{-i \omega t}$

- The Lindblad master equation:

$$
\frac{d}{d t} \boldsymbol{\rho}=\left[u \boldsymbol{a}^{\dagger}-u^{*} \boldsymbol{a}, \boldsymbol{\rho}\right]+\kappa\left(\boldsymbol{a} \rho \boldsymbol{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \rho-\frac{1}{2} \boldsymbol{\rho} \boldsymbol{a}^{\dagger} \boldsymbol{a}\right)
$$

■ Consider $\boldsymbol{\rho}=\boldsymbol{D}_{\bar{\alpha}} \boldsymbol{\xi} \boldsymbol{D}_{-\bar{\alpha}}$ with $\bar{\alpha}=2 u / \kappa$ and $\boldsymbol{D}_{\bar{\alpha}}=\boldsymbol{e}^{\bar{\alpha} \boldsymbol{a}^{\dagger}-\bar{\alpha}^{*} \boldsymbol{a}}$. We get

$$
\frac{d}{d t} \boldsymbol{\xi}=\kappa\left(\boldsymbol{a} \boldsymbol{\xi} \boldsymbol{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \boldsymbol{\xi}-\frac{1}{2} \boldsymbol{\xi} \boldsymbol{a}^{\dagger} \boldsymbol{a}\right)
$$

since $\boldsymbol{D}_{-\bar{\alpha}} \boldsymbol{a} \boldsymbol{D}_{\bar{\alpha}}=\boldsymbol{a}+\bar{\alpha}$.
■ Informal convergence proof with the strict Lyapunov function $V(\xi)=\operatorname{Tr}(\xi N):$

$$
\frac{d}{d t} V(\xi)=-\kappa V(\xi) \Rightarrow V(\xi(t))=V\left(\xi_{0}\right) e^{-\kappa t}
$$

Since $\boldsymbol{\xi}(t)$ is Hermitian and non-negative, $\boldsymbol{\xi}(t)$ tends to $|0\rangle\langle 0|$ when $t \mapsto+\infty$.

Theorem

Consider with $u \in \mathbb{C}, \kappa>0$, the following Cauchy problem

$$
\frac{d}{d t} \boldsymbol{\rho}=\left[u \boldsymbol{a}^{\dagger}-u^{*} \boldsymbol{a}, \rho\right]+\kappa\left(\boldsymbol{a} \rho \boldsymbol{a}^{\dagger}-\frac{1}{2} \mathbf{a}^{\dagger} \boldsymbol{a} \rho-\frac{1}{2} \rho \boldsymbol{a}^{\dagger} \boldsymbol{a}\right), \quad \rho(0)=\rho_{0} .
$$

Assume that the initial state ρ_{0} is a density operator with finite energy $\operatorname{Tr}\left(\rho_{0} \boldsymbol{N}\right)<+\infty$. Then exists a unique solution to the Cauchy problem in the Banach space $\mathcal{K}^{1}(\mathcal{H})$, the set of trace class operators on \mathcal{H}. It is defined for all $t>0$ with $\rho(t)$ a density operator (Hermitian, non-negative and trace-class) that remains in the domain of the Lindblad super-operator

$$
\boldsymbol{\rho} \mapsto\left[u \boldsymbol{a}^{\dagger}-u^{*} \boldsymbol{a}, \boldsymbol{\rho}\right]+\kappa\left(\boldsymbol{a} \rho \boldsymbol{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \rho-\frac{1}{2} \boldsymbol{\rho} \boldsymbol{a}^{\dagger} \boldsymbol{a}\right) .
$$

This means that $t \mapsto \rho(t)$ is differentiable in the Banach space $\mathcal{K}^{1}(\mathcal{H})$. Moreover $\rho(t)$ converges for the trace-norm towards $|\bar{\alpha}\rangle\langle\bar{\alpha}|$ when t tends to $+\infty$, where $|\bar{\alpha}\rangle$ is the coherent state of complex amplitude $\bar{\alpha}=\frac{2 u}{\kappa}$.

Lemma

Consider with $u \in \mathbb{C}, \kappa>0$, the following Cauchy problem

$$
\frac{d}{d t} \boldsymbol{\rho}=\left[u \boldsymbol{a}^{\dagger}-u^{*} \boldsymbol{a}, \boldsymbol{\rho}\right]+\kappa\left(\boldsymbol{a} \rho \mathbf{a}^{\dagger}-\frac{1}{2} \mathbf{a}^{\dagger} \boldsymbol{a} \rho-\frac{1}{2} \rho \mathbf{a}^{\dagger} \boldsymbol{a}\right), \quad \rho(0)=\rho_{0}
$$

