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Second-order averaging

We consider a particular type of interaction between two harmonic oscillators modeled by the
following time-dependent Hamiltonian:

H(t) = ωaa
†a + ωbb

†b− χbb
2

b†2b2 + (g1e
−iω1ta†2b + h.c.) + (g2e

−iω2ta†2b + h.c.),

where a and b are the annihilation operators of the two harmonic oscillators, ω1 = 2ωa−ωb−∆
and ω2 = 2ωa − ωb + χbb + ∆. We also assume |g1|, |g2| � |∆|, |∆ + χbb|.

1. Write the Schrödinger equation in the rotating frame of H0 = ωaa
†a+ωbb

†b− χbb
2 b†2b2,

i.e. with |φ〉 = eitH0 |ψ〉 (we will calculate H int = eitH0(H(t)−H0)e−itH0).

2. For simplicity sakes, we will truncate the mode b up to the Fock state |2〉 (b =
|0〉〈1| +

√
2|1〉〈2|, b† = |1〉〈0| +

√
2|2〉〈1|, b†b = |1〉〈1| + 2|2〉〈2|). Perform rotating-

wave approximations of 1st and 2nd order. Interpret the result.

Stabilization of Fock states by reservoir engineering

We consider here the LKB photon box with resonant interaction atom/cavity. Each atom
is associated to the Hilbert space HM = C2 with orthonormal basis {|g〉, |e〉}. The pho-
tons trapped inside the cavity are associated to the infinite dimensional Hilbert space HS
of orthonormal basis {|n〉}n≥0 where each |n〉 represents the Fock state associated to ex-
actly n photons. The wave function |Ψ〉 describing the composite system atom/cavity lives
in HS ⊗ HM . The passage of an atom through the cavity corresponds to the Schrödinger
propagator

Uθ = |g〉〈g| ⊗ cos(θ
√
N) + |e〉〈e| ⊗ cos(θ

√
N + I)

− |e〉〈g| ⊗ a
sin(θ

√
N)√

N
+ |g〉〈e| ⊗ sin(θ

√
N)√

N
a†

where a and N = a†a are the usual annihilation and photon-number operators and where θ
is a parameter that can be tuned. The objective is to stabilize the system to the Fock state
|n〉, for some number n > 0. The atoms are sent one by one though the cavity and are labeled
by the integer k. We denote by |Ψk〉 the wave function before the passage of atom k and its
measurement.
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1. Compute U †θ , the Hermitian conjugate of Uθ and verify that UθU
†
θ = I.

2. Assume that |Ψk〉 = (cosu|g〉+ sinu|e〉)⊗ |ψk〉 where u is another parameter that can
be tuned. Compute the value of |Ψ〉 just after the passage of atom k.

3. After its passage, atom k is measured with measurement outcome y ∈ {e, g} (atom mea-
surement operator |e〉〈e| − |g〉〈g|). Just after this measurement, |Ψ〉 becomes separable
with a photon wave-function |ψk+1〉 given by

|ψk+1〉 = My,θ,u|ψk〉
/√
〈ψk|M †

y,θ,uMy,θ,u|ψk〉.

Give the explicit formulae for My,θ,u and the probabilities to detect y = g and y = e
knowing |ψk〉

4. Denote by ρk ∼ |ψk〉〈ψk| the density operator for the photons before the passage of
atom k. Denote by ρk+1 the expectation value of |ψk+1〉〈ψk+1| knowing ρk. Compute
the explicit formula of map Kθ,u defined by ρk+1 = Kθ,u(ρk).

5. We assume in this question that u = 0 and θ = π/
√
n.

(a) Set pnk = 〈n|ρk|n〉 and pk = (pnk)n≥0. Show that

pnk+1 = cos2
(
π
√

n
n

)
pnk + sin2

(
π
√

n+1
n

)
pn+1
k .

(b) Show that if pnk ≥ 0 with
∑

n≥0 p
n
k = 1, then pnk+1 ≥ 0 with

∑
n≥0 p

n
k+1 = 1.

(c) Take n∗ > 0. Show that if ∀n ≥ n∗, pnk = 0, then ∀n ≥ n∗, pnk+1 = 0.

(d) Show that pk+1 = pk if and only if pnk = 0 for n /∈ {r2n | r ≥ 0}.
(e) Show that if ∀n < n, pnk = 0, then ∀n < n, pnk+1 = 0.

(f) For any integer r > 0, prove that if ∀n < r2n, pnk = 0, then ∀n < r2n, pnk+1 = 0.

