Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 1 Chengdu, July 8, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

1 Quantum systems: some examples and applications

2 LKB Photon Box

3 Exercise: Quantum Non Demolition (QND) measurement of photons

▲□▶▲□▶▲□▶▲□▶ □ のQ@

4 Outline of the lectures and reference books

Controlling quantum degrees of freedom

Some applications

- Nuclear Magnetic Resonance (NMR) applications;
- Quantum chemical synthesis;
- High resolution measurement devices (e.g. atomic/optic clocks);
- Quantum communication;
- Quantum computation .

Physics Nobel prize 2012

Serge Haroche

David J. Wineland

Nobel prize: ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems.

Technologies for quantum simulation and computation³

Requirement:

Scalable modular architecture Control software from the very beginning.

Quantum computation: towards quantum electronics

D-Wave machine: machines to solve certain huge-dimensional optimization problems (state space of dimension 2¹⁰⁰).

Major challenge: Fragility of quantum information versus external noise.

Quantum error correction

We protect quantum information by stabilizing a manifold of quantum states.

イロト 不良 とくほう イロン しゅ

1 Quantum systems: some examples and applications

2 LKB Photon Box

3 Exercise: Quantum Non Demolition (QND) measurement of photons

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

4 Outline of the lectures and reference books

The LKB Photon box ⁴

The first experimental realization of a quantum-state feedback:

microwave photons (10 GHz)

Theory: I. Dotsenko, ...: Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states. Physical Review A, 2009, 80: 013805-013813. Experiment: C. Sayrin, ..., S. Haroche: Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477, 73-77.

⁴Laboratoire Kastler-Brossel (LKB), http://www.lkb.upmc.fr/@qed/ ____

1 Schrödinger ($\hbar = 1$): wave function $|\psi\rangle$ in Hilbert space \mathcal{H} ,

$$\frac{d}{dt}|\psi\rangle = -i\boldsymbol{H}|\psi\rangle, \quad \boldsymbol{H} = \boldsymbol{H}_0 + u\boldsymbol{H}_1.$$

Unitary propagator **U** solution of $\frac{d}{dt}$ **U** = -i**HU** with **U**(0) = *I*.

2 Origin of dissipation: collapse of the wave packet induced by the measurement of observable **O** with spectral decomp. $\sum_{\mu} \lambda_{\mu} \mathbf{P}_{\mu}$:

measurement outcome μ with proba. $\mathbb{P}_{\mu} = \langle \psi | \mathbf{P}_{\mu} | \psi \rangle$ depending on $|\psi\rangle$, just before the measurement

• measurement back-action if outcome $\mu = y$:

$$|\psi
angle \mapsto |\psi
angle_+ = rac{oldsymbol{P}_y|\psi
angle}{\sqrt{\langle\psi|oldsymbol{P}_y|\psi
angle}}$$

3 Tensor product for the description of composite systems (*S*, *M*):

 $\blacksquare \text{ Hilbert space } \mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_M$

• Hamiltonian
$$H = H_S \otimes I_M + H_{int} + I_S \otimes H_M$$

• observable on sub-system *M* only: $O = I_S \otimes O_M$.

⁵S. Haroche and J.M. Raimond. *Exploring the Quantum: Atoms, Cavities and Photons*. Oxford Graduate Texts, 2006.

Composite system (S, M): harmonic oscillator \otimes qubit.

System S corresponds to a quantized harmonic oscillator:

$$\mathcal{H}_{\mathcal{S}} = \left\{ \sum_{n=0}^{\infty} \psi_n | n \rangle \ \Big| \ (\psi_n)_{n=0}^{\infty} \in l^2(\mathbb{C}) \right\},$$

where $|n\rangle$ is the photon-number state with *n* photons $(\langle n_1 | n_2 \rangle = \delta_{n_1, n_2}).$

Meter M is a qubit, a 2-level system:

$$\mathcal{H}_{M} = \left\{ \psi_{g} | g \rangle + \psi_{e} | e \rangle \ \middle| \ \psi_{g}, \psi_{e} \in \mathbb{C} \right\},\$$

where $|g\rangle$ (resp. $|e\rangle$) is the ground (resp. excited) state $(\langle g|g\rangle = \langle e|e\rangle = 1 \text{ and } \langle g|e\rangle = 0)$

State of the composite system $|\Psi\rangle \in \mathcal{H}_S \otimes \mathcal{H}_M$:

$$\begin{split} |\Psi\rangle &= \sum_{\substack{n\geq 0 \\ e \neq 0}} \left(\Psi_{ng} \mid n \rangle \otimes |g\rangle + \Psi_{ne} \mid n \rangle \otimes |e\rangle \right) \\ &= \left(\sum_{\substack{n\geq 0 \\ n\geq 0}} \Psi_{ng} \mid n \rangle \right) \otimes |g\rangle + \left(\sum_{\substack{n\geq 0 \\ n\geq 0}} \Psi_{ne} \mid n \rangle \right) \otimes |e\rangle, \quad \Psi_{ne}, \Psi_{ng} \in \mathbb{C}. \end{split}$$

Ortho-normal basis: $(|n\rangle \otimes |g\rangle, |n\rangle \otimes |e\rangle)_{n \in \mathbb{N}}$

Quantum trajectories (1)

- When atom comes out *B*, the quantum state $|\Psi\rangle_B$ of the composite system is separable: $|\Psi\rangle_B = |\psi\rangle \otimes |g\rangle$.
- Just before the measurement in D, the state is in general entangled (not separable):

$$|\Psi
angle_{B_2} = U_{SM} (|\psi
angle \otimes |g
angle) = (M_g |\psi
angle) \otimes |g
angle + (M_e |\psi
angle) \otimes |e
angle$$

where $U_{SM} = U_{R_2} U_C U_{R_1}$ is a unitary transformation (Schrödinger propagator) defining the measurement operators M_g and M_e on \mathcal{H}_S . Since U_{SM} is unitary, $M_a^{\dagger} M_g + M_e^{\dagger} M_e = I$. Just before detector *D* the quantum state is **entangled**:

$$|\Psi
angle_{B_2} = (\pmb{M}_g|\psi
angle) \otimes |\pmb{g}
angle + (\pmb{M}_{\pmb{e}}|\psi
angle) \otimes |\pmb{e}
angle$$

Just after outcome *y*, the state becomes **separable** ⁶:

$$|\Psi\rangle_D = \left(\frac{M_y}{\sqrt{\langle\psi|M_y^{\dagger}M_y|\psi\rangle}}|\psi
angle
ight)\otimes|y
angle.$$

Outcome *y* obtained with probability $\mathbb{P}_{y} = \left\langle \psi | \boldsymbol{M}_{y}^{\dagger} \boldsymbol{M}_{y} | \psi \right\rangle$.

Quantum trajectories (Markov chain, stochastic dynamics):

$$|\psi_{k+1}\rangle = \begin{cases} \frac{M_g}{\sqrt{\langle\psi_k|\boldsymbol{M}_g^{\dagger}\boldsymbol{M}_g|\psi_k\rangle}} |\psi_k\rangle, & y_k = g \text{ with probability } \langle\psi_k|\boldsymbol{M}_g^{\dagger}\boldsymbol{M}_g|\psi_k\rangle; \\ \frac{M_e}{\sqrt{\langle\psi_k|\boldsymbol{M}_e^{\dagger}\boldsymbol{M}_e|\psi_k\rangle}} |\psi_k\rangle, & y_k = e \text{ with probability } \langle\psi_k|\boldsymbol{M}_e^{\dagger}\boldsymbol{M}_e|\psi_k\rangle; \end{cases}$$

with state $|\psi_k\rangle$ and measurement outcome $y_k \in \{g, e\}$ at time-step *k*:

⁶Measurement operator $\boldsymbol{O} = \boldsymbol{I}_S \otimes (|\boldsymbol{e}\rangle\langle \boldsymbol{e}| - |g\rangle\langle g|)$... $\boldsymbol{A} \in \mathcal{B}$ $\boldsymbol{A} \in \mathcal{A}$ \boldsymbol{B} $\boldsymbol{A} \in \mathcal{A}$

Exercise: Quantum Non Demolition (QND) measurement of photons 7

Goal $|\Psi\rangle_{R_2} = U_{R_2}U_CU_{R_1}(|\psi\rangle \otimes |g\rangle) =?$

$$\begin{split} \boldsymbol{U}_{R_1} &= \boldsymbol{I}_{S} \otimes \left(\left(\frac{|g\rangle + |e\rangle}{\sqrt{2}} \right) \langle g| + \left(\frac{|g\rangle - |e\rangle}{\sqrt{2}} \right) \langle e| \right) \\ \boldsymbol{U}_{C} &= e^{-i\frac{\phi_0}{2}\boldsymbol{N}} \otimes |g\rangle \langle g| + e^{i\frac{\phi_0}{2}\boldsymbol{N}} \otimes |e\rangle \langle e| \\ &\text{where } \boldsymbol{N}|n\rangle = n|n\rangle, \forall n \in \mathbb{N} \text{ and } \phi_0 \in \mathbb{R}. \\ \boldsymbol{U}_{R_2} &= \boldsymbol{U}_{R_1} \end{split}$$

1 Show that $\boldsymbol{U}_{R_1}(|\psi\rangle \otimes |g\rangle) = \frac{1}{\sqrt{2}}(|\psi\rangle \otimes |g\rangle + |\psi\rangle \otimes |e\rangle)$ and $\boldsymbol{U}_{C}\boldsymbol{U}_{R_1}(|\psi\rangle \otimes |g\rangle) = \frac{1}{\sqrt{2}}\Big(\Big(e^{-i\frac{\phi_0}{2}\boldsymbol{N}}|\psi\rangle\Big) \otimes |g\rangle + \Big(e^{i\frac{\phi_0}{2}\boldsymbol{N}}|\psi\rangle\Big) \otimes |e\rangle\Big).$

- 2 Show that $|\Psi\rangle_{R_2} = \left(\cos(\frac{\phi_0}{2}N)|\psi\rangle\right) \otimes |g\rangle + \left(i\sin(\frac{\phi_0}{2}N)|\psi\rangle\right) \otimes |e\rangle$
- 3 Deduce that $M_g = \cos(\frac{\phi_0}{2}N)$ and $M_e = -i\sin(\frac{\phi_0}{2}N)$.
- 4 Question for Wednesday: write a computer program (e.g. a Scilab or Matlab script) to simulate over 20 sampling steps the attached Markov chain starting from $|\psi_0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$ with parameter $\phi_0 = \pi/3$ (Quantum Monte-Carlo trajectories).

⁷M. Brune, ...: Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non-demolition measurements and generation of "Schrödinger cat" states . Physical Review A, 45:5193-5214, 1992.

1 Quantum systems: some examples and applications

2 LKB Photon Box

3 Exercise: Quantum Non Demolition (QND) measurement of photons

▲□▶▲□▶▲□▶▲□▶ □ のQ@

4 Outline of the lectures and reference books

Outline of the lectures

- Monday 1- Introduction (motivating applications; LKB photon-box as prototype of open quantum system).
 2- Spring system (harmonic oscillator, spectral decomposition, annihilation/creation operators, coherent state and displacement).
 3- Spin system (qubit, Pauli matrices).
 4- Composite spin/spring system (tensor product, resonant/dispersive interaction, underlying PDE's).
- Tuesday 5- Averaging and rotating waves approximation (first/second order perturbation expansion,) 6-Open-loop control via averaging techniques (resonant control for qubit and Jaynes-Cummings systems)
- Wednesday
 7- Discrete-time dynamics of the LKB photon box (density operators, measurement imperfection, decoherence, quantum filter)
 8- Discrete-time Stochastic Master Equation (SME) (Positive Operator Value Measurement (POVM), Kraus maps and quantum channels, stability and contractions, Schrödinger and Heisenberg points of view).
 9- Discrete-time Quantum Non Demolition (QND) measurement (martingales, convergence of Markov processes, Kushner invariance Theorem)
 10- Measurement-based feedback and Lyapunov stabilization of photons (LKB photon box with dispersive/resonnant probe atoms, closed-loop Monte-Carlo simulations).
 - Thursday 11- Continuous-time Stochastic Master Equation (SME) (Wiener processes and Ito calculus, continuous-time measurement, quantum filtering) 12-Measurement-based feedback stabilization of a qubit (Lyapunov feedback, closed-loop Monte-Carlo simulations)
 - Friday 13- Lindblad master equation (decoherence models for a qubit and an oscillator)
 14- Coherent-feedback stabilization (principle, cat-qubit and multi-photon pumping)

Reference books

- Cohen-Tannoudji, C.; Diu, B. & Laloë, F.: Mécanique Quantique Hermann, Paris, 1977, I& II (quantum physics: a well known and tutorial textbook)
- 2 S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006. (*quantum physics: spin/spring systems, decoherence, Schrödinger cats, entanglement.*)
- 3 C. Gardiner, P. Zoller: The Quantum World of Ultra-Cold Atoms and Light I& II. Imperial College Press, 2009. (quantum physics, measurement and control)
- 4 Barnett, S. M. & Radmore, P. M.: Methods in Theoretical Quantum Optics Oxford University Press, 2003. (mathematical physics: many useful operator formulae for spin/spring systems)
- 5 E. Davies: Quantum Theory of Open Systems. Academic Press, 1976. (mathematical physics: functional analysis aspects when the Hilbert space is of infinite dimension)
- 6 Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences [3rd ed], Springer, 2004. (*tutorial introduction to probability, Markov processes, stochastic differential equations and Ito calculus.*)
- M. Nielsen, I. Chuang: Quantum Computation and Quantum Information.
 Cambridge University Press, 2000. (*tutorial introduction with a computer science and communication view point*)

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 2 Chengdu, July 8, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

1 Quantum harmonic oscillator: spring model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2 Summary of main formulae

3 Exercise: useful operator identities

1 Quantum harmonic oscillator: spring model

2 Summary of main formulae

8 Exercise: useful operator identities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Harmonic oscillator

Classical Hamiltonian formulation of $\frac{d^2}{dt^2}x = -\omega^2 x$

$$\frac{d}{dt}x = \omega p = \frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{dt}p = -\omega x = -\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H} = \frac{\omega}{2}(p^2 + x^2).$$

Electrical oscillator:

Frictionless spring: $\frac{d^2}{dt^2}x = -\frac{k}{m}x$.

LC oscillator:

$$\frac{d}{dt}I = \frac{V}{L}, \frac{d}{dt}V = -\frac{I}{C}, \quad \left(\frac{d^2}{dt^2}I = -\frac{1}{LC}I\right).$$

Quantum regime

 $k_BT \ll \hbar\omega$: typically for the photon box experiment in these lectures, $\omega = 51 GHz$ and T = 0.8K.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Harmonic oscillator³: quantization and correspondence principle

$$\frac{d}{dt}x = \omega \boldsymbol{p} = \frac{\partial \mathbb{H}}{\partial \boldsymbol{p}}, \quad \frac{d}{dt}\boldsymbol{p} = -\omega x = -\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H} = \frac{\omega}{2}(\boldsymbol{p}^2 + x^2).$$

Quantization: probability wave function $|\psi\rangle_t \sim (\psi(x, t))_{x \in \mathbb{R}}$ with $|\psi\rangle_t \sim \psi(., t) \in L^2(\mathbb{R}, \mathbb{C})$ obeys to the Schrödinger equation $(\hbar = 1 \text{ in all the lectures})$

$$irac{d}{dt}|\psi
angle = \mathbf{H}|\psi
angle, \quad \mathbf{H} = \omega(\mathbf{P}^2 + \mathbf{X}^2) = -rac{\omega}{2}rac{\partial^2}{\partial x^2} + rac{\omega}{2}x^2$$

where **H** results from \mathbb{H} by replacing *x* by position operator $\sqrt{2}\mathbf{X}$ and *p* by momentum operator $\sqrt{2}\mathbf{P} = -i\frac{\partial}{\partial x}$. **H** is a Hermitian operator on $L^2(\mathbb{R}, \mathbb{C})$, with its domain to be given.

PDE model:
$$i\frac{\partial\psi}{\partial t}(x,t) = -\frac{\omega}{2}\frac{\partial^2\psi}{\partial x^2}(x,t) + \frac{\omega}{2}x^2\psi(x,t), \quad x \in \mathbb{R}.$$

³Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. *Mécanique Quantique*, volume I& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. *Methods in Theoretical Quantum Optics*.
Oxford University Press, 2003.

Average position $\langle \mathbf{X} \rangle_t = \langle \psi | \mathbf{X} | \psi \rangle$ and momentum $\langle \mathbf{P} \rangle_t = \langle \psi | \mathbf{P} | \psi \rangle$:

$$\langle \boldsymbol{X} \rangle_t = \frac{1}{\sqrt{2}} \int_{-\infty}^{+\infty} x |\psi|^2 dx, \quad \langle \boldsymbol{P} \rangle_t = -\frac{i}{\sqrt{2}} \int_{-\infty}^{+\infty} \psi^* \frac{\partial \psi}{\partial x} dx.$$

Annihilation \boldsymbol{a} and creation operators \boldsymbol{a}^{\dagger} (domains to be given):

$$\boldsymbol{a} = \boldsymbol{X} + i\boldsymbol{P} = \frac{1}{\sqrt{2}}\left(x + \frac{\partial}{\partial x}\right), \quad \boldsymbol{a}^{\dagger} = \boldsymbol{X} - i\boldsymbol{P} = \frac{1}{\sqrt{2}}\left(x - \frac{\partial}{\partial x}\right)$$

Commutation relationships:

$$[\boldsymbol{X}, \boldsymbol{P}] = \frac{i}{2}\boldsymbol{I}, \quad [\boldsymbol{a}, \boldsymbol{a}^{\dagger}] = \boldsymbol{I}, \quad \boldsymbol{H} = \omega(\boldsymbol{P}^2 + \boldsymbol{X}^2) = \omega\left(\boldsymbol{a}^{\dagger}\boldsymbol{a} + \frac{1}{2}\right).$$

Spectrum of Hamiltonian $H = -\frac{\omega}{2} \frac{\partial^2}{\partial x^2} + \frac{\omega}{2} x^2$:

$$E_n = \omega(n + \frac{1}{2}), \ \psi_n(x) = \left(\frac{1}{\pi}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} e^{-x^2/2} H_n(x), \ H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

Spectral decomposition of $a^{\dagger}a$ using $[a, a^{\dagger}] = 1$:

- If $|\psi\rangle$ is an eigenstate associated to eigenvalue λ , $\boldsymbol{a}|\psi\rangle$ and $\boldsymbol{a}^{\dagger}|\psi\rangle$ are also eigenstates associated to $\lambda 1$ and $\lambda + 1$.
- **a**[†]**a** is semi-definite positive.
- The ground state $|\psi_0\rangle$ is necessarily associated to eigenvalue 0 and is given by the Gaussian function $\psi_0(x) = \frac{1}{\pi^{1/4}} \exp(-x^2/2)$.

 $[a, a^{\dagger}] = 1$: spectrum of $a^{\dagger}a$ is non-degenerate and is \mathbb{N} .

Fock state with *n* photons (phonons): the eigenstate of $\mathbf{a}^{\dagger}\mathbf{a}$ associated to the eigenvalue $n(|n\rangle \sim \psi_n(x))$:

$$\boldsymbol{a}^{\dagger}\boldsymbol{a}|n
angle=n|n
angle, \quad \boldsymbol{a}|n
angle=\sqrt{n}\;|n-1
angle, \quad \boldsymbol{a}^{\dagger}|n
angle=\sqrt{n+1}\;|n+1
angle.$$

The ground state $|0\rangle$ is called 0-photon state or vacuum state.

The operator **a** (resp. \mathbf{a}^{\dagger}) is the annihilation (resp. creation) operator since it transfers $|n\rangle$ to $|n-1\rangle$ (resp. $|n+1\rangle$) and thus decreases (resp. increases) the quantum number *n* by one unit.

Hilbert space of quantum system: $\mathcal{H} = \{\sum_{n} c_{n} | n \rangle | (c_{n}) \in l^{2}(\mathbb{C})\} \sim L^{2}(\mathbb{R}, \mathbb{C}).$ Domain of **a** and \mathbf{a}^{\dagger} : $\{\sum_{n} c_{n} | n \rangle | (c_{n}) \in h^{1}(\mathbb{C})\}.$ Domain of **H** ot $\mathbf{a}^{\dagger}\mathbf{a}$: $\{\sum_{n} c_{n} | n \rangle | (c_{n}) \in h^{2}(\mathbb{C})\}.$

$$h^{k}(\mathbb{C}) = \{(c_{n}) \in l^{2}(\mathbb{C}) \mid \sum n^{k} |c_{n}|^{2} < \infty\}, \qquad k = 1, 2.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Harmonic oscillator: displacement operator

Quantization of
$$\frac{d^2}{dt^2}x = -\omega^2 x - \omega\sqrt{2}u$$
, $(\mathbb{H} = \frac{\omega}{2}(p^2 + x^2) + \sqrt{2}ux)$

$$H = \omega \left(a^{\dagger} a + \frac{l}{2} \right) + u(a + a^{\dagger}).$$

The associated controlled PDE

$$i\frac{\partial\psi}{\partial t}(x,t)=-\frac{\omega}{2}\frac{\partial^2\psi}{\partial x^2}(x,t)+\left(\frac{\omega}{2}x^2+\sqrt{2}ux\right)\psi(x,t).$$

Glauber displacement operator D_{α} (unitary) with $\alpha \in \mathbb{C}$:

$$oldsymbol{D}_{lpha}=oldsymbol{e}^{lphaoldsymbol{a}^{\dagger}-lpha^{*}oldsymbol{a}}=oldsymbol{e}^{2i\Imlphaoldsymbol{X}-2i\Relphaoldsymbol{P}}$$

From Baker-Campbell Hausdorf formula, for all operators A and B,

$$e^{A}Be^{-A} = B + [A, B] + \frac{1}{2!}[A, [A, B]] + \frac{1}{3!}[A, [A, [A, B]]] + \dots$$

we get the Glauber formula⁴ when $[\mathbf{A}, [\mathbf{A}, \mathbf{B}]] = [\mathbf{B}, [\mathbf{A}, \mathbf{B}]] = 0$:

$$e^{\boldsymbol{A}+\boldsymbol{B}}=e^{\boldsymbol{A}}\ e^{\boldsymbol{B}}\ e^{-\frac{1}{2}[\boldsymbol{A},\boldsymbol{B}]}.$$

⁴Take *s* derivative of $e^{s(A+B)}$ and of $e^{sA} e^{sB} e^{-\frac{s^2}{2}[A,B]}$.

With $\mathbf{A} = \alpha \mathbf{a}^{\dagger}$ and $\mathbf{B} = -\alpha^* \mathbf{a}$, Glauber formula gives:

$$D_{\alpha} = e^{-\frac{|\alpha|^2}{2}} e^{\alpha a^{\dagger}} e^{-\alpha^* a} = e^{+\frac{|\alpha|^2}{2}} e^{-\alpha^* a} e^{\alpha a^{\dagger}}$$
$$D_{-\alpha} a D_{\alpha} = a + \alpha I \text{ and } D_{-\alpha} a^{\dagger} D_{\alpha} = a^{\dagger} + \alpha^* I$$

With $\mathbf{A} = 2i\Im\alpha\mathbf{X} \sim i\sqrt{2}\Im\alpha x$ and $\mathbf{B} = -2i\Re\alpha\mathbf{P} \sim -\sqrt{2}\Re\alpha\frac{\partial}{\partial x}$, Glauber formula gives⁵:

$$\begin{split} \boldsymbol{D}_{\alpha} &= \boldsymbol{e}^{-i\Re\alpha\Im\alpha} \; \boldsymbol{e}^{i\sqrt{2}\Im\alpha x} \boldsymbol{e}^{-\sqrt{2}\Re\alpha\frac{\partial}{\partial x}} \\ (\boldsymbol{D}_{\alpha}|\psi\rangle)_{x,t} &= \boldsymbol{e}^{-i\Re\alpha\Im\alpha} \; \boldsymbol{e}^{i\sqrt{2}\Im\alpha x} \psi(x-\sqrt{2}\Re\alpha,t) \end{split}$$

⁵Note that the operator $e^{-r\partial/\partial x}$ corresponds to a translation of x by f. $\exists \neg \land \land \land$

Harmonic oscillator: lack of controllability

Take $|\psi\rangle$ solution of the controlled Schrödinger equation $i\frac{d}{dt}|\psi\rangle = \left(\omega\left(\boldsymbol{a}^{\dagger}\boldsymbol{a} + \frac{\mathbf{I}}{2}\right) + u(\boldsymbol{a} + \boldsymbol{a}^{\dagger})\right)|\psi\rangle$. Set $\langle \boldsymbol{a}\rangle = \langle \psi | \boldsymbol{a} | \psi \rangle$. Then $\frac{d}{dt}\langle \boldsymbol{a}\rangle = -i\omega\langle \boldsymbol{a}\rangle - iu$.

From $\boldsymbol{a} = \boldsymbol{X} + i\boldsymbol{P}$, we have $\langle \boldsymbol{a} \rangle = \langle \boldsymbol{X} \rangle + i \langle \boldsymbol{P} \rangle$ where $\langle \boldsymbol{X} \rangle = \langle \psi | \boldsymbol{X} | \psi \rangle \in \mathbb{R}$ and $\langle \boldsymbol{P} \rangle = \langle \psi | \boldsymbol{P} | \psi \rangle \in \mathbb{R}$. Consequently: $\frac{d}{dt} \langle \boldsymbol{X} \rangle = \omega \langle \boldsymbol{P} \rangle, \quad \frac{d}{dt} \langle \boldsymbol{P} \rangle = -\omega \langle \boldsymbol{X} \rangle - u.$

Consider the change of frame $|\psi
angle=\pmb{e}^{-i heta_t}\pmb{D}_{\langle\pmb{a}
angle_t}\,|\chi
angle$ with

$$heta_t = \int_0^t \left(\omega |\langle \boldsymbol{a} \rangle |^2 + u \Re(\langle \boldsymbol{a} \rangle)
ight), \quad D_{\langle \boldsymbol{a} \rangle_t} = \boldsymbol{e}^{\langle \boldsymbol{a} \rangle_t \boldsymbol{a}^\dagger - \langle \boldsymbol{a} \rangle_t^* \boldsymbol{a}},$$

Then $|\chi\rangle$ obeys to autonomous Schrödinger equation

$$i \frac{d}{dt} |\chi\rangle = \omega \left(\boldsymbol{a}^{\dagger} \boldsymbol{a} + \frac{\boldsymbol{I}}{2} \right) |\chi\rangle.$$

The dynamics of $|\psi\rangle$ can be decomposed into two parts:

- a controllable part of dimension two for (*a*)
- an uncontrollable part of infinite dimension for χ .

Coherent states

$$|\alpha\rangle = \boldsymbol{D}_{\alpha}|\mathbf{0}\rangle = \boldsymbol{e}^{-\frac{|\alpha|^2}{2}}\sum_{n=0}^{+\infty}\frac{\alpha^n}{\sqrt{n!}}|n\rangle, \quad \alpha \in \mathbb{C}$$

are the states reachable from vacuum set. They are also the eigenstate of **a**: $\mathbf{a}|\alpha\rangle = \alpha |\alpha\rangle$.

A widely known result in quantum optics⁶: classical currents and sources (generalizing the role played by u) only generate classical light (quasi-classical states of the quantized field generalizing the coherent state introduced here) We just propose here a control theoretic interpretation in terms of reachable set from vacuum.

⁶See complement *B*_{III}, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. *Photons and Atoms: Introduction to Quantum Electrodynamics*. Wiley, 1989.

