M2 Mathématiques & Applications UE (ANEDP, COCV): Analyse et contrôle de systèmes quantiques Contrôle des connaissances, durée 2 heures. Sujet donné par M. Mirrahimi et P. Rouchon

Les documents sont autorisés. Les accès aux réseaux internet et mobiles sont interdits.

Exercise 1

Consider the tensor product $\mathcal{H} = \mathcal{H}_3 \otimes \mathcal{H}_c$ where $\mathcal{H}_3 \sim \mathbb{C}^3$ admits $(|g\rangle, |e\rangle, |f\rangle)$ as Hilbert basis and $\mathcal{H}_c \sim L^2(\mathbb{R}, \mathbb{C}) \sim l^2(\mathbb{C})$ admits $(|n\rangle)_{n\geq 0}$ as Hilbert basis (Fock basis). Take the following Hamiltonian on \mathcal{H} ($\omega_g, \omega_e, \omega_f, \omega_c, \chi$ real parameters)

$$\begin{split} \boldsymbol{H} &= \left(\omega_g |g\rangle \langle g| + \omega_e |e\rangle \langle e| + \omega_f |f\rangle \langle f|\right) \otimes \boldsymbol{I}_c + \omega_c \ \boldsymbol{I}_3 \otimes \left(\boldsymbol{N} + \frac{\boldsymbol{I}_c}{2}\right) \\ &+ \chi \left(|g\rangle \langle f| + |f\rangle \langle g| + |e\rangle \langle f| + |f\rangle \langle e|\right) \otimes \left(\boldsymbol{N} + \frac{\boldsymbol{I}_c}{2}\right) \end{split}$$

where I_3 and I_c are identity operators on \mathcal{H}_3 and \mathcal{H}_c , $N = a^{\dagger}a$ is the photon number operator on \mathcal{H}_c . We consider the Schrödinger equation $\frac{d}{dt}|\psi\rangle = -iH|\psi\rangle$ where $|\psi\rangle \in \mathcal{H}$.

- 1. With $\boldsymbol{a} = \frac{1}{\sqrt{2}} \left(x + \frac{\partial}{\partial x} \right)$ and $|\psi\rangle \sim (\psi_g, \psi_e, \psi_f) \in L^2(\mathbb{R}, \mathbb{C}) \times L^2(\mathbb{R}, \mathbb{C}) \times L^2(\mathbb{R}, \mathbb{C})$ give the partial differential formulation of the Schrödinger equation.
- 2. With $|\psi\rangle = \sum_{n\geq 0} \psi_{g,n} |g\rangle \otimes |n\rangle + \psi_{e,n} |e\rangle \otimes |n\rangle + \psi_{f,n} |f\rangle \otimes |n\rangle$ give the infinite set of ordinary differential equations satisfied by $(\psi_{q,n}, \psi_{e,n}, \psi_{f,n})_{n\geq 0}$.

Exercise 2

Consider the 3-level system of Hilbert space $\mathcal{H} \sim \mathbb{C}^3$ with $(|g\rangle, |e\rangle, |f\rangle)$ as Hilbert basis with the following Hamiltonian

$$\boldsymbol{H}(t) = \omega_e |e\rangle \langle e| + \omega_f |f\rangle \langle f| + u(t) \Big(\mu_{ge}(|g\rangle \langle e| + |e\rangle \langle g|) + \mu_{ef}(|e\rangle \langle f| + |f\rangle \langle e|) + \mu_{fg}(|f\rangle \langle g| + |g\rangle \langle f|) \Big)$$

where $t \mapsto u(t) \in \mathbb{R}$ is the control input and $(\omega_e, \omega_f, \mu_{ge}, \mu_{ef}, \mu_{fg})$ are constant real parameters. Consider the Schrödinger equation $\frac{d}{dt}|\psi\rangle = -i\boldsymbol{H}(t)|\psi\rangle$ with $\omega_f > \omega_e > 0$ and $0 < |\mu_{ge}|, |\mu_{ef}|, |\mu_{fg}| \ll \min(\omega_e, \omega_f - \omega_e).$

