M2 Mathématiques \& Applications
UE (ANEDP, COCV): Analyse et contrôle de systèmes quantiques
Contrôle des connaissances, durée 2 heures.
Sujet donné par M. Mirrahimi et P. Rouchon

Les documents sont autorisés. Les accès aux réseaux internet et mobiles sont interdits.

Exercise 1

Consider the tensor product $\mathcal{H}=\mathcal{H}_{3} \otimes \mathcal{H}_{c}$ where $\mathcal{H}_{3} \sim \mathbb{C}^{3}$ admits $(|g\rangle,|e\rangle,|f\rangle)$ as Hilbert basis and $\mathcal{H}_{c} \sim L^{2}(\mathbb{R}, \mathbb{C}) \sim l^{2}(\mathbb{C})$ admits $(|n\rangle)_{n \geq 0}$ as Hilbert basis (Fock basis). Take the following Hamiltonian on $\mathcal{H}\left(\omega_{g}, \omega_{e}, \omega_{f}, \omega_{c}, \chi\right.$ real parameters $)$

$$
\begin{aligned}
\boldsymbol{H}=\left(\omega_{g}|g\rangle\langle g|+\omega_{e}|e\rangle\langle e|+\omega_{f}|f\rangle\langle f|\right) \otimes & \boldsymbol{I}_{c}+\omega_{c} \boldsymbol{I}_{3} \otimes\left(\boldsymbol{N}+\frac{\boldsymbol{I}_{c}}{2}\right) \\
& +\chi(|g\rangle\langle f|+|f\rangle\langle g|+|e\rangle\langle f|+|f\rangle\langle e|) \otimes\left(\boldsymbol{N}+\frac{\boldsymbol{I}_{c}}{2}\right)
\end{aligned}
$$

where \boldsymbol{I}_{3} and \boldsymbol{I}_{c} are identity operators on \mathcal{H}_{3} and $\mathcal{H}_{c}, \boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a}$ is the photon number operator on \mathcal{H}_{c}. We consider the Schrödinger equation $\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}|\psi\rangle$ where $|\psi\rangle \in \mathcal{H}$.

1. With $\boldsymbol{a}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)$ and $|\psi\rangle \sim\left(\psi_{g}, \psi_{e}, \psi_{f}\right) \in L^{2}(\mathbb{R}, \mathbb{C}) \times L^{2}(\mathbb{R}, \mathbb{C}) \times L^{2}(\mathbb{R}, \mathbb{C})$ give the partial differential formulation of the Schrödinger equation.
2. With $|\psi\rangle=\sum_{n \geq 0} \psi_{g, n}|g\rangle \otimes|n\rangle+\psi_{e, n}|e\rangle \otimes|n\rangle+\psi_{f, n}|f\rangle \otimes|n\rangle$ give the infinite set of ordinary differential equations satisfied by $\left(\psi_{g, n}, \psi_{e, n}, \psi_{f, n}\right)_{n \geq 0}$.

Exercise 2

Consider the 3-level system of Hilbert space $\mathcal{H} \sim \mathbb{C}^{3}$ with $(|g\rangle,|e\rangle,|f\rangle)$ as Hilbert basis with the following Hamiltonian
$\boldsymbol{H}(t)=\omega_{e}|e\rangle\langle e|+\omega_{f}|f\rangle\langle f|+u(t)\left(\mu_{g e}(|g\rangle\langle e|+|e\rangle\langle g|)+\mu_{e f}(|e\rangle\langle f|+|f\rangle\langle e|)+\mu_{f g}(|f\rangle\langle g|+|g\rangle\langle f|)\right)$
where $t \mapsto u(t) \in \mathbb{R}$ is the control input and $\left(\omega_{e}, \omega_{f}, \mu_{g e}, \mu_{e f}, \mu_{f g}\right)$ are constant real parameters. Consider the Schrödinger equation $\frac{d}{d t}|\psi\rangle=-i \boldsymbol{H}(t)|\psi\rangle$ with $\omega_{f}>\omega_{e}>0$ and $0<\left|\mu_{g e}\right|,\left|\mu_{e f}\right|,\left|\mu_{f g}\right| \ll \min \left(\omega_{e}, \omega_{f}-\omega_{e}\right)$.