- Hilbert space: $\mathcal{H} = \left\{ \sum_{n \ge 0} \psi_n | n \rangle, \ (\psi_n)_{n \ge 0} \in l^2(\mathbb{C}) \right\} \equiv L^2(\mathbb{R}, \mathbb{C})$
- Quantum state space: $\mathbb{D} = \{ \rho \in \mathcal{L}(\mathcal{H}), \rho^{\dagger} = \rho, \operatorname{Tr}(\rho) = 1, \rho \ge 0 \}$.
- Operators and commutations: $a|n\rangle = \sqrt{n} |n-1\rangle, a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle;$ $N = a^{\dagger}a, N|n\rangle = n|n\rangle;$ $[a, a^{\dagger}] = I, af(N) = f(N+I)a;$ $D_{\alpha} = e^{\alpha a^{\dagger} - \alpha^{\dagger}a}.$ $a = X + iP = \frac{1}{\sqrt{2}} \left(x + \frac{\partial}{\partial x} \right), [X, P] = iI/2.$

■ Hamiltonian: $H/\hbar = \omega_c a^{\dagger} a + u_c (a + a^{\dagger})$. (associated classical dynamics: $\frac{dx}{dt} = \omega_c p, \ \frac{dp}{dt} = -\omega_c x - \sqrt{2}u_c$).

Classical pure state \equiv coherent state $|\alpha\rangle$

$$\begin{aligned} \alpha \in \mathbb{C} : \ |\alpha\rangle &= \sum_{n \ge 0} \left(e^{-|\alpha|^2/2} \frac{\alpha^n}{\sqrt{n!}} \right) |n\rangle; \ |\alpha\rangle \equiv \frac{1}{\pi^{1/4}} e^{i\sqrt{2}x\Im\alpha} e^{-\frac{(x-\sqrt{2}\Re\alpha)^2}{2}} \\ \boldsymbol{a}|\alpha\rangle &= \alpha|\alpha\rangle, \ \boldsymbol{D}_{\alpha}|0\rangle = |\alpha\rangle. \end{aligned}$$

 $|\mathbf{n}\rangle$

1 Set
$$\boldsymbol{X}_{\lambda} = \frac{1}{2} \left(\boldsymbol{e}^{-i\lambda} \boldsymbol{a} + \boldsymbol{e}^{i\lambda} \boldsymbol{a}^{\dagger} \right)$$
 for any angle λ . Show that $\left[\boldsymbol{X}_{\lambda}, \boldsymbol{X}_{\lambda+\frac{\pi}{2}} \right] = \frac{i}{2} \boldsymbol{I}.$

2 Prove that, for any $\alpha, \beta, \epsilon \in \mathbb{C}$, we have $D_{\alpha+\beta} = e^{\frac{\alpha^*\beta - \alpha\beta^*}{2}} D_{\alpha} D_{\beta}$ $D_{\alpha+\epsilon} D_{-\alpha} = \left(1 + \frac{\alpha\epsilon^* - \alpha^*\epsilon}{2}\right) I + \epsilon a^{\dagger} - \epsilon^* a + O(|\epsilon|^2)$ $\left(\frac{d}{dt} D_{\alpha}\right) D_{-\alpha} = \left(\frac{\alpha \frac{d}{dt} \alpha^* - \alpha^* \frac{d}{dt} \alpha}{2}\right) I + \left(\frac{d}{dt} \alpha\right) a^{\dagger} - \left(\frac{d}{dt} \alpha^*\right) a.$

3 Show formally that for any operators A and B on an Hilbert-space \mathcal{H} :

$$e^{\mathbf{A}+\epsilon\mathbf{B}}=e^{\mathbf{A}}+\epsilon\int_{0}^{1}e^{s\mathbf{A}}\mathbf{B}e^{(1-s)\mathbf{A}}ds+O(\epsilon^{2}).$$

Deduced that for any C^1 time-varying operator A(t), one has

$$\frac{d}{dt}e^{\mathbf{A}(t)} = \int_0^1 e^{s\mathbf{A}(t)} \left(\frac{d\mathbf{A}}{dt}(t)\right) e^{(1-s)\mathbf{A}(t)} ds.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 3 Chengdu, July 8, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

1 Spin-1/2 system: qubit

2 Bloch sphere description

3 Exercise: propagator for a qubit

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

2-level system (spin-1/2)

 $\begin{array}{c} |e\rangle \\ \hline \\ |e\rangle \\ \hline \\ |g\rangle \\ |g\rangle \\ \hline \\ |g\rangle \\ \end{array} \begin{array}{c} \text{The simplest quantum system: a ground} \\ \text{state } |g\rangle \text{ of energy } \omega_g; \text{ an excited state } |e\rangle \text{ of} \\ \text{energy } \omega_e. \text{ The quantum state } |\psi\rangle \in \mathbb{C}^2 \text{ is a} \\ \text{linear superposition } |\psi\rangle = \psi_g |g\rangle + \psi_e |e\rangle \text{ and} \\ \text{obey to the Schrödinger equation } (\psi_g \text{ and } \psi_e \\ \text{depend on } t). \end{array}$

Schrödinger equation for the uncontrolled 2-level system ($\hbar = 1$) :

$$i \frac{d}{dt} |\psi\rangle = H_0 |\psi\rangle = \left(\omega_e |e\rangle \langle e| + \omega_g |g\rangle \langle g|\right) |\psi\rangle$$

where H_0 is the Hamiltonian, a Hermitian operator $H_0^{\dagger} = H_0$. Energy is defined up to a constant: H_0 and $H_0 + \varpi(t)I$ ($\varpi(t) \in \mathbb{R}$ arbitrary) are attached to the same physical system. If $|\psi\rangle$ satisfies $i\frac{d}{dt}|\psi\rangle = H_0|\psi\rangle$ then $|\chi\rangle = e^{-i\vartheta(t)}|\psi\rangle$ with $\frac{d}{dt}\vartheta = \varpi$ obeys to $i\frac{d}{dt}|\chi\rangle = (H_0 + \varpi I)|\chi\rangle$. Thus for any ϑ , $|\psi\rangle$ and $e^{-i\vartheta}|\psi\rangle$ represent the same physical system: The global phase of a quantum system $|\psi\rangle$ can be chosen arbitrarily at any time.

The controlled 2-level system

Take origin of energy such that ω_g (resp. ω_e) becomes $-\frac{\omega_e - \omega_g}{2}$ (resp. $\frac{\omega_e - \omega_g}{2}$) and set $\omega_{eg} = \omega_e - \omega_g$ The solution of $i\frac{d}{dt}|\psi\rangle = H_0|\psi\rangle = \frac{\omega_{eg}}{2}(|e\rangle\langle e| - |g\rangle\langle g|)|\psi\rangle$ is $i\omega_{eg}t$

$$|\psi\rangle_t = \psi_{g0} e^{\frac{\omega_{eg}t}{2}} |g\rangle + \psi_{e0} e^{\frac{-\omega_{eg}t}{2}} |e\rangle$$

With a classical electromagnetic field described by $u(t) \in \mathbb{R}$, the coherent evolution the controlled Hamiltonian

$$\boldsymbol{H}(t) = \frac{\omega_{eg}}{2} \boldsymbol{\sigma_{z}} + \frac{u(t)}{2} \boldsymbol{\sigma_{x}} = \frac{\omega_{eg}}{2} (|\boldsymbol{e}\rangle\langle\boldsymbol{e}| - |\boldsymbol{g}\rangle\langle\boldsymbol{g}|) + \frac{u(t)}{2} (|\boldsymbol{e}\rangle\langle\boldsymbol{g}| + |\boldsymbol{g}\rangle\langle\boldsymbol{e}|)$$
The controlled Schrödinger equation $i\frac{d}{dt}|\psi\rangle = (\boldsymbol{H}_{0} + u(t)\boldsymbol{H}_{1})|\psi\rangle$
reads:

$$i\frac{d}{dt}\begin{pmatrix}\psi_{e}\\\psi_{g}\end{pmatrix} = \frac{\omega_{eg}}{2}\begin{pmatrix}1&0\\0&-1\end{pmatrix}\begin{pmatrix}\psi_{e}\\\psi_{g}\end{pmatrix} + \frac{u(t)}{2}\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}\psi_{e}\\\psi_{g}\end{pmatrix}.$$

The 3 Pauli Matrices³

 $\sigma_{\mathbf{X}} = |\mathbf{e}\rangle\langle \mathbf{g}| + |\mathbf{g}\rangle\langle \mathbf{e}|, \ \sigma_{\mathbf{y}} = -i|\mathbf{e}\rangle\langle \mathbf{g}| + i|\mathbf{g}\rangle\langle \mathbf{e}|, \ \sigma_{\mathbf{z}} = |\mathbf{e}\rangle\langle \mathbf{e}| - |\mathbf{g}\rangle\langle \mathbf{g}|$

³They correspond, up to multiplication by *i*, to the 3 imaginary quaternions.

$$\sigma_{\mathbf{X}} = |\mathbf{e}\rangle\langle \mathbf{g}| + |\mathbf{g}\rangle\langle \mathbf{e}|, \ \sigma_{\mathbf{y}} = -i|\mathbf{e}\rangle\langle \mathbf{g}| + i|\mathbf{g}\rangle\langle \mathbf{e}|, \ \sigma_{\mathbf{z}} = |\mathbf{e}\rangle\langle \mathbf{e}| - |\mathbf{g}\rangle\langle \mathbf{g}|$$

$$\sigma_{\mathbf{x}}^{2} = \mathbf{I}, \quad \sigma_{\mathbf{x}}\sigma_{\mathbf{y}} = i\sigma_{\mathbf{z}}, \quad [\sigma_{\mathbf{x}}, \sigma_{\mathbf{y}}] = 2i\sigma_{\mathbf{z}}, \text{ circular permutation } \dots$$

Since for any $\theta \in \mathbb{R}$, $e^{i\theta\sigma_{\mathbf{X}}} = \cos\theta + i\sin\theta\sigma_{\mathbf{X}}$ (idem for $\sigma_{\mathbf{Y}}$ and $\sigma_{\mathbf{Z}}$), the solution of $i\frac{d}{dt}|\psi\rangle = \frac{\omega_{\text{eg}}}{2}\sigma_{\mathbf{Z}}|\psi\rangle$ is

$$|\psi\rangle_t = e^{\frac{-i\omega_{\text{eg}}t}{2}\sigma_{z}}|\psi\rangle_0 = \left(\cos\left(\frac{\omega_{\text{eg}}t}{2}\right)I - i\sin\left(\frac{\omega_{\text{eg}}t}{2}\right)\sigma_{z}\right)|\psi\rangle_0$$

For $\alpha, \beta = x, y, z, \alpha \neq \beta$ we have

$$\sigma_{lpha} e^{i heta \sigma_{eta}} = e^{-i heta \sigma_{eta}} \sigma_{lpha}, \qquad \left(e^{i heta \sigma_{lpha}}
ight)^{-1} = \left(e^{i heta \sigma_{lpha}}
ight)^{\dagger} = e^{-i heta \sigma_{lpha}}.$$

and also

$$e^{-rac{i heta}{2}\sigma_lpha}\sigma_eta e^{rac{i heta}{2}\sigma_lpha}=e^{-i heta\sigma_lpha}\sigma_eta=\sigma_eta e^{i heta\sigma_lpha}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Density matrix and Bloch Sphere

We start from $|\psi\rangle$ that obeys $i\frac{d}{dt}|\psi\rangle = \boldsymbol{H}|\psi\rangle$. We consider the orthogonal projector on $|\psi\rangle$, $\rho = |\psi\rangle\langle\psi|$, called density operator. Then ρ is an Hermitian operator ≥ 0 , that satisfies Tr (ρ) = 1, $\rho^2 = \rho$ and obeys to the Liouville equation:

$$\frac{d}{dt}\rho = -i[\boldsymbol{H},\rho].$$

For a two level system $|\psi\rangle = \psi_g |g\rangle + \psi_e |e\rangle$ and

$$\rho = \frac{I + x\sigma_x + y\sigma_y + z\sigma_z}{2}$$

where $(x, y, z) = (2\Re(\psi_g\psi_e^*), 2\Im(\psi_g\psi_e^*), |\psi_e|^2 - |\psi_g|^2) \in \mathbb{R}^3$ represent a vector $\vec{M} = x\vec{i} + y\vec{j} + z\vec{k}$, the Bloch vector, that evolves on the unite sphere of \mathbb{R}^3 , \mathbb{S}^2 called the the Bloch Sphere since Tr $(\rho^2) = x^2 + y^2 + z^2 = 1$. The Liouville equation with $\boldsymbol{H} = \frac{\omega_{eg}}{2}\sigma_{z} + \frac{u}{2}\sigma_{x}$ reads

$$\frac{d}{dt}\vec{M} = (u\vec{i} + \omega_{\rm eg}\vec{k}) \times \vec{M}.$$

Hilbert space:

$$\mathcal{H}_{M} = \mathbb{C}^{2} = \Big\{ \psi_{g} | g \rangle + \psi_{e} | e \rangle, \ \psi_{g}, \psi_{e} \in \mathbb{C} \Big\}.$$

- Quantum state space: $\mathcal{D} = \{ \rho \in \mathcal{L}(\mathcal{H}_M), \rho^{\dagger} = \rho, \text{Tr}(\rho) = 1, \rho \ge 0 \}.$
- Operators and commutations: $\sigma_{\mathbf{c}} = |g\rangle \langle \mathbf{e}|, \ \sigma_{\mathbf{t}} = \sigma_{\mathbf{c}}^{\dagger} = |\mathbf{e}\rangle \langle g|$ $\sigma_{\mathbf{x}} = \sigma_{\mathbf{c}} + \sigma_{\mathbf{t}} = |g\rangle \langle \mathbf{e}| + |\mathbf{e}\rangle \langle g|;$ $\sigma_{\mathbf{y}} = i\sigma_{\mathbf{c}} - i\sigma_{\mathbf{t}} = i|g\rangle \langle \mathbf{e}| - i|\mathbf{e}\rangle \langle g|;$ $\sigma_{\mathbf{z}} = \sigma_{\mathbf{t}}\sigma_{\mathbf{c}} - \sigma_{\mathbf{c}}\sigma_{\mathbf{t}} = |\mathbf{e}\rangle \langle \mathbf{e}| - |g\rangle \langle g|;$ $\sigma_{\mathbf{x}}^{2} = \mathbf{I}, \ \sigma_{\mathbf{x}}\sigma_{\mathbf{y}} = i\sigma_{\mathbf{z}}, \ [\sigma_{\mathbf{x}}, \sigma_{\mathbf{y}}] = 2i\sigma_{\mathbf{z}}, \dots$
- Hamiltonian: $\boldsymbol{H}_M = \omega_q \sigma_z / 2 + \boldsymbol{u}_q \sigma_x$.
- Bloch sphere representation: $\mathcal{D} = \left\{ \frac{1}{2} \left(\mathbf{I} + x \sigma_{\mathbf{x}} + y \sigma_{\mathbf{y}} + z \sigma_{\mathbf{z}} \right) \mid (x, y, z) \in \mathbb{R}^3, \ x^2 + y^2 + z^2 \le 1 \right\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Exercise: propagator for a qubit

Consider $\boldsymbol{H} = (u\sigma_{\boldsymbol{x}} + v\sigma_{\boldsymbol{y}} + w\sigma_{\boldsymbol{z}})/2$ with $(u, v, w) \in \mathbb{R}^3$.

1 For (u, v, w) constant and non zero, compute the solutions of

$$rac{d}{dt}|\psi
angle=-im{H}|\psi
angle, \quad rac{d}{dt}m{U}=-im{H}m{U}$$
 with $m{U}_0=m{I}$

in term of $|\psi\rangle_0$, $\sigma = (u\sigma_x + v\sigma_y + w\sigma_z)/\sqrt{u^2 + v^2 + w^2}$ and $\omega = \sqrt{u^2 + v^2 + w^2}$. Indication: use the fact that $\sigma^2 = I$.

2 Assume that, (u, v, w) depends on t according to (u, v, w)(t) = ω(t)(ū, v̄, w̄) with (ū, v̄, w̄) ∈ ℝ³/{0} constant of length 1. Compute the solutions of

$$rac{d}{dt}|\psi
angle = -i\boldsymbol{H}(t)|\psi
angle, \quad rac{d}{dt}\boldsymbol{U} = -i\boldsymbol{H}(t)\boldsymbol{U} ext{ with } \boldsymbol{U}_0 = \boldsymbol{I}$$

in term of $|\psi\rangle_0$, $\overline{\sigma} = \overline{u}\sigma_x + \overline{v}\sigma_y + \overline{w}\sigma_z$ and $\theta(t) = \int_0^t \omega$.

3 Explain why (u, v, w) colinear to the constant vector $(\bar{u}, \bar{v}, \bar{w})$ is crucial, for the computations in previous question.

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 4 Chengdu, July 8, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

2 Exercise: the Jaynes-Cummings propagator

2 Exercise: the Jaynes-Cummings propagator

2-level system lives on \mathbb{C}^2 with $H_q = \frac{\omega_{eg}}{2}\sigma_z$ oscillator lives on $L^2(\mathbb{R}, \mathbb{C}) \sim l^2(\mathbb{C})$ with

$$\boldsymbol{H}_{c} = -\frac{\omega_{c}}{2}\frac{\partial^{2}}{\partial x^{2}} + \frac{\omega_{c}}{2}x^{2} \sim \omega_{c}\left(\boldsymbol{N} + \frac{I}{2}\right)$$

$$N = a^{\dagger} a$$
 and $a = X + i P \sim \frac{1}{\sqrt{2}} \left(x + \frac{\partial}{\partial x} \right)$

The composite system lives on the tensor product $\mathbb{C}^2 \otimes L^2(\mathbb{R}, \mathbb{C}) \sim \mathbb{C}^2 \otimes l^2(\mathbb{C})$ with spin-spring Hamiltonian

$$\boldsymbol{H} = \frac{\omega_{\text{eg}}}{2} \boldsymbol{\sigma_{z}} \otimes \boldsymbol{I_{c}} + \omega_{c} \boldsymbol{I_{q}} \otimes \left(\boldsymbol{N} + \frac{\boldsymbol{I}}{2}\right) + \boldsymbol{i}\frac{\Omega}{2}\boldsymbol{\sigma_{x}} \otimes \left(\boldsymbol{a^{\dagger}} - \boldsymbol{a}\right)$$

with the typical scales $\Omega \ll \omega_c, \omega_{eg}$ and $|\omega_c - \omega_{eg}| \ll \omega_c, \omega_{eg}$. Shortcut notations:

$$\boldsymbol{H} = \underbrace{\underbrace{\overset{\omega_{eg}}{2}\sigma_{\boldsymbol{z}}}_{\boldsymbol{H}_{q}} + \underbrace{\omega_{c}\left(\boldsymbol{N} + \frac{l}{2}\right)}_{\boldsymbol{H}_{c}} + \underbrace{\underbrace{i\frac{\Omega}{2}\sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger} - \boldsymbol{a}\right)}_{\boldsymbol{H}_{int}}}_{\boldsymbol{H}_{int}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The spin-spring PDE

The Schrödinger system

$$irac{d}{dt}|\psi
angle = \left(rac{\omega_{
m eg}}{2}\sigma_{
m z} + \omega_{
m c}\left(
m N + rac{l}{2}
ight) + irac{\Omega}{2}\sigma_{
m x}(a^{\dagger} - a)
ight)|\psi
angle$$

corresponds to two coupled scalar PDE's:

$$i\frac{\partial\psi_{e}}{\partial t} = +\frac{\omega_{eg}}{2}\psi_{e} + \frac{\omega_{c}}{2}\left(x^{2} - \frac{\partial^{2}}{\partial x^{2}}\right)\psi_{e} - i\frac{\Omega}{\sqrt{2}}\frac{\partial}{\partial x}\psi_{g}$$
$$i\frac{\partial\psi_{g}}{\partial t} = -\frac{\omega_{eg}}{2}\psi_{g} + \frac{\omega_{c}}{2}\left(x^{2} - \frac{\partial^{2}}{\partial x^{2}}\right)\psi_{g} - i\frac{\Omega}{\sqrt{2}}\frac{\partial}{\partial x}\psi_{e}$$

since $\mathbf{N} = \mathbf{a}^{\dagger}\mathbf{a}$, $\mathbf{a} = \frac{1}{\sqrt{2}}\left(x + \frac{\partial}{\partial x}\right)$ and $|\psi\rangle = (\psi_{\theta}(x, t), \psi_{g}(x, t))$, $\psi_{g}(., t), \psi_{e}(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ and $\|\psi_{g}\|^{2} + \|\psi_{e}\|^{2} = 1$.

Exercise: write the PDE for the controlled Hamiltonian $\frac{\omega_{eg}}{2}\sigma_{z} + \omega_{c}\left(N + \frac{I}{2}\right) + i\frac{\Omega}{2}\sigma_{x}(a^{\dagger} - a) + u_{c}(a + a^{\dagger}) + u_{q}\sigma_{x}$ where $u_{c}, u_{q} \in \mathbb{R}$ are local control inputs associated to the oscillator and qubit, respectively. The Schrödinger system

$$i\frac{d}{dt}|\psi\rangle = \left(\frac{\omega_{\text{eg}}}{2}\sigma_{z} + \omega_{c}\left(N + \frac{l}{2}\right) + i\frac{\Omega}{2}\sigma_{x}(a^{\dagger} - a)\right)|\psi\rangle$$

corresponds also to an infinite set of ODE's

$$i\frac{d}{dt}\psi_{e,n} = ((n+1/2)\omega_c + \omega_{eg}/2)\psi_{e,n} + i\frac{\Omega}{2}\left(\sqrt{n}\psi_{g,n-1} - \sqrt{n+1}\psi_{g,n+1}\right)$$
$$i\frac{d}{dt}\psi_{g,n} = ((n+1/2)\omega_c - \omega_{eg}/2)\psi_{g,n} + i\frac{\Omega}{2}\left(\sqrt{n}\psi_{e,n-1} - \sqrt{n+1}\psi_{e,n+1}\right)$$

where $|\psi\rangle = \sum_{n=0}^{+\infty} \psi_{g,n} |g, n\rangle + \psi_{e,n} |e, n\rangle$, $\psi_{g,n}, \psi_{e,n} \in \mathbb{C}$.

Exercise: write the infinite set of ODE's for

 $\frac{\omega_{\text{eg}}}{2}\sigma_{\text{z}} + \omega_{c}\left(\text{\textbf{N}} + \frac{\textbf{I}}{2}\right) + i\frac{\Omega}{2}\sigma_{\text{x}}(\textbf{a}^{\dagger} - \textbf{a}) + u_{c}(\textbf{a} + \textbf{a}^{\dagger}) + u_{q}\sigma_{\text{x}}$ where $u_{c}, u_{q} \in \mathbb{R}$ are local control inputs associated to the oscillator and qubit, respectively.

$$\boldsymbol{H} \approx \boldsymbol{H}_{\text{disp}} = \frac{\omega_{\text{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}} + \omega_{\boldsymbol{c}} \left(\boldsymbol{N} + \frac{\boldsymbol{l}}{2} \right) - \frac{\chi}{2} \boldsymbol{\sigma}_{\boldsymbol{z}} \left(\boldsymbol{N} + \frac{\boldsymbol{l}}{2} \right) \quad \text{with } \chi = \frac{\Omega^2}{2(\omega_c - \omega_{\text{eg}})}$$

The corresponding PDE is :

$$i\frac{\partial\psi_{e}}{\partial t} = +\frac{\omega_{eg}}{2}\psi_{e} + \frac{1}{2}(\omega_{c} - \frac{\chi}{2})(x^{2} - \frac{\partial^{2}}{\partial x^{2}})\psi_{e}$$
$$i\frac{\partial\psi_{g}}{\partial t} = -\frac{\omega_{eg}}{2}\psi_{g} + \frac{1}{2}(\omega_{c} + \frac{\chi}{2})(x^{2} - \frac{\partial^{2}}{\partial x^{2}})\psi_{g}$$

The propagator, the *t*-dependant unitary operator **U** solution of $i\frac{d}{dt}\mathbf{U} = \mathbf{H}\mathbf{U}$ with $\mathbf{U}(0) = \mathbf{I}$, reads:

$$\begin{split} \boldsymbol{U}(t) &= \boldsymbol{e}^{i\omega_{\text{eg}}t/2} \exp\left(-i(\omega_{c}+\chi/2)t(\boldsymbol{N}+\frac{l}{2})\right) \otimes |\boldsymbol{g}\rangle\langle \boldsymbol{g}| \\ &+ \boldsymbol{e}^{-i\omega_{\text{eg}}t/2} \exp\left(-i(\omega_{c}-\chi/2)t(\boldsymbol{N}+\frac{l}{2})\right) \otimes |\boldsymbol{e}\rangle\langle \boldsymbol{e}| \end{split}$$

Exercise: write the infinite set of ODE's attached to the dispersive Hamiltonian H_{disp} .

The Hamiltonian becomes (Jaynes-Cummings Hamiltonian):

$$\boldsymbol{H} \approx \boldsymbol{H}_{JC} = \frac{\omega}{2} \boldsymbol{\sigma}_{\boldsymbol{z}} + \omega \left(\boldsymbol{N} + \frac{\boldsymbol{I}}{2} \right) + i \frac{\Omega}{2} (\boldsymbol{\sigma}_{\boldsymbol{z}} \boldsymbol{a}^{\dagger} - \boldsymbol{\sigma}_{\boldsymbol{z}} \boldsymbol{a}).$$

The corresponding PDE is :

$$i\frac{\partial\psi_{e}}{\partial t} = +\frac{\omega}{2}\psi_{e} + \frac{\omega}{2}(x^{2} - \frac{\partial^{2}}{\partial x^{2}})\psi_{e} - i\frac{\Omega}{2\sqrt{2}}\left(x + \frac{\partial}{\partial x}\right)\psi_{g}$$
$$i\frac{\partial\psi_{g}}{\partial t} = -\frac{\omega}{2}\psi_{g} + \frac{\omega}{2}(x^{2} - \frac{\partial^{2}}{\partial x^{2}})\psi_{g} + i\frac{\Omega}{2\sqrt{2}}\left(x - \frac{\partial}{\partial x}\right)\psi_{e}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Exercise: Write the infinite set of ODE's attached to the Jaynes-Cummings Hamiltonian *H*.

Exercise: the Jaynes-Cummings propagator

For $\boldsymbol{H}_{JC} = \frac{\omega}{2}\boldsymbol{\sigma}_{\boldsymbol{z}} + \omega \left(\boldsymbol{N} + \frac{1}{2}\right) + i\frac{\Omega}{2}(\boldsymbol{\sigma}.\boldsymbol{a}^{\dagger} - \boldsymbol{\sigma}_{\star}\boldsymbol{a})$ show that the propagator, the *t*-dependant unitary operator \boldsymbol{U} solution of $i\frac{d}{dt}\boldsymbol{U} = \boldsymbol{H}_{JC}\boldsymbol{U}$ with $\boldsymbol{U}(0) = \boldsymbol{I}$, reads $\boldsymbol{U}(t) = \boldsymbol{e}^{-i\omega t \left(\frac{\boldsymbol{\sigma}_{\boldsymbol{z}}}{2} + \boldsymbol{N} + \frac{1}{2}\right)} \boldsymbol{e}^{\frac{\Omega t}{2}(\boldsymbol{\sigma}.\boldsymbol{a}^{\dagger} - \boldsymbol{\sigma}_{\star}\boldsymbol{a})}$ where for any angle θ ,

$$egin{aligned} e^{ heta(\sigmam{.}m{a}^{\dagger}-\sigma_{m{\star}}m{a})} &= |g
angle\langle g|\otimes\cos(heta\sqrt{m{N}})+|e
angle\langle e|\otimes\cos(heta\sqrt{m{N}}+m{I})\ &-\sigma_{m{\star}}\otimesm{a}rac{\sin(heta\sqrt{m{N}})}{\sqrt{m{N}}}+\sigma_{m{\star}}\otimesrac{\sin(heta\sqrt{m{N}})}{\sqrt{m{N}}}\,m{a}^{\dagger} \end{aligned}$$

Hint: show that

$$\begin{bmatrix} \sigma_{\mathbf{z}} + \mathbf{N}, \ \sigma_{\mathbf{z}} \mathbf{a}^{\dagger} - \sigma_{\mathbf{z}} \mathbf{a} \end{bmatrix} = 0$$

$$(\sigma_{\mathbf{z}} \mathbf{a}^{\dagger} - \sigma_{\mathbf{z}} \mathbf{a})^{2k} = (-1)^{k} \left(|g\rangle \langle g| \otimes \mathbf{N}^{k} + |e\rangle \langle e| \otimes (\mathbf{N} + \mathbf{I})^{k} \right)$$

$$(\sigma_{\mathbf{z}} \mathbf{a}^{\dagger} - \sigma_{\mathbf{z}} \mathbf{a})^{2k+1} = (-1)^{k} \left(\sigma_{\mathbf{z}} \otimes \mathbf{N}^{k} \mathbf{a}^{\dagger} - \sigma_{\mathbf{z}} \otimes \mathbf{a} \mathbf{N}^{k} \right)$$

and compute de series defining the exponential of an operator.