- 1. Take the passage to the interaction frame $|\psi\rangle \mapsto |\phi\rangle = e^{it\left(\omega_e |e\rangle\langle e|+\omega_f|f\rangle\langle f|\right)}|\psi\rangle$ and compute the interaction Hamiltonian $\boldsymbol{H}_{int}(t)$ governing the Schrödinger dynamics of $|\phi\rangle$: $\frac{d}{dt}|\phi\rangle = -i\boldsymbol{H}_{int}(t)|\phi\rangle.$
- 2. Assume that $u(t) = \bar{u}e^{-i\omega_f t} + \bar{u}^*e^{i\omega_f t}$ of constant amplitude $\bar{u} \in \mathbb{C}/\{0\}$ with $|\bar{u}| \leq 1$. Justify that one can approximate the time evolution of ϕ by $\frac{d}{dt}|\phi\rangle = -i\overline{H}|\phi\rangle$ where \overline{H} is a constant Hamiltonian and provide its explicit expression.

3. We assume now that the state $|f\rangle$ is unstable and relaxes towards $|g\rangle$ or $|e\rangle$ with rates $\kappa_g, \kappa_e > 0$ much smaller that $\min(\omega_e, \omega_f - \omega_e)$. This open quantum quantum is described by the Lindbald master equation for the density operator ρ in the interaction frame:

$$\frac{d}{dt}\rho = -i\Big[\overline{H},\rho\Big] + \kappa_g \left(\boldsymbol{L}_g \rho \boldsymbol{L}_g^{\dagger} - \frac{1}{2} (\boldsymbol{L}_g^{\dagger} \boldsymbol{L}_g \rho + \rho \boldsymbol{L}_g^{\dagger} \boldsymbol{L}_g) \right) + \kappa_e \left(\boldsymbol{L}_e \rho \boldsymbol{L}_e^{\dagger} - \frac{1}{2} (\boldsymbol{L}_e^{\dagger} \boldsymbol{L}_e \rho + \rho \boldsymbol{L}_e^{\dagger} \boldsymbol{L}_e) \right)$$

with $L_g = |g\rangle\langle f|$ and $L_e = |e\rangle\langle f|$. Show that for any initial density operator $\rho_0 = \rho(0)$, the limit of $\rho(t)$ when t tends to $+\infty$ is the pure state $|e\rangle\langle e|$ (**Hint:** use the Lyapunov function $V(\rho) = 1 - \langle e|\rho|e\rangle$ and LaSalle's invariance principle).

Problem

We consider a quantum harmonic oscillator defined on the Hilbert space

$$\mathcal{H}_{c} = \left\{ \sum_{n=0}^{\infty} c_{n} |n\rangle \mid (c_{n}) \in l^{2}(\mathbb{C}) \right\}$$

where $|n\rangle$ corresponds to the Fock state with n photon(s). Driving it at its resonance, the Hamiltonian in the interaction frame is given by

$$\boldsymbol{H}_c = i(\bar{u}^*\boldsymbol{a} - \bar{u}\boldsymbol{a}^\dagger).$$

where $\bar{u} \in \mathbb{C}$ is a complex amplitude and \boldsymbol{a} is the photon annihilator operator. As illustrated in the course, this Hamiltonian generates during $T \geq 0$ a unitary evolution $\boldsymbol{U}_T = \boldsymbol{D}_{\alpha} = e^{-iT\boldsymbol{H}_c} = e^{\alpha \boldsymbol{a}^{\dagger} - \alpha^* \boldsymbol{a}}$ with $\alpha = T\bar{u}$.