1 for any initial density operator ρ_{0} with $\operatorname{Tr}\left(\rho_{0} \mathbf{N}\right)<+\infty$, we have $\frac{d}{d t} \alpha=-\frac{\kappa}{2}(\alpha-\bar{\alpha})$ where $\alpha=\operatorname{Tr}(\rho \mathbf{a})$ and $\bar{\alpha}=\frac{2 u}{\kappa}$.
2 Assume that $\rho_{0}=\left|\beta_{0}\right\rangle\left\langle\beta_{0}\right|$ where β_{0} is some complex amplitude. Then for all $t \geq 0, \boldsymbol{\rho}(t)=|\beta(t)\rangle\langle\beta(t)|$ remains a coherent state of amplitude $\beta(t)$ solution of the following equation:

$$
\frac{d}{d t} \beta=-\frac{\kappa}{2}(\beta-\bar{\alpha}) \text { with } \beta(0)=\beta_{0} .
$$

Statement 2 relies on:

$$
\boldsymbol{a}|\beta\rangle=\beta|\beta\rangle, \quad|\beta\rangle=e^{-\frac{\beta \beta^{*}}{2}} e^{\beta \mathbf{a}^{\dagger}}|0\rangle \quad \frac{d}{d t}|\beta\rangle=\left(-\frac{1}{2}\left(\beta^{*} \dot{\beta}+\beta \dot{\beta}^{*}\right)+\dot{\beta} \mathbf{a}^{\dagger}\right)|\beta\rangle .
$$

Outline

1 Lindblad master equation

2 Driven and damped qubit

3 Driven and damped harmonic oscillator

4 Complements
■ Oscillator with thermal photon(s)

- Wigner function

Driven and damped quantum oscillator with thermal photon(s)

Parameters $\omega \gg \kappa,|u|$ and $n_{\mathrm{th}}>0$:

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{\rho}=\left[u \mathbf{a}^{\dagger}-u^{*} \boldsymbol{a}, \boldsymbol{\rho}\right]+\left(1+n_{\mathrm{th}}\right) & \kappa\left(\mathbf{a} \rho \mathbf{a}^{\dagger}-\frac{1}{2} \mathbf{a}^{\dagger} \mathbf{a} \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho} \mathbf{a}^{\dagger} \boldsymbol{a}\right) \\
& +n_{\mathrm{th}} \kappa\left(\mathbf{a}^{\dagger} \boldsymbol{\rho} \boldsymbol{a}-\frac{1}{2} \boldsymbol{a} \boldsymbol{a}^{\dagger} \boldsymbol{\rho}-\frac{1}{2} \rho \boldsymbol{a} \mathbf{a}^{\dagger}\right) .
\end{aligned}
$$

Key issue: $\lim _{t \mapsto+\infty} \rho(t)=?$.
With $\bar{\alpha}=2 u / k$, we have

$$
\begin{aligned}
& \frac{\boldsymbol{d}}{d t} \boldsymbol{\rho}=\left(1+n_{\mathrm{th}}\right) \kappa\left((\boldsymbol{a}-\bar{\alpha}) \boldsymbol{\rho}(\boldsymbol{a}-\bar{\alpha})^{\dagger}-\frac{1}{2}(\boldsymbol{a}-\bar{\alpha})^{\dagger}(\boldsymbol{a}-\bar{\alpha}) \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho}(\boldsymbol{a}-\bar{\alpha})^{\dagger}(\boldsymbol{a}-\bar{\alpha})\right) \\
& \quad+n_{\mathrm{th}} \kappa\left((\boldsymbol{a}-\bar{\alpha})^{\dagger} \boldsymbol{\rho}(\boldsymbol{a}-\bar{\alpha})-\frac{1}{2}(\boldsymbol{a}-\bar{\alpha})(\boldsymbol{a}-\bar{\alpha})^{\dagger} \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho}(\boldsymbol{a}-\bar{\alpha})(\boldsymbol{a}-\bar{\alpha})^{\dagger}\right) .
\end{aligned}
$$

Using the unitary change of frame $\boldsymbol{\xi}=\boldsymbol{D}_{-\bar{\alpha}} \boldsymbol{\rho} \boldsymbol{D}_{\bar{\alpha}}$ based on the displacement $\boldsymbol{D}_{\bar{\alpha}}=e^{\bar{\alpha} \boldsymbol{a}^{\dagger}-\bar{\alpha}^{\dagger} \boldsymbol{a}}$, we get the following dynamics on $\boldsymbol{\xi}$

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{\xi}=\left(1+n_{\mathrm{th}}\right) \kappa\left(\boldsymbol{a} \boldsymbol{\xi} \mathbf{a}^{\dagger}-\frac{1}{2} \mathbf{a}^{\dagger} \boldsymbol{a} \boldsymbol{\xi}\right. & \left.-\frac{1}{2} \boldsymbol{\xi} \mathbf{a}^{\dagger} \boldsymbol{a}\right) \\
& +n_{\mathrm{th}} \kappa\left(\mathbf{a}^{\dagger} \boldsymbol{\xi} \boldsymbol{a}-\frac{1}{2} \boldsymbol{a} \mathbf{a}^{\dagger} \boldsymbol{\xi}-\frac{1}{2} \boldsymbol{\xi} \boldsymbol{a} \mathbf{a}^{\dagger}\right)
\end{aligned}
$$

since $\boldsymbol{a}+\bar{\alpha}=\boldsymbol{D}_{-\bar{\alpha}} \boldsymbol{a} \boldsymbol{D}_{\bar{\alpha}}$.