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 5 Chengdu, July 9, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

1 Averaging and quasi-periodic control

2 First and second order averaging recipes

3 Exercise: resonant control of a qubit

・ロト・西ト・田・・田・ ひゃぐ

1 Averaging and quasi-periodic control

2 First and second order averaging recipes

3 Exercise: resonant control of a qubit

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Un-measured quantum system \rightarrow Bilinear Schrödinger equation

$$irac{d}{dt}|\psi
angle = (oldsymbol{H}_0 + u(t)oldsymbol{H}_1)|\psi
angle,$$

• $|\psi\rangle \in \mathcal{H}$ the system's wavefunction with $\||\psi\rangle\|_{\mathcal{H}} = 1$;

- the free Hamiltonian, *H*₀, is a Hermitian operator defined on *H*;
- the control Hamiltonian, *H*₁, is a Hermitian operator defined on *H*;
- the control $u(t) : \mathbb{R}^+ \mapsto \mathbb{R}$ is a scalar control.

Here we consider the case of finite dimensional $\ensuremath{\mathcal{H}}$

Almost periodic control

We consider the controls of the form

$$u(t) = \epsilon \left(\sum_{j=1}^{r} u_j e^{i\omega_j t} + u_j^* e^{-i\omega_j t} \right)$$

- $\epsilon > 0$ is a small parameter;
- $\epsilon \boldsymbol{u}_j$ is the constant complex amplitude associated to the pulsation $\omega_j \geq 0$;
- *r* stands for the number of independent frequencies $(\omega_j \neq \omega_k \text{ for } j \neq k).$

We are interested in approximations, for ϵ tending to 0⁺, of trajectories $t \mapsto |\psi_{\epsilon}\rangle_t$ of

$$\frac{d}{dt}|\psi_{\epsilon}\rangle = \left(\boldsymbol{A}_{0} + \epsilon \left(\sum_{j=1}^{r} \boldsymbol{u}_{j} \boldsymbol{e}^{i\omega_{j}t} + \boldsymbol{u}_{j}^{*} \boldsymbol{e}^{-i\omega_{j}t}\right) \boldsymbol{A}_{1}\right) |\psi_{\epsilon}\rangle$$

where $\mathbf{A}_0 = -i\mathbf{H}_0$ and $\mathbf{A}_1 = -i\mathbf{H}_1$ are skew-Hermitian.

Rotating frame

Consider the following change of variables

$$|\psi_{\epsilon}\rangle_t = \boldsymbol{e}^{\boldsymbol{A}_0 t} |\phi_{\epsilon}\rangle_t.$$

The resulting system is said to be in the "interaction frame"

$$rac{d}{dt} |\phi_{\epsilon}
angle = \epsilon m{B}(t) |\phi_{\epsilon}
angle$$

where $\boldsymbol{B}(t)$ is a skew-Hermitian operator whose time-dependence is almost periodic:

$$B(t) = \sum_{i=1}^{r} \boldsymbol{u}_{i} e^{i\omega_{j}t} e^{-\boldsymbol{A}_{0}t} \boldsymbol{A}_{1} e^{\boldsymbol{A}_{0}t} + \boldsymbol{u}_{j}^{*} e^{-i\omega_{j}t} e^{-\boldsymbol{A}_{0}t} \boldsymbol{A}_{1} e^{\boldsymbol{A}_{0}t}.$$

Main idea

We can write

$$oldsymbol{B}(t) = oldsymbol{ar{B}} + rac{d}{dt} \widetilde{oldsymbol{B}}(t),$$

where $\mathbf{\bar{B}}$ is a constant skew-Hermitian matrix and $\mathbf{\bar{B}}(t)$ is a bounded almost periodic skew-Hermitian matrix.

Multi-frequency averaging: first order

Consider the two systems

$$\frac{d}{dt}|\phi_{\epsilon}\rangle = \epsilon \left(\bar{\boldsymbol{B}} + \frac{d}{dt}\widetilde{\boldsymbol{B}}(t)\right)|\phi_{\epsilon}\rangle,$$

and

$$\frac{d}{dt}|\phi_{\epsilon}^{1\text{st}}\rangle=\epsilon\bar{\boldsymbol{B}}|\phi_{\epsilon}^{1\text{st}}\rangle,$$

initialized at the same state $|\phi_{\epsilon}^{1^{\text{st}}}\rangle_{0} = |\phi_{\epsilon}\rangle_{0}$.

Theorem: first order approximation (Rotating Wave Approximation)

Consider the functions $|\phi_{\epsilon}\rangle$ and $|\phi_{\epsilon}^{1\text{st}}\rangle$ initialized at the same state and following the above dynamics. Then, there exist M > 0 and $\eta > 0$ such that for all $\epsilon \in]0, \eta[$ we have

$$\max_{t \in \left[0, \frac{1}{\epsilon}\right]} \left\| |\phi_{\epsilon}\rangle_{t} - |\phi_{\epsilon}^{1^{\mathsf{st}}}\rangle_{t} \right\| \le M\epsilon$$

Proof's idea

Almost periodic change of variables:

 $|\chi_{\epsilon}\rangle = (1 - \epsilon \widetilde{\boldsymbol{B}}(t))|\phi_{\epsilon}\rangle$

well-defined for $\epsilon > 0$ sufficiently small. The dynamics can be written as

$$\frac{d}{dt}|\chi_{\epsilon}\rangle = (\epsilon \bar{\boldsymbol{B}} + \epsilon^{2} \boldsymbol{F}(\epsilon, t))|\chi_{\epsilon}\rangle$$

(日) (日) (日) (日) (日) (日) (日)

where $F(\epsilon, t)$ is uniformly bounded in time.

Multi-frequency averaging: second order

More precisely, the dynamics of $|\chi_\epsilon
angle$ is given by

$$\frac{d}{dt}|\chi_{\epsilon}\rangle = \left(\epsilon\bar{\boldsymbol{B}} + \epsilon^{2}[\bar{\boldsymbol{B}}, \widetilde{\boldsymbol{B}}(t)] - \epsilon^{2}\widetilde{\boldsymbol{B}}(t)\frac{d}{dt}\widetilde{\boldsymbol{B}}(t) + \epsilon^{3}\boldsymbol{E}(\epsilon, t)\right)|\chi_{\epsilon}\rangle$$

- *E*(ε, t) is still almost periodic but its entries are no more linear combinations of time-exponentials;
- **\widetilde{B}(t) \frac{d}{dt} \widetilde{B}(t)** is an almost periodic operator whose entries are linear combinations of oscillating time-exponentials.

We can write

$$\widetilde{\boldsymbol{B}}(t) = rac{d}{dt}\widetilde{\boldsymbol{C}}(t)$$
 and $\widetilde{\boldsymbol{B}}(t)rac{d}{dt}\widetilde{\boldsymbol{B}}(t) = \bar{\boldsymbol{D}} + rac{d}{dt}\widetilde{\boldsymbol{D}}(t)$

where $\widetilde{\boldsymbol{C}}(t)$ and $\widetilde{\boldsymbol{D}}(t)$ are almost periodic. We have

$$\frac{d}{dt}|\chi_{\epsilon}\rangle = \left(\epsilon\bar{\boldsymbol{B}} - \epsilon^{2}\bar{\boldsymbol{D}} + \epsilon^{2}\frac{d}{dt}\left([\bar{\boldsymbol{B}}, \widetilde{\boldsymbol{C}}(t)] - \widetilde{\boldsymbol{D}}(t)\right) + \epsilon^{3}\boldsymbol{E}(\epsilon, t)\right)|\chi_{\epsilon}\rangle$$

where the skew-Hermitian operators \overline{B} and \overline{D} are constants and the other ones \widetilde{C} , \widetilde{D} , and E are almost periodic.

Multi-frequency averaging: second order

Consider the two systems

$$\frac{d}{dt}|\phi_{\epsilon}\rangle = \epsilon \left(\bar{\boldsymbol{B}} + \frac{d}{dt}\tilde{\boldsymbol{B}}(t)\right)|\phi_{\epsilon}\rangle,$$

and

$$\frac{d}{dt}|\phi_{\epsilon}^{\text{2nd}}\rangle = (\epsilon \bar{\boldsymbol{B}} - \epsilon^{2} \bar{\boldsymbol{D}})|\phi_{\epsilon}^{\text{2nd}}\rangle,$$

initialized at the same state $|\phi_{\epsilon}^{2^{nd}}\rangle_{0} = |\phi_{\epsilon}\rangle_{0}$.

Theorem: second order approximation

Consider the functions $|\phi_{\epsilon}\rangle$ and $|\phi_{\epsilon}^{2^{nd}}\rangle$ initialized at the same state and following the above dynamics. Then, there exist M > 0 and $\eta > 0$ such that for all $\epsilon \in]0, \eta[$ we have

$$\max_{t \in \left[0, \frac{1}{\epsilon}\right]} \left\| |\phi_{\epsilon}\rangle_{t} - |\phi_{\epsilon}^{2^{\mathsf{nd}}}\rangle_{t} \right\| \leq M\epsilon^{2}$$

Proof's idea

Another almost periodic change of variables

$$|\xi_{\epsilon}\rangle = \left(\boldsymbol{I} - \epsilon^{2}\left([\boldsymbol{\bar{B}}, \boldsymbol{\widetilde{C}}(t)] - \boldsymbol{\widetilde{D}}(t)\right)\right)|\chi_{\epsilon}\rangle.$$

The dynamics can be written as

$$\frac{d}{dt}|\xi_{\epsilon}\rangle = \left(\epsilon\bar{\boldsymbol{B}} - \epsilon^{2}\bar{\boldsymbol{D}} + \epsilon^{3}\boldsymbol{F}(\epsilon,t)\right)|\xi_{\epsilon}\rangle$$

where $\epsilon \mathbf{B} - \epsilon^2 \mathbf{D}$ is skew Hermitian and \mathbf{F} is almost periodic and therefore uniformly bounded in time.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1 Averaging and quasi-periodic control

2 First and second order averaging recipes

3 Exercise: resonant control of a qubit

・ロト・西ト・田・・田・ ひゃぐ

The Rotating Wave Approximation (RWA) recipes

Schrödinger dynamics $i \frac{d}{dt} |\psi\rangle = \boldsymbol{H}(t) |\psi\rangle$, with

$$H(t) = H_0 + \sum_{k=1}^m u_k(t)H_k, \qquad u_k(t) = \sum_{j=1}^r u_{k,j}e^{i\omega_j t} + u_{k,j}^*e^{-i\omega_j t}.$$

The Hamiltonian in interaction frame

$$\boldsymbol{H}_{\text{int}}(t) = \sum_{k,j} \left(\boldsymbol{u}_{k,j} \boldsymbol{e}^{i\omega_j t} + \boldsymbol{u}_{k,j}^* \boldsymbol{e}^{-i\omega_j t} \right) \boldsymbol{e}^{i\boldsymbol{H}_0 t} \boldsymbol{H}_k \boldsymbol{e}^{-i\boldsymbol{H}_0 t}$$

We define the first order Hamiltonian

$$\boldsymbol{H}_{\text{rwa}}^{1\text{st}} = \overline{\boldsymbol{H}_{\text{int}}} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \boldsymbol{H}_{\text{int}}(t) dt,$$

and the second order Hamiltonian

$$\boldsymbol{H}_{rwa}^{2nd} = \boldsymbol{H}_{rwa}^{1st} - i \left(\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}} \right) \left(\int_{t} (\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}}) \right)$$

Choose the amplitudes $\boldsymbol{u}_{k,j}$ and the frequencies ω_j such that the propagators of $\boldsymbol{H}_{rwa}^{1st}$ or $\boldsymbol{H}_{rwa}^{2nd}$ admit simple explicit forms that are used to find $t \mapsto u(t)$ steering $|\psi\rangle$ from one location to another one.

Exercise: resonant control of a qubit

In $i\frac{d}{dt}|\psi\rangle = \left(\frac{\omega_{eg}}{2}\sigma_{z} + \frac{u}{2}\sigma_{x}\right)|\psi\rangle$, take a resonant control $u(t) = ue^{i\omega_{eg}t} + u^{*}e^{-i\omega_{eg}t}$ with u slowly varying complex amplitude $\left|\frac{d}{dt}u\right| \ll \omega_{eg}|u|$. Set $H_{0} = \frac{\omega_{eg}}{2}\sigma_{z}$ and $\epsilon H_{1} = \frac{u}{2}\sigma_{x}$

1 Consider
$$|\psi\rangle = e^{-\frac{i\omega_{\text{egl}}t}{2}\sigma_{\mathbf{z}}}|\phi\rangle$$
 and show that $i\frac{d}{dt}|\phi\rangle = H_{\text{int}}|\phi\rangle$ with

$$H_{\text{int}} = \frac{u(t)}{2}e^{i\omega_{\text{egl}}t} \frac{\sigma_{\mathbf{x}} + i\sigma_{\mathbf{y}}}{2} + \frac{u(t)}{2}e^{-i\omega_{\text{egl}}t} \frac{\sigma_{\mathbf{x}} - i\sigma_{\mathbf{y}}}{2}.$$

2 Show that up to second order terms one has $i\frac{d}{dt}|\phi\rangle = H_{rWa}^{1SI}|\phi\rangle$ with $H_{rWa}^{1SI} = \frac{u^* \sigma_* + u\sigma_*}{2}$.

3 Take constant control
$$\boldsymbol{u} = \Omega_r \boldsymbol{e}^{ro}$$
 for $t \in [0, 1], 1 > 0$. Show that $|\phi\rangle$ is solution
of $(\Sigma) : i \frac{d}{dt} |\phi\rangle = \frac{\Omega_r (\cos \theta \sigma_X + \sin \theta \sigma_Y)}{2} |\phi\rangle$.
4 Set $\Theta_r = \frac{\Omega_r}{2} T$. Show that the solution at T of the propagator $\boldsymbol{U} \in SU(2)$.

4 Set $\Theta_r = \frac{M_r}{2}T$. Show that the solution at *T* of the propagator $\boldsymbol{U}_t \in SU(2)$, $i\frac{d}{dt}\boldsymbol{U} = \frac{\Omega_r(\cos\theta\sigma_{\boldsymbol{x}}+\sin\theta\sigma_{\boldsymbol{y}})}{2}\boldsymbol{U}, \boldsymbol{U}_0 = \boldsymbol{I}$ is given by $\boldsymbol{U}_T = \cos\Theta_r \boldsymbol{I} - i\sin\Theta_r (\cos\theta\sigma_{\boldsymbol{x}} + \sin\theta\sigma_{\boldsymbol{y}})$,

- 5 Take a wave function $|\bar{\phi}\rangle$. Show that exist Ω_r and θ such that $U_T|g\rangle = e^{i\alpha}|\bar{\phi}\rangle$, where α is some global phase.
- 6 Prove that for any given two wave functions |φ_a⟩ and |φ_b⟩ exists a piece-wise constant control [0, 2*T*] ∋ *t* → *u*(*t*) ∈ C such that the solution of (Σ) with |φ⟩₀ = |φ_a⟩ satisfies |φ⟩_T = e^{iβ}|φ_b⟩ for some global phase β.

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 6 Chengdu, July 9, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

The Rotating Wave Approximation (RWA) recipes

Schrödinger dynamics $i \frac{d}{dt} |\psi\rangle = \boldsymbol{H}(t) |\psi\rangle$, with

$$H(t) = H_0 + \sum_{k=1}^m u_k(t)H_k, \qquad u_k(t) = \sum_{j=1}^r u_{k,j}e^{i\omega_j t} + u_{k,j}^*e^{-i\omega_j t}.$$

The Hamiltonian in interaction frame

$$\boldsymbol{H}_{\text{int}}(t) = \sum_{k,j} \left(\boldsymbol{u}_{k,j} \boldsymbol{e}^{i\omega_j t} + \boldsymbol{u}_{k,j}^* \boldsymbol{e}^{-i\omega_j t} \right) \boldsymbol{e}^{i\boldsymbol{H}_0 t} \boldsymbol{H}_k \boldsymbol{e}^{-i\boldsymbol{H}_0 t}$$

We define the first order Hamiltonian

$$\boldsymbol{H}_{\text{rwa}}^{1\text{st}} = \overline{\boldsymbol{H}_{\text{int}}} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \boldsymbol{H}_{\text{int}}(t) dt,$$

and the second order Hamiltonian

$$\boldsymbol{H}_{rwa}^{2nd} = \boldsymbol{H}_{rwa}^{1st} - i \left(\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}} \right) \left(\int_{t} (\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}}) \right)$$

Choose the amplitudes $\boldsymbol{u}_{k,j}$ and the frequencies ω_j such that the propagators of $\boldsymbol{H}_{rwa}^{1st}$ or $\boldsymbol{H}_{rwa}^{2nd}$ admit simple explicit forms that are used to find $t \mapsto u(t)$ steering $|\psi\rangle$ from one location to another one.

1 Averaging of spin/spring systems

- The spin/spring model
- Resonant interaction (Jaynes-Cummings system)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Dispersive interaction

2 Exercise: control of the Jaynes-Cummings system

1 Averaging of spin/spring systems

- The spin/spring model
- Resonant interaction (Jaynes-Cummings system)
- Dispersive interaction

2 Exercise: control of the Jaynes-Cummings system

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The Schrödinger system

$$irac{d}{dt}|\psi
angle = \left(rac{\omega_{eg}}{2}\sigma_{z} + \omega_{c}\left(a^{\dagger}a + rac{1}{2}
ight) + irac{\Omega}{2}\sigma_{x}(a^{\dagger} - a)
ight)|\psi
angle$$

corresponds to two coupled scalar PDE's:

$$i\frac{\partial\psi_{e}}{\partial t} = +\frac{\omega_{eg}}{2}\psi_{e} + \frac{\omega_{c}}{2}\left(x^{2} - \frac{\partial^{2}}{\partial x^{2}}\right)\psi_{e} - i\frac{\Omega}{\sqrt{2}}\frac{\partial}{\partial x}\psi_{g}$$
$$i\frac{\partial\psi_{g}}{\partial t} = -\frac{\omega_{eg}}{2}\psi_{g} + \frac{\omega_{c}}{2}\left(x^{2} - \frac{\partial^{2}}{\partial x^{2}}\right)\psi_{g} - i\frac{\Omega}{\sqrt{2}}\frac{\partial}{\partial x}\psi_{e}$$

since $\mathbf{a} = \frac{1}{\sqrt{2}} \left(x + \frac{\partial}{\partial x} \right)$ and $|\psi\rangle$ corresponds to $(\psi_{\theta}(x, t), \psi_{g}(x, t))$ where $\psi_{\theta}(., t), \psi_{g}(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ and $\|\psi_{\theta}\|^{2} + \|\psi_{g}\|^{2} = 1$.

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

 $\begin{aligned} &\ln \frac{\mathbf{H}}{\hbar} = \frac{\omega_{\text{eg}}}{2} \sigma_{\mathbf{z}} + \omega_{c} \left(\mathbf{a}^{\dagger} \mathbf{a} + \frac{1}{2} \right) + i \frac{\Omega}{2} \sigma_{\mathbf{x}} (\mathbf{a}^{\dagger} - \mathbf{a}), \, \omega_{\text{eg}} = \omega_{c} = \omega \text{ with} \\ &|\Omega| \ll \omega. \text{ Then } \mathbf{H} = \mathbf{H}_{0} + \epsilon \mathbf{H}_{1} \text{ where } \epsilon \text{ is a small parameter and} \end{aligned}$

$$\frac{\boldsymbol{H}_{0}}{\hbar} = \frac{\omega}{2}\boldsymbol{\sigma}_{\boldsymbol{z}} + \omega \left(\boldsymbol{a}^{\dagger}\boldsymbol{a} + \frac{\boldsymbol{I}}{2}\right)$$
$$\epsilon \frac{\boldsymbol{H}_{1}}{\hbar} = i\frac{\Omega}{2}\boldsymbol{\sigma}_{\boldsymbol{x}}(\boldsymbol{a}^{\dagger} - \boldsymbol{a}).$$

 H_{int} is obtained by setting $|\psi\rangle = e^{-i\omega t \left(a^{\dagger}a + \frac{1}{2}\right)} e^{\frac{-i\omega t}{2}\sigma_{z}} |\phi\rangle$ in $i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$ to get $i\hbar \frac{d}{dt} |\phi\rangle = H_{\text{int}} |\phi\rangle$ with

$$\frac{\boldsymbol{H}_{\text{int}}}{\hbar} = i\frac{\Omega}{2} (\boldsymbol{e}^{-i\omega t} \boldsymbol{\sigma}_{-} + \boldsymbol{e}^{i\omega t} \boldsymbol{\sigma}_{+}) (\boldsymbol{e}^{i\omega t} \boldsymbol{a}^{\dagger} - \boldsymbol{e}^{-i\omega t} \boldsymbol{a})$$

where we used

$$e^{\frac{i\theta}{2}\sigma_{\mathbf{z}}} \sigma_{\mathbf{x}} e^{-\frac{i\theta}{2}\sigma_{\mathbf{z}}} = e^{-i\theta}\sigma_{\mathbf{z}} + e^{i\theta}\sigma_{\mathbf{z}}, \quad e^{i\theta\left(\mathbf{a}^{\dagger}\mathbf{a} + \frac{1}{2}\right)} \mathbf{a} \ e^{-i\theta\left(\mathbf{a}^{\dagger}\mathbf{a} + \frac{1}{2}\right)} = e^{-i\theta}\mathbf{a}$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のQ@

Resonant spin/spring Hamiltonian and associated PDE

The secular terms in **H**_{int} are given by (RWA, first order approximation) $m{H}_{rwa}^{1st}/\hbar=irac{\Omega}{2}(\sigma_{\star}m{a}^{\dagger}-\sigma_{\star}m{a})$. Since quantum state $|\phi\rangle = e^{+i\omega t \left(a^{\dagger}a + \frac{1}{2}\right)} e^{\frac{\pm i\omega t}{2}\sigma_z} |\psi\rangle$ obeys approximatively to $i\hbar \frac{d}{dt} |\phi\rangle = \boldsymbol{H}_{nwa}^{1\text{st}} |\phi\rangle$, the original quantum state $|\psi\rangle$ is governed by

$$i\frac{d}{dt}|\psi\rangle = \left(\frac{\omega}{2}\boldsymbol{\sigma}_{z} + \omega\left(\boldsymbol{a}^{\dagger}\boldsymbol{a} + \frac{1}{2}\right) + i\frac{\Omega}{2}(\boldsymbol{\sigma}_{\cdot}\boldsymbol{a}^{\dagger} - \boldsymbol{\sigma}_{\star}\boldsymbol{a})\right)|\psi\rangle$$

The Jaynes-Cummings Hamiltonian ($\omega_{eq} = \omega_c = \omega$) reads:

$$\boldsymbol{H}_{JC}/\hbar = \frac{\omega}{2}\boldsymbol{\sigma}_{z} + \omega \left(\boldsymbol{a}^{\dagger}\boldsymbol{a} + \frac{\mathbf{I}}{2}\right) + i\frac{\Omega}{2}(\boldsymbol{\sigma}_{\cdot}\boldsymbol{a}^{\dagger} - \boldsymbol{\sigma}_{\star}\boldsymbol{a})$$

The corresponding PDE is :

$$i\frac{\partial\psi_{e}}{\partial t} = +\frac{\omega}{2}\psi_{e} + \frac{\omega}{2}(x^{2} - \frac{\partial^{2}}{\partial x^{2}})\psi_{e} - i\frac{\Omega}{2\sqrt{2}}\left(x - \frac{\partial}{\partial x}\right)\psi_{g}$$
$$i\frac{\partial\psi_{g}}{\partial t} = -\frac{\omega}{2}\psi_{g} + \frac{\omega}{2}(x^{2} - \frac{\partial^{2}}{\partial x^{2}})\psi_{g} + i\frac{\Omega}{2\sqrt{2}}\left(x + \frac{\partial}{\partial x}\right)\psi_{e}$$

$$\begin{split} \frac{H}{\hbar} &= \frac{\omega_{eg}}{2} \boldsymbol{\sigma}_{\mathbf{Z}} + \omega_c \left(\mathbf{a}^{\dagger} \mathbf{a} + \frac{1}{2} \right) + i \frac{\Omega}{2} \boldsymbol{\sigma}_{\mathbf{X}} \left(\mathbf{a}^{\dagger} - \mathbf{a} \right) \\ \text{with } |\Omega| \ll |\omega_{eg} - \omega_c| \ll \omega_{eg}, \omega_c. \\ \text{Then } \mathbf{H} &= \mathbf{H}_0 + \epsilon \mathbf{H}_1 \text{ where } \epsilon \text{ is a small parameter and} \\ \frac{H_0}{\hbar} &= \frac{\omega_{eg}}{2} \boldsymbol{\sigma}_{\mathbf{Z}} + \omega_c \left(\mathbf{a}^{\dagger} \mathbf{a} + \frac{1}{2} \right), \quad \epsilon \frac{H_1}{\hbar} = i \frac{\Omega}{2} \boldsymbol{\sigma}_{\mathbf{X}} \left(\mathbf{a}^{\dagger} - \mathbf{a} \right). \\ \mathbf{H}_{\text{int}} \text{ is obtained by setting } |\psi\rangle &= \mathbf{e}^{-i\omega_c t} \left(\mathbf{a}^{\dagger} \mathbf{a} + \frac{1}{2} \right) \mathbf{e}^{-\frac{-i\omega_{eg} t}{2}} \boldsymbol{\sigma}_{\mathbf{z}} |\phi\rangle \text{ in} \\ i\hbar \frac{d}{dt} |\psi\rangle &= \mathbf{H} |\psi\rangle \text{ to get } i\hbar \frac{d}{dt} |\phi\rangle = \mathbf{H}_{\text{int}} |\phi\rangle \text{ with} \end{split}$$

$$\frac{\mathbf{H}_{\text{int}}}{\hbar} = i\frac{\Omega}{2} (e^{-i\omega_{\text{eg}}t} \boldsymbol{\sigma}_{\star} + e^{i\omega_{\text{eg}}t} \boldsymbol{\sigma}_{\star}) (e^{i\omega_{c}t} \boldsymbol{a}^{\dagger} - e^{-i\omega_{c}t} \boldsymbol{a})$$

$$= i\frac{\Omega}{2} \left(e^{i(\omega_{c}-\omega_{\text{eg}})t} \boldsymbol{\sigma}_{\star} \boldsymbol{a}^{\dagger} - e^{-i(\omega_{c}-\omega_{\text{eg}})t} \boldsymbol{\sigma}_{\star} \boldsymbol{a} + e^{i(\omega_{c}+\omega_{\text{eg}})t} \boldsymbol{\sigma}_{\star} \boldsymbol{a}^{\dagger} - e^{-i(\omega_{c}+\omega_{\text{eg}})t} \boldsymbol{\sigma}_{\star} \boldsymbol{a} \right)$$