Through this problem, we will study the situation where this Hamiltonian evolution is accompanied by frequent measurements of a certain observable $O_1 = |1\rangle\langle 1|$. Indeed, we will assume that this dynamics is performed in m steps of length T/m and labeled from k = 0to k = m - 1, together with a measurement after each step. In this aim, we consider the measurement operators $M_g = I - |1\rangle\langle 1|$, $M_e = |1\rangle\langle 1|$. The dynamics of the system is modeled by the Markov chain of state $|\psi_k\rangle \in H_c$ and measurement outcomes $y_k \in \{g, e\}$ at step k:

$$\begin{split} |\psi_{k+1/2}\rangle &= \boldsymbol{D}_{\frac{\alpha}{m}}|\psi_{k}\rangle, \\ |\psi_{k+1}\rangle &= \begin{cases} \frac{\boldsymbol{M}_{g}|\psi_{k+1/2}\rangle}{\sqrt{\left\langle\psi_{k+1/2}|\boldsymbol{M}_{g}^{\dagger}\boldsymbol{M}_{g}|\psi_{k+1/2}\right\rangle}} & \text{with } y_{k} = g, \text{ probability } \left\langle\psi_{k+1/2}|\boldsymbol{M}_{g}^{\dagger}\boldsymbol{M}_{g}|\psi_{k+1/2}\right\rangle; \\ \frac{\boldsymbol{M}_{e}|\psi_{k+1/2}\rangle}{\sqrt{\left\langle\psi_{k+1/2}|\boldsymbol{M}_{e}^{\dagger}\boldsymbol{M}_{e}|\psi_{k+1/2}\right\rangle}} & \text{with } y_{k} = e, \text{ probability } \left\langle\psi_{k+1/2}|\boldsymbol{M}_{e}^{\dagger}\boldsymbol{M}_{e}|\psi_{k+1/2}\right\rangle. \end{split}$$

Furthermore, we assume the initial state to be given by $|\psi_0\rangle = |0\rangle$. Physically $|\psi_m\rangle$ corresponds then to the wave function at time T.

- 1. Show that the operators M_g and M_e represent an eligible Kraus map. Show that this measurement is quantum non-demolition for an observable O if and only if $\langle n|O|1\rangle = 0$ for all $n \neq 1$.
- 2. Provide the state $|\psi_r^g\rangle$ of the system conditioned on r measurements giving as result $y_k = g$ for all $k = 0, \dots, r-1$.

3. Show that the probability p_r^g of measuring $y_k = g$ for all $k = 0, \dots, r-1$ is given by

$$p_r^g = \left\| \left(\boldsymbol{M}_g \boldsymbol{D}_{\frac{\alpha}{m}} \right)^r |0\rangle \right\|^2$$

4. Now, we aim at studying the limits $\lim_{m\to\infty} p_m^g$ and $\lim_{m\to\infty} |\psi_m^g\rangle$. Show that

$$\|\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{lpha}{m}}|0
angle - |0
angle\| = O\left(\frac{1}{m^{2}}\right).$$

5. Deduce that

$$\lim_{m \to \infty} p_m^g = 1 \quad \text{and} \quad \lim_{m \to \infty} |\psi_m^g\rangle = |0\rangle \text{ strongly in } \mathcal{H}_c.$$

Hint: Use the fact that $D_{\alpha/m}$ is a unitary and that M_g is a projection, and therefore they do not increase the norm of a state in \mathcal{H}_c .

- 6. Provide a simple and physical interpretation of the above limits.
- 7. Now we consider a different measurement process based on the observable $O_2 = |2\rangle\langle 2|$. We consider the associated Kraus operators $M_g = I - |2\rangle\langle 2|$ and $M_e = |2\rangle\langle 2|$. Also, for simplicity sakes, we assume α to be real.
 - (a) Take $c_0, c_1 \in \mathbb{R}$ such that $|c_0|^2 + |c_1|^2 = 1$, and consider the wave functions

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle$$
 and $|\tilde{\psi}\rangle = \frac{(c_0 - \alpha c_1/m)|0\rangle + (c_1 + \alpha c_0/m)|1\rangle}{\sqrt{1 + \alpha^2/m^2}}$.