The thermal mixed state $\xi_{\text {th }}=\frac{1}{1+n_{t h}}\left(\frac{n_{n h}}{1+n_{t h}}\right)^{\boldsymbol{N}}$ is an equilibrium of

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{\xi}=\kappa\left(1+n_{\mathrm{th}}\right)\left(\boldsymbol{a} \boldsymbol{\xi} \mathbf{a}^{\dagger}-\frac{1}{2} \mathbf{a}^{\dagger} \boldsymbol{a} \boldsymbol{\xi}\right. & \left.-\frac{1}{2} \boldsymbol{\xi} \mathbf{a}^{\dagger} \boldsymbol{a}\right) \\
& +\kappa n_{\mathrm{th}}\left(\mathbf{a}^{\dagger} \boldsymbol{\xi} \boldsymbol{a}-\frac{1}{2} \boldsymbol{a} \boldsymbol{a}^{\dagger} \boldsymbol{\xi}-\frac{1}{2} \boldsymbol{\xi} \boldsymbol{a} \boldsymbol{a}^{\dagger}\right)
\end{aligned}
$$

with $\operatorname{Tr}\left(\boldsymbol{N} \xi_{\mathrm{th}}\right)=n_{\mathrm{th}}$. Following ${ }^{3}$, set $\boldsymbol{\zeta}$ the solution of the Sylvester equation: $\boldsymbol{\xi}_{\mathrm{th}} \boldsymbol{\zeta}+\boldsymbol{\zeta} \boldsymbol{\xi}_{\mathrm{th}}=\boldsymbol{\xi}-\boldsymbol{\xi}_{\mathrm{th}}$. Then $V(\boldsymbol{\xi})=\operatorname{Tr}\left(\boldsymbol{\xi}_{\mathrm{th}} \boldsymbol{\zeta}^{2}\right)$ is a strict Lyapunov function. It is based on the following computations that can be made rigorous with an adapted Banach space for ξ :

$$
\begin{aligned}
\frac{d}{d t} V(\boldsymbol{\xi})=-\kappa\left(1+n_{\mathrm{th}}\right) \operatorname{Tr}\left([\boldsymbol{\zeta}, \boldsymbol{a}] \xi_{\mathrm{th}}\right. & {\left.[\boldsymbol{\zeta}, \boldsymbol{a}]^{\dagger}\right) } \\
& -\kappa n_{\mathrm{th}} \operatorname{Tr}\left(\left[\boldsymbol{\zeta}, \mathbf{a}^{\dagger}\right] \xi_{\mathrm{th}}\left[\boldsymbol{\zeta}, \mathbf{a}^{\dagger}\right]^{\dagger}\right) \leq 0 .
\end{aligned}
$$

When $\frac{d}{d t} V=0, \zeta$ commutes with $\boldsymbol{a}, \boldsymbol{a}^{\dagger}$ and \boldsymbol{N}. It is thus a constant function of \boldsymbol{N}. Since $\boldsymbol{\xi}_{\mathrm{th}} \boldsymbol{\zeta}+\boldsymbol{\zeta} \boldsymbol{\xi}_{\mathrm{th}}=\boldsymbol{\xi}-\boldsymbol{\xi}_{\mathrm{th}}$, we get $\boldsymbol{\xi}=\boldsymbol{\xi}_{\mathrm{th}}$.

[^18]
Outline

1 Lindblad master equation

2 Driven and damped qubit

3 Driven and damped harmonic oscillator

4 Complements

- Oscillator with thermal photon(s)
- Wigner function

Parameters $\omega \gg \kappa,|u|$ and $n_{\text {th }} \geq 0$:

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{\rho}=\left[\boldsymbol{u} \boldsymbol{a}^{\dagger}-u^{*} \boldsymbol{a}, \boldsymbol{\rho}\right]+\left(1+n_{\mathrm{th}}\right) & \kappa\left(\boldsymbol{a} \rho \mathbf{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho} \mathbf{a}^{\dagger} \boldsymbol{a}\right) \\
& +n_{\mathrm{th}} \kappa\left(\boldsymbol{a}^{\dagger} \boldsymbol{\rho} \boldsymbol{a}-\frac{1}{2} \boldsymbol{a} \boldsymbol{a}^{\dagger} \boldsymbol{\rho}-\frac{1}{2} \rho \boldsymbol{a} \boldsymbol{a}^{\dagger}\right) .
\end{aligned}
$$