Thus $\boldsymbol{H}_{rwa}^{1\text{st}} = \overline{\boldsymbol{H}_{int}} = 0$: no secular term. We have to compute $\boldsymbol{H}_{rwa}^{2nd} = \overline{\boldsymbol{H}_{int}} - i(\overline{\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}}}) (\int_t (\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}}))$ where $\int_t (\boldsymbol{H}_{int} - \overline{\boldsymbol{H}_{int}}/\hbar \text{ corresponds to})$

$$\frac{\Omega}{2} \left(\frac{e^{i(\omega_c - \omega_{eg})t}}{\omega_c - \omega_{eg}} \boldsymbol{\sigma}_{\boldsymbol{\star}} \boldsymbol{a}^{\dagger} + \frac{e^{-i(\omega_c - \omega_{eg})t}}{\omega_c - \omega_{eg}} \boldsymbol{\sigma}_{\boldsymbol{\star}} \boldsymbol{a} + \frac{e^{i(\omega_c + \omega_{eg})t}}{\omega_c + \omega_{eg}} \boldsymbol{\sigma}_{\boldsymbol{\star}} \boldsymbol{a}^{\dagger} + \frac{e^{-i(\omega_c - \omega_{eg})t}}{\omega_c + \omega_{eg}} \boldsymbol{\sigma}_{\boldsymbol{\star}} \boldsymbol{a}^{\dagger} \right)$$

・ロト・日本・日本・日本・日本

Dispersive spin/spring Hamiltonian and associated PDE

The secular terms in
$$\boldsymbol{H}_{rwa}^{2nd}$$
 are
 $\frac{\Omega^2}{4(\omega_c-\omega_{eg})} (\boldsymbol{\sigma}.\boldsymbol{\sigma}_{\star}\boldsymbol{a}^{\dagger}\boldsymbol{a} - \boldsymbol{\sigma}_{\star}\boldsymbol{\sigma}.\boldsymbol{a}\boldsymbol{a}^{\dagger}) + \frac{\Omega^2}{4(\omega_c+\omega_{eg})} (-\boldsymbol{\sigma}.\boldsymbol{\sigma}_{\star}\boldsymbol{a}\boldsymbol{a}^{\dagger} + \boldsymbol{\sigma}_{\star}\boldsymbol{\sigma}.\boldsymbol{a}^{\dagger}\boldsymbol{a})$
Since $|\Omega| \ll |\omega_{eg} - \omega_c| \ll \omega_{eg}, \omega_c$, we have $\frac{\Omega^2}{4(\omega_c+\omega_{eg})} \ll \frac{\Omega^2}{4(\omega_c-\omega_{eg})}$
 $\boldsymbol{H}_{rwa}^{2nd}/\hbar \approx -\frac{\Omega^2}{4(\omega_c-\omega_{eg})} \left(\boldsymbol{\sigma}_{z} \left(\boldsymbol{N}+\frac{\boldsymbol{I}}{2}\right)+\frac{\boldsymbol{I}}{2}\right).$

Since quantum state $|\phi\rangle = e^{+i\omega_c t \left(N+\frac{1}{2}\right)} e^{\frac{+i\omega_{\text{egf}}}{2}\sigma_{\text{z}}} |\psi\rangle$ obevs approximatively to $i\hbar \frac{d}{dt} |\phi\rangle = \boldsymbol{H}_{rwa}^{2nd} |\phi\rangle$, the original quantum state $|\psi\rangle$ is governed by $i\frac{d}{dt}|\psi\rangle = \left(\frac{H_{disp}}{\hbar} - \frac{\Omega^2}{8(\omega_c - \omega_{eq})}\right)|\psi\rangle$ with

$$H_{disp}/\hbar = rac{\omega_{
m eg}}{2}\sigma_{
m z} + \omega_{
m c}\left({
m N} + rac{l}{2}
ight) - rac{\chi}{2}\sigma_{
m z}\left({
m N} + rac{l}{2}
ight) \quad ext{and} \ \chi = rac{\Omega^2}{2(\omega_c - \omega_{
m eg})}$$

The corresponding PDE is :

$$i\frac{\partial\psi_e}{\partial t} = +\frac{\omega_{eg}}{2}\psi_e + \frac{1}{2}(\omega_c - \frac{\chi}{2})(x^2 - \frac{\partial^2}{\partial x^2})\psi_e$$
$$i\frac{\partial\psi_g}{\partial t} = -\frac{\omega_{eg}}{2}\psi_g + \frac{1}{2}(\omega_c + \frac{\chi}{2})(x^2 - \frac{\partial^2}{\partial x^2})\psi_g$$

1 Averaging of spin/spring systems

- The spin/spring model
- Resonant interaction (Jaynes-Cummings system)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Dispersive interaction

2 Exercise: control of the Jaynes-Cummings system

Exercise: control of the Jaynes-Cummings system

Consider the spin-spring model with $\Omega \ll |\omega|$:

$$\frac{H}{\hbar} = \frac{\omega}{2}\sigma_{\mathbf{z}} + \omega \left(\mathbf{a}^{\dagger} \mathbf{a} + \frac{1}{2}\right) + i\frac{\Omega}{2}\sigma_{\mathbf{x}}(\mathbf{a}^{\dagger} - \mathbf{a}) + u(\mathbf{a} + \mathbf{a}^{\dagger})$$

with a real control input $u(t) \in \mathbb{R}$:

1 Show that with the resonant control $u(t) = ue^{-i\omega t} + u^*e^{+i\omega t}$ with complex amplitude u such that $|u| \ll \omega$, the first order RWA approximation yields to the following dynamics in the interaction frame

$$irac{d}{dt}|\psi
angle = \left(irac{\Omega}{2}(\sigma_{\star}a^{\dagger} - \sigma_{\star}a) + ua^{\dagger} + u^{*}a
ight)|\psi
angle$$

2 Set $\mathbf{v} \in \mathbb{C}$ solution of $\frac{d}{dt}\mathbf{v} = -i\mathbf{u}$ and consider the following change of frame $|\phi\rangle = D_{-\mathbf{v}}|\psi\rangle$ with the displacement operator $D_{-\mathbf{v}} = e^{-\mathbf{v}\mathbf{a}^{\dagger} + \mathbf{v}^{*}\mathbf{a}}$. Show that, up to a global phase change, we have, with $\tilde{\mathbf{u}} = i\frac{\Omega}{2}\mathbf{v}$,

$$irac{d}{dt}|\phi
angle = \left(rac{i\Omega}{2}(\sigma_{\text{-}}a^{\dagger} - \sigma_{\text{+}}a) + (\tilde{u}\sigma_{\text{+}} + \tilde{u}^{*}\sigma_{\text{-}})
ight)|\phi
angle$$

- 3 Take the orthonormal basis { $|g, n\rangle$, $|e, n\rangle$ } with $n \in \mathbb{N}$ being the photon number and where for instance $|g, n\rangle$ stands for the tensor product $|g\rangle \otimes |n\rangle$. Set $|\phi\rangle = \sum_{n} \phi_{g,n}|g, n\rangle + \phi_{e,n}|e, n\rangle$ with $\phi_{g,n}, \phi_{e,n} \in \mathbb{C}$ depending on *t* and $\sum_{n} |\phi_{g,n}|^2 + |\phi_{e,n}|^2 = 1$. Show that, for $n \ge 0$ $i\frac{d}{dt}\phi_{g,n+1} = i\frac{\Omega}{2}\sqrt{n+1}\phi_{e,n} + \tilde{\mathbf{u}}^*\phi_{e,n+1}, \quad i\frac{d}{dt}\phi_{e,n} = -i\frac{\Omega}{2}\sqrt{n+1}\phi_{g,n+1} + \tilde{\mathbf{u}}\phi_{g,n}$ and $i\frac{d}{dt}\phi_{g,0} = \tilde{\mathbf{u}}^*\phi_{e,0}$.
- 4 Assume that $|\phi\rangle_0 = |g, 0\rangle$. Construct an open-loop control $[0, T] \ni t \mapsto \tilde{u}(t)$ such that $|\phi\rangle_T \approx |g, 1\rangle$ (hint: use an impulse for $t \in [0, \epsilon]$ followed by 0 on $[\epsilon, T]$ with $\epsilon \ll T$ and well chosen *T*).
- 5 Generalize the above open-loop control when the goal state $|\phi\rangle_T$ is $|g, n\rangle$ with any arbitrary photon number *n*.

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 7 Chengdu, July 10, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

1 Discrete-time dynamics of the LKB photon box

- General structure based on three quantum features
- Dispersive probe qubits
- Resonant probe qubits
- Density operator to cope with measurement imperfections

(日) (日) (日) (日) (日) (日) (日)

2 Exercise: Markov process including detection errors

1 Schrödinger ($\hbar = 1$): wave function $|\psi\rangle$ in Hilbert space \mathcal{H} ,

$$\frac{d}{dt}|\psi\rangle = -i\boldsymbol{H}|\psi\rangle, \quad \boldsymbol{H} = \boldsymbol{H}_0 + u\boldsymbol{H}_1.$$

Unitary propagator **U** solution of $\frac{d}{dt}$ **U** = -i**HU** with **U**(0) = *I*.

2 Origin of dissipation: collapse of the wave packet induced by the measurement of observable **O** with spectral decomp. $\sum_{\mu} \lambda_{\mu} \mathbf{P}_{\mu}$:

measurement outcome μ with proba. $\mathbb{P}_{\mu} = \langle \psi | \mathbf{P}_{\mu} | \psi \rangle$ depending on $| \psi \rangle$, just before the measurement

• measurement back-action if outcome $\mu = y$:

$$|\psi
angle\mapsto|\psi
angle_+=rac{{m P}_y|\psi
angle}{\sqrt{\langle\psi|{m P}_y|\psi
angle}}$$

3 Tensor product for the description of composite systems (*S*, *M*):

 $\blacksquare \text{ Hilbert space } \mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_M$

• Hamiltonian
$$H = H_S \otimes I_M + H_{int} + I_S \otimes H_M$$

• observable on sub-system *M* only: $O = I_S \otimes O_M$.

³S. Haroche and J.M. Raimond. *Exploring the Quantum: Atoms, Cavities and Photons*. Oxford Graduate Texts, 2006.

System S corresponds to a quantized harmonic oscillator:

$$\mathcal{H}_{\mathcal{S}} = \mathcal{H}_{c} = \left\{ \sum_{n=0}^{\infty} c_{n} | n \rangle \ \Big| \ (c_{n})_{n=0}^{\infty} \in l^{2}(\mathbb{C}) \right\},$$

where $|n\rangle$ represents the Fock state associated to exactly *n* photons inside the cavity

- Meter *M* is a qubit, a 2-level system: $\mathcal{H}_M = \mathcal{H}_a = \mathbb{C}^2$, each atom admits two energy levels and is described by a wave function $c_g |g\rangle + c_e |e\rangle$ with $|c_g|^2 + |c_e|^2 = 1$;
- State of the full system $|\Psi\rangle \in \mathcal{H}_{S} \otimes \mathcal{H}_{M} = \mathcal{H}_{c} \otimes \mathcal{H}_{a}$:

$$|\Psi
angle = \sum_{n=0}^{+\infty} c_{ng} |n
angle \otimes |g
angle + c_{ne} |n
angle \otimes |e
angle, \quad c_{ne}, c_{ng} \in \mathbb{C}.$$

・ロト・日本・日本・日本・日本

Ortho-normal basis: $(|n\rangle \otimes |g\rangle, |n\rangle \otimes |e\rangle)_{n \in \mathbb{N}}$.

Markov model (1)

- When atom comes out *B*, $|\Psi\rangle_B$ of the full system is separable $|\Psi\rangle_B = |\psi\rangle \otimes |g\rangle$.
- Just before the measurement in D, the state is in general entangled (not separable):

$$|\Psi
angle_{B_2} = oldsymbol{U}_{SM}ig|\psi
angle \otimes |oldsymbol{g}
angle = ig(oldsymbol{M}_g|\psi
angle ig) \otimes |oldsymbol{g}
angle + ig(oldsymbol{M}_e|\psi
angle ig) \otimes |oldsymbol{e}
angle$$

where \boldsymbol{U}_{SM} is a unitary transformation (Schrödinger propagator) defining the linear measurement operators \boldsymbol{M}_g and \boldsymbol{M}_e on \mathcal{H}_S . Since \boldsymbol{U}_{SM} is unitary, $\boldsymbol{M}_g^{\dagger} \boldsymbol{M}_g + \boldsymbol{M}_e^{\dagger} \boldsymbol{M}_e = \boldsymbol{I}$. Just before *D*, the field/atom state is **entangled**:

 $m{M}_{m{g}}|\psi
angle\otimes|m{g}
angle+m{M}_{m{e}}|\psi
angle\otimes|m{e}
angle$

Denote by $\mu \in \{g, e\}$ the measurement outcome in detector *D*: with probability $\mathbb{P}_{\mu} = \left\langle \psi | \mathbf{M}_{\mu}^{\dagger} \mathbf{M}_{\mu} | \psi \right\rangle$ we get μ . Just after the measurement outcome $\mu = \mathbf{y}$, the state becomes separable:

$$|\Psi\rangle_{D} = \frac{1}{\sqrt{\mathbb{P}_{y}}} (\boldsymbol{M}_{y}|\psi\rangle) \otimes |y\rangle = \left(\frac{\boldsymbol{M}_{y}}{\sqrt{\langle\psi|\boldsymbol{M}_{y}^{\dagger}\boldsymbol{M}_{y}|\psi\rangle}}|\psi\rangle\right) \otimes |y\rangle.$$

Markov process: $|\psi_k\rangle \equiv |\psi\rangle_{t=k\Delta t}$, $k \in \mathbb{N}$, Δt sampling period,

$$|\psi_{k+1}\rangle = \begin{cases} \frac{\mathbf{M}_{g}|\psi_{k}\rangle}{\sqrt{\langle\psi_{k}|\mathbf{M}_{g}^{\dagger}\mathbf{M}_{g}|\psi_{k}\rangle}} & \text{with } y_{k} = g, \text{ probability } \mathbb{P}_{g} = \langle\psi_{k}|\mathbf{M}_{g}^{\dagger}\mathbf{M}_{g}|\psi_{k}\rangle;\\ \frac{\mathbf{M}_{e}|\psi_{k}\rangle}{\sqrt{\langle\psi_{k}|\mathbf{M}_{e}^{\dagger}\mathbf{M}_{e}|\psi_{k}\rangle}} & \text{with } y_{k} = e, \text{ probability } \mathbb{P}_{e} = \langle\psi_{k}|\mathbf{M}_{e}^{\dagger}\mathbf{M}_{e}|\psi_{k}\rangle. \end{cases}$$

$$\begin{split} \boldsymbol{U}_{R_{1}} &= \left(\frac{|\boldsymbol{g}\rangle + |\boldsymbol{e}\rangle}{\sqrt{2}}\right) \langle \boldsymbol{g}| + \left(\frac{|\boldsymbol{g}\rangle - |\boldsymbol{e}\rangle}{\sqrt{2}}\right) \langle \boldsymbol{e}| \\ \boldsymbol{U}_{R_{2}} &= \left(\frac{|\boldsymbol{g}\rangle + \boldsymbol{e}^{-i\phi_{R}}|\boldsymbol{e}\rangle}{\sqrt{2}}\right) \langle \boldsymbol{g}| + \left(\frac{\boldsymbol{e}^{i\phi_{R}}|\boldsymbol{g}\rangle - |\boldsymbol{e}\rangle}{\sqrt{2}}\right) \langle \boldsymbol{e}| \\ \boldsymbol{U}_{C} &= \boldsymbol{e}^{-i\frac{\phi_{0}}{2}\boldsymbol{N}} |\boldsymbol{g}\rangle \langle \boldsymbol{g}| + \boldsymbol{e}^{i\frac{\phi_{0}}{2}\boldsymbol{N}} |\boldsymbol{e}\rangle \langle \boldsymbol{e}| \end{split}$$

where ϕ_0 and ϕ_R are constant parameters.

The measurement operators M_g and M_e are the following bounded operators:

$$M_g = \cos\left(rac{\phi_R + \phi_0 N}{2}
ight), \quad M_e = \sin\left(rac{\phi_R + \phi_0 N}{2}
ight)$$

up to irrelevant global phases.

Exercise: prove the above formulae for M_g and M_e .

$$U_{R_1} = e^{-i\frac{\theta_1}{2}\sigma_y} = \cos\left(\frac{\theta_1}{2}\right) + \sin\left(\frac{\theta_1}{2}\right)\left(|g\rangle\langle e| - |e\rangle\langle g|\right)$$
 and $U_{R_2} = I$ and

$$oldsymbol{U}_{C} = |g
angle\langle g|\cos\left(rac{\Theta}{2}\sqrt{oldsymbol{N}}
ight) + |e
angle\langle e|\cos\left(rac{\Theta}{2}\sqrt{oldsymbol{N}+oldsymbol{I}}
ight) + |g
angle\langle e|\left(rac{\sin\left(rac{\Theta}{2}\sqrt{oldsymbol{N}}
ight)}{\sqrt{oldsymbol{N}}}
ight)oldsymbol{a}^{\dagger} - |e
angle\langle g|oldsymbol{a}\left(rac{\sin\left(rac{\Theta}{2}\sqrt{oldsymbol{N}}
ight)}{\sqrt{oldsymbol{N}}}
ight)$$

The measurement operators M_g and M_e are the following bounded operators:

$$\begin{split} \boldsymbol{M}_{g} &= \cos\left(\frac{\theta_{1}}{2}\right)\cos\left(\frac{\Theta}{2}\sqrt{\boldsymbol{N}}\right) - \sin\left(\frac{\theta_{1}}{2}\right)\left(\frac{\sin\left(\frac{\Theta}{2}\sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right)\boldsymbol{a}^{\dagger} \\ \boldsymbol{M}_{e} &= -\sin\left(\frac{\theta_{1}}{2}\right)\cos\left(\frac{\Theta}{2}\sqrt{\boldsymbol{N}+1}\right) - \cos\left(\frac{\theta_{1}}{2}\right)\boldsymbol{a}\left(\frac{\sin\left(\frac{\Theta}{2}\sqrt{\boldsymbol{N}}\right)}{\sqrt{\boldsymbol{N}}}\right) \end{split}$$

Exercise: Show that $M_g^{\dagger}M_g + M_e^{\dagger}M_e = I$.

・ロ・・聞・・思・・思・ 思・うんぐ

• With pure state $\rho = |\psi\rangle\langle\psi|$, we have

$$\boldsymbol{\rho}_{+} = |\psi_{+}\rangle\langle\psi_{+}| = \frac{1}{\operatorname{Tr}\left(\boldsymbol{M}_{\mu}\boldsymbol{\rho}\boldsymbol{M}_{\mu}^{\dagger}\right)}\boldsymbol{M}_{\mu}\boldsymbol{\rho}\boldsymbol{M}_{\mu}^{\dagger}$$

when the atom collapses in $\mu = g$, *e* with proba. Tr $(\mathbf{M}_{\mu} \rho \mathbf{M}_{\mu}^{\dagger})$.

■ Detection efficiency: the probability to detect the atom is η ∈ [0, 1]. Three possible outcomes for y: y = g if detection in g, y = e if detection in e and y = 0 if no detection.

The only possible update is based on ρ : expectation ρ_+ of $|\psi_+\rangle\langle\psi_+|$ knowing ρ and the outcome $y \in \{g, e, 0\}$.

$$\rho_{+} = \begin{cases} \frac{M_{g}\rho M_{g}^{\dagger}}{\operatorname{Tr}(M_{g}\rho M_{g})} & \text{if } y = g, \text{ probability } \eta \operatorname{Tr}(M_{g}\rho M_{g}) \\ \frac{M_{e}\rho M_{b}^{\dagger}}{\operatorname{Tr}(M_{e}\rho M_{e})} & \text{if } y = e, \text{ probability } \eta \operatorname{Tr}(M_{e}\rho M_{e}) \\ M_{g}\rho M_{g}^{\dagger} + M_{e}\rho M_{e}^{\dagger} & \text{if } y = 0, \text{ probability } 1 - \eta \end{cases}$$

For $\eta = 0$: $\rho_+ = M_g \rho M_g^{\dagger} + M_e \rho M_e^{\dagger} = \mathbb{K}(\rho) = \mathbb{E}(\rho_+ | \rho)$ defines a Kraus map.

- \mathcal{H} separable Hilbert space. Pure states $|\psi\rangle$ are unitary vectors of \mathcal{H} also called (probability amplitude) wave functions.
- $\blacksquare \ \mathcal{L}(\mathcal{H})$ is the space of linear operators from \mathcal{H} to \mathcal{H} : it contains the spaces of
 - bounded operators (Banach space $\mathcal{B}(\mathcal{H})$ with sup-norm)
 - compact operators (space $\mathcal{K}^{c}(\mathcal{H})$)
 - Hilbert-Schmidt operators (Hilbert space *K*²(*H*) with the Frobenius norm)
 - trace class operators (Banach space K¹(H) with the trace norm).
- the most general quantum state ρ is non negative Hermitian trace class operator of trace one. ρ live in a closed convex subset of K¹(H).
 If Tr (ρ²) = 1 then ρ = |ψ⟩⟨ψ| where |ψ⟩ is pure state.

For \mathcal{H} of finite dimension, these operator spaces coincide. For \mathcal{H} of infinite dimension, they are all different:

$$\dim \mathcal{H} = \infty \quad \Rightarrow \quad \mathcal{K}^{1}(\mathcal{H}) \subsetneqq \mathcal{K}^{2}(\mathcal{H}) \subsetneqq \mathcal{K}^{c}(\mathcal{H}) \subsetneqq \mathcal{B}(\mathcal{H}) \subsetneqq \mathcal{L}(\mathcal{H}).$$

LKB photon-box: Markov process with detection errors (1)

• With pure state $\rho = |\psi\rangle\langle\psi|$, we have

$$oldsymbol{
ho}_+ = |\psi_+
angle \langle \psi_+| = rac{1}{ ext{Tr}\left(oldsymbol{M}_\mu
ho oldsymbol{M}_\mu^\dagger
ight)} oldsymbol{M}_\mu
ho oldsymbol{M}_\mu^\dagger$$

when the atom collapses in $\mu = g$, *e* with proba. Tr $(\mathbf{M}_{\mu} \rho \mathbf{M}_{\mu}^{\dagger})$.

■ Detection error rates: P(y = e/μ = g) = η_g ∈ [0, 1] the probability of erroneous assignation to *e* when the atom collapses in g; P(y = g/μ = e) = η_e ∈ [0, 1] (given by the contrast of the Ramsey fringes).

Bayesian law: expectation ρ_+ of $|\psi_+\rangle\langle\psi_+|$ knowing ρ and the imperfect detection *y*.

$$\boldsymbol{\rho}_{+} = \begin{cases} \frac{(1-\eta_{g})\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+\eta_{e}\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger}}{\text{Tr}\big((1-\eta_{g})\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+\eta_{e}\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger}\big)} \text{if } \boldsymbol{y} = \boldsymbol{g}, \text{ prob. } \text{Tr}\left((1-\eta_{g})\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+\eta_{e}\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger}\right); \\ \frac{\eta_{g}\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+(1-\eta_{e})\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger}}{\text{Tr}\big(\eta_{g}\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+(1-\eta_{e})\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger}\big)} \text{if } \boldsymbol{y} = \boldsymbol{e}, \text{ prob. } \text{Tr}\left(\eta_{g}\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+(1-\eta_{e})\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger}\right). \end{cases}$$

 ρ_+ does not remain pure: the quantum state ρ_+ becomes a mixed state; $|\psi_+\rangle$ becomes physically irrelevant.

We get

$$\boldsymbol{\rho}_{+} = \begin{cases} \frac{(1-\eta_{g})\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+\eta_{e}\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}((1-\eta_{g})\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+\eta_{e}\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger})}, & \text{with prob. Tr}\left((1-\eta_{g})\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+\eta_{e}\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger}\right); \\ \frac{\eta_{g}\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+(1-\eta_{e})\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger}}{\operatorname{Tr}(\eta_{g}\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+(1-\eta_{e})\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger})} & \text{with prob. Tr}\left(\eta_{g}\boldsymbol{M}_{g}\boldsymbol{\rho}\boldsymbol{M}_{g}^{\dagger}+(1-\eta_{e})\boldsymbol{M}_{e}\boldsymbol{\rho}\boldsymbol{M}_{e}^{\dagger}\right). \end{cases}$$

Key point:

$$\operatorname{Tr}\left((1-\eta_g) \boldsymbol{M}_{g} \boldsymbol{
ho} \boldsymbol{M}_{g}^{\dagger} + \eta_e \boldsymbol{M}_{e} \boldsymbol{
ho} \boldsymbol{M}_{e}^{\dagger}
ight)$$
 and $\operatorname{Tr}\left(\eta_g \boldsymbol{M}_{g} \boldsymbol{
ho} \boldsymbol{M}_{g}^{\dagger} + (1-\eta_e) \boldsymbol{M}_{e} \boldsymbol{
ho} \boldsymbol{M}_{e}^{\dagger}
ight)$

are the probabilities to detect y = g and e, knowing ρ . **Reformulation with quantum maps** : set

$$\begin{split} \mathbb{K}_g(\rho) &= (1 - \eta_g) \boldsymbol{M}_g \rho \boldsymbol{M}_g^{\dagger} + \eta_e \boldsymbol{M}_e \rho \boldsymbol{M}_e^{\dagger}, \quad \mathbb{K}_e(\rho) = \eta_g \boldsymbol{M}_g \rho \boldsymbol{M}_g^{\dagger} + (1 - \eta_e) \boldsymbol{M}_e \rho \boldsymbol{M}_e^{\dagger}. \\ \rho_+ &= \frac{\mathbb{K}_y(\rho)}{\text{Tr}\left(\mathbb{K}_y(\rho)\right)} \quad \text{when we detect } y \end{split}$$

The probability to detect *y* knowing ρ is Tr ($\mathbb{K}_y(\rho)$). We have the following Kraus map:

$$\mathbb{E}\left(\rho_{+} \mid \rho\right) = \mathbb{K}_{g}(\rho) + \mathbb{K}_{e}(\rho) = \mathbb{K}(\rho) = M_{g}\rho M_{g}^{\dagger} + M_{e}\rho M_{e}^{\dagger}.$$

Exercise: Markov process including detection errors

Consider a set of *N* bounded operators M_{μ} on an Hilbert space \mathcal{H} such that $\sum_{\mu} M_{\mu}^{\dagger} M_{\mu} = I$. Take the ideal Markov process $\rho_{k+1} = \frac{M_{\mu}\rho_k M_{\mu}^{\dagger}}{\text{Tr}(M_{\mu}\rho_k M_{\mu}^{\dagger})}$ and ideal measurement outcomes $\mu \in \{1, \ldots, N\}$ of probability $\text{Tr}(M_{\mu}\rho_k M_{\mu}^{\dagger})$. Assume that the real measurement process provides N_d different values $y \in \{1, \ldots, N_d\}$ correlated to the ideal measurement μ via the following conditional classical probabilities $\mathbb{P}(y \mid \mu) = \eta_{y,\mu} \in [0, 1]$ where η is a left stochastic matrix $(\sum_{y} \eta_{y,\mu} = 1 \text{ for each } \mu)$. Denote by $\hat{\rho}_k$ the expectation value of ρ_k knowing ρ_0 and the real measurement outcomes y_0, \ldots, y_{k-1} at steps $0, \ldots, k - 1$. Consider the un-normalized ideal quantum state

$$\boldsymbol{\xi}_{\mu_0,\ldots,\mu_k} = \boldsymbol{M}_{\mu_k} \ldots \boldsymbol{M}_{\mu_0} \boldsymbol{\rho}_0 \boldsymbol{M}_{\mu_0}^{\dagger} \ldots \boldsymbol{M}_{\mu_k}^{\dagger}$$

associated to the ideal outcomes μ_0, \ldots, μ_k .