1. Take the passage to the interaction frame $|\psi\rangle \mapsto|\phi\rangle=e^{i t\left(\omega_{e}|e\rangle\langle e|+\omega_{f}|f\rangle\langle f|\right)}|\psi\rangle$ and compute the interaction Hamiltonian $\boldsymbol{H}_{\text {int }}(t)$ governing the Schrödinger dynamics of $|\phi\rangle$: $\frac{d}{d t}|\phi\rangle=-i \boldsymbol{H}_{\text {int }}(t)|\phi\rangle$.
2. Assume that $u(t)=\bar{u} e^{-i \omega_{f} t}+\bar{u}^{*} e^{i \omega_{f} t}$ of constant amplitude $\bar{u} \in \mathbb{C} /\{0\}$ with $|\bar{u}| \leq 1$. Justify that one can approximate the time evolution of ϕ by $\frac{d}{d t}|\phi\rangle=-i \overline{\boldsymbol{H}}|\phi\rangle$ where $\overline{\boldsymbol{H}}$ is a constant Hamiltonian and provide its explicit expression.
3. We assume now that the state $|f\rangle$ is unstable and relaxes towards $|g\rangle$ or $|e\rangle$ with rates $\kappa_{g}, \kappa_{e}>0$ much smaller that $\min \left(\omega_{e}, \omega_{f}-\omega_{e}\right)$. This open quantum quantum is described by the Lindbald master equation for the density operator ρ in the interaction frame:
$\frac{d}{d t} \rho=-i[\overline{\boldsymbol{H}}, \rho]+\kappa_{g}\left(\boldsymbol{L}_{g} \rho \boldsymbol{L}_{g}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{g}^{\dagger} \boldsymbol{L}_{g} \rho+\rho \boldsymbol{L}_{g}^{\dagger} \boldsymbol{L}_{g}\right)\right)+\kappa_{e}\left(\boldsymbol{L}_{e} \rho \boldsymbol{L}_{e}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}_{e}^{\dagger} \boldsymbol{L}_{e} \rho+\rho \boldsymbol{L}_{e}^{\dagger} \boldsymbol{L}_{e}\right)\right)$
with $\boldsymbol{L}_{g}=|g\rangle\langle f|$ and $\boldsymbol{L}_{e}=|e\rangle\langle f|$. Show that for any initial density operator $\rho_{0}=\rho(0)$, the limit of $\rho(t)$ when t tends to $+\infty$ is the pure state $|e\rangle\langle e|$ (Hint: use the Lyapunov function $V(\rho)=1-\langle e| \rho|e\rangle$ and LaSalle's invariance principle).

Problem

We consider a quantum harmonic oscillator defined on the Hilbert space

$$
\mathcal{H}_{c}=\left\{\sum_{n=0}^{\infty} c_{n}|n\rangle \mid\left(c_{n}\right) \in l^{2}(\mathbb{C})\right\}
$$

where $|n\rangle$ corresponds to the Fock state with n photon(s). Driving it at its resonance, the Hamiltonian in the interaction frame is given by

$$
\boldsymbol{H}_{c}=i\left(\bar{u}^{*} \boldsymbol{a}-\bar{u} \boldsymbol{a}^{\dagger}\right)
$$

where $\bar{u} \in \mathbb{C}$ is a complex amplitude and \boldsymbol{a} is the photon annihilator operator. As illustrated in the course, this Hamiltonian generates during $T \geq 0$ a unitary evolution $\boldsymbol{U}_{T}=\boldsymbol{D}_{\alpha}=$ $e^{-i T \boldsymbol{H}_{c}}=e^{\alpha \boldsymbol{a}^{\dagger}-\alpha^{*} \boldsymbol{a}}$ with $\alpha=T \bar{u}$.