Key issue: $\lim _{t \rightarrow+\infty} \rho(t)=?$.
The passage to another representation via the Wigner function:
■ Since $\boldsymbol{D}_{\alpha} \boldsymbol{e}^{i \pi N} \boldsymbol{D}_{-\alpha}$ bounded and Hermitian operator (the dual of $\mathcal{K}^{1}(\mathcal{H})$ is $\mathcal{B}(\mathcal{H})$),

$$
W^{\{\rho\}}(x, p)=\frac{2}{\pi} \operatorname{Tr}\left(\rho \boldsymbol{D}_{\alpha} e^{i \pi N} \boldsymbol{D}_{-\alpha}\right) \quad \text { with } \quad \alpha=x+i p \in \mathbb{C},
$$

defines a real and bounded function $\left|W^{\{\rho\}}(x, p)\right| \leq \frac{2}{\pi}$.
■ For a coherent state $\boldsymbol{\rho}=|\beta\rangle\langle\beta|$ with $\beta \in \mathbb{C}$:

$$
W^{\{|\beta\rangle\langle\beta|\}}(x, p)=\frac{2}{\pi} e^{-2|\beta-(x+i p)|^{2}} .
$$

With $\boldsymbol{D}_{\alpha}=\boldsymbol{e}^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} \boldsymbol{a}} e^{-\alpha \alpha^{*} / 2}=e^{-\alpha^{*} \boldsymbol{a}} \boldsymbol{e}^{\alpha \mathbf{a}^{\dagger}} e^{\alpha \alpha^{*} / 2}$ we have:

$$
\frac{\pi}{2} W^{\{\rho\}}\left(\alpha, \alpha^{*}\right)=\operatorname{Tr}\left(\rho e^{\alpha \mathbf{a}^{\dagger}} e^{-\alpha^{*} a} e^{i \pi N} e^{\alpha^{*} a} e^{-\alpha \mathbf{a}^{\dagger}}\right)
$$

where α and α^{*} are seen as independent variables:

$$
\frac{\partial}{\partial \alpha}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial p}\right), \quad \frac{\partial}{\partial \alpha^{*}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial p}\right)
$$

We have $\frac{\pi}{2} \frac{\partial}{\partial \alpha} \boldsymbol{W}^{\{\boldsymbol{\rho}\}}\left(\alpha, \alpha^{*}\right)=\operatorname{Tr}\left(\left(\boldsymbol{\rho} \boldsymbol{a}^{\dagger}-\boldsymbol{a}^{\dagger} \boldsymbol{\rho}\right) \boldsymbol{D}_{\alpha} \boldsymbol{e}^{i \pi N} \boldsymbol{D}_{-\alpha}\right)$ Since $\boldsymbol{a}^{\dagger} \boldsymbol{D}_{\alpha} \boldsymbol{e}^{i \pi N} \boldsymbol{D}_{-\alpha}=\boldsymbol{D}_{\alpha} \boldsymbol{e}^{i \pi N} \boldsymbol{D}_{-\alpha}\left(2 \alpha^{*}-\boldsymbol{a}^{\dagger}\right)$, we get

$$
\frac{\partial}{\partial \alpha} \boldsymbol{W}^{\{\boldsymbol{\rho}\}}\left(\alpha, \alpha^{*}\right)=2 \alpha^{*} \boldsymbol{W}^{\{\boldsymbol{\rho}\}}\left(\alpha, \alpha^{*}\right)-2 \boldsymbol{W}^{\left\{\boldsymbol{a}^{\dagger} \boldsymbol{\rho}\right\}}\left(\alpha, \alpha^{*}\right)
$$

Thus $\boldsymbol{W}^{\left\{\boldsymbol{a}^{\dagger} \boldsymbol{\rho}\right\}}\left(\alpha, \alpha^{*}\right)=\alpha^{*} \boldsymbol{W}^{\{\boldsymbol{\rho}\}}\left(\alpha, \alpha^{*}\right)-\frac{1}{2} \frac{\partial}{\partial \alpha} \boldsymbol{W}^{\{\boldsymbol{\rho}\}}\left(\alpha, \alpha^{*}\right)$, i.e.

$$
W^{\left\{\mathbf{a}^{\dagger} \rho\right\}}=\left(\alpha^{*}-\frac{1}{2} \frac{\partial}{\partial \alpha}\right) W^{\{\rho\}} .
$$