Show that $\|\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}}|\psi\rangle - |\tilde{\psi}\rangle\| = O\left(\frac{1}{m^{2}}\right)$ (**Hint:** Calculate $\boldsymbol{D}_{\alpha/m}|1\rangle$ by noting that $|1\rangle = \boldsymbol{a}^{\dagger}|0\rangle$ and using the commutation relations).

- (b) Deduce the limits $\lim_{m\to\infty} p_m^g$ and $\lim_{m\to\infty} |\psi_m^g\rangle$ (p_m^g and $|\psi_m^g\rangle$ are the probability to detect $y_k = g$ for $k = 0, \dots, m-1$ and the corresponding quantum state at step m starting from $|\psi_0\rangle = |0\rangle$).
- (c) Provide a simple and physical interpretation of the above limits.

M2 Mathématiques & Applications UE (ANEDP, COCV): Analyse et contrôle de systèmes quantiques Corrigé du Contrôle des connaissances M. Mirrahimi et P. Rouchon

Exercise 1

1. We have

$$\begin{split} i\frac{\partial\psi_g}{\partial t} &= \frac{\omega_g}{2}\psi_g + \frac{\omega_c}{2}(x^2 - \frac{\partial^2}{\partial x^2})\psi_g + \frac{\chi}{2}(x^2 - \frac{\partial^2}{\partial x^2})\psi_f \\ i\frac{\partial\psi_e}{\partial t} &= \frac{\omega_e}{2}\psi_e + \frac{\omega_c}{2}(x^2 - \frac{\partial^2}{\partial x^2})\psi_e + \frac{\chi}{2}(x^2 - \frac{\partial^2}{\partial x^2})\psi_f \\ i\frac{\partial\psi_f}{\partial t} &= \frac{\omega_f}{2}\psi_f + \frac{\omega_c}{2}(x^2 - \frac{\partial^2}{\partial x^2})\psi_f + \frac{\chi}{2}(x^2 - \frac{\partial^2}{\partial x^2})\psi_g + \frac{\chi}{2}(x^2 - \frac{\partial^2}{\partial x^2})\psi_e \end{split}$$

2. We have

$$i\frac{d}{dt}\psi_{g,n} = ((n+1/2)\omega_c + \omega_g)\psi_{g,n} + \chi(n+1/2)\psi_{f,n}$$

$$i\frac{d}{dt}\psi_{e,n} = ((n+1/2)\omega_c + \omega_e)\psi_{e,n} + \chi(n+1/2)\psi_{f,n}$$

$$i\frac{d}{dt}\psi_{f,n} = ((n+1/2)\omega_c + \omega_f)\psi_{f,n} + \chi(n+1/2)\psi_{g,n} + \chi(n+1/2)\psi_{e,n}$$

Exercise 2

1. We have

$$\begin{aligned} \boldsymbol{H}_{int}(t) &= u(t)\mu_{ge}(e^{-i\omega_{e}t}|g\rangle\langle e| + e^{i\omega_{e}t}|e\rangle\langle g|) \\ &+ u(t)\mu_{ef}(e^{-i(\omega_{f}-\omega_{e})t}|e\rangle\langle f| + e^{i(\omega_{f}-\omega_{e})t}|f\rangle\langle e|) \\ &+ u(t)\mu_{fg}(e^{i\omega_{f}t}|f\rangle\langle g| + e^{-i\omega_{f}t}|g\rangle\langle f|). \end{aligned}$$