Through this problem, we will study the situation where this Hamiltonian evolution is accompanied by frequent measurements of a certain observable $\boldsymbol{O}_{1}=|1\rangle\langle 1|$. Indeed, we will assume that this dynamics is performed in m steps of length T / m and labeled from $k=0$ to $k=m-1$, together with a measurement after each step. In this aim, we consider the measurement operators $\boldsymbol{M}_{g}=\boldsymbol{I}-|1\rangle\langle 1|, \boldsymbol{M}_{e}=|1\rangle\langle 1|$. The dynamics of the system is modeled by the Markov chain of state $\left|\psi_{k}\right\rangle \in \boldsymbol{H}_{c}$ and measurement outcomes $y_{k} \in\{g, e\}$ at step k :

$$
\begin{aligned}
\left|\psi_{k+1 / 2}\right\rangle & =\boldsymbol{D}_{\frac{\alpha}{m}}\left|\psi_{k}\right\rangle, \\
\left|\psi_{k+1}\right\rangle & = \begin{cases}\frac{\boldsymbol{M}_{g}\left|\psi_{k+1 / 2}\right\rangle}{\sqrt{\left\langle\psi_{k+1 / 2}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k+1 / 2}\right\rangle}} & \text { with } y_{k}=g, \text { probability }\left\langle\psi_{k+1 / 2}\right| \boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}\left|\psi_{k+1 / 2}\right\rangle \\
\frac{\boldsymbol{M}_{e}\left|\psi_{k+1 / 2}\right\rangle}{\sqrt{\left\langle\psi_{k+1 / 2}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k+1 / 2}\right\rangle}} & \text { with } y_{k}=e, \text { probability }\left\langle\psi_{k+1 / 2}\right| \boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}\left|\psi_{k+1 / 2}\right\rangle\end{cases}
\end{aligned}
$$

Furthermore, we assume the initial state to be given by $\left|\psi_{0}\right\rangle=|0\rangle$. Physically $\left|\psi_{m}\right\rangle$ corresponds then to the wave function at time T.

1. Show that the operators \boldsymbol{M}_{g} and \boldsymbol{M}_{e} represent an eligible Kraus map. Show that this measurement is quantum non-demolition for an observable \boldsymbol{O} if and only if $\langle n| \boldsymbol{O}|1\rangle=0$ for all $n \neq 1$.
2. Provide the state $\left|\psi_{r}^{g}\right\rangle$ of the system conditioned on r measurements giving as result $y_{k}=g$ for all $k=0, \cdots, r-1$.
3. Show that the probability p_{r}^{g} of measuring $y_{k}=g$ for all $k=0, \cdots, r-1$ is given by

$$
p_{r}^{g}=\|\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}\right)^{r}|0\rangle \|^{2} .
$$

4. Now, we aim at studying the limits $\lim _{m \rightarrow \infty} p_{m}^{g}$ and $\lim _{m \rightarrow \infty}\left|\psi_{m}^{g}\right\rangle$. Show that

$$
\| \boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}|0\rangle-|0\rangle \|=O\left(\frac{1}{m^{2}}\right) .
$$

5. Deduce that

$$
\lim _{m \rightarrow \infty} p_{m}^{g}=1 \quad \text { and } \quad \lim _{m \rightarrow \infty}\left|\psi_{m}^{g}\right\rangle=|0\rangle \text { strongly in } \mathcal{H}_{c}
$$

Hint: Use the fact that $\boldsymbol{D}_{\alpha / m}$ is a unitary and that \boldsymbol{M}_{g} is a projection, and therefore they do not increase the norm of a state in \mathcal{H}_{c}.
6. Provide a simple and physical interpretation of the above limits.
7. Now we consider a different measurement process based on the observable $\boldsymbol{O}_{2}=|2\rangle\langle 2|$. We consider the associated Kraus operators $\boldsymbol{M}_{\boldsymbol{g}}=\boldsymbol{I}-|2\rangle\langle 2|$ and $\boldsymbol{M}_{e}=|2\rangle\langle 2|$. Also, for simplicity sakes, we assume α to be real.
(a) Take $c_{0}, c_{1} \in \mathbb{R}$ such that $\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1$, and consider the wave functions

$$
|\psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle \text { and }|\tilde{\psi}\rangle=\frac{\left(c_{0}-\alpha c_{1} / m\right)|0\rangle+\left(c_{1}+\alpha c_{0} / m\right)|1\rangle}{\sqrt{1+\alpha^{2} / m^{2}}} .
$$

Show that $\| \boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}|\psi\rangle-|\tilde{\psi}\rangle \|=O\left(\frac{1}{m^{2}}\right)$ (Hint: Calculate $\boldsymbol{D}_{\alpha / m}|1\rangle$ by noting that $|1\rangle=\boldsymbol{a}^{\dagger}|0\rangle$ and using the commutation relations).
(b) Deduce the limits $\lim _{m \rightarrow \infty} p_{m}^{g}$ and $\lim _{m \rightarrow \infty}\left|\psi_{m}^{g}\right\rangle\left(p_{m}^{g}\right.$ and $\left|\psi_{m}^{g}\right\rangle$ are the probability to detect $y_{k}=g$ for $k=0, \cdots, m-1$ and the corresponding quantum state at step m starting from $\left|\psi_{0}\right\rangle=|0\rangle$).
(c) Provide a simple and physical interpretation of the above limits.