Similar computations yield to the following correspondence rules:

$$
\begin{array}{ll}
W^{\{\rho \mathbf{a}\}}=\left(\alpha-\frac{1}{2} \frac{\partial}{\partial \alpha^{*}}\right) W^{\{\rho\}}, & W^{\{\boldsymbol{a} \rho\}}=\left(\alpha+\frac{1}{2} \frac{\partial}{\partial \alpha^{*}}\right) W^{\{\rho\}} \\
\boldsymbol{W}^{\left\{\boldsymbol{\rho} \mathbf{a}^{\dagger}\right\}}=\left(\alpha^{*}+\frac{1}{2} \frac{\partial}{\partial \alpha}\right) W^{\{\rho\}}, & W^{\left\{\mathbf{a}^{\dagger} \boldsymbol{\rho}\right\}}=\left(\alpha^{*}-\frac{1}{2} \frac{\partial}{\partial \alpha}\right) W^{\{\rho\}} .
\end{array}
$$

Thus

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{\rho}=\left[\boldsymbol{u} \mathbf{a}^{\dagger}-u^{*} \boldsymbol{a}, \boldsymbol{\rho}\right]+\left(1+n_{\mathrm{th}}\right) & \kappa\left(\boldsymbol{a} \rho \boldsymbol{a}^{\dagger}-\frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho} \boldsymbol{a}^{\dagger} \boldsymbol{a}\right) \\
& +n_{\mathrm{th}} \kappa\left(\boldsymbol{a}^{\dagger} \boldsymbol{\rho} \boldsymbol{a}-\frac{1}{2} \boldsymbol{a} \boldsymbol{a}^{\dagger} \boldsymbol{\rho}-\frac{1}{2} \boldsymbol{\rho} \boldsymbol{a} \boldsymbol{a}^{\dagger}\right)
\end{aligned}
$$

becomes

$$
\frac{\partial}{\partial t} W^{\{\rho\}}=\frac{\kappa}{2}\left(\frac{\partial}{\partial \alpha}(\alpha-\bar{\alpha})+\frac{\partial}{\partial \alpha^{*}}\left(\alpha^{*}-\bar{\alpha}^{*}\right)+\left(1+2 n_{\text {th }}\right) \frac{\partial^{2}}{\partial \alpha \partial \alpha^{*}}\right) W^{\{\boldsymbol{\rho}\}}
$$

Since the Green function of

$$
\begin{aligned}
\frac{\partial}{\partial t} W^{\{\rho\}}=\frac{\kappa}{2}\left(\frac{\partial}{\partial x}\left((x-\bar{x}) W^{\{\rho\}}\right)\right. & +\frac{\partial}{\partial p}\left((p-\bar{p}) W^{\{\rho\}}\right) \\
& \left.+\frac{1+2 n_{\text {th }}}{4}\left(\frac{\partial^{2} W^{\{\rho\}}}{\partial x^{2}}+\frac{\partial^{2} W^{\{\rho\}}}{\partial p^{2}}\right)\right)
\end{aligned}
$$

is the following time-varying Gaussian function

$$
G\left(x, p, t, x_{0}, p_{0}\right)=\frac{\exp \left(-\frac{\left(x-\bar{x}-\left(x_{0}-\bar{x}\right) e^{-\frac{\kappa t}{2}}\right)^{2}+\left(p-\bar{p}-\left(p_{0}-\bar{p}\right) e^{-\frac{\kappa t}{2}}\right)^{2}}{\left(n_{\mathrm{th}}+\frac{1}{2}\right)\left(1-e^{-\kappa t}\right)}\right)}{\pi\left(n_{\mathrm{th}}+\frac{1}{2}\right)\left(1-e^{-\kappa t}\right)}
$$

we can compute $W_{t}^{\{\rho\}}$ from $W_{0}^{\{\rho\}}$ for all $t>0$:

$$
W_{t}^{\{\rho\}}(x, p)=\int_{\mathbb{R}^{2}} W_{0}^{\{\rho\}}\left(x^{\prime}, p^{\prime}\right) G\left(x, p, t, x^{\prime}, p^{\prime}\right) d x^{\prime} d p^{\prime}
$$

Combining
$\square W_{t}^{\{\rho\}}(x, p)=\int_{\mathbb{R}^{2}} W_{0}^{\{\rho\}}\left(x^{\prime}, p^{\prime}\right) G\left(x, p, t, x^{\prime}, p^{\prime}\right) d x^{\prime} d p^{\prime}$.
■ G uniformly bounded and

$$
\lim _{t \mapsto+\infty} G\left(x, p, t, x^{\prime}, p^{\prime}\right)=\frac{1}{\pi\left(n_{\text {th }}+\frac{1}{2}\right)} \exp \left(-\frac{(x-\bar{x})^{2}+(p-\bar{p})^{2}}{\left(n_{\text {nh }}+\frac{1}{2}\right)}\right)
$$

- $W_{0}^{\{\rho\}}$ in L^{1} with $\iint_{\mathbb{R}^{2}} W_{0}^{\{\rho\}}=1$
- dominate convergence theorem
shows that all the solutions converge to a unique steady-state Gaussian density function, centered in (\bar{x}, \bar{p}) with variance $\frac{1}{2}+n_{\text {th }}$:
$\forall(x, p) \in \mathbb{R}^{2}, \quad \lim _{t \rightarrow+\infty} W_{t}^{\{\rho\}}(x, p)=\frac{1}{\pi\left(n_{\text {th }}+\frac{1}{2}\right)} \exp \left(-\frac{(x-\bar{x})^{2}+(p-\bar{p})^{2}}{\left(n_{\text {th }}+\frac{1}{2}\right)}\right)$.