(g) Prove that for any initial value of the density operator ρ0 satisfying ∀n ≥ n,
ρ0|n〉 = 0, we have limk 7→+∞ ρk = |0〉〈0| (indication: prove first that pnk tends to
δn,0 and conclude for ρk using its positivity1).

(h) Prove that for any initial value of the density operator ρ0 satisfying ∀n ∈ [0, n −
1]∪ [4n,+∞[, ρ0|n〉 = 0, we have limk 7→+∞ ρk = |n〉〈n| (indication: prove first that
pnk tends to δn,n and conclude for ρk using his positivity).

6. We assume in this question that u = π/2 and θ = π/
√
n+ 1.

(a) Set pnk = 〈n|ρk|n〉 and pk = (pnk)n≥0. Show that

pnk+1 = sin2
(
π
√

n
n+1

)
pn−1
k + cos2

(
π
√

n+1
n+1

)
pnk .

(b) Show that if pnk ≥ 0 with
∑

n≥0 p
n
k = 1, then pnk+1 ≥ 0 with

∑
n≥0 p

n
k+1 = 1.

(c) Take n∗ > 0. Show that if ∀n < n∗, p
n
k = 0, then ∀n < n∗, p

n
k+1 = 0.

1Here δn1,n2 stands for the Kronecker symbol: δn1,n2 = 0 for n1 6= n2 and δn,n = 1.
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(d) Show that pk+1 = pk (with pnk ≥ 0 and
∑

n≥0 p
n
k = 1) if and only if pnk = 0 for

n /∈ {r2(n+ 1)− 1 | r ≥ 1}.
(e) Show that if ∀n > n, pnk = 0, then ∀n > n, pnk+1 = 0.

(f) For any integer r > 0, prove that if ∀n > r2(n + 1) − 1, pnk = 0, then ∀n >
r2(n+ 1)− 1, pnk+1 = 0.

(g) Prove that for any initial value of the density operator ρ0 satisfying ∀n > n,
ρ0|n〉 = 0, we have limk 7→+∞ ρk = |n〉〈n|.

(h) Prove that for any initial value of the density operator ρ0 satisfying ∀n ∈ [0, n] ∪
[4n+ 4,+∞[, ρ0|n〉 = 0, we have limk 7→+∞ ρk = |4n+ 3〉〈4n+ 3|.

7. Take r ∈]0, 1[. For each atom k we consider a random number rk in [0, 1] (uniform law):
• if rk < r atom k is sent in excited state |e〉 (u = π/2) with θ = π√

n+1
;

• if rk > r atom k is sent in ground state |g〉 (u = 0) with θ = π√
n

.

(a) Compute the Kraux map K giving the expectation value of ρk+1 knowing ρk:
ρk+1 , K(ρk).

(b) Set pnk = 〈n|ρk|n〉 and pk = (pnk)n≥0. Give the recurrence relation between pk+1

and pk.

(c) Show that the unique solution to pk+1 = pk (with pnk ≥ 0, pnk = 0 for n ≥ 4n
and

∑
n≥0 p

n
k = 1) is pnk = δn,n. Deduce that K(ρ) = ρ admits a unique solution

denoted by ρ̄ among the set of density operators with support in the vector space
spanned by |0〉, . . . , |4n〉.

(d) Super-bonus question: in the general case, investigate the fixed points of K and
also the limit of ρk for k tending to +∞ (as far as we know, this is an open
mathematical issue).
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Second-order averaging

1. In this frame a become eitH0ae−itH0 = e−iωata and b becomes eitH0be−itH0 = (eiχbbtb
†b−iωbt)b.

Thus, we have

H int = (g1e
i(χbbb

†b+∆)ta†2b + h.c.) + (g2e
i(χbb(b

†b−1)−∆)ta†2b + h.c.)

2. The Hamiltonian in the rotating frame is given by

H int = (g1e
i∆ta†2|0〉〈1|+ g1

√
2ei(χbb+∆)ta†2|1〉〈2|+ h.c.)

+ (g2e
−i(χbb+∆)ta†2|0〉〈1|+ g2

√
2e−i∆ta†2|1〉〈2|+ h.c.)

The first order rotating wave approximation is given by averaging in time the above
Hamiltonian giving rise to H1st

rwa = 0. The second order rotating wave approximation is
therefore given by

H2nd
rwa = −iH int

∫
t
H int

where

− iH int

∫
t

H int =(
g1e

i∆ta†2|0〉〈1|+ g1

√
2ei(χbb+∆)ta†2|1〉〈2|+ g2e

−i(χbb+∆)ta†2|0〉〈1|+ g2

√
2e−i∆ta†2|1〉〈2|+ h.c.