M2 Mathématiques \& Applications

UE (ANEDP, COCV): Analyse et contrôle de systèmes quantiques
Corrigé du Contrôle des connaissances
M. Mirrahimi et P. Rouchon

Exercise 1

1. We have

$$
\begin{aligned}
& i \frac{\partial \psi_{g}}{\partial t}=\frac{\omega_{g}}{2} \psi_{g}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}+\frac{\chi}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{f} \\
& i \frac{\partial \psi_{e}}{\partial t}=\frac{\omega_{e}}{2} \psi_{e}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}+\frac{\chi}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{f} \\
& i \frac{\partial \psi_{f}}{\partial t}=\frac{\omega_{f}}{2} \psi_{f}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{f}+\frac{\chi}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}+\frac{\chi}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}
\end{aligned}
$$

2. We have

$$
\begin{aligned}
i \frac{d}{d t} \psi_{g, n} & =\left((n+1 / 2) \omega_{c}+\omega_{g}\right) \psi_{g, n}+\chi(n+1 / 2) \psi_{f, n} \\
i \frac{d}{d t} \psi_{e, n} & =\left((n+1 / 2) \omega_{c}+\omega_{e}\right) \psi_{e, n}+\chi(n+1 / 2) \psi_{f, n} \\
i \frac{d}{d t} \psi_{f, n} & =\left((n+1 / 2) \omega_{c}+\omega_{f}\right) \psi_{f, n}+\chi(n+1 / 2) \psi_{g, n}+\chi(n+1 / 2) \psi_{e, n}
\end{aligned}
$$

Exercise 2

1. We have

$$
\left.\begin{array}{rl}
\boldsymbol{H}_{\text {int }}(t)=u(t) \mu_{g e}\left(e^{-i \omega_{e} t}|g\rangle\langle e|+e^{i \omega_{e} t}|e\rangle\langle g|\right) & \\
& +u(t) \mu_{e f}\left(e^{-i\left(\omega_{f}-\omega_{e}\right) t}|e\rangle\langle f|\right.
\end{array}+e^{i\left(\omega_{f}-\omega_{e}\right) t}|f\rangle\langle e|\right) .
$$

2. Since $\left|\mu_{g e}\right|,\left|\mu_{e f}\right|,\left|\mu_{f g}\right| \ll \min \left(\omega_{e}, \omega_{f}-\omega_{e}\right)$, we can use the rotating wave approximation and keep only the non-oscillating terms (secular terms) in $\boldsymbol{H}_{\text {int }}(t)$ where $u(t)$ is replaced by $\bar{u} e^{-i \omega_{f} t}+\bar{u}^{*} e^{i \omega_{f} t}$. This yields to $\overline{\boldsymbol{H}}=\mu_{f g}\left(\bar{u}|f\rangle\langle g|+\bar{u}^{*}|g\rangle\langle f|\right)|\phi\rangle$.
3. Since $\rho(t)$ remains non-negative and of trace one, $V(\rho)$ remains between 0 and 1 . Moreover $V(\rho)=0$ means that $\rho=|e\rangle\langle e|$. Since

$$
\begin{aligned}
\frac{d}{d t} \rho=-i \mu_{f g}[\bar{u}|f\rangle\langle g|+ & \left.\bar{u}^{*}|g\rangle\langle f|, \rho\right] \\
& +\langle f| \rho|f\rangle\left(\kappa_{g}|g\rangle\langle g|+\kappa_{e}|e\rangle\langle e|\right)-\frac{\kappa_{g}+\kappa_{e}}{2}(|f\rangle\langle f| \rho+\rho|f\rangle\langle f|)
\end{aligned}
$$