3

Show that
$$\mathbb{P}(\mu_0, \ldots, \mu_k \mid \rho_0) = \text{Tr}(\boldsymbol{\xi}_{\mu_0, \ldots, \mu_k}).$$

Using Bayes law, prove that

$$\mathbb{P}(y_0,\ldots,y_k \mid \rho_0) = \sum_{\mu_k=1}^N \ldots \sum_{\mu_0=1}^N \eta_{y_0,\mu_0} \ldots \eta_{y_k,\mu_k} \operatorname{Tr}\left(\boldsymbol{\xi}_{\mu_0,\ldots,\mu_k}\right).$$

Using Bayes law, prove also that

$$\mathbb{P}(\mu_0,\ldots,\mu_k \mid y_0,\ldots,y_k,\rho_0) = \frac{\eta_{y_0,\mu_0}\ldots\eta_{y_k,\mu_k} \operatorname{Tr}\left(\xi_{\mu_0,\ldots,\mu_k}\right)}{\mathbb{P}(y_0,\ldots,y_k \mid \rho_0)}$$

Prove for
$$\ell = 1, ..., k - 1$$
 that $\widehat{\rho}_{\ell+1} = \frac{\sum_{\mu=1}^{N} \eta_{\gamma_{\ell},\mu} M_{\mu} \widehat{\rho}_{\ell} M_{\mu}^{\dagger}}{\operatorname{T}\left(\sum_{\mu=1}^{N} \eta_{\gamma_{\ell},\mu} M_{\mu} \widehat{\rho}_{\ell} M_{\mu}^{\dagger}\right)}$ and that
 $\mathbb{P}\left(y_{\ell} \mid y_{0}, ..., y_{\ell-1}, \rho_{0}\right) = \operatorname{Tr}\left(\sum_{\mu=1}^{N} \eta_{\gamma_{\ell},\mu} M_{\mu}^{\dagger} \widehat{\rho}_{\ell} M_{\mu}\right)$ (hint: use the un-normalized estimate
 $\widehat{\xi}_{y_{0},...,y_{\ell}}$ collinear to $\widehat{\rho}_{\ell+1}$).

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 8 Chengdu, July 10, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

Outline

1 Quantum measurement and filtering

- Projective measurement
- Positive Operator Valued Measurement (POVM)
- Stochastic process attached to POVM
- Quantum Filtering
- 2 Convergence issues with Schrödinger and Heisenberg pictures

(日) (日) (日) (日) (日) (日) (日)

3 Exercise: cooling with resonant qubits in $|g\rangle$

Outline

1 Quantum measurement and filtering

- Projective measurement
- Positive Operator Valued Measurement (POVM)
- Stochastic process attached to POVM
- Quantum Filtering

2 Convergence issues with Schrödinger and Heisenberg pictures

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

3 Exercise: cooling with resonant qubits in $|g\rangle$

Projective measurement

For the system defined on Hilbert space $\mathcal{H},$ take

• an observable O (Hermitian operator) defined on \mathcal{H} :

$$oldsymbol{O} = \sum_{
u} \lambda_{
u} oldsymbol{P}_{
u},$$

where λ_{ν} 's are the eigenvalues of **O** and **P**_{ν} is the projection operator over the associated eigenspace.

• a quantum state given by the wave function $|\psi\rangle$ in \mathcal{H} .

Projective measurement of the physical observable $\boldsymbol{O} = \sum_{\nu} \lambda_{\nu} \boldsymbol{P}_{\nu}$ for the quantum state $|\psi\rangle$:

- 1 The probability of obtaining the value λ_{ν} is given by $\mathbb{P}_{\nu} = \langle \psi | \mathbf{P}_{\nu} | \psi \rangle$; note that $\sum_{\nu} \mathbb{P}_{\nu} = 1$ as $\sum_{\nu} \mathbf{P}_{\nu} = \mathbf{I}_{\mathcal{H}}$ ($\mathbf{I}_{\mathcal{H}}$ represents the identity operator of \mathcal{H}).
- 2 After the measurement, the conditional (a posteriori) state $|\psi_+\rangle$ of the system, given the outcome λ_{ν} , is

$$|\psi_{+}\rangle = \frac{P_{\nu} |\psi\rangle}{\sqrt{\mathbb{P}_{\nu}}}$$
 (collapse of the wave packet).

System *S* of interest (a quantized electromagnetic field) interacts with the meter *M* (a probe atom), and the experimenter measures projectively the meter *M* (the probe atom). Need for a **Composite system**: $\mathcal{H}_S \otimes \mathcal{H}_M$ where \mathcal{H}_S and \mathcal{H}_M are Hilbert spaces of *S* and *M*. Measurement process in three successive steps:

1 Initially the quantum state is separable

$$|\mathcal{H}_{\mathcal{S}}\otimes\mathcal{H}_{\mathcal{M}}\ni|\Psi
angle=|\psi_{\mathcal{S}}
angle\otimes|\psi_{\mathcal{M}}
angle$$

with a well defined and known state $|\psi_M\rangle$ for *M*.

- 2 Then a Schrödinger evolution during a small time (unitary operator $U_{S,M}$) of the composite system from $|\psi_S\rangle \otimes |\psi_M\rangle$ and producing $U_{S,M}(|\psi_S\rangle \otimes |\psi_M\rangle)$, entangled in general.
- 3 Finally a projective measurement of the meter *M*: $O_M = I_S \otimes (\sum_{\nu} \lambda_{\nu} P_{\nu})$ the measured observable for the meter. Projection operator P_{ν} is a rank-1 projection in \mathcal{H}_M over the eigenstate $|\xi_{\nu}\rangle \in \mathcal{H}_M$: $P_{\nu} = |\xi_{\nu}\rangle \langle \xi_{\nu}|$.

Define the measurement operators M_{ν} via

$$\forall |\psi_{\mathcal{S}}\rangle \in \mathcal{H}_{\mathcal{S}}, \quad \boldsymbol{U}_{\mathcal{S},\mathcal{M}}(|\psi_{\mathcal{S}}\rangle \otimes |\psi_{\mathcal{M}}\rangle) = \sum_{\nu} \left(\boldsymbol{M}_{\nu}|\psi_{\mathcal{S}}\rangle\right) \otimes |\xi_{\nu}\rangle.$$

Then $\sum_{\nu} \mathbf{M}_{\nu}^{\dagger} \mathbf{M}_{\nu} = \mathbf{I}_{S}$. The set $\{\mathbf{M}_{\nu}\}$ defines a Positive Operator Valued Measurement (POVM).

In $\mathcal{H}_{S} \otimes \mathcal{H}_{M}$, projective measurement of $\boldsymbol{O}_{M} = \boldsymbol{I}_{S} \otimes \left(\sum_{\nu} \lambda_{\nu} \boldsymbol{P}_{\nu}\right)$ with quantum state $\boldsymbol{U}_{S,M}(|\psi_{S}\rangle \otimes |\psi_{M}\rangle)$:

- 1 The probability of obtaining the value λ_{ν} is given by $\mathbb{P}_{\nu} = \langle \psi_{\mathcal{S}} | \mathbf{M}_{\nu}^{\dagger} \mathbf{M}_{\nu} | \psi_{\mathcal{S}} \rangle$
- 2 After the measurement, the conditional (a posteriori) state of the system, given the outcome ν, is

$$|\psi_{\mathcal{S},+}\rangle = \frac{\boldsymbol{M}_{\nu}|\psi_{\mathcal{S}}\rangle}{\sqrt{\mathbb{P}_{\nu}}}.$$

Stochastic processes attached to a POVM

To the POVM (M_{ν}) on \mathcal{H}_{S} is attached a stochastic process of quantum state $|\psi\rangle$

$$|\psi_+
angle = rac{\pmb{M}_
u|\psi
angle}{\sqrt{\mathbb{P}_
u}}$$
 with probability $\mathbb{P}_
u = \langle \psi | \pmb{M}^\dagger_
u \pmb{M}_
u | \psi
angle$

For any observable **A** on \mathcal{H}_S , its conditional expectation value after the transition knowing the state $|\psi\rangle$

$$\mathbb{E}\left(\langle\psi_{+}|\boldsymbol{A}|\psi_{+}\rangle\mid|\psi\rangle\right)=\langle\psi|(\sum_{\nu}\boldsymbol{M}_{\nu}^{\dagger}\boldsymbol{A}\boldsymbol{M}_{\nu})|\psi\rangle=\mathsf{Tr}\left(\boldsymbol{A}\;\boldsymbol{K}(|\psi\rangle\langle\psi|)\right)$$

with Kraus map $\mathbf{K}(\rho) = \sum_{\nu} \mathbf{M}_{\nu} \rho \mathbf{M}_{\nu}^{\dagger}$ with $\rho = |\psi\rangle \langle \psi|$ density operator corresponding to $|\psi\rangle$.

Imperfection and errors described by left stochastic matrix $(\eta_{y,\nu})$ where $\eta_{y,\nu}$ is the probability of detector outcome *y* knowing that the ideal detection ν ($\sum_{y} \eta_{y,\nu} \equiv 1$). Then Bayes law yields

$$\mathbb{E}\left(\rho_{+} \mid \rho, \mathbf{y}\right) = \frac{\mathbf{K}_{\mathbf{y}}(\rho)}{\operatorname{Tr}\left(\mathbf{K}_{\mathbf{y}}(\rho)\right)}$$

with completely positive linear maps $\mathbf{K}_{y}(\rho) = \sum_{\nu} \eta_{y,\nu} \mathbf{M}_{\nu} \rho \mathbf{M}_{\nu}^{\dagger}$ depending on *y*. Probability to detect *y* knowing ρ is Tr ($\mathbf{K}_{y}(\rho)$.

Stochastic Master Equation (SME) and quantum filtering

Discrete-time models are Markov processes

$$\rho_{k+1} = \frac{\kappa_{y_k}(\rho_k)}{\operatorname{Tr}(\kappa_{y_k}(\rho_k))}$$
, with proba. $\mathbb{P}_{y_k}(\rho_k) = \operatorname{Tr}(\kappa_{y_k}(\rho_k))$

where each K_y is a linear completely positive map depending on the measurement outcomes. $K = \sum_y K_y$ corresponds to a Kraus maps (ensemble average, quantum channel)

$$\mathbb{E}(\rho_{k+1}|\rho_k) = \boldsymbol{K}(\rho_k) = \sum_{y} \boldsymbol{K}_{y}(\rho_k).$$

Quantum filtering (Belavkin quantum filters)

data: initial estimation $\hat{\rho}_0$ of the quantum state ρ at step k = 0, past measurement outcomes y_l for $l \in \{0, ..., k - 1\}$;

goal: estimation $\hat{\rho}_k$ of ρ at step k via the recurrence (quantum filter)

$$\hat{\rho}_{l+1} = \frac{\boldsymbol{K}_{\boldsymbol{y}_l}(\hat{\rho}_l)}{\operatorname{Tr}(\boldsymbol{K}_{\boldsymbol{y}_l}(\hat{\rho}_l))}, \quad l = 0, \dots, k-1.$$

stability If the initial estimate $\hat{\rho}_0$ of ρ differs from ρ_0 , then $\hat{\rho}_k$, the quantum-filter state at step *k* tends to converge to ρ_k (the fidelity $F(\rho, \hat{\rho}) \triangleq \text{Tr}(\sqrt{\sqrt{\rho}\hat{\rho}\sqrt{\rho}})$ between ρ and $\hat{\rho}$ is a sub-martingale ³).

³PR: Fidelity is a Sub-Martingale for Discrete-Time Quantum Filters. IEEE Transactions on Automatic Control, 2011, 56, 2743-2747.

1 Quantum measurement and filtering

- Projective measurement
- Positive Operator Valued Measurement (POVM)
- Stochastic process attached to POVM
- Quantum Filtering

2 Convergence issues with Schrödinger and Heisenberg pictures

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

3 Exercise: cooling with resonant qubits in $|g\rangle$

Any open model of quantum system in discrete time is governed by a Markov chain of the form

$$\boldsymbol{\rho}_{k+1} = \frac{\mathbb{K}_{y_k}(\boldsymbol{\rho}_k)}{\operatorname{Tr}\left(\mathbb{K}_{y_k}(\boldsymbol{\rho}_k)\right)},$$

with the probability Tr $(\mathbb{K}_{y_k}(\rho_k))$ to have the measurement outcome y_k knowing ρ_{k-1} .

The structure of the super-operators \mathbb{K}_y is as follows. Each \mathbb{K}_y is a linear completely positive map (a quantum operation, a partial Kraus map⁴) and $\sum_y \mathbb{K}_y(\rho) = \mathbb{K}(\rho)$ is a Kraus map, i.e. $\mathbb{K}(\rho) = \sum_{\mu} \mathbf{K}_{\mu} \rho \mathbf{K}_{\mu}^{\dagger}$ with $\sum_{\mu} \mathbf{K}_{\mu}^{\dagger} \mathbf{K}_{\mu} = \mathbf{I}$.

⁴Each \mathbb{K}_{γ} admits the expression

$$\mathbb{K}_{ extsf{y}}(oldsymbol{
ho}) = \sum_{\mu}oldsymbol{\mathcal{K}}_{ extsf{y},\mu}oldsymbol{
ho}oldsymbol{\mathcal{K}}_{ extsf{y},\mu}^{\dagger}$$

where $(\mathbf{K}_{y,\mu})$ are bounded operators on \mathcal{H} .

◆□ → ◆□ → ◆三 → ◆三 → ○ ◆ ○ ◆

Without measurement record, the quantum state ρ_k obeys to the master equation

$$\rho_{k+1} = \mathbb{K}(\rho_k).$$

since $\mathbb{E}(\rho_{k+1} \mid \rho_k) = \mathbb{K}(\rho_k)$ (ensemble average).

K is always a contraction (not strict in general) for the following two such metrics. For any density operators ρ and ρ' we have

$$\|\mathbb{K}(
ho)-\mathbb{K}(
ho')\|_1\leq \|
ho-
ho'\|_1$$
 and $F(\mathbb{K}(
ho),\mathbb{K}(
ho'))\geq F(
ho,
ho')$

where the trace norm $\| \bullet \|_1$ and fidelity *F* are given by

$$\| \boldsymbol{\rho} - \boldsymbol{\rho}' \|_1 \triangleq \operatorname{Tr} (| \boldsymbol{\rho} - \boldsymbol{\rho}' |) \text{ and } F(\boldsymbol{\rho}, \boldsymbol{\rho}') \triangleq \operatorname{Tr} \left(\sqrt{\sqrt{\rho} \boldsymbol{\rho}' \sqrt{\rho}} \right).$$

Properties of the trace distance $D(\rho, \rho') = \text{Tr}(|\rho - \rho'|)/2$.

1 Unitary invariance: for any unitary operator $U(U^{\dagger}U = I)$, $D(U\rho U^{\dagger}, U\rho' U^{\dagger}) = D(\rho, \rho')$.

2 For any density operators ρ and ρ' ,

$$egin{aligned} \mathcal{D}(
ho,
ho') &= \max & \operatorname{Tr}ig(\mathcal{P}(
ho-
ho')ig)\,.\ \mathcal{P} ext{such that} & & & \ \mathbf{0} \leq \mathcal{P} = \mathcal{P}^\dagger \leq I \end{aligned}$$

3 Triangular inequality: for any density operators ρ , ρ' and ρ''

$$D(\rho, \rho'') \leq D(\rho, \rho') + D(\rho', \rho'').$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Complement: Kraus maps are contractions for several "distances"⁵

For any Kraus map $\rho \mapsto \mathbf{K}(\rho) = \sum_{\mu} M_{\mu}\rho M_{\mu}^{\dagger} (\sum_{\mu} M_{\mu}^{\dagger}M_{\mu} = I)$ $d(\mathbf{K}(\rho), \mathbf{K}(\sigma)) \leq d(\rho, \sigma)$ with

- trace distance: $d_{tr}(\rho, \sigma) = \frac{1}{2} \operatorname{Tr}(|\rho \sigma|)$.
- Bures distance: $d_B(\rho, \sigma) = \sqrt{1 F(\rho, \sigma)}$ with fidelity $F(\rho, \sigma) = \text{Tr} \left(\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}}\right)$.
- Chernoff distance: $d_C(\rho, \sigma) = \sqrt{1 Q(\rho, \sigma)}$ where $Q(\rho, \sigma) = \min_{0 \le s \le 1} \operatorname{Tr} (\rho^s \sigma^{1-s})$.

Relative entropy:
$$d_{\mathcal{S}}(\rho, \sigma) = \sqrt{\operatorname{Tr}\left(\rho(\log \rho - \log \sigma)\right)}$$
.

•
$$\chi^2$$
-divergence: $d_{\chi^2}(\rho, \sigma) = \sqrt{\operatorname{Tr}\left((\rho - \sigma)\sigma^{-\frac{1}{2}}(\rho - \sigma)\sigma^{-\frac{1}{2}}\right)}$.

■ Hilbert's projective metric: if $\operatorname{supp}(\rho) = \operatorname{supp}(\sigma)$ $d_h(\rho, \sigma) = \log \left(\left\| \rho^{-\frac{1}{2}} \sigma \rho^{-\frac{1}{2}} \right\|_{\infty} \left\| \sigma^{-\frac{1}{2}} \rho \sigma^{-\frac{1}{2}} \right\|_{\infty} \right)$ otherwise $d_h(\rho, \sigma) = +\infty$.

⁵A good summary in M.J. Kastoryano PhD thesis: Quantum Markov Chain Mixing and Dissipative Engineering. University of Copenhagen, December 2011. The Schrödinger approach $d_h(\rho, \sigma) = \log \left(\left\| \rho^{-\frac{1}{2}} \sigma \rho^{-\frac{1}{2}} \right\|_{\infty} \left\| \sigma^{-\frac{1}{2}} \rho \sigma^{-\frac{1}{2}} \right\|_{\infty} \right)$

$$\boldsymbol{K}(
ho) = \sum \boldsymbol{M}_{\mu}
ho \boldsymbol{M}_{\mu}^{\dagger}, \quad \sum \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu} = \boldsymbol{I}$$

Contraction ratio: $tanh\left(\frac{\Delta(\mathbf{K})}{4}\right)$ with $\Delta(\mathbf{K}) = \max_{\rho,\sigma>0} d_h(\mathbf{K}(\rho), \mathbf{K}(\sigma))$ The Heisenberg approach (dual of Schrödinger approach):

$$\boldsymbol{K}^{*}(\boldsymbol{A}) = \sum \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{A} \boldsymbol{M}_{\mu}, \quad \boldsymbol{K}^{*}(\boldsymbol{I}) = \boldsymbol{I}.$$

"Contraction of the spectrum":

$$\lambda_{\min}(A) \leq \lambda_{\min}(K^*(A)) \leq \lambda_{\max}(K^*(A)) \leq \lambda_{\max}(A).$$

⁶R. Sepulchre et al.: Consensus in non-commutative spaces. CDC 2010. ⁷D. Reeb et al.: Hilbert's projective metric in quantum information theory. J. Math. Phys. 52, 082201 (2011). The "Heisenberg description" is given by iterates A_{k+1} = K^{*}(A_k) from an initial bounded Hermitian operator A₀ of the the dual map K^{*} characterized as follows: Tr (AK(ρ)) = Tr (K^{*}(A)ρ) for any bounded operator A on H. Thus

$$\mathbb{K}^*(\pmb{A}) = \sum_\mu \pmb{K}^\dagger_\mu \pmb{A} \pmb{K}_\mu ~~ ext{when} ~~ \mathbb{K}(\pmb{
ho}) = \sum_\mu \pmb{K}_\mu \pmb{
ho} \pmb{K}^\dagger_\mu.$$

 \mathbb{K}^* is an unital map, i.e., $\mathbb{K}^*(I) = I$, and the image via \mathbb{K}^* of any bounded operator is a bounded operator.

When \mathcal{H} is of finite dimension, we have, for any Hermitian operator **A**:

$$\lambda_{\textit{min}}(oldsymbol{A}) \leq \lambda_{\textit{min}}(\mathbb{K}^*(oldsymbol{A})) \leq \lambda_{\textit{max}}(\mathbb{K}^*(oldsymbol{A})) \leq \lambda_{\textit{max}}(oldsymbol{A})$$

where λ_{\min} and λ_{\max} correspond to the smallest and largest eigenvalues⁸.

If
$$\overline{A} = \mathbb{K}^*(\overline{A})$$
, then $\operatorname{Tr}\left(\rho_k \overline{A}\right) = \operatorname{Tr}\left(\rho_0 \overline{A}\right)$ is a constant of motion of ρ .

⁸R. Sepulchre et al.: Consensus in non-commutative spaces. Decision and Control (CDC), 2010 49th IEEE Conference on,2010, 6596-6601.

Take a Kraus map \mathbb{K} and its adjoint unital map \mathbb{K}^* . When \mathcal{H} is of finite dimension, the following two statements are equivalent :

- Global convergence towards the fixed point p
 = K(p
) of ρ_{k+1} = K(ρ_k): for any initial density operator ρ₀, lim_{k→+∞} ρ_k = p
 for the trace norm || • ||₁.
- Global convergence of $A_{k+1} = \mathbb{K}^*(A_k)$: there exists a unique density operator $\overline{\rho}$ such that, for any initial bounded operator A_0 , $\lim_{k \to +\infty} A_k = \operatorname{Tr}(A_0\overline{\rho}) I$ for the sup norm on the bounded operators on \mathcal{H} .

Exercise: cooling with resonant qubits in $|g\rangle$.

Consider the quantum channel $\rho_{k+1} = \mathbb{K}(\rho_k) \triangleq M_g \rho_k M_g^{\dagger} + M_e \rho_k M_e^{\dagger}$ with Kraus operators given by

$$M_g = \cos\left(rac{\Theta}{2}\sqrt{N}
ight), \quad M_e = a \left(rac{\sin\left(rac{\Theta}{2}\sqrt{N}
ight)}{\sqrt{N}}
ight)$$

where **a** is the annihilation operator, $\mathbf{N} = \mathbf{a}^{\dagger} \mathbf{a}$ and $\Theta > 0$ is a parameter. Take the Fock basis $(|n\rangle)_{n \in \mathbb{N}}$. The density operator ρ is said to be supported in the subspace $\{|n\rangle\}_{n=0}^{n^{\text{max}}}$ when, for all $n > n^{\text{max}}$, $\rho |n\rangle = 0$.

1 Verify that $\boldsymbol{M}_{g}^{\dagger}\boldsymbol{M}_{g} + \boldsymbol{M}_{e}^{\dagger}\boldsymbol{M}_{e} = \boldsymbol{I}.$

2 Show that

$$\operatorname{Tr}\left(\boldsymbol{N}\boldsymbol{\rho}_{k+1}\right) = \operatorname{Tr}\left(\boldsymbol{N}\boldsymbol{\rho}_{k}\right) - \operatorname{Tr}\left(\sin^{2}\left(\frac{\Theta}{2}\sqrt{\boldsymbol{N}}\right)\boldsymbol{\rho}_{k}\right).$$

- 3 Assume that for any integer $0 < n \le n^{\max}$, $\Theta \sqrt{n}/\pi$ is not an integer. Then prove that ρ_k tends to the vacuum state $|0\rangle\langle 0|$ whatever its initial condition with support in $\{|n\rangle\}_{n=0}^{n^{\max}}$.
- 4 When $\Theta\sqrt{n}/\pi$ is an integer for some $0 < \overline{n} \le n^{\max}$, describe the possible Ω -limit sets for ρ_k for any initial condition ρ_0 with support in $\{|n\rangle\}_{n=0}^{n^{\max}}$.

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 9 Chengdu, July 10, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

1 QND measurements of photons

- Monte Carlo simulations and experiments
- Martingales and convergence of Markov chains

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

QND martingales for photons

2 Exercise: QND measurement of photons

1 QND measurements of photons

- Monte Carlo simulations and experiments
- Martingales and convergence of Markov chains

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

QND martingales for photons

2 Exercise: QND measurement of photons

LKB photon box : open-loop dynamics ideal model

Markov process: $|\psi_k\rangle \equiv |\psi\rangle_{t=k\Delta t}$, $k \in \mathbb{N}$, Δt sampling period,

$$|\psi_{k+1}\rangle = \begin{cases} \frac{M_g|\psi_k\rangle}{\sqrt{\langle\psi_k|M_g^{\dagger}M_g|\psi_k\rangle}} & \text{with } y_k = g, \text{ probability } \mathbb{P}_g = \langle\psi_k|M_g^{\dagger}M_g|\psi_k\rangle;\\ \frac{M_e|\psi_k\rangle}{\sqrt{\langle\psi_k|M_e^{\dagger}M_e|\psi_k\rangle}} & \text{with } y_k = e, \text{ probability } \mathbb{P}_e = \langle\psi_k|M_e^{\dagger}M_e|\psi_k\rangle, \end{cases}$$

with

$$M_g = \cos\left(rac{\phi_0 N + \phi_R}{2}
ight), \quad M_e = \sin\left(rac{\phi_0 N + \phi_R}{2}
ight).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

QND measurement of photons

Markov process: density operator $\rho_k = |\psi_k\rangle \langle \psi_k|$ as state.

$$\rho_{k+1} = \begin{cases} \frac{\boldsymbol{M}_{g\rho_k}\boldsymbol{M}_g^{\dagger}}{\operatorname{Tr}(\boldsymbol{M}_{g\rho_k}\boldsymbol{M}_e^{\dagger})} & \text{with } y_k = g, \text{ probability } \mathbb{P}_g = \operatorname{Tr}\left(\boldsymbol{M}_{g\rho_k}\boldsymbol{M}_g^{\dagger}\right); \\ \frac{\boldsymbol{M}_{e\rho_k}\boldsymbol{M}_e^{\dagger}}{\operatorname{Tr}(\boldsymbol{M}_{e\rho_k}\boldsymbol{M}_e^{\dagger})} & \text{with } y_k = e, \text{ probability } \mathbb{P}_e = \operatorname{Tr}\left(\boldsymbol{M}_{e\rho_k}\boldsymbol{M}_e^{\dagger}\right), \end{cases}$$

with

$$\pmb{M}_{g} = \cos\left(rac{\phi_{0}\pmb{N}+\phi_{R}}{2}
ight), \quad \pmb{M}_{e} = \sin\left(rac{\phi_{0}\pmb{N}+\phi_{R}}{2}
ight).$$

Quantum Monte Carlo simulations:

Matlab script: IdealModelPhotonBox.m Experimental data

Quantum Non-Demolition (QND) measurement

The measurement operators $M_{g,e}$ commute with the photon-number observable N: photon-number states $|n\rangle\langle n|$ are fixed points of the measurement process. We say that the measurement is QND for the observable N.