- 2. Since $|\mu_{ge}|, |\mu_{ef}|, |\mu_{fg}| \ll \min(\omega_e, \omega_f \omega_e)$, we can use the rotating wave approximation and keep only the non-oscillating terms (secular terms) in $\boldsymbol{H}_{int}(t)$ where u(t) is replaced by $\bar{u}e^{-i\omega_f t} + \bar{u}^*e^{i\omega_f t}$. This yields to $\overline{\boldsymbol{H}} = \mu_{fg} \Big(\bar{u}|f\rangle \langle g| + \bar{u}^*|g\rangle \langle f| \Big) |\phi\rangle$.
- 3. Since $\rho(t)$ remains non-negative and of trace one, $V(\rho)$ remains between 0 and 1. Moreover $V(\rho) = 0$ means that $\rho = |e\rangle\langle e|$. Since

$$\begin{aligned} \frac{d}{dt}\rho &= -i\mu_{fg} \Big[\bar{u}|f\rangle \langle g| + \bar{u}^*|g\rangle \langle f|, \rho \Big] \\ &+ \langle f|\rho|f\rangle \left(\kappa_g |g\rangle \langle g| + \kappa_e |e\rangle \langle e| \right) - \frac{\kappa_g + \kappa_e}{2} \Big(|f\rangle \langle f|\rho + \rho|f\rangle \langle f| \Big) \end{aligned}$$

we have $\frac{d}{dt}V(\rho) = -\kappa_e \langle f|\rho|f \rangle \leq 0$. Thus V is a decreasing time function. Since the set of density operators is compact and $V \geq 0$, we can apply LaSalle's invariance principle: the trajectories converge towards the largest invariant set of density operators satisfying $\frac{d}{dt}V = 0$. When $\langle f|\rho|f \rangle = 0$ we have $\rho|f \rangle = 0$ and $\langle f|\rho = 0$ since ρ is a density operator (therefore non-negative). Then we have

$$\frac{d}{dt}\rho = -i\mu_{fg} \Big(\bar{u}|f\rangle \langle g|\rho - \bar{u}^*\rho|g\rangle \langle f| \Big)$$

and we get by differentiating $\rho |f\rangle = 0$ with respect to t: $\frac{d}{dt}\rho |f\rangle = 0$, i.e. $-\mu_{fg}\bar{u}^*\rho |g\rangle = 0$. This means that $|f\rangle$ and $|g\rangle$ are in the kernel of ρ . This implies that ρ is necessarily the projector on $|e\rangle$ since it must be of trace one and non-negative.

This Lindbald equation is the simplest dynamical model describing optical pumping, a simple and powerful idea due to Alfred Kastler (Physics Nobel Prize 1966) for preparing and stabilizing pure states.

Problem

- 1. It is easy to check that $M_g^{\dagger}M_g + M_e^{\dagger}M_e = I$ and therefore they represent an eligible Kraus map. The measurement is non-demolition for an observable O, if the Kraus operators M_g and M_e commute with O. It is easy to check that this condition is equivalent to $\langle m|O|1\rangle = 0, \forall m \neq 1$.
- 2. The state at the step r is given by

$$|\psi_r^g
angle = rac{M_g D_{rac{lpha}{m}}|\psi_{r-1}^g
angle}{\|M_g D_{rac{lpha}{m}}|\psi_{r-1}^g
angle\|}.$$

Therefore by induction, it is easy to see that

$$|\psi_r^g\rangle = \frac{\left(\boldsymbol{M}_g \boldsymbol{D}_{\frac{\alpha}{m}}\right)^r |0\rangle}{\left\| \left(\boldsymbol{M}_g \boldsymbol{D}_{\frac{\alpha}{m}}\right)^r |0\rangle \right\|}$$

3. The probability for the first measurement to give $y_0 = g$ is clearly $\|\boldsymbol{M}_g \boldsymbol{D}_{\frac{\alpha}{m}}|0\rangle\|^2$. The probability to achieve r measurements giving all $y_k = g$ is given by

$$p_r^g = \mathbb{P}(y_{r-1} = g, y_{r-2} = g, \dots y_0 = g)$$

= $\mathbb{P}(y_{r-1} = g \mid y_{r-2} = g, \dots y_0 = g)\mathbb{P}(y_{r-2} = g, y_{r-3} = g, \dots y_0 = g).$

But

$$\mathbb{P}(y_{r-1} = g \mid y_{r-2} = g, \cdots y_0 = g) = \|\boldsymbol{M}_g \boldsymbol{D}_{\frac{\alpha}{m}} \psi_{r-1}^g\|^2 = \frac{\left\| \left(\boldsymbol{M}_g \boldsymbol{D}_{\frac{\alpha}{m}}\right)^r |0\rangle \right\|^2}{\left\| \left(\boldsymbol{M}_g \boldsymbol{D}_{\frac{\alpha}{m}}\right)^{r-1} |0\rangle \right\|^2}$$

and

$$\mathbb{P}(y_{r-2} = g, y_{r-3} = g, \dots y_0 = g) = p_{r-1}^g$$

The proof is clear by induction.