we have $\frac{d}{d t} V(\rho)=-\kappa_{e}\langle f| \rho|f\rangle \leq 0$. Thus V is a decreasing time function. Since the set of density operators is compact and $V \geq 0$, we can apply LaSalle's invariance principle: the trajectories converge towards the largest invariant set of density operators satisfying $\frac{d}{d t} V=0$. When $\langle f| \rho|f\rangle=0$ we have $\rho|f\rangle=0$ and $\langle f| \rho=0$ since ρ is a density operator (therefore non-negative). Then we have

$$
\frac{d}{d t} \rho=-i \mu_{f g}\left(\bar{u}|f\rangle\langle g| \rho-\bar{u}^{*} \rho|g\rangle\langle f|\right)
$$

and we get by differentiating $\rho|f\rangle=0$ with respect to $t: \frac{d}{d t} \rho|f\rangle=0$, i.e. $-\mu_{f g} \bar{u}^{*} \rho|g\rangle=0$. This means that $|f\rangle$ and $|g\rangle$ are in the kernel of ρ. This implies that ρ is necessarily the projector on $|e\rangle$ since it must be of trace one and non-negative.
This Lindbald equation is the simplest dynamical model describing optical pumping, a simple and powerful idea due to Alfred Kastler (Physics Nobel Prize 1966) for preparing and stabilizing pure states.

Problem

1. It is easy to check that $\boldsymbol{M}_{g}^{\dagger} \boldsymbol{M}_{g}+\boldsymbol{M}_{e}^{\dagger} \boldsymbol{M}_{e}=\boldsymbol{I}$ and therefore they represent an eligible Kraus map. The measurement is non-demolition for an observable \boldsymbol{O}, if the Kraus operators \boldsymbol{M}_{g} and \boldsymbol{M}_{e} commute with \boldsymbol{O}. It is easy to check that this condition is equivalent to $\langle m| \boldsymbol{O}|1\rangle=0, \forall m \neq 1$.
2. The state at the step r is given by

$$
\left|\psi_{r}^{g}\right\rangle=\frac{\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}\left|\psi_{r-1}^{g}\right\rangle}{\| \boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}\left|\psi_{r-1}^{g}\right\rangle \|} .
$$

Therefore by induction, it is easy to see that

$$
\left|\psi_{r}^{g}\right\rangle=\frac{\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}\right)^{r}|0\rangle}{\|\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}\right)^{r}|0\rangle \|} .
$$

3. The probability for the first measurement to give $y_{0}=g$ is clearly $\| \boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}|0\rangle \|^{2}$. The probability to achieve r measurements giving all $y_{k}=g$ is given by

$$
\begin{aligned}
p_{r}^{g}=\mathbb{P}\left(y_{r-1}=\right. & \left.g, y_{r-2}=g, \cdots y_{0}=g\right) \\
& =\mathbb{P}\left(y_{r-1}=g \mid y_{r-2}=g, \cdots y_{0}=g\right) \mathbb{P}\left(y_{r-2}=g, y_{r-3}=g, \cdots y_{0}=g\right) .
\end{aligned}
$$

But

$$
\mathbb{P}\left(y_{r-1}=g \mid y_{r-2}=g, \cdots y_{0}=g\right)=\left\|\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}} \psi_{r-1}^{g}\right\|^{2}=\frac{\|\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}\right)^{r}|0\rangle \|^{2}}{\|\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}^{m}\right)^{r-1}|0\rangle \|^{2}}
$$

and

$$
\mathbb{P}\left(y_{r-2}=g, y_{r-3}=g, \cdots y_{0}=g\right)=p_{r-1}^{g} .
$$

The proof is clear by induction.
4. We have

$$
\begin{aligned}
\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}|0\rangle & =(\boldsymbol{I}-|1\rangle\langle 1|)\left|\frac{\alpha}{m}\right\rangle=e^{-\frac{|\alpha|^{2}}{2 m^{2}}}(\boldsymbol{I}-|1\rangle\langle 1|) \sum_{k=0}^{\infty} \frac{1}{\sqrt{k!}} \frac{\alpha^{k}}{m^{k}}|k\rangle \\
& =e^{-\frac{\mid \alpha \alpha^{2}}{2 m^{2}}}|0\rangle+e^{-\frac{|\alpha|^{2}}{2 m^{2}}} \sum_{k=2}^{\infty} \frac{1}{\sqrt{k!}} \frac{\alpha^{k}}{m^{k}}|k\rangle .
\end{aligned}
$$