Asymptotic behavior: numerical simulations

100 Monte-Carlo simulations of Tr (ho_k |3 \langle 3|) versus *k*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Convergence of a random process

Consider (X_k) a sequence of random variables defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values in a metric space \mathcal{X} . The random process X_k is said to,

1 converge in probability towards the random variable X if for all $\epsilon > 0$,

$$\lim_{k\to\infty}\mathbb{P}\left(|X_k-X|>\epsilon\right)=\lim_{n\to\infty}\mathbb{P}\left(\omega\in\Omega\mid |X_k(\omega)-X(\omega)|>\epsilon\right)=0;$$

 $\begin{bmatrix} \text{Deterministic analogue with measurable real-valued functions } X(\omega) \text{ and } X_k(\omega) \text{ of } \omega \in \Omega \equiv \mathbb{R} \text{ and } \\ \rho(\omega) \geq 0 \text{ a probability density versus the Lebesgue measure } d\omega \left(\int_{\mathbb{R}} p(\omega) d\omega = 1 \right): \\ \lim_{k \mapsto +\infty} \int_{\mathbb{R}} l_{\epsilon}(|X_k(\omega) - X(\omega)|) p(\omega) d\omega = 0 \text{ with } l_{\epsilon}(x) = 1 \text{ (resp. 0) for } |x| > \epsilon \text{ (resp. } |x| \leq \epsilon). \end{bmatrix}$

2 converge almost surely towards the random variable X if

$$\mathbb{P}\left(\lim_{k\to\infty}X_k=X\right)=\mathbb{P}\left(\omega\in\Omega\mid\lim_{k\to\infty}X_k(\omega)=X(\omega)\right)=1;$$

 $\int \forall \omega \in \mathbb{R}/W$ with $W \subset \mathbb{R}$ of zero measure $(\int_W p(\omega)d\omega = 0)$, we have $\lim_{k \mapsto +\infty} X_k(\omega) = X(\omega)$.

3 converge in mean towards the random variable X if $\lim_{k\to\infty} \mathbb{E}(|X_k - X|) = 0$. $\left[\lim_{k\to+\infty} \int_{\mathbb{R}} |X_k(\omega) - X(\omega)| \rho(\omega) d\omega = 0\right]$

Some definitions

Markov process

The sequence $(X_k)_{k=1}^{\infty}$ is called a Markov process, if for all *k* and ℓ satisfying $k > \ell$ and any measurable function f(x) with $\sup_x |f(x)| < \infty$,

$$\mathbb{E}\left(f(X_k)\mid X_1,\ldots,X_\ell\right)=\mathbb{E}\left(f(X_k)\mid X_\ell\right).$$

Martingales

The sequence $(X_k)_{k=1}^{\infty}$ is called respectively a *supermartingale*, a *submartingale* or a martingale, if $\mathbb{E}(|X_k|) < \infty$ for $k = 1, 2, \cdots$, and

 $\mathbb{E}\left(X_k \mid X_1, \dots, X_\ell\right) \leq X_\ell$ (\mathbb{P} almost surely), $k \geq \ell$

or

$$\mathbb{E}\left(X_k \mid X_1, \dots, X_\ell
ight) \geq X_\ell \qquad (\mathbb{P} ext{ almost surely}), \qquad k \geq \ell_\ell$$

or finally,

 $\mathbb{E}\left(X_k \mid X_1, \dots, X_\ell\right) = X_\ell \qquad (\mathbb{P} \text{ almost surely}), \qquad k \geq \ell.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

H.J. Kushner invariance Theorem

Let {*X_k*} be a Markov chain on the compact state space *S*. Suppose that there exists a non-negative function *V*(*x*) satisfying $\mathbb{E}(V(X_{k+1}) | X_k = x) - V(x) = -\sigma(x)$, where $\sigma(x) \ge 0$ is a positive continuous function of *x*. Then the ω -limit set (in the sense of almost sure convergence) of *X_k* is included in the following set

 $I = \{X \mid \sigma(X) = 0\}.$

Trivially, the same result holds true for the case where $\mathbb{E}(V(X_{k+1}) | X_k = x) - V(x) = \sigma(x)$ with $\sigma(x) \ge 0$ and V(x) bounded from above $(V(X_k)$ is a submartingale),.

Stochastic version of Lasalle invariance principle for Lyapunov function of deterministic dynamics.

(ロ) (同) (三) (三) (三) (○) (○)

Asymptotic behavior

Theorem

Consider for
$$M_g = \cos\left(\frac{\phi_0 N + \phi_R}{2}\right)$$
 and $M_e = \sin\left(\frac{\phi_0 N + \phi_R}{2}\right)$

$$\rho_{k+1} = \begin{cases} \frac{M_g \rho_k M_g^{\dagger}}{\text{Tr}(M_g \rho_k M_g^{\dagger})} & \text{with } y_k = g, \text{ probability } \mathbb{P}_g = \text{Tr}\left(M_g \rho_k M_g^{\dagger}\right); \\ \frac{M_e \rho_k M_e^{\dagger}}{\text{Tr}(M_e \rho_k M_e^{\dagger})} & \text{with } y_k = e, \text{ probability } \mathbb{P}_e = \text{Tr}\left(M_e \rho_k M_e^{\dagger}\right), \end{cases}$$

with an initial density matrix ρ_0 defined on the subspace span{ $|n\rangle \mid n = 0, 1, \cdots, n^{\max}$ }. Also, assume the non-degeneracy assumption $\forall n \neq m \in \{0, 1, \cdots, n^{\max}\}$, $\cos^2(\varphi_m) \neq \cos^2(\varphi_n)$ where $\varphi_n = \frac{\phi_0 n + \phi_R}{2}$. Then

- for any $n \in \{0, ..., n^{\max}\}$, $\text{Tr}(\rho_k | n \rangle \langle n |) = \langle n | \rho_k | n \rangle$ is a martingale
- ρ_k converges with probability 1 to one of the $n^{\max} + 1$ Fock state $|n\rangle\langle n|$ with $n \in \{0, \dots, n^{\max}\}$.
- the probability to converge towards the Fock state $|n\rangle\langle n|$ is given by Tr $(\rho_0|n\rangle\langle n|) = \langle n|\rho_0|n\rangle$.

Proof based on QND super-martingales

- For any function f, $V_f(\rho) = \text{Tr}(f(\mathbf{N})\rho)$ is a martingale: $\mathbb{E}(V_f(\rho_{k+1}) | \rho_k) = V_f(\rho_k).$
- $V(\rho) = \sum_{n \neq m} \sqrt{\langle n | \rho | n \rangle \langle m | \rho | m \rangle}$ is a strict super-martingale:

$$\mathbb{E}\left(V(\rho_{k+1}) \mid \rho_{k}\right)$$

$$= \sum_{n \neq m} \left(|\cos \phi_{n} \cos \phi_{m}| + |\sin \phi_{n} \sin \phi_{m}|\right) \sqrt{\langle n \mid \rho_{k} \mid n \rangle \langle m \mid \rho_{k} \mid m \rangle}$$

$$< rV(\rho_{k})$$

with $r = \max_{n \neq m} (|\cos \phi_n \cos \phi_m| + |\sin \phi_n \sin \phi_m|)$ and r < 1.

• $V(\rho) \ge 0$ and $V(\rho) = 0$ means that exists *n* such that $\rho = |n\rangle \langle n|$.

Interpretation: for large *k*, $V(\rho_k)$ is very close to 0, thus very close to $|n\rangle\langle n|$ ("pure state" = maximal information state) for an a priori random *n*. Information extracted by measurement makes state "less uncertain" *a posteriori* but not more predictable *a priori*.

Exercise: QND measurement of photons

We consider QND measurement of photons: detection $y \in \{e, g\}$ and Kraus operators

$$M_g = \cos(rac{\phi_0}{2}N), \quad M_e = \sin(rac{\phi_0}{2}N)$$

with ϕ_0 parameter.

$$\left(\frac{1}{\mathrm{Tr}}\left(\eta M_{g}\rho_{k}M_{g}^{\dagger}+(1-\eta)M_{e}\rho_{k}M_{e}^{\dagger}\right)\right) \qquad \text{with } y_{k}=e \text{ or probability if } \left(\eta M_{g}\rho_{k}M_{g}^{\dagger}+(1-\eta)M_{e}\rho_{k}M_{e}^{\dagger}\right).$$

including a symmetric detection error rate $\eta = 1/10$.

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 10 Chengdu, July 10, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

1 Feedback stabilization of photon number states

1 Feedback stabilization of photon number states

Measurement-based feedback

Measurement-based feedback: controller is classical; measurement back-action on the system S is stochastic (collapse of the wave-packet); the measured output yis a classical signal; the control input u is a classical variable appearing in some controlled Schrödinger equation; u(t) depends on the past measurements $y(\tau), \tau \leq t$.

Nonlinear hidden-state stochastic systems: convergence analysis, Lyapunov exponents, dynamic output feedback, delays, robustness, ...

Short sampling times limit feedback complexity

Quantum state feedback

Question: how to stabilize deterministically a single photon-number state $|\bar{n}\rangle\langle\bar{n}|$? **Markov chain with classical control input** u:

$$\rho_{k+1} = \begin{cases} \frac{M_{g,u_k} \rho_k M_{g,u_k}^{\dagger}}{\operatorname{Tr}(M_{g,u_k} \rho_k M_{g,u_k}^{\dagger})} & \text{if } y_k = g, \text{ probability } \operatorname{Tr}\left(M_{g,u_k} \rho_k M_{g,u_k}^{\dagger}\right) \\ \frac{M_{e,u_k} \rho_k M_{e,u_k}^{\dagger}}{\operatorname{Tr}\left(M_{e,u_k} \rho_k M_{e,u_k}^{\dagger}\right)} & \text{if } y_k = e, \text{ probability } \operatorname{Tr}\left(M_{e,u_k} \rho_k M_{e,u_k}^{\dagger}\right) \end{cases}$$

where the Kraus operators depend on the control input u^3 (ϕ_0, ϕ_B, θ_0) constant parameters.

dispersive interaction for u = 0:

$$\textit{\textbf{M}}_{g,0} = \cos\left(\frac{\phi_0\textit{\textbf{N}} + \phi_R}{2}\right) \text{ and } \textit{\textbf{M}}_{e,0} = \sin\left(\frac{\phi_0\textit{\textbf{N}} + \phi_R}{2}\right),$$

resonant interaction with atom prepared in $|e\rangle$ for u = 1:

$$M_{g,1} = rac{\sin\left(rac{ heta_0}{2}\sqrt{N}
ight)}{\sqrt{N}} a^{\dagger} ext{ and } M_{e,1} = \cos\left(rac{ heta_0}{2}\sqrt{N+I}
ight)$$

resonant interaction with atom prepared in $|g\rangle$ for u = -1:

$$M_{g,-1} = \cos\left(rac{ heta_0}{2}\sqrt{N}
ight)$$
 and $M_{e,-1} = -arac{\sin\left(rac{ heta_0}{2}\sqrt{N}
ight)}{\sqrt{N}}$

³Zhou, X.; Dotsenko, I.; Peaudecerf, B.; Rybarczyk, T.; Sayrin, C.; S. Gleyzes, J. R.; Brune, M.; Haroche, S. Field locked to Fock state by quantum feedback with single photon corrections. Physical Review Letter, 2012, 108, 243602.

Lyapunov function and quantum-state feedback

Idea: open-loop martingale

 $V(\rho) = \operatorname{Tr}\left(\rho f(\boldsymbol{N})\right)$

with $f: [0, +\infty[\mapsto [0, +\infty[$ strictly decreasing on $[0, \bar{n}]$, strictly increasing on $[\bar{n}, +\infty[$ and $f(\bar{n}) = 0$ as candidate of closed-loop super-martingale with u_k function of ρ_k .

$$u_{k} = \Gamma(\boldsymbol{\rho}_{k}) := \operatorname*{argmin}_{u \in \{-1,0,1\}} \left\{ \mathbb{E}\left(V(\boldsymbol{\rho}_{k+1}) \mid \boldsymbol{\rho}_{k}, \boldsymbol{u}_{k} = \boldsymbol{u}\right) \right\}$$
$$= \operatorname*{argmin}_{u \in \{-1,0,1\}} \left\{ \operatorname{Tr}\left(\left(\boldsymbol{M}_{g,u}\boldsymbol{\rho}_{k}\boldsymbol{M}_{g,u}^{\dagger} + \boldsymbol{M}_{e,u}\boldsymbol{\rho}_{k}\boldsymbol{M}_{e,u}^{\dagger}\right) f(\boldsymbol{N})\right) \right\}$$

1

Closed-loop simulations IdealFeedbackPhotonBox.m: truncation to $n^{\text{max}} = 7$ photons of the Hilbert space, $\bar{n} = 3$, $f(n) = (n - \bar{n})^2$, $\phi_0 = \pi/7$, $\phi_R = 0$, $\theta_0 = \frac{2\pi}{\sqrt{n^{\text{max}}+1}}$. Three possible outcomes:

zero photon annihilation during ΔT : Kraus operator

$$\begin{split} \boldsymbol{M}_{0} &= \boldsymbol{I} - \frac{\Delta T}{2} \boldsymbol{L}_{-1}^{\dagger} \boldsymbol{L}_{-1} - \frac{\Delta T}{2} \boldsymbol{L}_{1}^{\dagger} \boldsymbol{L}_{1}, \text{ probability} \approx \text{Tr} \left(\boldsymbol{M}_{0} \boldsymbol{\rho} \boldsymbol{M}_{0}^{\dagger} \right) \text{ with back} \\ \text{action } \boldsymbol{\rho}_{t+\Delta T} \approx \frac{\boldsymbol{M}_{0} \boldsymbol{\rho}_{t} \boldsymbol{M}_{0}^{\dagger}}{\text{Tr} \left(\boldsymbol{M}_{0} \boldsymbol{\rho} \boldsymbol{M}_{0}^{\dagger} \right)}. \end{split}$$

- one photon annihilation during ΔT : Kraus operator $\boldsymbol{M}_{-1} = \sqrt{\Delta T} \boldsymbol{L}_{-1}$, probability $\approx \text{Tr} \left(\boldsymbol{M}_{-1} \boldsymbol{\rho} \boldsymbol{M}_{-1}^{\dagger} \right)$ with back action $\boldsymbol{\rho}_{t+\Delta T} \approx \frac{\boldsymbol{M}_{-1} \boldsymbol{\rho}_{t} \boldsymbol{M}_{-1}^{\dagger}}{\text{Tr} \left(\boldsymbol{M}_{-1} \boldsymbol{\rho} \boldsymbol{M}_{-1}^{\dagger} \right)}$
- one photon creation during ΔT : Kraus operator $M_1 = \sqrt{\Delta T} L_1$, probability $\approx \text{Tr} \left(M_1 \rho M_1^{\dagger} \right)$ with back action $\rho_{t+\Delta T} \approx \frac{M_1 \rho_t M_1^{\dagger}}{\text{Tr} \left(M_1 \rho M_1^{\dagger} \right)}$

where

$$m{L}_{-1} = \sqrt{rac{1+n_{th}}{T_{cav}}}m{a}, \quad m{L}_1 = \sqrt{rac{n_{th}}{T_{cav}}}m{a}^{\dagger}$$

are the Lindbald operators associated to cavity decoherence : T_{cav} the photon life time, $\Delta T \ll T_{cav}$ the sampling period and n_{th} is the average of thermal photon(s) (vanishes with the environment temperature) $(\frac{\Delta T}{T_{cav}} \approx 5 \times 10^{-4}, n_{th} \approx 0.05$ for the LKB photon box).

Transition model with control u_k from ρ_k to ρ_{k+1} via $\rho_{k+\frac{1}{2}}$: measurement back-action $(\eta \in [0, 1]$ detection error probability and $\eta_{eff} \in [0, 1]$ detection efficiency)

$$\boldsymbol{\rho}_{k+\frac{1}{2}} = \begin{cases} \frac{(1-\eta)\boldsymbol{M}_{g,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{g,u_{k}}^{\dagger}+\eta\boldsymbol{M}_{e,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{e,u_{k}}^{\dagger}}{\mathrm{Tr}((1-\eta)\boldsymbol{M}_{g,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{g,u_{k}}^{\dagger}+\eta\boldsymbol{M}_{e,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{e,u_{k}}^{\dagger})}, & \text{prob. } \eta_{eff} \operatorname{Tr}((1-\eta)\boldsymbol{M}_{g,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{g,u_{k}}^{\dagger}+\eta\boldsymbol{M}_{e,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{e,u_{k}}^{\dagger}), \\ \frac{\eta\boldsymbol{M}_{g,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{g,u_{k}}^{\dagger}+(1-\eta)\boldsymbol{M}_{e,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{e,u_{k}}^{\dagger})}{\mathrm{Tr}(\eta\boldsymbol{M}_{g,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{g,u_{k}}^{\dagger}+(1-\eta)\boldsymbol{M}_{e,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{e,u_{k}}^{\dagger})} & \text{prob. } \eta_{eff} \operatorname{Tr}(\eta\boldsymbol{M}_{g,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{g,u_{k}}^{\dagger}+(1-\eta)\boldsymbol{M}_{e,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{e,u_{k}}^{\dagger}), \\ \boldsymbol{M}_{g,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{g,u_{k}}^{\dagger}+\boldsymbol{M}_{e,u_{k}}\boldsymbol{\rho}_{k}\boldsymbol{M}_{e,u_{k}}^{\dagger}) & \text{prob. } (1-\eta_{eff}) \end{cases}$$

is completed by cavity decoherence during the small sampling time ΔT :

$$\rho_{k+1} = M_{-1}\rho_{k+\frac{1}{2}}M_{-1}^{\dagger} + M_{0}\rho_{k+\frac{1}{2}}M_{0}^{\dagger} + M_{1}\rho_{k+\frac{1}{2}}M_{1}^{\dagger}.$$

Model used in simulation to test the robustness of the Lyapunov feedback $u_k = \Gamma(\rho_k)$ with $\eta = 1/10$, $\eta_{eff} = 4/10$, $\frac{\Delta T}{T_{cav}} \approx 5 \times 10^{-4}$ and $n_{th} \approx 0.05$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Closed-loop experimental results

Zhou et al. Field locked to Fock state by quantum feedback with single photon corrections. Physical Review Letter, 2012, 108, 243602.

See the closed-loop quantum Monte Carlo simulations of the Matlab script: RealisticFeedbackPhotonBox.m.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 11 Chengdu, July 11, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

2 Time-continuous stochastic master equations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Trace preserving Kraus map K_u depending on the classical control input u:

$$oldsymbol{\mathcal{K}}_u(oldsymbol{
ho}) = \sum_\mu oldsymbol{\mathcal{M}}_{u,\mu} oldsymbol{
ho} oldsymbol{\mathcal{M}}_{u,\mu}^\dagger \quad ext{with} \quad \sum_\mu oldsymbol{\mathcal{M}}_{u,\mu}^\dagger oldsymbol{\mathcal{M}}_{u,\mu} = oldsymbol{I}.$$

Take a left stochastic matrix $[\eta_{y,\mu}]$ ($\eta_{y,\mu} \ge 0$ and $\sum_{y} \eta_{y,\mu} \equiv 1$, $\forall \mu$) and set $K_{u,y}(\rho) = \sum_{\mu} \eta_{y,\mu} M_{u,\mu} \rho M_{u,\mu}^{\dagger}$. The associated Markov chain reads:

$$\rho_{k+1} = \frac{\boldsymbol{K}_{u_k, y_k}(\boldsymbol{\rho}_k)}{\operatorname{Tr}(\boldsymbol{K}_{u_k, y_k}(\boldsymbol{\rho}_k))} \quad \text{measurement } y_k \text{ with probability } \operatorname{Tr}(\boldsymbol{K}_{u_k, y_k}(\boldsymbol{\rho}_k)).$$

Classical input *u*, hidden state ρ , measured output *y*.

Ensemble average given by \mathbf{K}_u since $\mathbb{E}(\mathbf{\rho}_{k+1} \mid \mathbf{\rho}_k, u_k) = \mathbf{K}_{u_k}(\mathbf{\rho}_k)$. Markov model useful for:

- 1 Monte-Carlo simulations of quantum trajectories (decoherence, measurement back-action).
- 2 quantum filtering to get the quantum state ρ_k from ρ_0 and (y_0, \ldots, y_{k-1}) (Belavkin quantum filter developed for diffusive models).
- 3 feedback design and Monte-Carlo closed-loop simulations.

2 Time-continuous stochastic master equations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Markov process under continuous measurement

Inverse setup of photon-box: photons read out a qubit.

Two major differences

 measurement output taking values from a continuum of possible outcomes

$$dy_t = \sqrt{\eta} \operatorname{Tr} \left((\boldsymbol{L} + \boldsymbol{L}^{\dagger}) \boldsymbol{
ho}_t
ight) dt + dW_t.$$

Time continuous dynamics.

Stochastic master equation: Markov process under continuous measurement

$$d\boldsymbol{\rho}_{t} = \left(-\frac{i}{\hbar}[\boldsymbol{H},\boldsymbol{\rho}_{t}] + \sum_{\nu} \boldsymbol{L}_{\nu}\boldsymbol{\rho}_{t}\boldsymbol{L}_{\nu}^{\dagger} - \frac{1}{2}(\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu}\boldsymbol{\rho}_{t} + \boldsymbol{\rho}_{t}\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu})\right) dt$$
$$+ \sum_{\nu} \sqrt{\eta_{\nu}} \left(\boldsymbol{L}_{\nu}\boldsymbol{\rho}_{t} + \boldsymbol{\rho}_{t}\boldsymbol{L}_{\nu}^{\dagger} - \operatorname{Tr}\left((\boldsymbol{L}_{\nu} + \boldsymbol{L}_{\nu}^{\dagger})\boldsymbol{\rho}_{t}\right)\boldsymbol{\rho}_{t}\right) dW_{\nu,t},$$

where $W_{\nu,t}$ are independent Wiener processes, associated to measured signals

$$dy_{\nu,t} = dW_{\nu,t} + \sqrt{\eta_{\nu}} \operatorname{Tr}\left((\boldsymbol{L}_{\nu} + \boldsymbol{L}_{\nu}^{\dagger})\boldsymbol{\rho}_{t}\right) dt.$$

Wiener process W_t :

- *W*₀ = 0;
- $t \rightarrow W_t$ is almost surely everywhere continuous;
- For $0 \le s_1 < t_1 \le s_2 < t_2$, $W_{t_1} W_{s_1}$ and $W_{t_2} W_{s_2}$ are independent random variables satisfying $W_t W_s \sim N(0, t s)$.

Average dynamics: Lindblad master equation

$$\begin{aligned} & \boldsymbol{\mathcal{L}}\left(\boldsymbol{\rho}_{t}\right) = \\ & \left(-\frac{i}{\hbar}[\boldsymbol{\mathcal{H}},\mathbb{E}\left(\boldsymbol{\rho}_{t}\right)] + \sum_{\nu}\boldsymbol{\mathcal{L}}_{\nu}\mathbb{E}\left(\boldsymbol{\rho}_{t}\right)\boldsymbol{\mathcal{L}}_{\nu}^{\dagger} - \frac{1}{2}(\boldsymbol{\mathcal{L}}_{\nu}^{\dagger}\boldsymbol{\mathcal{L}}_{\nu}\mathbb{E}\left(\boldsymbol{\rho}_{t}\right) + \mathbb{E}\left(\boldsymbol{\rho}_{t}\right)\boldsymbol{\mathcal{L}}_{\nu}^{\dagger}\boldsymbol{\mathcal{L}}_{\nu})\right) \boldsymbol{\mathcal{d}}t. \end{aligned}$$

Itō stochastic calculus

Given a SDE

$$dX_t = F(X_t,t)dt + \sum_{
u} G_{
u}(X_t,t)dW_{
u,t},$$

we have the following chain rule:

Itō's rule

Defining $f_t = f(X_t)$ a C^2 function of X, we have

$$df_{t} = \left(\frac{\partial f}{\partial X}\Big|_{X_{t}}F(X_{t},t) + \frac{1}{2}\sum_{\nu}\frac{\partial^{2}f}{\partial X^{2}}\Big|_{X_{t}}(G_{\nu}(X_{t},t),G_{\nu}(X_{t},t))\right)dt \\ + \sum_{\nu}\frac{\partial f}{\partial X}\Big|_{X_{t}}G_{\nu}(X_{t},t)dW_{\nu,t}.$$

Furthermore

$$\frac{d}{dt}\mathbb{E}(f_t) = \mathbb{E}\left(\frac{\partial f}{\partial X}\Big|_{X_t}F(X_t,t) + \frac{1}{2}\sum_{\nu}\frac{\partial^2 f}{\partial X^2}\Big|_{X_t}(G_{\nu}(X_t,t),G_{\nu}(X_t,t))\right)$$

Link to partial Kraus maps (1)

$$d\boldsymbol{\rho}_{t} = \left(-\frac{i}{\hbar}[\boldsymbol{H},\boldsymbol{\rho}_{t}] + \sum_{\nu} \boldsymbol{L}_{\nu}\boldsymbol{\rho}_{t}\boldsymbol{L}_{\nu}^{\dagger} - \frac{1}{2}(\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu}\boldsymbol{\rho}_{t} + \boldsymbol{\rho}_{t}\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu})\right) dt$$
$$+ \sum_{\nu} \sqrt{\eta_{\nu}} \left(\boldsymbol{L}_{\nu}\boldsymbol{\rho}_{t} + \boldsymbol{\rho}_{t}\boldsymbol{L}_{\nu}^{\dagger} - \operatorname{Tr}\left((\boldsymbol{L}_{\nu} + \boldsymbol{L}_{\nu}^{\dagger})\boldsymbol{\rho}_{t}\right)\boldsymbol{\rho}_{t}\right) dW_{\nu,t},$$

equivalent to

$$\boldsymbol{\rho}_{t+dt} = \frac{\boldsymbol{M}_{dy_t}\boldsymbol{\rho}_t \boldsymbol{M}_{dy_t}^{\dagger} + \sum_{\nu} (1 - \eta_{\nu}) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_t \boldsymbol{L}_{\nu}^{\dagger} dt}{\operatorname{Tr} \left(\boldsymbol{M}_{dy_t} \boldsymbol{\rho}_t \boldsymbol{M}_{dy_t}^{\dagger} + \sum_{\nu} (1 - \eta_{\nu}) \boldsymbol{L}_{\nu} \boldsymbol{\rho}_t \boldsymbol{L}_{\nu}^{\dagger} dt \right)}$$

with

$$\mathbf{M}_{dy_t} = \mathbf{I} + (-rac{i}{\hbar}\mathbf{H} - rac{1}{2}\mathbf{L}_{\nu}^{\dagger}\mathbf{L}_{
u})dt + \sum_{\nu}\sqrt{\eta_{
u}}dy_{
u,t}\mathbf{L}_{
u}.$$

Moreover, defining $dy_{\nu,t} = s_{\nu,t}\sqrt{dt}$:

$$\mathbb{P}(s_t \in \prod_{\nu} [s_{\nu}, s_{\nu} + ds_{\nu}] \mid \rho_t) = \left(\operatorname{Tr} \left(M_{s\sqrt{dt}} \rho_t M_{s\sqrt{dt}}^{\dagger} \right) + \sum_{\nu} (1 - \eta_{\nu}) \operatorname{Tr} \left(L_{\nu} \rho_t L_{\nu}^{\dagger} \right) dt \right) \prod_{\nu} \frac{e^{-\frac{|s_{\nu}|^2}{2}} ds_{\nu}}{\sqrt{2\pi}}.$$

Link to partial Kraus maps (2)

• P defines a probability density up to a correction of order dt^2 :

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \mathbb{P}\left(s_t \in \prod_{\nu} [s_{\nu}, s_{\nu} + ds_{\nu}] \mid \rho_t\right) \prod_{\nu} ds_{\nu} = 1 + O(dt^2).$$

Mean value of measured signal

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} s_{\nu} \mathbb{P}\left(s_{t} \in \prod_{\nu} [s_{\nu}, s_{\nu} + ds_{\nu}] \mid \rho_{t}\right) \prod_{\nu} ds_{\nu} = \sqrt{\eta_{\nu}} \operatorname{Tr}\left((\boldsymbol{L}_{\nu} + \boldsymbol{L}_{\nu}^{\dagger})\rho_{t}\right) \sqrt{dt} + O(dt^{3/2}).$$

Variance of measured signal

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} s_{\nu}^{2} \mathbb{P}\left(s_{t} \in \prod_{\nu} [s_{\nu}, s_{\nu} + ds_{\nu}] \mid \rho_{t}\right) \prod_{\nu} ds_{\nu} = 1 + O(dt).$$

Compatible with $dy_{\nu,t} = s_{\nu,t}\sqrt{dt} = dW_{\nu,t} + \sqrt{\eta_{\nu}} \operatorname{Tr}\left((\boldsymbol{L}_{\nu} + \boldsymbol{L}_{\nu}^{\dagger})\boldsymbol{\rho}_{t}\right) dt.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Link to partial Kraus maps (3)

$$d\boldsymbol{\rho}_{t} = \left(-\frac{i}{\hbar}[\boldsymbol{H},\boldsymbol{\rho}_{t}] + \sum_{\nu} \boldsymbol{L}_{\nu}\boldsymbol{\rho}_{t}\boldsymbol{L}_{\nu}^{\dagger} - \frac{1}{2}(\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu}\boldsymbol{\rho}_{t} + \boldsymbol{\rho}_{t}\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu})\right) dt \\ + \sum_{\nu} \sqrt{\eta_{\nu}} \left(\boldsymbol{L}_{\nu}\boldsymbol{\rho}_{t} + \boldsymbol{\rho}_{t}\boldsymbol{L}_{\nu}^{\dagger} - \operatorname{Tr}\left((\boldsymbol{L}_{\nu} + \boldsymbol{L}_{\nu}^{\dagger})\boldsymbol{\rho}_{t}\right)\boldsymbol{\rho}_{t}\right) dW_{\nu,t},$$

equivalent to

$$\rho_{t+dt} = \frac{\boldsymbol{M}_{dy_t} \rho_t \boldsymbol{M}_{dy_t}^{\dagger} + \sum_{\nu} (1 - \eta_{\nu}) \boldsymbol{L}_{\nu} \rho_t \boldsymbol{L}_{\nu}^{\dagger} dt}{\operatorname{Tr} \left(\boldsymbol{M}_{dy_t} \rho_t \boldsymbol{M}_{dy_t}^{\dagger} + \sum_{\nu} (1 - \eta_{\nu}) \boldsymbol{L}_{\nu} \rho_t \boldsymbol{L}_{\nu}^{\dagger} dt \right)}$$

- Indicates that the solution remains in the space of semi-definite positive Hermitian matrices;
- Provides a time-discretized numerical scheme preserving non-negativity of ρ.