Quantum Control ${ }^{1}$ International Graduate School on Control
 www. eeci-igsc.eu

Pierre Rouchon²

Lecture 14
 Chengdu, July 12, 2019

[^19]1 Coherent feedback stabilisation

2 Slow measurement-based feedback

1 Coherent feedback stabilisation

2 Slow measurement-based feedback

Quantum analogue of Watt speed governor: a dissipative mechanical system controls another mechanical system ${ }^{3}$

Optical pumping (Kastler 1950), coherent population trapping (Arimondo 1996)

Dissipation engineering, autonomous feedback: (Zoller, Cirac, Wolf, Verstraete, Devoret, Schoelkopf, Siddiqi, Lloyd, Viola, Ticozzi, Leghtas, Mirrahimi, Sarlette, ...)
(S,L,H) theory and linear quantum systems: quantum feedback networks based on stochastic Schrödinger equation, Heisenberg picture (Gardiner, Yurke, Mabuchi, Genoni, Serafini, Milburn, Wiseman, Doherty, Gough, James, Petersen, Nurdin, Yamamoto, Zhang, Dong, ...)

Stability analysis: Kraus maps and Lindblad propagators are always contractions (non commutative diffusion and consensus).

[^20]System: high quality oscillator with annihilation operator a:

$$
\frac{d}{d t} \rho=-i \omega_{a}\left[\boldsymbol{a}^{\dagger} \boldsymbol{a}, \rho\right]+\kappa_{a}\left(\boldsymbol{a} \rho \mathbf{a}^{\dagger}-\frac{1}{2}\left(\mathbf{a}^{\dagger} \boldsymbol{a} \rho+\rho \mathbf{a}^{\dagger} \boldsymbol{a}\right)\right) .
$$

Controller: low quality oscillator $\kappa_{a} \ll \kappa_{b}$ with annihilation operator \boldsymbol{b} with resonant drive

$$
\frac{d}{d t} \rho=-i \omega_{b}\left[\boldsymbol{b}^{\dagger} \boldsymbol{b}, \rho\right]+\left[-u e^{i \omega_{b} t} \boldsymbol{b}^{\dagger}+u^{*} e^{-i \omega_{b} t} \boldsymbol{b}, \rho\right]+\kappa_{b}\left(\boldsymbol{b} \rho \boldsymbol{b}^{\dagger}-\frac{1}{2}\left(\boldsymbol{b}^{\dagger} \boldsymbol{b} \rho+\rho \boldsymbol{b}^{\dagger} \boldsymbol{b}\right)\right) .
$$

Coupling Hamiltonian term $g\left[\boldsymbol{a}^{2} \boldsymbol{b}^{\dagger}-\left(\boldsymbol{a}^{\dagger}\right)^{2} \boldsymbol{b}, \rho\right]$ yields to the closed-loop Lindblad equation

$$
\begin{array}{r}
\frac{d}{d t} \rho=-i\left[\omega_{a} \boldsymbol{a}^{\dagger} \boldsymbol{a}+\omega_{b} \boldsymbol{b}^{\dagger} \boldsymbol{b}\right]+\left[-u e^{-i \omega_{b} t} \boldsymbol{b}^{\dagger}+u^{*} e^{+i \omega_{b} t} \boldsymbol{b}, \rho\right]+g\left[\boldsymbol{a}^{2} \boldsymbol{b}^{\dagger}-\left(\boldsymbol{a}^{\dagger}\right)^{2} \boldsymbol{b}, \rho\right] \\
+\kappa_{a}\left(\boldsymbol{a} \rho \mathbf{a}^{\dagger}-\frac{1}{2}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a} \rho+\rho \mathbf{a}^{\dagger} \boldsymbol{a}\right)\right)+\kappa_{b}\left(\boldsymbol{b} \rho \boldsymbol{b}^{\dagger}-\frac{1}{2}\left(\boldsymbol{b}^{\dagger} \boldsymbol{b} \rho+\rho \boldsymbol{b}^{\dagger} \boldsymbol{b}\right)\right)
\end{array}
$$

${ }^{4}$ M. Mirrahimi, Z. Leghtas, ..., M.H. Devoret: Dynamically protected cat-qubits: a new paradigm for universal quantum computation.New Journal of Physics,2014, 16:045014.