We note that $e^{-\frac{|\alpha|^{2}}{2 m^{2}}}=1+O\left(1 / m^{2}\right)$ and that

$$
\| \sum_{k=2}^{\infty} \frac{1}{\sqrt{k!}} \frac{\alpha^{k}}{m^{k}}|k\rangle \| \leq \frac{|\alpha|^{2}}{m^{2}} \sum_{k=2}^{\infty} \frac{1}{\sqrt{k!}} \frac{|\alpha|^{k-2}}{m^{k-2}} .
$$

Noting that the series is convergent, the result is clear.
5. One can write

$$
\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}|0\rangle=|0\rangle+O\left(\frac{1}{m^{2}}\right)\left|\chi_{0}\right\rangle,
$$

where χ_{0} is a normalized state in \mathcal{H}_{c}. Therefore

$$
\begin{aligned}
\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}\right)^{2}|0\rangle & =\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}^{m}\right)\left(|0\rangle+O\left(\frac{1}{m^{2}}\right)\left|\chi_{0}\right\rangle\right) \\
& =|0\rangle+O\left(\frac{1}{m^{2}}\right)\left|\chi_{0}\right\rangle+O\left(\frac{1}{m^{2}}\right)\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}^{m}\right)\left|\chi_{0}\right\rangle .
\end{aligned}
$$

We note that $\|\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}\right)\left|\chi_{0}\right\rangle \| \leq 1$, as $\boldsymbol{D}_{\frac{\alpha}{m}}$ is a unitary (therefore conserving the norm) and \boldsymbol{M}_{g} is a projection (therefore reducing the norm). Thus $O\left(\frac{1}{m^{2}}\right)\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}^{m}\right)\left|\chi_{0}\right\rangle$ can be written as $O\left(\frac{1}{m^{2}}\right)\left|\chi_{1}\right\rangle$ for a normalized state $\left|\chi_{1}\right\rangle$ in \mathcal{H}_{c}. In the same manner

$$
\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}^{m}\right)^{m}|0\rangle=|0\rangle+O\left(\frac{1}{m^{2}}\right)\left(\sum_{k=0}^{m-1}\left|\chi_{k}\right\rangle\right),
$$

where $\left|\chi_{k}\right\rangle$'s are normalized states in \mathcal{H}_{c}. Therefore

$$
p_{m}^{g}=\|\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}\right)^{m}|0\rangle\left\|^{2}=\right\||0\rangle+O\left(\frac{1}{m^{2}}\right)\left(\sum_{k=0}^{m-1}\left|\chi_{k}\right\rangle\right) \|^{2} \rightarrow 1 \text { as } m \rightarrow \infty .
$$

Furthermore

$$
\|\left|\psi_{m}^{g}\right\rangle-|0\rangle\|=\| \frac{\left(\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}^{m}\right)^{m}|0\rangle}{\sqrt{p_{m}^{g}}}-|0\rangle \| \rightarrow 0 \text { as } m \rightarrow \infty
$$

6. We have illustrated that, whenever we measure frequently the observable \boldsymbol{O}_{1} during the unitary evolution, we freeze the state at time $T(T>0$ being arbitrary) in $|0\rangle$ and remove the effect of the driving Hamiltonian. This is called the quantum Zeno effect.
7. (a) We have $\boldsymbol{M}_{g} \boldsymbol{D} \frac{\alpha}{m}|\psi\rangle=c_{0} \boldsymbol{M}_{g}\left|\frac{\alpha}{m}\right\rangle+c_{1} \boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}|1\rangle$. In order to calculate $\boldsymbol{D}_{\frac{\alpha}{m}}|1\rangle$, we note that

$$
\boldsymbol{D}_{\frac{\alpha}{m}}|1\rangle=\boldsymbol{D}_{\frac{\alpha}{m}} \boldsymbol{a}^{\dagger}|0\rangle=\boldsymbol{D}_{\frac{\alpha}{m}} \boldsymbol{a}^{\dagger} \boldsymbol{D}_{-\frac{\alpha}{m}} \boldsymbol{D}_{\frac{\alpha}{m}}|0\rangle=\left(\boldsymbol{a}^{\dagger}-\frac{\alpha}{m}\right)\left|\frac{\alpha}{m}\right\rangle .
$$