Theorem

The above master equation admits a unique solution in $\{ \rho \in \mathbb{C}^{N \times N} : \rho = \rho^{\dagger}, \rho \ge 0, \text{ Tr}(\rho) = 1 \}.$

The quantum state ρ_t is usually mixed and obeys to (measurement outcomes in blue)

$$d\rho_{t} = \left(-i[H,\rho_{t}] + \sum_{\nu} L_{\nu}\rho_{t}L_{\nu}^{\dagger} - \frac{1}{2}(L_{\nu}^{\dagger}L_{\nu}\rho_{t} + \rho_{t}L_{\nu}^{\dagger}L_{\nu}) + V_{\mu}\rho_{t}V_{\mu}^{\dagger} - \frac{1}{2}(V_{\mu}^{\dagger}V_{\mu}\rho_{t} + \rho_{t}V_{\mu}^{\dagger}V_{\mu})\right) dt$$
$$+ \sum_{\nu} \sqrt{\eta_{\nu}} \left(L_{\nu}\rho_{t} + \rho_{t}L_{\nu}^{\dagger} - \operatorname{Tr}\left((L_{\nu} + L_{\nu}^{\dagger})\rho_{t}\right)\rho_{t}\right) dW_{\nu,t}$$
$$+ \sum_{\mu} \left(\frac{\overline{\theta}_{\mu}\rho_{t} + \sum_{\mu'} \overline{\eta}_{\mu,\mu'} V_{\mu}\rho_{t}V_{\mu}^{\dagger}}{\overline{\theta}_{\mu} + \sum_{\mu'} \overline{\eta}_{\mu,\mu'} \operatorname{Tr}\left(V_{\mu'}\rho_{t}V_{\mu'}^{\dagger}\right) - \rho_{t}\right) \left(dN_{\mu}(t) - \left(\overline{\theta}_{\mu} + \sum_{\mu'} \overline{\eta}_{\mu,\mu'} \operatorname{Tr}\left(V_{\mu'}\rho_{t}V_{\mu'}^{\dagger}\right)\right) dt\right)$$

where $\eta_{\nu} \in [0, 1], \overline{\theta}_{\mu}, \overline{\eta}_{\mu,\mu'} \ge 0$ with $\overline{\eta}_{\mu'} = \sum_{\mu} \overline{\eta}_{\mu,\mu'} \le 1$ are parameters modelling measurements imperfections.

If, for some
$$\mu$$
, $N_{\mu}(t + dt) - N_{\mu}(t) = 1$, we have $\rho_{t+dt} = \frac{\overline{\theta}_{\mu}\rho_t + \sum_{\mu'} \overline{\eta}_{\mu,\mu'} V_{\mu'} \rho_t V_{\mu'}^{\dagger}}{\overline{\theta}_{\mu} + \sum_{\mu'} \overline{\eta}_{\mu,\mu'}} \operatorname{Tr} \left(V_{\mu'} \rho_t V_{\mu'}^{\dagger} \right)$.
When $\forall \mu$, $dN_{\mu}(t) = 0$, we have

When $\forall \mu$, $dN_{\mu}(t) = 0$, we have

$$\rho_{t+dt} = \frac{M_{dy_t}\rho_t M_{dy_t}^{\dagger} + \sum_{\nu} (1-\eta_{\nu})L_{\nu}\rho_t L_{\nu}^{\dagger} dt + \sum_{\mu} (1-\overline{\eta}_{\mu})V_{\mu}\rho_t V_{\mu}^{\dagger} dt}{\operatorname{Tr}\left(M_{dy_t}\rho_t M_{dy_t}^{\dagger} + \sum_{\nu} (1-\eta_{\nu})L_{\nu}\rho_t L_{\nu}^{\dagger} dt + \sum_{\mu} (1-\overline{\eta}_{\mu})V_{\mu}\rho_t V_{\mu}^{\dagger} dt\right)}$$

with $M_{dy_t} = I + \left(-iH - \frac{1}{2}\sum_{\nu}L_{\nu}^{\dagger}L_{\nu} + \frac{1}{2}\sum_{\mu}\left(\overline{\eta}_{\mu}\operatorname{Tr}\left(V_{\mu}\rho_t V_{\mu}^{\dagger}\right)I - V_{\mu}^{\dagger}V_{\mu}\right)\right) dt + \sum_{\nu}\sqrt{\eta_{\nu}}dy_{\nu t}L_{\nu}$ and where $dy_{\nu,t} = \sqrt{\eta_{\nu}} \operatorname{Tr} \left((L_{\nu} + L_{\nu}^{\dagger}) \rho_t \right) dt + dW_{\nu,t}$.

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 12 Chengdu, July 11, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

2 Exercise: continuous-time QND measurement

2 Exercise: continuous-time QND measurement

Dispersive measurement of a qubit

Inverse setup of photon-box: photons read out a qubit.

Approximate model

Cavity's dynamics are removed (singular perturbation techniques) to achieve a qubit SME:

$$\begin{split} d\rho_t &= -\frac{i}{\hbar} [\boldsymbol{H}, \rho_t] dt + \frac{\Gamma_m}{4} (\sigma_{\boldsymbol{z}} \rho_t \sigma_{\boldsymbol{z}} - \rho_t) dt \\ &+ \frac{\sqrt{\eta \Gamma_m}}{2} (\sigma_{\boldsymbol{z}} \rho_t + \rho_t \sigma_{\boldsymbol{z}} - 2 \operatorname{Tr} (\sigma_{\boldsymbol{z}} \rho_t) \rho_t) dW_t, \\ dy_t &= dW_t + \sqrt{\eta \Gamma_m} \operatorname{Tr} (\sigma_{\boldsymbol{z}} \rho_t) dt. \end{split}$$

Quantum Non-Demolition measurement

$$d\rho_{t} = -\frac{i}{\hbar} [\boldsymbol{H}, \rho_{t}] dt + \frac{\Gamma_{m}}{4} (\sigma_{z} \rho_{t} \sigma_{z} - \rho_{t}) dt \\ + \frac{\sqrt{\eta}\Gamma_{m}}{2} (\sigma_{z} \rho_{t} + \rho_{t} \sigma_{z} - 2 \operatorname{Tr} (\sigma_{z} \rho_{t}) \rho_{t}) dW_{t},$$

$$dy_{t} = dW_{t} + \sqrt{\eta}\Gamma_{m} \operatorname{Tr} (\sigma_{z} \rho_{t}) dt.$$

Uncontrolled case: $H/\hbar = \omega_{eg}\sigma_z/2$.

Interpretation as a Markov process with Kraus operators

$$\begin{split} \boldsymbol{M}_{dy_{t}} &= \boldsymbol{I} - \left(i\frac{\omega_{\text{eg}}}{2}\boldsymbol{\sigma_{z}} + \frac{\Gamma_{m}}{8}\boldsymbol{I}\right)dt + \frac{\sqrt{\eta\Gamma_{m}}}{2}\boldsymbol{\sigma_{z}}dy_{t},\\ \sqrt{(1-\eta)dt}\boldsymbol{L} &= \frac{\sqrt{(1-\eta)\Gamma_{m}dt}}{2}\boldsymbol{\sigma_{z}}. \end{split}$$

QND measurement

Kraus operators M_{dy_t} and $\sqrt{(1-\eta)dt}L$ commute with observable σ_z : qubit states $|g\rangle\langle g|$ and $|e\rangle\langle e|$ are fixed points of the measurement process. The measurement is QND for the observable σ_z .

(2)

QND measurement: asymptotic behavior

Theorem

Consider the SME

$$d\rho_t = -\frac{i}{\hbar} [H, \rho_t] dt + \frac{\Gamma_m}{4} (\sigma_z \rho_t \sigma_z - \rho_t) dt + \frac{\sqrt{\eta} \Gamma_m}{2} (\sigma_z \rho_t + \rho_t \sigma_z - 2 \operatorname{Tr} (\sigma_z \rho_t) \rho_t) dW_t,$$

with $\boldsymbol{H} = \frac{\omega_{eg}}{2} \sigma_{z}$ and $\eta > 0$.

- For any initial state ρ_0 , the solution ρ_t converges almost surely as $t \to \infty$ to one of the states $|g\rangle\langle g|$ or $|e\rangle\langle e|$.
- The probability of convergence to $|g\rangle\langle g|$ (respectively $|e\rangle\langle e|$) is given by $p_g = \text{Tr}(|g\rangle\langle g|\rho_0)$ (respectively $\text{Tr}(|e\rangle\langle e|\rho_0)$).
- The convergence rate is given by $\eta \Gamma_M/2$.

Proof based on the Lyapunov function $V(\rho) = \sqrt{\text{Tr}(\sigma_z^2 \rho) - \text{Tr}^2(\sigma_z \rho)}$ with

$$\frac{d}{dt}\mathbb{E}\left(V(\rho)\right) = -\frac{\eta\Gamma_{M}}{2}\mathbb{E}\left(V(\rho)\right)$$

Matlab open-loop simulations: RealisticModelQubit.m

Question: how to stabilize deterministically a single qubit state $|g\rangle\langle g|$ or $|e\rangle\langle e|$? Controlled SME:

$$d\rho_{t} = -\frac{i}{\hbar} [\boldsymbol{H}, \rho_{t}] dt + \frac{\Gamma_{m}}{4} (\sigma_{z} \rho_{t} \sigma_{z} - \rho_{t}) dt \\ + \frac{\sqrt{\eta \Gamma_{m}}}{2} (\sigma_{z} \rho_{t} + \rho_{r} \sigma_{z} - 2 \operatorname{Tr} (\sigma_{z} \rho_{t}) \rho_{t}) dW_{t},$$

with

$$\begin{split} \boldsymbol{H} &= \frac{u(\rho_t)}{2} \boldsymbol{\sigma}_{\mathbf{x}} + \frac{v(\rho_t)}{2} \boldsymbol{\sigma}_{\mathbf{y}}, \\ \boldsymbol{u} &= g \operatorname{sign}(\operatorname{Tr}(\rho \boldsymbol{\sigma}_{\mathbf{y}}))(1 - \operatorname{Tr}(\rho \boldsymbol{\sigma}_{\mathbf{z}})), \quad \boldsymbol{v} = -g \operatorname{sign}(\operatorname{Tr}(\rho \boldsymbol{\sigma}_{\mathbf{x}}))(1 - \operatorname{Tr}(\rho \boldsymbol{\sigma}_{\mathbf{z}})) \end{split}$$

stabilizes with gain g > 0 large enough the target state $\rho_{\text{tag}} = |e\rangle\langle e|$ (based on the control Lyapunov function $1 - \text{Tr}(\rho\sigma_z)$).

Matlab closed-loop simulations: RealisticFeedbackQubit.m

Exercise: continuous-time QND measurement³

Take a finite dimensional Hilbert space $\mathcal{H} = \mathbb{C}^n$ with the Hermitian operator L of spectral decomposition $L = \sum_{k=1}^{d} \lambda_k \Pi_k$ where $\lambda_1, \dots, \lambda_d$ are the distinct $(d \leq n)$, real eigenvalues of L with corresponding orthogonal projection operators Π_1, \ldots, Π_d resolving the identity, i.e. $\sum_{k=1}^d \Pi_k = I$. Assume that the density operator ρ obeys

$$d\rho = (L\rho L - (L^2\rho + \rho L^2)/2)dt + \sqrt{\eta}(L\rho + \rho L - 2\operatorname{Tr}(L\rho)\rho)dW$$

with diffusive measurement $dy = 2\sqrt{\eta} \operatorname{Tr}(L\rho) dt + dW$ and $\eta > 0$.

1 For each k, set $p_k(\rho) = \text{Tr}(\rho \Pi_k)$. Show that

$$dp_{k} = 2\sqrt{\eta} \left(\lambda_{k} - \sum_{k'=1}^{d} \lambda_{k'} p_{k'}\right) p_{k} dW$$

2 Deduce that $\xi_k = \sqrt{p_k}$ obeys to

$$d\xi_k = -\frac{1}{2}\eta(\lambda_k - \varpi(\xi))^2\xi_k dt + \sqrt{\eta}(\lambda_k - \varpi(\xi))\xi_k dW_k$$

with $\varpi(\xi) = \sum_{k=1}^{d} \lambda_k \xi_k^2$

Prove that

$$d(\xi_k\xi_{k'}) = -\frac{1}{2}\eta(\lambda_k - \lambda_{k'})^2\xi_{k'}\xi_k dt + \sqrt{\eta}(\lambda_k + \lambda_{k'} - 2\varpi(\xi))\xi_k\xi_{k'}dW.$$

m systems under continuous non-demolition measurements. https://arxiv.org/abs/1906.07403

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 13 Chengdu, July 12, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

1 Lindblad master equation

- 2 Driven and damped qubit
- 3 Driven and damped harmonic oscillator

4 Complements

Oscillator with thermal photon(s)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Wigner function

1 Lindblad master equation

2 Driven and damped qubit

3 Driven and damped harmonic oscillator

4 Complements

Oscillator with thermal photon(s)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wigner function

$$\frac{d}{dt}\rho = -\frac{i}{\hbar}[\boldsymbol{H},\rho] + \sum_{\nu} \boldsymbol{L}_{\nu}\rho\boldsymbol{L}_{\nu}^{\dagger} - \frac{1}{2}(\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu}\rho + \rho\boldsymbol{L}_{\nu}^{\dagger}\boldsymbol{L}_{\nu}) \triangleq \mathcal{L}(\rho)$$

where

- *H* is the Hamiltonian that could depend on *t* (Hermitian operator on the underlying Hilbert space *H*)
- the L_{ν} 's are operators on \mathcal{H} that are not necessarily Hermitian.

Qualitative properties (\mathcal{H} of finite dimension):

- 1 Positivity and trace conservation: if ρ_0 is a density operator, then $\rho(t)$ remains a density operator for all t > 0.
- 2 For any $t \ge 0$, the propagator $e^{t\mathcal{L}}$ is a Kraus map: exists a collection of operators $(M_{\mu,t})$ such that $\sum_{\mu} M_{\mu,t}^{\dagger} M_{\mu,t} = I$ with $e^{t\mathcal{L}}(\rho) = \sum_{\mu} M_{\mu,t} \rho M_{\mu,t}^{\dagger}$ (Kraus theorem characterizing completely positive linear maps).
- 3 Contraction for many distances such as the nuclear distance: take two trajectories ρ and ρ' ; for any $0 \le t_1 \le t_2$,

$$\mathsf{Tr}\left(|\rho(t_2) - \rho'(t_2)|\right) \le \mathsf{Tr}\left(|\rho(t_1) - \rho'(t_1)|\right)$$

where for any Hermitian operator A, $|A| = \sqrt{A^2}$ and Tr (|A|) corresponds to the sum of the absolute values of its eigenvalues.

$$\rho_{k+1} = \sum_{\mu} \boldsymbol{M}_{\mu} \rho_{k} \boldsymbol{M}_{\mu}^{\dagger} \text{ with } \sum_{\mu} \boldsymbol{M}_{\mu}^{\dagger} \boldsymbol{M}_{\mu} = \boldsymbol{I}$$
$$\frac{d}{dt} \rho = -\frac{i}{\hbar} [\boldsymbol{H}, \rho] + \sum_{\nu} \boldsymbol{L}_{\nu} \rho \boldsymbol{L}_{\nu}^{\dagger} - \frac{1}{2} (\boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \rho + \rho \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu})$$

Take dt > 0 small. Set

$$\boldsymbol{M}_{dt,0} = \boldsymbol{I} - dt \left(\frac{i}{\hbar} \boldsymbol{H} + \frac{1}{2} \sum_{\nu} \boldsymbol{L}_{\nu}^{\dagger} \boldsymbol{L}_{\nu} \right), \quad \boldsymbol{M}_{dt,\nu} = \sqrt{dt} \boldsymbol{L}_{\nu}.$$

Since $\rho(t + dt) = \rho(t) + dt \left(\frac{d}{dt}\rho(t)\right) + O(dt^2)$, we have

$$\boldsymbol{\rho}(t+dt) = \boldsymbol{M}_{dt,0}\boldsymbol{\rho}(t)\boldsymbol{M}_{dt,0}^{\dagger} + \sum_{\nu} \boldsymbol{M}_{dt,\nu}\boldsymbol{\rho}(t)\boldsymbol{M}_{dt,\nu}^{\dagger} + O(dt^{2}).$$

Since $\mathbf{M}_{dt,0}^{\dagger}\mathbf{M}_{dt,0} + \sum_{\nu} \mathbf{M}_{dt,\nu}^{\dagger}\mathbf{M}_{dt,\nu} = \mathbf{I} + 0(dt^2)$ the super-operator $\mathbf{\rho} \mapsto \mathbf{M}_{dt,0}\mathbf{\rho}\mathbf{M}_{dt,0}^{\dagger} + \sum_{\nu} \mathbf{M}_{dt,\nu}\mathbf{\rho}\mathbf{M}_{dt,\nu}^{\dagger}$

・ロト・母ト・ヨト・ヨト ヨー めへの

can be seen as an infinitesimal Kraus map.

2 Driven and damped qubit

3 Driven and damped harmonic oscillator

4 Complements

Oscillator with thermal photon(s)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wigner function

Controlled Lindblad master equation

$$\begin{aligned} \frac{d}{dt}\rho &= -i\left[\frac{\Delta}{2}\boldsymbol{\sigma_{z}} , \rho\right] + \left[\boldsymbol{u}\boldsymbol{\sigma_{+}} - \boldsymbol{u^{*}\sigma_{-}} , \rho\right] \\ &+ \frac{1}{T_{1}}\left(\boldsymbol{\sigma_{-}}\rho\boldsymbol{\sigma_{+}} - \frac{1}{2}(\boldsymbol{\sigma_{+}\sigma_{-}}\rho + \rho\boldsymbol{\sigma_{+}\sigma_{-}})\right) + \frac{1}{2T_{\phi}}(\boldsymbol{\sigma_{z}}\rho\boldsymbol{\sigma_{z}} - \rho)\end{aligned}$$

with

Coherent drive of complex amplitude *u* at a pulsation ω_{eg} + Δ detuned by Δ with respect to the qubit pulsation ω_{ea}.

(ロ) (同) (三) (三) (三) (○) (○)

- **T**₁ life-time of the excited state $|e\rangle$.
- T_{ϕ} dephasing time destroying the coherence $\langle e|\rho|g\rangle$.

Exercise: For u = 0 show that $\lim_{t \mapsto +\infty} \rho(t) = |g\rangle \langle g|$.

2 Driven and damped qubit

3 Driven and damped harmonic oscillator

4 Complements

Oscillator with thermal photon(s)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wigner function

The driven and damped classical oscillator

Dynamics in the (x', p') phase plane with $\omega \gg \kappa$, $\sqrt{u_1^2 + u_2^2}$:

$$\frac{d}{dt}x' = \omega p', \quad \frac{d}{dt}p' = -\omega x' - \kappa p' - 2u_1 \sin(\omega t) + 2u_2 \cos(\omega t)$$

Define the frame rotating at ω by $(x', p') \mapsto (x, p)$ with

$$x' = \cos(\omega t)x + \sin(\omega t)p, \quad p' = -\sin(\omega t)x + \cos(\omega t)p.$$

Removing highly oscillating terms (rotating wave approximation), from

$$\frac{d}{dt}x = -\kappa \sin^2(\omega t)x + 2u_1 \sin^2(\omega t) + (\kappa p - 2u_2)\sin(\omega t)\cos(\omega t)$$
$$\frac{d}{dt}p = -\kappa \cos^2(\omega t)p + 2u_2\cos^2(\omega t) + (\kappa x - 2u_1)\sin(\omega t)\cos(\omega t)$$

we get, with $\alpha = x + ip$ and $u = u_1 + iu_2$:

$$\frac{d}{dt}\alpha = -\frac{\kappa}{2}\alpha + u.$$

With $x' + ip' = \alpha' = e^{-i\omega t}\alpha$, we have $\frac{d}{dt}\alpha' = -(\frac{\kappa}{2} + i\omega)\alpha' + ue^{-i\omega t}$

The Lindblad master equation:

$$\frac{d}{dt}\boldsymbol{\rho} = [\boldsymbol{u}\boldsymbol{a}^{\dagger} - \boldsymbol{u}^{*}\boldsymbol{a}, \boldsymbol{\rho}] + \kappa \left(\boldsymbol{a}\boldsymbol{\rho}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\boldsymbol{a}\right).$$

Consider ρ = D_αξD_{-α} with α = 2u/κ and D_α = e^{αa[†]-α*a}. We get

$$\frac{d}{dt}\boldsymbol{\xi} = \kappa \left(\boldsymbol{a}\boldsymbol{\xi}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\xi} - \frac{1}{2}\boldsymbol{\xi}\boldsymbol{a}^{\dagger}\boldsymbol{a} \right)$$

since $\boldsymbol{D}_{-\overline{\alpha}}\boldsymbol{a}\boldsymbol{D}_{\overline{\alpha}} = \boldsymbol{a} + \overline{\alpha}$.

Informal convergence proof with the strict Lyapunov function $V(\xi) = \text{Tr}(\xi \mathbf{N})$:

$$\frac{d}{dt}V(\xi) = -\kappa V(\xi) \Rightarrow V(\xi(t)) = V(\xi_0)e^{-\kappa t}.$$

Since $\xi(t)$ is Hermitian and non-negative, $\xi(t)$ tends to $|0\rangle\langle 0|$ when $t \mapsto +\infty$.

Theorem

Consider with $u \in \mathbb{C}$, $\kappa > 0$, the following Cauchy problem

$$\frac{d}{dt}\boldsymbol{\rho} = \left[u\boldsymbol{a}^{\dagger} - u^{*}\boldsymbol{a}, \boldsymbol{\rho}\right] + \kappa \left(\boldsymbol{a}\boldsymbol{\rho}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\boldsymbol{a}\right), \quad \boldsymbol{\rho}(0) = \boldsymbol{\rho}_{0}.$$

Assume that the initial state ρ_0 is a density operator with finite energy Tr ($\rho_0 \mathbf{N}$) < + ∞ . Then exists a unique solution to the Cauchy problem in the Banach space $\mathcal{K}^1(\mathcal{H})$, the set of trace class operators on \mathcal{H} . It is defined for all t > 0 with $\rho(t)$ a density operator (Hermitian, non-negative and trace-class) that remains in the domain of the Lindblad super-operator

$$\boldsymbol{\rho} \mapsto [\boldsymbol{u}\boldsymbol{a}^{\dagger} - \boldsymbol{u}^{*}\boldsymbol{a}, \boldsymbol{\rho}] + \kappa \left(\boldsymbol{a}\boldsymbol{\rho}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\boldsymbol{a}\right).$$

This means that $t \mapsto \rho(t)$ is differentiable in the Banach space $\mathcal{K}^1(\mathcal{H})$. Moreover $\rho(t)$ converges for the trace-norm towards $|\overline{\alpha}\rangle\langle\overline{\alpha}|$ when t tends to $+\infty$, where $|\overline{\alpha}\rangle$ is the coherent state of complex amplitude $\overline{\alpha} = \frac{2u}{\kappa}$.

Lemma

Consider with $u \in \mathbb{C}$, $\kappa > 0$, the following Cauchy problem

$$\frac{d}{dt}\boldsymbol{\rho} = \left[u\boldsymbol{a}^{\dagger} - u^{*}\boldsymbol{a}, \boldsymbol{\rho}\right] + \kappa \left(\boldsymbol{a}\boldsymbol{\rho}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\boldsymbol{a}\right), \quad \boldsymbol{\rho}(0) = \boldsymbol{\rho}_{0}.$$

1 for any initial density operator ρ_0 with $\operatorname{Tr}(\rho_0 \mathbf{N}) < +\infty$, we have $\frac{d}{dt}\alpha = -\frac{\kappa}{2}(\alpha - \overline{\alpha})$ where $\alpha = \operatorname{Tr}(\rho \mathbf{a})$ and $\overline{\alpha} = \frac{2u}{\kappa}$.

2 Assume that $\rho_0 = |\beta_0\rangle\langle\beta_0|$ where β_0 is some complex amplitude. Then for all $t \ge 0$, $\rho(t) = |\beta(t)\rangle\langle\beta(t)|$ remains a coherent state of amplitude $\beta(t)$ solution of the following equation: $\frac{d}{dt}\beta = -\frac{\kappa}{2}(\beta - \overline{\alpha})$ with $\beta(0) = \beta_0$.