- For $\omega_{b}=2 \omega_{a}$ one gets in the the frame rotating at ω_{a} for mode a and ω_{b} for mode b (unitary transformation: $\rho_{o l d}=e^{-i \omega_{a} t \boldsymbol{a}^{\dagger} \boldsymbol{a}-i \omega_{b} t \boldsymbol{b}^{\dagger} \boldsymbol{b}} \rho_{\text {new }} e^{i \omega_{a} t \boldsymbol{a}^{\dagger} \boldsymbol{a}+i \omega_{b} t \boldsymbol{b}^{\dagger} \boldsymbol{b}}$):

$$
\begin{aligned}
\frac{d}{d t} \rho=g\left[\left(\boldsymbol{a}^{2}\right.\right. & \left.\left.-\frac{u}{g}\right) \boldsymbol{b}^{\dagger}-\left(\left(\boldsymbol{a}^{\dagger}\right)^{2}-\frac{u^{*}}{g}\right) \boldsymbol{b}, \rho\right] \\
& +\kappa_{a}\left(\boldsymbol{a} \rho \boldsymbol{a}^{\dagger}-\frac{1}{2}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a} \rho+\rho \boldsymbol{a}^{\dagger} \boldsymbol{a}\right)\right)+\kappa_{b}\left(\boldsymbol{b} \rho \boldsymbol{b}^{\dagger}-\frac{1}{2}\left(\boldsymbol{b}^{\dagger} \boldsymbol{b} \rho+\rho \boldsymbol{b}^{\dagger} \boldsymbol{b}\right)\right)
\end{aligned}
$$

- If we neglect κ_{a} in front of κ_{b}, any $\bar{\rho}$ of the form $\bar{\rho}=\bar{\rho}_{a} \otimes\left|0_{b}\right\rangle\left\langle 0_{b}\right|$ with $\bar{\rho}_{a}$ density operator on mode a with support in $\operatorname{span}\{|\alpha\rangle,|-\alpha\rangle\}$ where $\alpha=\sqrt{\frac{u}{g}} \in \mathbb{C}$, is a steady-state of the above Lindbald equation with $\kappa_{a}=0$.
- If additionally, $g \ll \kappa_{b}$, the strongly damped mode b can be eliminated via singular perturbation techniques (quasi-static or adiabatic approximation) to get the following slow Lindblad equation on mode a only:

$$
\frac{d}{d t} \rho=\frac{4 g^{2}}{\kappa_{b}}\left(L \rho L^{\dagger}-\frac{1}{2}\left(L^{\dagger} L \rho+\rho L^{\dagger} L\right)\right)+\kappa_{a}\left(\boldsymbol{a} \rho \boldsymbol{a}^{\dagger}-\frac{1}{2}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a} \rho+\rho \boldsymbol{a}^{\dagger} \boldsymbol{a}\right)\right)
$$

with Lindblad operator $L=\boldsymbol{a}^{2}-\alpha^{2}$.

- If $g \gg \sqrt{\kappa_{a} \kappa_{b}}$ then we can still neglect κ_{a}. Any solution of

$$
\frac{d}{d t} \rho=\frac{4 g^{2}}{\kappa_{b}}\left(L \rho L^{\dagger}-\frac{1}{2}\left(L^{\dagger} L \rho+\rho L^{\dagger} L\right)\right)
$$

converges to a steady state $\bar{\rho}_{a}$ with support in $\operatorname{span}\{|\alpha\rangle,|-\alpha\rangle\}$ (use the Lyapunov function $\left.V(\rho)=\operatorname{Tr}\left(L \rho L^{\dagger}\right)^{5}\right)$.

- For $\frac{d}{d t} \rho=\frac{4 g^{2}}{\kappa_{b}}\left(L \rho L^{\dagger}-\frac{1}{2}\left(L^{\dagger} L \rho+\rho L^{\dagger} L\right)\right)+\kappa_{a}\left(\boldsymbol{a} \rho \mathbf{a}^{\dagger}-\frac{1}{2}\left(\boldsymbol{a}^{\dagger} \boldsymbol{a} \rho+\rho \mathbf{a}^{\dagger} \boldsymbol{a}\right)\right)$ with $g \gg \sqrt{\kappa_{a} \kappa_{b}}$, a reduction to the sub-space $\operatorname{span}\{|\alpha\rangle,|-\alpha\rangle\}$ is possible to describe the very slow evolution due to κ_{a}. With the orthonormal basis,

$$
\left|c_{\alpha}^{+}\right\rangle=\frac{|\alpha\rangle+|-\alpha\rangle}{\sqrt{2\left(1+e^{-2|\alpha|^{2}}\right)}} \text { (even cat) and }\left|c_{\alpha}^{-}\right\rangle=\frac{|\alpha\rangle-|-\alpha\rangle}{\sqrt{2\left(1-e^{-2|\alpha|^{2}}\right)}} \text { (odd cat), }
$$