As $\boldsymbol{M}_{g}=\boldsymbol{I}-|2\rangle\langle 2|$, we have

$$
\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}|\psi\rangle=c_{0}\left(|0\rangle+\frac{1}{1!} \frac{\alpha}{m}|1\rangle\right)+c_{1} \boldsymbol{M}_{g}\left(\boldsymbol{a}^{\dagger}-\frac{\alpha}{m}\right)\left(|0\rangle+\frac{1}{1!} \frac{\alpha}{m}|1\rangle\right)+O\left(\frac{1}{m^{2}}\right)\left|\chi_{0}\right\rangle
$$

where $\left|\chi_{0}\right\rangle$ is a normalized state in \mathcal{H}_{c}. Therefore

$$
\begin{aligned}
\boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}|\psi\rangle & =c_{0}\left(|0\rangle+\frac{\alpha}{m}|1\rangle\right)+c_{1} \boldsymbol{M}_{g}\left(\boldsymbol{a}^{\dagger}-\frac{\alpha}{m}\right)\left(|0\rangle+\frac{1}{1!} \frac{\alpha}{m}|1\rangle\right)+O\left(\frac{1}{m^{2}}\right)\left|\chi_{0}\right\rangle \\
& =c_{0}\left(|0\rangle+\frac{\alpha}{m}|1\rangle\right)+c_{1} \boldsymbol{M}_{g}\left(|1\rangle+\sqrt{2} \frac{\alpha}{m}|2\rangle-\frac{\alpha}{m}|0\rangle\right)+O\left(\frac{1}{m^{2}}\right)\left|\chi_{1}\right\rangle \\
& =c_{0}\left(|0\rangle+\frac{\alpha}{m}|1\rangle\right)+c_{1}\left(|1\rangle-\frac{\alpha}{m}|0\rangle\right)+O\left(\frac{1}{m^{2}}\right)\left|\chi_{1}\right\rangle,
\end{aligned}
$$

where $\left|\chi_{0}\right\rangle$ is a normalized state in \mathcal{H}_{c}. This proves the relation

$$
\| \boldsymbol{M}_{g} \boldsymbol{D}_{\frac{\alpha}{m}}|\psi\rangle-|\tilde{\psi}\rangle \|=O\left(1 / m^{2}\right)
$$

as $1 / \sqrt{1+\alpha^{2} / m^{2}}=1+O\left(1 / m^{2}\right)$.
(b) One has $|\tilde{\psi}\rangle=\boldsymbol{R}_{\theta}|\psi\rangle$, where

$$
\boldsymbol{R}_{\theta}=\left(\begin{array}{cc}
\frac{1}{\sqrt{1+\alpha^{2} / m^{2}}} & -\frac{\alpha / m}{\sqrt{1+\alpha^{2} / m^{2}}} \\
\frac{\alpha / m}{\sqrt{1+\alpha^{2} / m^{2}}} & \frac{1}{\sqrt{1+\alpha^{2} / m^{2}}}
\end{array}\right)
$$

is a rotation matrix with $\theta=\arctan (\alpha / m)$ in the space $\operatorname{span}\{|0\rangle,|1\rangle\}$. Similarly to the question 5 , we have $\lim _{m \rightarrow \infty} p_{m}^{g}=1$. Also, we have

$$
\left|\psi_{m}^{g}\right\rangle=\boldsymbol{R}_{\arctan (\alpha / m)}^{m}|0\rangle+O(1 / m)|\chi\rangle=\boldsymbol{R}_{m \arctan (\alpha / m)}|0\rangle+O(1 / m)|\chi\rangle,
$$

where χ is a normalized state in \mathcal{H}_{c}. Now, note that $\boldsymbol{R}_{m \arctan (\alpha / m)}|0\rangle$ converges to $\boldsymbol{R}_{\alpha}|0\rangle$ for m tending to infinity.
(c) We have shown that the measuring frequently the observable \boldsymbol{O}_{2}, we confine the dynamics of the harmonic oscillator to the two-dimensional subspace spanned by $|0\rangle$ and $|1\rangle$. A unitary displacement of the cavity state is therefore replaced by a Rabi oscillation for this effective two-level system. This is called Quantum Zeno Dynamics.