4. We have

$$\begin{split} \boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}}|0\rangle &= (\boldsymbol{I}-|1\rangle\langle1|)|\frac{\alpha}{m}\rangle = e^{-\frac{|\alpha|^{2}}{2m^{2}}}(\boldsymbol{I}-|1\rangle\langle1|)\sum_{k=0}^{\infty}\frac{1}{\sqrt{k!}}\frac{\alpha^{k}}{m^{k}}|k\rangle\\ &= e^{-\frac{|\alpha|^{2}}{2m^{2}}}|0\rangle + e^{-\frac{|\alpha|^{2}}{2m^{2}}}\sum_{k=2}^{\infty}\frac{1}{\sqrt{k!}}\frac{\alpha^{k}}{m^{k}}|k\rangle. \end{split}$$

We note that $e^{-\frac{|\alpha|^2}{2m^2}} = 1 + O(1/m^2)$ and that

$$\|\sum_{k=2}^{\infty} \frac{1}{\sqrt{k!}} \frac{\alpha^k}{m^k} |k\rangle\| \le \frac{|\alpha|^2}{m^2} \sum_{k=2}^{\infty} \frac{1}{\sqrt{k!}} \frac{|\alpha|^{k-2}}{m^{k-2}}.$$

Noting that the series is convergent, the result is clear.

5. One can write

$$\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}}|0\rangle = |0\rangle + O(\frac{1}{m^{2}})|\chi_{0}\rangle,$$

where χ_0 is a normalized state in \mathcal{H}_c . Therefore

$$(\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}})^{2}|0\rangle = (\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}})(|0\rangle + O(\frac{1}{m^{2}})|\chi_{0}\rangle)$$
$$= |0\rangle + O(\frac{1}{m^{2}})|\chi_{0}\rangle + O(\frac{1}{m^{2}})(\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}})|\chi_{0}\rangle.$$

We note that $\|(\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}})|\chi_{0}\rangle\| \leq 1$, as $\boldsymbol{D}_{\frac{\alpha}{m}}$ is a unitary (therefore conserving the norm) and \boldsymbol{M}_{g} is a projection (therefore reducing the norm). Thus $O(\frac{1}{m^{2}})(\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}})|\chi_{0}\rangle$ can be written as $O(\frac{1}{m^{2}})|\chi_{1}\rangle$ for a normalized state $|\chi_{1}\rangle$ in \mathcal{H}_{c} . In the same manner

$$(\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}})^{m}|0\rangle = |0\rangle + O(\frac{1}{m^{2}})(\sum_{k=0}^{m-1}|\chi_{k}\rangle),$$

where $|\chi_k\rangle$'s are normalized states in \mathcal{H}_c . Therefore

$$p_m^g = \|(\boldsymbol{M}_g \boldsymbol{D}_{\frac{\alpha}{m}})^m |0\rangle\|^2 = \||0\rangle + O(\frac{1}{m^2})(\sum_{k=0}^{m-1} |\chi_k\rangle)\|^2 \to 1 \text{ as } m \to \infty.$$

Furthermore

$$\left\| \left| \psi_m^g \right\rangle - \left| 0 \right\rangle \right\| = \left\| \frac{(\boldsymbol{M}_g \boldsymbol{D}_{\frac{\alpha}{m}})^m | 0 \rangle}{\sqrt{p_m^g}} - \left| 0 \right\rangle \right\| \to 0 \text{ as } m \to \infty.$$