define the swap operator $X_{c}=\left|c_{\alpha}^{+}\right\rangle\left\langle c_{\alpha}^{-}\right|+\left|c_{\alpha}^{-}\right\rangle\left\langle c_{\alpha}^{+}\right|$. Since $\boldsymbol{a}\left|c_{\alpha}^{+}\right\rangle=\alpha\left|c_{\alpha}^{-}\right\rangle$and $\mathbf{a}\left|c_{\alpha}^{-}\right\rangle=\alpha\left|c_{\alpha}^{+}\right\rangle$, the reduced dynamics on $\mathcal{H}_{c} \triangleq \operatorname{span}\left\{\left|c_{\alpha}^{+}\right\rangle,\left|c_{\alpha}^{-}\right\rangle\right\}$reads

$$
\frac{d}{d t} \rho_{C}=\kappa_{a}|\alpha|^{2}\left(X_{C} \rho_{C} X_{C}-\rho_{C}\right)
$$

where ρ_{c} a density operator on \mathcal{H}_{c}.

[^21]
1 Coherent feedback stabilisation

2 Slow measurement-based feedback

Assume that one can continuously and weakly measure the parity $e^{i \pi \mathbf{a}^{\dagger} \boldsymbol{a}}$ of mode a with a rate $\gamma_{a} \gg \kappa_{a}|\alpha|^{2}$. Then we have the following stochastic master equation $\left(Z_{c}=\left|c_{\alpha}^{+}\right\rangle\left\langle c_{\alpha}^{+}\right|-\left|c_{\alpha}^{-}\right\rangle\left\langle c_{\alpha}^{-}\right|\right)$
$d \rho_{c}=\kappa_{a}|\alpha|^{2}\left(X_{c} \rho_{c} X_{c}-\rho_{c}\right) d t+\gamma_{a}\left(Z_{c} \rho_{c} Z_{c}-\rho_{c}\right) d t+\sqrt{\eta_{c} \gamma_{a}}\left(Z_{c} \rho_{c}+\rho_{c} Z_{c}-2 \operatorname{Tr}\left(Z_{c} \rho_{c}\right) \rho_{c}\right) d W$
with continuous-time measurement output y_{c} of efficiency $\eta_{c}>0$ and given by $d y_{c}=2 \sqrt{\eta_{c} \gamma_{a}} \operatorname{Tr}\left(Z_{c} \rho_{c}\right) d t+d W$.

One can stabilize either $\left|c_{\alpha}^{+}\right\rangle\left\langle c_{\alpha}^{+}\right|$or $\left|c_{\alpha}^{-}\right\rangle\left\langle c_{\alpha}^{-}\right|$if we have at our disposal a classical input signal u_{c} attached to an Hamiltonian H_{c} on \mathcal{H}_{c} independent of Z_{c}.

Exercise: design a measurement-based feedback stabilizing $\left|c_{\alpha}^{+}\right\rangle\left\langle c_{\alpha}^{+}\right|$with $H_{c}=X_{C}$ and based on the Lyapunov function $V_{c}\left(\rho_{c}\right)=\sqrt{\left\langle\mathcal{C}_{\alpha}^{+}\right| \rho_{c}\left|C_{\alpha}^{+}\right\rangle}$for $\kappa_{a}=0$. Analyse the impact of $\kappa_{a}>0$ with closed-loop Monte-Carlo simulations.

To stabilize the quantum information localized in system S :
■ fast decoherence addressed by a quantum controller (coherent feedback);

■ slow decoherence and perturbation tackled by a classical controller (measurement-based feedback).

[^0]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^1]: ${ }^{3}$ Courtesy of Walter Riess, IBM Research - Zurich.

[^2]: ${ }^{4}$ Laboratoire Kastler-Brossel (LKB), http: / /www. дkb.upmc. fr/eqed/

[^3]: ${ }^{5}$ S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities and Photons. Oxford Graduate Texts, 2006.

[^4]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^5]: ${ }^{6}$ See complement $B_{I I}$, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, 1989.

[^6]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^7]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^8]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^9]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^10]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^11]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^12]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^13]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^14]: ${ }^{3}$ Zhou, X.; Dotsenko, I.; Peaudecerf, B.; Rybarczyk, T.; Sayrin, C.; S. Gleyzes, J. R.; Brune, M.; Haroche, S. Field locked to Fock state by quantum feedback with single photon corrections. Physical Review Letter, 2012, 108, 243602.

[^15]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^16]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^17]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^18]: ${ }^{3}$ PR and A. Sarlette: Contraction and stability analysis of steady-states for open quantum systems described by Lindblad differential equations. Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, 10-13 Dec. 2013, 6568-6573.

[^19]: ${ }^{1}$ An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

    ```
    http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html
    ```

 ${ }^{2}$ Mines ParisTech, INRIA Paris

[^20]: ${ }^{3}$ J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.

[^21]: ${ }^{5}$ R. Azouit, A. Sarlette, and PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping. ESAIM: COCV, 2016, 22(4):1353-1369.