Statement 2 relies on:

$$|a|\beta\rangle = \beta|\beta\rangle, \quad |\beta\rangle = e^{-\frac{\beta\beta^*}{2}}e^{\beta a^{\dagger}}|0\rangle \quad \frac{d}{dt}|\beta\rangle = \left(-\frac{1}{2}(\beta^*\dot{\beta} + \beta\dot{\beta}^*) + \dot{\beta}a^{\dagger}\right)|\beta\rangle.$$

(日) (日) (日) (日) (日) (日) (日)

1 Lindblad master equation

- 2 Driven and damped qubit
- 3 Driven and damped harmonic oscillator
- Complements
 Oscillator with thermal photon(s)
 Wigner function

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Parameters $\omega \gg \kappa$, |u| and $n_{\text{th}} > 0$:

$$\begin{aligned} \frac{d}{dt} \boldsymbol{\rho} &= [\boldsymbol{u}\boldsymbol{a}^{\dagger} - \boldsymbol{u}^{*}\boldsymbol{a}, \boldsymbol{\rho}] + (1 + n_{\text{th}})\kappa \left(\boldsymbol{a}\boldsymbol{\rho}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\boldsymbol{a}\right) \\ &+ n_{\text{th}}\kappa \left(\boldsymbol{a}^{\dagger}\boldsymbol{\rho}\boldsymbol{a} - \frac{1}{2}\boldsymbol{a}\boldsymbol{a}^{\dagger}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}\boldsymbol{a}^{\dagger}\right). \end{aligned}$$

Key issue: $\lim_{t \to +\infty} \rho(t) =$?. With $\bar{\alpha} = 2u/k$, we have

$$\frac{d}{dt} \rho = (1+n_{\text{th}})\kappa \left((\boldsymbol{a}-\bar{\alpha})\rho(\boldsymbol{a}-\bar{\alpha})^{\dagger} - \frac{1}{2}(\boldsymbol{a}-\bar{\alpha})^{\dagger}(\boldsymbol{a}-\bar{\alpha})\rho - \frac{1}{2}\rho(\boldsymbol{a}-\bar{\alpha})^{\dagger}(\boldsymbol{a}-\bar{\alpha}) \right) + n_{\text{th}}\kappa \left((\boldsymbol{a}-\bar{\alpha})^{\dagger}\rho(\boldsymbol{a}-\bar{\alpha}) - \frac{1}{2}(\boldsymbol{a}-\bar{\alpha})(\boldsymbol{a}-\bar{\alpha})^{\dagger}\rho - \frac{1}{2}\rho(\boldsymbol{a}-\bar{\alpha})(\boldsymbol{a}-\bar{\alpha})^{\dagger} \right).$$

Using the unitary change of frame $\boldsymbol{\xi} = \boldsymbol{D}_{-\bar{\alpha}} \rho \boldsymbol{D}_{\bar{\alpha}}$ based on the displacement $\boldsymbol{D}_{\bar{\alpha}} = e^{\bar{\alpha} \boldsymbol{a}^{\dagger} - \bar{\alpha}^{\dagger} \boldsymbol{a}}$, we get the following dynamics on $\boldsymbol{\xi}$

$$\begin{aligned} \frac{d}{dt} \boldsymbol{\xi} &= (1 + n_{\text{th}}) \kappa \left(\boldsymbol{a} \boldsymbol{\xi} \boldsymbol{a}^{\dagger} - \frac{1}{2} \boldsymbol{a}^{\dagger} \boldsymbol{a} \boldsymbol{\xi} - \frac{1}{2} \boldsymbol{\xi} \boldsymbol{a}^{\dagger} \boldsymbol{a} \right) \\ &+ n_{\text{th}} \kappa \left(\boldsymbol{a}^{\dagger} \boldsymbol{\xi} \boldsymbol{a} - \frac{1}{2} \boldsymbol{a} \boldsymbol{a}^{\dagger} \boldsymbol{\xi} - \frac{1}{2} \boldsymbol{\xi} \boldsymbol{a} \boldsymbol{a}^{\dagger} \right) \end{aligned}$$

since $\boldsymbol{a} + \bar{\alpha} = \boldsymbol{D}_{-\bar{\alpha}} \boldsymbol{a} \boldsymbol{D}_{\bar{\alpha}}$.

Asymptotic convergence towards the thermal equilibrium

The thermal mixed state
$$m{\xi}_{ ext{th}}=rac{1}{1+n_{ ext{th}}}\left(rac{n_{ ext{th}}}{1+n_{ ext{th}}}
ight)^{m{ au}}$$
 is an equilibrium of

$$\begin{aligned} \frac{d}{dt}\xi &= \kappa (1+n_{\text{th}}) \left(a\xi a^{\dagger} - \frac{1}{2}a^{\dagger}a\xi - \frac{1}{2}\xi a^{\dagger}a \right) \\ &+ \kappa n_{\text{th}} \left(a^{\dagger}\xi a - \frac{1}{2}aa^{\dagger}\xi - \frac{1}{2}\xi aa^{\dagger} \right) \end{aligned}$$

with Tr ($N\xi_{th}$) = n_{th} . Following ³, set ζ the solution of the Sylvester equation: $\xi_{th}\zeta + \zeta\xi_{th} = \xi - \xi_{th}$. Then $V(\xi) = \text{Tr}(\xi_{th}\zeta^2)$ is a strict Lyapunov function. It is based on the following computations that can be made rigorous with an adapted Banach space for ξ :

$$\begin{split} \frac{d}{dt} V(\boldsymbol{\xi}) &= -\kappa (1+n_{\text{th}}) \operatorname{Tr} \left([\boldsymbol{\zeta}, \boldsymbol{a}] \boldsymbol{\xi}_{\text{th}} [\boldsymbol{\zeta}, \boldsymbol{a}]^{\dagger} \right) \\ &- \kappa n_{\text{th}} \operatorname{Tr} \left([\boldsymbol{\zeta}, \boldsymbol{a}^{\dagger}] \boldsymbol{\xi}_{\text{th}} [\boldsymbol{\zeta}, \boldsymbol{a}^{\dagger}]^{\dagger} \right) \leq 0. \end{split}$$

When $\frac{d}{dt}V = 0$, ζ commutes with \boldsymbol{a} , \boldsymbol{a}^{\dagger} and \boldsymbol{N} . It is thus a constant function of \boldsymbol{N} . Since $\xi_{\text{th}}\zeta + \zeta\xi_{\text{th}} = \xi - \xi_{\text{th}}$, we get $\xi = \xi_{\text{th}}$.

³PR and A. Sarlette: Contraction and stability analysis of steady-states for open quantum systems described by Lindblad differential equations. Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, 10-13 Dec. 2013, 6568-6573.

1 Lindblad master equation

2 Driven and damped qubit

3 Driven and damped harmonic oscillator

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Complements Oscillator with thermal photon(s) Mission function

Wigner function

Parameters $\omega \gg \kappa$, |u| and $n_{\text{th}} \ge 0$:

$$\begin{aligned} \frac{d}{dt}\rho &= [u\boldsymbol{a}^{\dagger} - u^{*}\boldsymbol{a},\rho] + (1+n_{\mathrm{th}})\kappa \left(\boldsymbol{a}\rho\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\rho - \frac{1}{2}\rho\boldsymbol{a}^{\dagger}\boldsymbol{a}\right) \\ &+ n_{\mathrm{th}}\kappa \left(\boldsymbol{a}^{\dagger}\rho\boldsymbol{a} - \frac{1}{2}\boldsymbol{a}\boldsymbol{a}^{\dagger}\rho - \frac{1}{2}\rho\boldsymbol{a}\boldsymbol{a}^{\dagger}\right).\end{aligned}$$

Key issue: $\lim_{t\to+\infty} \rho(t) = ?$. The passage to another representation via the Wigner function:

Since $D_{\alpha}e^{i\pi N}D_{-\alpha}$ bounded and Hermitian operator (the dual of $\mathcal{K}^{1}(\mathcal{H})$ is $\mathcal{B}(\mathcal{H})$),

$$\mathcal{W}^{\{oldsymbol{
ho}\}}(x,oldsymbol{
ho})=rac{2}{\pi}\operatorname{Tr}\left(
hooldsymbol{D}_{lpha}oldsymbol{e}^{i\pioldsymbol{N}}oldsymbol{D}_{-lpha}
ight) \quad ext{with} \quad lpha=x+ioldsymbol{p}\in\mathbb{C},$$

defines a real and bounded function $|W^{\{\rho\}}(x, p)| \leq \frac{2}{\pi}$.

For a coherent state $\rho = |\beta\rangle\langle\beta|$ with $\beta \in \mathbb{C}$:

$$W^{\{|eta
angle\langleeta|\}}(x,p)=rac{2}{\pi}e^{-2|eta-(x+ip)|^2}$$

The partial differential equation satisfied by the Wigner function (1)

With
$$\boldsymbol{D}_{\alpha} = \boldsymbol{e}^{\alpha \boldsymbol{a}^{\dagger}} \boldsymbol{e}^{-\alpha^{*}\boldsymbol{a}} \boldsymbol{e}^{-\alpha\alpha^{*}/2} = \boldsymbol{e}^{-\alpha^{*}\boldsymbol{a}} \boldsymbol{e}^{\alpha \boldsymbol{a}^{\dagger}} \boldsymbol{e}^{\alpha\alpha^{*}/2}$$
 we have:
$$\frac{\pi}{2} W^{\{\rho\}}(\alpha, \alpha^{*}) = \operatorname{Tr}\left(\rho \boldsymbol{e}^{\alpha \boldsymbol{a}^{\dagger}} \boldsymbol{e}^{-\alpha^{*}\boldsymbol{a}} \boldsymbol{e}^{i\pi \boldsymbol{N}} \boldsymbol{e}^{\alpha^{*}\boldsymbol{a}} \boldsymbol{e}^{-\alpha \boldsymbol{a}^{\dagger}}\right)$$

where α and α^* are seen as independent variables:

$$\frac{\partial}{\partial \alpha} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial p} \right), \quad \frac{\partial}{\partial \alpha^*} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial p} \right)$$

We have $\frac{\pi}{2} \frac{\partial}{\partial \alpha} W^{\{\rho\}}(\alpha, \alpha^*) = \text{Tr}\left((\rho \boldsymbol{a}^{\dagger} - \boldsymbol{a}^{\dagger} \rho) \boldsymbol{D}_{\alpha} \boldsymbol{e}^{i\pi \boldsymbol{N}} \boldsymbol{D}_{-\alpha}\right)$ Since $\boldsymbol{a}^{\dagger} \boldsymbol{D}_{\alpha} \boldsymbol{e}^{i\pi \boldsymbol{N}} \boldsymbol{D}_{-\alpha} = \boldsymbol{D}_{\alpha} \boldsymbol{e}^{i\pi \boldsymbol{N}} \boldsymbol{D}_{-\alpha} (2\alpha^* - \boldsymbol{a}^{\dagger})$, we get

$$\frac{\partial}{\partial \alpha} W^{\{\rho\}}(\alpha, \alpha^*) = 2\alpha^* W^{\{\rho\}}(\alpha, \alpha^*) - 2W^{\{a^{\dagger}\rho\}}(\alpha, \alpha^*).$$

Thus $W^{\{a^{\dagger}\rho\}}(\alpha, \alpha^{*}) = \alpha^{*}W^{\{\rho\}}(\alpha, \alpha^{*}) - \frac{1}{2}\frac{\partial}{\partial\alpha}W^{\{\rho\}}(\alpha, \alpha^{*})$, i.e.

$$\boldsymbol{W}^{\{\boldsymbol{a}^{\dagger}\boldsymbol{\rho}\}} = \left(\alpha^{*} - \frac{1}{2}\frac{\partial}{\partial\alpha}\right)\boldsymbol{W}^{\{\boldsymbol{\rho}\}}$$

Similar computations yield to the following correspondence rules:

$$\begin{split} \boldsymbol{W}^{\{\boldsymbol{\rho}\boldsymbol{a}\}} &= \left(\alpha - \frac{1}{2}\frac{\partial}{\partial\alpha^*}\right)\boldsymbol{W}^{\{\boldsymbol{\rho}\}}, \quad \boldsymbol{W}^{\{\boldsymbol{a}\boldsymbol{\rho}\}} = \left(\alpha + \frac{1}{2}\frac{\partial}{\partial\alpha^*}\right)\boldsymbol{W}^{\{\boldsymbol{\rho}\}}\\ \boldsymbol{W}^{\{\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\}} &= \left(\alpha^* + \frac{1}{2}\frac{\partial}{\partial\alpha}\right)\boldsymbol{W}^{\{\boldsymbol{\rho}\}}, \quad \boldsymbol{W}^{\{\boldsymbol{a}^{\dagger}\boldsymbol{\rho}\}} = \left(\alpha^* - \frac{1}{2}\frac{\partial}{\partial\alpha}\right)\boldsymbol{W}^{\{\boldsymbol{\rho}\}}. \end{split}$$

Thus

$$\begin{aligned} \frac{d}{dt}\boldsymbol{\rho} &= [\boldsymbol{u}\boldsymbol{a}^{\dagger} - \boldsymbol{u}^{*}\boldsymbol{a},\boldsymbol{\rho}] + (1 + n_{\mathrm{th}})\kappa \left(\boldsymbol{a}\boldsymbol{\rho}\boldsymbol{a}^{\dagger} - \frac{1}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}^{\dagger}\boldsymbol{a}\right) \\ &+ n_{\mathrm{th}}\kappa \left(\boldsymbol{a}^{\dagger}\boldsymbol{\rho}\boldsymbol{a} - \frac{1}{2}\boldsymbol{a}\boldsymbol{a}^{\dagger}\boldsymbol{\rho} - \frac{1}{2}\boldsymbol{\rho}\boldsymbol{a}\boldsymbol{a}^{\dagger}\right).\end{aligned}$$

becomes

$$\frac{\partial}{\partial t}W^{\{\rho\}} = \frac{\kappa}{2} \left(\frac{\partial}{\partial \alpha} (\alpha - \overline{\alpha}) + \frac{\partial}{\partial \alpha^*} (\alpha^* - \overline{\alpha}^*) + (1 + 2n_{\text{th}}) \frac{\partial^2}{\partial \alpha \partial \alpha^*} \right) W^{\{\rho\}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Solutions of the quantum Fokker-Planck equation

Since the Green function of

$$\begin{split} \frac{\partial}{\partial t} W^{\{\rho\}} &= \frac{\kappa}{2} \Big(\frac{\partial}{\partial x} \Big((x - \overline{x}) W^{\{\rho\}} \Big) + \frac{\partial}{\partial p} \Big((\rho - \overline{\rho}) W^{\{\rho\}} \Big) \\ &+ \frac{1 + 2n_{\text{th}}}{4} \left(\frac{\partial^2 W^{\{\rho\}}}{\partial x^2} + \frac{\partial^2 W^{\{\rho\}}}{\partial p^2} \right) \Big) \end{split}$$

is the following time-varying Gaussian function

$$G(x, p, t, x_0, p_0) = \frac{\exp\left(-\frac{\left(x - \overline{x} - (x_0 - \overline{x})e^{-\frac{\kappa t}{2}}\right)^2 + \left(p - \overline{p} - (p_0 - \overline{p})e^{-\frac{\kappa t}{2}}\right)^2}{(n_{\text{th}} + \frac{1}{2})(1 - e^{-\kappa t})}\right)}{\pi(n_{\text{th}} + \frac{1}{2})(1 - e^{-\kappa t})}$$

we can compute $W_t^{\{\rho\}}$ from $W_0^{\{\rho\}}$ for all t > 0:

$$W_t^{\{\rho\}}(x,\rho) = \int_{\mathbb{R}^2} W_0^{\{\rho\}}(x',\rho') G(x,\rho,t,x',\rho') dx' d\rho'.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Combining

•
$$W_t^{\{\rho\}}(x,p) = \int_{\mathbb{R}^2} W_0^{\{\rho\}}(x',p') G(x,p,t,x',p') dx' dp'.$$

G uniformly bounded and

$$\lim_{t \mapsto +\infty} G(x, p, t, x', p') = \frac{1}{\pi (n_{\text{th}} + \frac{1}{2})} \exp\left(-\frac{(x - \overline{x})^2 + (p - \overline{p})^2}{(n_{\text{th}} + \frac{1}{2})}\right)$$

•
$$W_0^{\{\rho\}}$$
 in L^1 with $\iint_{\mathbb{R}^2} W_0^{\{\rho\}} = 1$

dominate convergence theorem

shows that all the solutions converge to a unique steady-state Gaussian density function, centered in $(\overline{x}, \overline{p})$ with variance $\frac{1}{2} + n_{\text{th}}$:

$$\forall (x,p) \in \mathbb{R}^2, \quad \lim_{t \mapsto +\infty} W_t^{\{p\}}(x,p) = \frac{1}{\pi(n_{\mathsf{th}} + \frac{1}{2})} \exp\left(-\frac{\left(x - \overline{x}\right)^2 + \left(p - \overline{p}\right)^2}{\left(n_{\mathsf{th}} + \frac{1}{2}\right)}\right)$$

<ロ> <0</p>

Quantum Control¹ International Graduate School on Control www.eeci-igsc.eu

Pierre Rouchon²

Lecture 14 Chengdu, July 12, 2019

¹An important part of these slides gathered at the following web page have been elaborated with Mazyar Mirrahimi:

http://cas.ensmp.fr/~rouchon/ChengduJuly2019/index.html

²Mines ParisTech, INRIA Paris

2 Slow measurement-based feedback

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

2 Slow measurement-based feedback

Quantum analogue of Watt speed governor: a **dissipative** mechanical system controls another mechanical system ³

Optical pumping (Kastler 1950), coherent population trapping (Arimondo 1996)

Dissipation engineering, autonomous feedback: (Zoller, Cirac, Wolf, Verstraete, Devoret, Schoelkopf, Siddiqi, Lloyd, Viola, Ticozzi, Leghtas, Mirrahimi, Sarlette, ...)

(S,L,H) theory and linear quantum systems: quantum feedback networks based on stochastic Schrödinger equation, Heisenberg picture (Gardiner, Yurke, Mabuchi, Genoni, Serafini, Milburn, Wiseman, Doherty, Gough, James, Petersen, Nurdin, Yamamoto, Zhang, Dong, ...)

Stability analysis: Kraus maps and Lindblad propagators are always contractions (non commutative diffusion and consensus).

³J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868. 🛓 🦿

Coherent feedback underlying the cat-qubit (1)⁴

System: high quality oscillator with annihilation operator a:

$$\frac{d}{dt}\rho = -i\omega_{\boldsymbol{a}}[\boldsymbol{a}^{\dagger}\boldsymbol{a},\rho] + \kappa_{\boldsymbol{a}}\left(\boldsymbol{a}\rho\boldsymbol{a}^{\dagger} - \frac{1}{2}(\boldsymbol{a}^{\dagger}\boldsymbol{a}\rho + \rho\boldsymbol{a}^{\dagger}\boldsymbol{a})\right).$$

Controller: low quality oscillator $\kappa_a \ll \kappa_b$ with annihilation operator ${\pmb b}$ with resonant drive

$$\frac{d}{dt}\rho = -i\omega_b[\boldsymbol{b}^{\dagger}\boldsymbol{b},\rho] + [-u\boldsymbol{e}^{i\omega_b t}\boldsymbol{b}^{\dagger} + u^*\boldsymbol{e}^{-i\omega_b t}\boldsymbol{b},\rho] + \kappa_b \left(\boldsymbol{b}\rho\boldsymbol{b}^{\dagger} - \frac{1}{2}(\boldsymbol{b}^{\dagger}\boldsymbol{b}\rho + \rho\boldsymbol{b}^{\dagger}\boldsymbol{b})\right).$$

Coupling Hamiltonian term $g[a^2b^{\dagger} - (a^{\dagger})^2b, \rho]$ yields to the closed-loop Lindblad equation

$$\frac{d}{dt}\rho = -i[\omega_{a}\boldsymbol{a}^{\dagger}\boldsymbol{a} + \omega_{b}\boldsymbol{b}^{\dagger}\boldsymbol{b}] + [-ue^{-i\omega_{b}t}\boldsymbol{b}^{\dagger} + u^{*}e^{+i\omega_{b}t}\boldsymbol{b},\rho] + g[\boldsymbol{a}^{2}\boldsymbol{b}^{\dagger} - (\boldsymbol{a}^{\dagger})^{2}\boldsymbol{b},\rho] \\ + \kappa_{a}\left(\boldsymbol{a}\rho\boldsymbol{a}^{\dagger} - \frac{1}{2}(\boldsymbol{a}^{\dagger}\boldsymbol{a}\rho + \rho\boldsymbol{a}^{\dagger}\boldsymbol{a})\right) + \kappa_{b}\left(\boldsymbol{b}\rho\boldsymbol{b}^{\dagger} - \frac{1}{2}(\boldsymbol{b}^{\dagger}\boldsymbol{b}\rho + \rho\boldsymbol{b}^{\dagger}\boldsymbol{b})\right)$$

⁴M. Mirrahimi, Z. Leghtas, ..., M.H. Devoret: Dynamically protected cat-qubits: a new paradigm for universal quantum computation.New Journal of Physics,2014, 16:045014.

Coherent feedback underlying the cat-qubit (2)

• For $\omega_b = 2\omega_a$ one gets in the the frame rotating at ω_a for mode a and ω_b for mode b (unitary transformation: $\rho_{old} = e^{-i\omega_a t a^{\dagger} a - i\omega_b t b^{\dagger} b} \rho_{new} e^{i\omega_a t a^{\dagger} a + i\omega_b t b^{\dagger} b}$):

$$\begin{aligned} \frac{d}{dt}\rho &= g\left[(\boldsymbol{a}^2 - \frac{u}{g})\boldsymbol{b}^{\dagger} - ((\boldsymbol{a}^{\dagger})^2 - \frac{u^*}{g})\boldsymbol{b}, \rho \right] \\ &+ \kappa_{\boldsymbol{a}} \left(\boldsymbol{a}\rho \boldsymbol{a}^{\dagger} - \frac{1}{2} (\boldsymbol{a}^{\dagger} \boldsymbol{a}\rho + \rho \boldsymbol{a}^{\dagger} \boldsymbol{a}) \right) + \kappa_{\boldsymbol{b}} \left(\boldsymbol{b}\rho \boldsymbol{b}^{\dagger} - \frac{1}{2} (\boldsymbol{b}^{\dagger} \boldsymbol{b}\rho + \rho \boldsymbol{b}^{\dagger} \boldsymbol{b}) \right). \end{aligned}$$

• If we neglect κ_a in front of κ_b , any $\bar{\rho}$ of the form $\bar{\rho} = \bar{\rho}_a \otimes |0_b\rangle \langle 0_b|$ with $\bar{\rho}_a$ density operator on mode a with support in span $\{|\alpha\rangle, |-\alpha\rangle\}$ where $\alpha = \sqrt{\frac{u}{g}} \in \mathbb{C}$, is a steady-state of the above Lindbald equation with $\kappa_a = 0$.

• If additionally, $g \ll \kappa_b$, the strongly damped mode b can be eliminated via singular perturbation techniques (quasi-static or adiabatic approximation) to get the following slow Lindblad equation on mode a only:

$$\frac{d}{dt}\rho = \frac{4g^2}{\kappa_b} \left(L\rho L^{\dagger} - \frac{1}{2} (L^{\dagger} L\rho + \rho L^{\dagger} L) \right) + \kappa_a \left(\boldsymbol{a}\rho \boldsymbol{a}^{\dagger} - \frac{1}{2} (\boldsymbol{a}^{\dagger} \boldsymbol{a}\rho + \rho \boldsymbol{a}^{\dagger} \boldsymbol{a}) \right)$$

with Lindblad operator $L = a^2 - \alpha^2$.

Coherent feedback underlying the cat-qubit (3)

• If $g \gg \sqrt{\kappa_a \kappa_b}$ then we can still neglect κ_a . Any solution of

$$\frac{d}{dt}\rho = \frac{4g^2}{\kappa_b} \left(L\rho L^{\dagger} - \frac{1}{2} (L^{\dagger} L\rho + \rho L^{\dagger} L) \right)$$

converges to a steady state $\bar{\rho}_a$ with support in span{ $|\alpha\rangle$, $|-\alpha\rangle$ } (use the Lyapunov function $V(\rho) = \text{Tr} (L\rho L^{\dagger})^{5}$).

• For $\frac{d}{dt}\rho = \frac{4g^2}{\kappa_b} \left(L\rho L^{\dagger} - \frac{1}{2} (L^{\dagger} L\rho + \rho L^{\dagger} L) \right) + \kappa_a \left(a\rho a^{\dagger} - \frac{1}{2} (a^{\dagger} a\rho + \rho a^{\dagger} a) \right)$ with $g \gg \sqrt{\kappa_a \kappa_b}$, a reduction to the sub-space span{ $|\alpha\rangle$, $|-\alpha\rangle$ } is possible to describe the very slow evolution due to κ_a . With the orthonormal basis,

$$|\mathcal{C}_{\alpha}^{+}\rangle = \frac{|\alpha\rangle + |-\alpha\rangle}{\sqrt{2(1 + e^{-2|\alpha|^2})}} \text{ (even cat) and } |\mathcal{C}_{\alpha}^{-}\rangle = \frac{|\alpha\rangle - |-\alpha\rangle}{\sqrt{2(1 - e^{-2|\alpha|^2})}} \text{ (odd cat)},$$

define the swap operator $X_c = |c_{\alpha}^+\rangle \langle c_{\alpha}| + |c_{\alpha}^-\rangle \langle c_{\alpha}^+|$. Since $\mathbf{a}|c_{\alpha}^+\rangle = \alpha|c_{\alpha}^-\rangle$ and $\mathbf{a}|c_{\alpha}^-\rangle = \alpha|c_{\alpha}^+\rangle$, the reduced dynamics on $\mathcal{H}_c \triangleq \text{span}\{|c_{\alpha}^+\rangle, |c_{\alpha}^-\rangle\}$ reads

$$\frac{d}{dt}\rho_c = \kappa_a |\alpha|^2 (X_c \rho_c X_c - \rho_c)$$

where ρ_c a density operator on \mathcal{H}_c .

⁵R. Azouit, A. Sarlette, and PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping. ESAIM: COCV, 2016, 22(4):1353 –1369. ▶

2 Slow measurement-based feedback

◆□▶ ◆□▶ ◆ ミ ◆ ミ ● ● ● ●

Assume that one can continuously and weakly measure the parity $e^{i\pi a^{\dagger}a}$ of mode a with a rate $\gamma_a \gg \kappa_a |\alpha|^2$. Then we have the following stochastic master equation $(Z_c = |c_{\alpha}^+\rangle \langle c_{\alpha}^+| - |c_{\alpha}^-\rangle \langle c_{\alpha}^-|)$

 $d\rho_{c} = \kappa_{a} |\alpha|^{2} (X_{c}\rho_{c}X_{c}-\rho_{c}) dt + \gamma_{a} (Z_{c}\rho_{c}Z_{c}-\rho_{c}) dt + \sqrt{\eta_{c}\gamma_{a}} (Z_{c}\rho_{c}+\rho_{c}Z_{c}-2\operatorname{Tr}(Z_{c}\rho_{c})\rho_{c}) dW$

with continuous-time measurement output y_c of efficiency $\eta_c > 0$ and given by $dy_c = 2\sqrt{\eta_c \gamma_a} \operatorname{Tr} (Z_c \rho_c) dt + dW$.

One can stabilize either $|c_{\alpha}^{+}\rangle\langle c_{\alpha}^{+}|$ or $|c_{\alpha}^{-}\rangle\langle c_{\alpha}^{-}|$ if we have at our disposal a classical input signal u_{c} attached to an Hamiltonian H_{c} on \mathcal{H}_{c} independent of Z_{c} .

Exercise: design a measurement-based feedback stabilizing $|c_{\alpha}^{+}\rangle\langle c_{\alpha}^{+}|$ with $H_{c} = X_{c}$ and based on the Lyapunov function $V_{c}(\rho_{c}) = \sqrt{\langle c_{\alpha}^{+}|\rho_{c}|c_{\alpha}^{+}\rangle}$ for $\kappa_{a} = 0$. Analyse the impact of $\kappa_{a} > 0$ with closed-loop Monte-Carlo simulations.

Quantum feedback engineering

To stabilize the quantum information localized in system S:

- fast decoherence addressed by a quantum controller (coherent feedback);
- slow decoherence and perturbation tackled by a *classical* controller (measurement-based feedback).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@