)
(
−g1

∆
ei∆ta†2|0〉〈1| − g1

√
2

χbb + ∆
ei(χbb+∆)ta†2|1〉〈2|+ g2

χbb + ∆
e−i(χbb+∆)ta†2|0〉〈1|+ g2

√
2

∆
e−i∆ta†2|1〉〈2| − h.c.

)
Therefore

H2nd
rwa =

(√
2

∆
−

√
2

∆ + χbb

)(
g1g2a

†4|0〉〈2|+ g∗1g
∗
2a

4|2〉〈0|
)

+

(
|g1|2

∆
− |g2|2

χbb + ∆

)
a†2a2|0〉〈0|+

(
2|g1|2 − |g2|2

χbb + ∆
+
|g1|2 − 2|g2|2

∆

)
a†2a2|1〉〈1|+

(
2|g1|2

χbb + ∆
− 2|g2|2

∆

)
a†2a2|2〉〈2|

+ 4

(
|g1|2

∆
− |g2|2

χbb + ∆

)
a†a|1〉〈1|+ 8

(
|g1|2

χbb + ∆
− |g2|2

∆

)
a†a|2〉〈2|

+ 2

(
|g1|2

∆
− |g2|2

χbb + ∆

)
|1〉〈1|+ 4

(
|g1|2

χbb + ∆
− |g2|2

∆

)
|2〉〈2|.

The first term in the Hamiltonian models an exchange of 4 photons of the harmonic
oscillator a with two excitations of the mode b. The rest of the Hamiltonian is diagonal
in the Fock states basis of the two harmonic oscillators and therefore do not lead to any
exchange of energy.
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Stabilization of Fock states by reservoir engineering

1. We have

U†
θ = |g〉〈g|⊗ cos(θ

√
N) + |e〉〈e|⊗ cos(θ

√
N + I)−|g〉〈e|⊗ sin(θ

√
N)√

N
a† + |e〉〈g|⊗a

sin(θ
√
N)√

N

Using the identity af(N) = f(N + I)a and cos2 + sin2 = 1, we get the result.

2. We have

|Ψ〉 = cosu

(
|g〉 ⊗ cos(θ

√
N)|ψk〉 − |e〉 ⊗ a

sin(θ
√
N)√

N
|ψk〉

)

+ sinu

(
|e〉 ⊗ cos(θ

√
N + I)|ψk〉+ |g〉 ⊗ sin(θ

√
N)√

N
a†|ψk〉

)

3. We have

M g,θ,u = cosu cos(θ
√
N) + sinu

sin(θ
√
N)√

N
a†

M e,θ,u = − cosua
sin(θ

√
N)√

N
+ sinu cos(θ

√
N + I)

and the probabilities are 〈ψk|M †
y,θ,uMy,θ,u|ψk〉 for y = g, e.

4. We have ρk+1 = M g,θ,uρkM
†
g,θ,u + M e,θ,uρkM

†
e,θ,u.

5. (a) This comes from the fact that

K0,
π√
n

(ρ) = cos

(
π
√

N
n

)
ρ cos

(
π
√

N
n

)
+ a sin

(
π
√

N+1
n

)
ρ sin

(
π
√

N+1
n

)
a†.

(b) Just use cos2 + sin2 = 1.

(c) This comes from the fact that formally pk+1 = Mpk with M an infinite dimensional
matrix where its nonzero entries are only on the diagonal and the upper diagonal.

(d) The fact that such p are necessary stationary is obvious. To prove that they are
the only ones, we have to solve the following infinite set of equations

pn = cos2
(
π
√

n
n

)
pn + sin2

(
π
√

n+1
n

)
pn+1, n = 0, 1, . . . .

Thus sin2
(
π
√

n
n

)
pn = sin2

(
π
√

n+1
n

)
pn+1. Since sin

(
π
√

n
n

)
= 0 when n = r2n,

we have pr
2n+1 = 0 since then sin

(
π
√

r2n+1
n

)
6= 0. It is then clear that for m

such that π
√

r2n+m
n ∈]rπ, (r + 1)π[ we have pr

2n+m = 0.

(e) This results from pn−1
k+1 = cos2

(
π
√

n−1
n

)
pn−1
k where pnk has disappeared.

5



(f) Similarly this results from pr
2n−1
k+1 = cos2

(
π
√

r2n−1
n

)
pr

2n−1
k where pr

2n
k has disap-

peared.

(g) Set X = (p0, . . . , pn−1)T . We have Xk+1 = MXk where M is an n×n upper diag-

onal matrix with diagonal
[
1, cos2

(
π
√

1
n

)
, . . . , cos2

(
π
√

n−1
n

)]
corresponding to

its eigenvalues. Since the eigenvector associated to 1 is X = (1, 0, . . . , 0), we know,
form the spectral decomposition of M = P∆P 1 where ∆ is the diagonal matrix
made of its eigenvalues, that Mk = P∆kP−1 converges to P diag(1, 0, . . . , 0)P−1.
Thus Xk converges to (x̄, 0, . . . , 0). Since 1 =

∑n−1
n=0 p

n
k =

∑n−1
n=0 p

n
k+1 we have x̄ = 1

and thus pnk converges to δn,0.

ρk coincides with a n × n non-negative matrice of trace one and those diagonal
elements tend to zero except the first one converging towards 1. This implies that
ρk converges towards |0〉〈0|.

(h) It is enough to take X = (pn, . . . , p4n−1)T and Xk+1 = MXk where M is an (3n)×
(3n) upper diagonal matrix with diagonal

[
1, cos2

(
π
√

n+1
n

)
, . . . , cos2

(
π
√

4n−1
n

)]
and to reproduce the argument of the previous question.

6. (a) This comes from the fact that

Kπ/2,
π√
n+1

(ρ) =
sin
(
π
√

N
n+1

)
√
N

a†ρa
sin
(
π
√

N
n+1

)
√
N

+cos

(
π
√

N+1
n+1

)
ρ cos

(
π
√

N+1
n+1

)
.

(b) Obvious

(c) Contrarily to question 5c, M is an under diagonal matrix.

(d) The fact that such p are necessary stationary is obvious. To prove that they are

the only ones, we have to solve sin2
(
π
√

n+1
n+1

)
pn = sin2

(
π
√

n
n+1

)
pn−1. Since

sin
(
π
√

n+1
n+1

)
= 0 when n = r2(n + 1) − 1, we have pr

2(n+1)−2 = 0 since then

sin

(
π
√

r2(n+1)−1
n+1

)
6= 0.

(e) This results from

pn+1
k+1 = cos2

(
π
√

n+2
n+1

)
pn+1
k .

(f) This results from

p
r2(n+1)
k+1 = cos2

(
π

√
r2(n+1)+1

n+1

)
p
r2(n+1)
k .

(g) Use the method of question 5g, set X = (p0, . . . , pn)T with Xk+1 = MXk, M being

an (n+1)×(n+1) under diagonal matrix with diagonal
[
cos2

(
π
√

1
n+1

)
, . . . , cos2

(
π
√

n
n+1

)
, 1
]

(h) Prove that for any initial value of the density operator ρ0 satisfying ∀n ∈ [0, n] ∪
[4n+ 4,+∞[, ρ0|n〉 = 0, we have limk 7→+∞ ρk = |4n+ 3〉〈4n+ 3|.
Use X = (pn+1, . . . , p4n+3)T with Xk+1 = MXk, M being an (3n + 3) × (3n + 3)

under diagonal matrix with diagonal
[
cos2

(
π
√

n+2
n+1

)
, . . . , cos2

(
π
√

4n+3
n+1

)
, 1
]
.

6



7. (a) We have
ρk+1 , K(ρk) = rK 2π√

n+1
,π
2

(ρk) + (1− r)K 2π√
n
,0

(ρk).

(b) We have

pnk+1 = r sin2
(
π
√

n
n+1

)
pn−1
k +

(
r cos2

(
π
√

n+1
n+1

)
+ (1− r) cos2

(
π
√

n
n

))
pnk

+ (1− r) sin2

(
π
√

n+1
n

)
pn+1
k .

(c) We have to solve

pn = r sin2
(
π
√

n
n+1

)
pn−1 +

(
r cos2

(
π
√

n+1
n+1

)
+ (1− r) cos2

(
π
√

n
n

))
pn

+ (1− r) sin2

(
π
√

n+1
n

)
pn+1. (1)

For n = n we get

r sin2

(
π
√

n
n+1

)
pn−1 + (1− r) sin2

(
π
√

n+1
n

)
pn+1 = 0.

Since each pn ≥ 0 and r ∈]0, 1[, we conclude that pn−1 = pn+1 = 0. With n = n−1,

equation (1) yields 0 = r sin2
(
π
√

n−1
n+1

)
pn−2. Thus pn−2 = 0 and by recurrence we

have pn = 0 for n < n since r sin2
(
π
√

n
n+1

)
> 0 for n ≤ n− 1.

Similarly we get pn = 0 for n < n < 4n since (1− r) sin2
(
π
√

n
n

)
> 0.

(d) . . .
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