- 6. We have illustrated that, whenever we measure frequently the observable O_1 during the unitary evolution, we freeze the state at time T (T > 0 being arbitrary) in $|0\rangle$ and remove the effect of the driving Hamiltonian. This is called the quantum Zeno effect.
- 7. (a) We have $M_g D_{\frac{\alpha}{m}} |\psi\rangle = c_0 M_g |\frac{\alpha}{m}\rangle + c_1 M_g D_{\frac{\alpha}{m}} |1\rangle$. In order to calculate $D_{\frac{\alpha}{m}} |1\rangle$, we note that

$$\boldsymbol{D}_{\frac{\alpha}{m}}|1\rangle = \boldsymbol{D}_{\frac{\alpha}{m}}\boldsymbol{a}^{\dagger}|0\rangle = \boldsymbol{D}_{\frac{\alpha}{m}}\boldsymbol{a}^{\dagger}\boldsymbol{D}_{-\frac{\alpha}{m}}\boldsymbol{D}_{\frac{\alpha}{m}}|0\rangle = (\boldsymbol{a}^{\dagger} - \frac{\alpha}{m})|\frac{\alpha}{m}\rangle.$$

As $M_g = I - |2\rangle \langle 2|$, we have

$$\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}}|\psi\rangle = c_{0}(|0\rangle + \frac{1}{1!}\frac{\alpha}{m}|1\rangle) + c_{1}\boldsymbol{M}_{g}(\boldsymbol{a}^{\dagger} - \frac{\alpha}{m})(|0\rangle + \frac{1}{1!}\frac{\alpha}{m}|1\rangle) + O(\frac{1}{m^{2}})|\chi_{0}\rangle,$$

where $|\chi_0\rangle$ is a normalized state in \mathcal{H}_c . Therefore

$$\begin{split} \boldsymbol{M}_{g}\boldsymbol{D}_{\frac{\alpha}{m}}|\psi\rangle &= c_{0}(|0\rangle + \frac{\alpha}{m}|1\rangle) + c_{1}\boldsymbol{M}_{g}(\boldsymbol{a}^{\dagger} - \frac{\alpha}{m})(|0\rangle + \frac{1}{1!}\frac{\alpha}{m}|1\rangle) + O(\frac{1}{m^{2}})|\chi_{0}\rangle \\ &= c_{0}(|0\rangle + \frac{\alpha}{m}|1\rangle) + c_{1}\boldsymbol{M}_{g}(|1\rangle + \sqrt{2}\frac{\alpha}{m}|2\rangle - \frac{\alpha}{m}|0\rangle) + O(\frac{1}{m^{2}})|\chi_{1}\rangle \\ &= c_{0}(|0\rangle + \frac{\alpha}{m}|1\rangle) + c_{1}(|1\rangle - \frac{\alpha}{m}|0\rangle) + O(\frac{1}{m^{2}})|\chi_{1}\rangle, \end{split}$$

where $|\chi_0\rangle$ is a normalized state in \mathcal{H}_c . This proves the relation

$$\|\boldsymbol{M}_{g}\boldsymbol{D}_{\frac{lpha}{m}}|\psi\rangle - |\tilde{\psi}\rangle\| = O(1/m^{2}),$$

as $1/\sqrt{1+\alpha^2/m^2} = 1 + O(1/m^2)$. (b) One has $|\tilde{\psi}\rangle = \mathbf{R}_{\theta}|\psi\rangle$, where

b) One has
$$|\psi\rangle = \mathbf{R}_{\theta} |\psi\rangle$$
, where

$$oldsymbol{R}_{ heta} = egin{pmatrix} rac{1}{\sqrt{1+lpha^2/m^2}} & -rac{lpha/m}{\sqrt{1+lpha^2/m^2}} \ rac{lpha/m}{\sqrt{1+lpha^2/m^2}} & rac{1}{\sqrt{1+lpha^2/m^2}} \end{pmatrix}$$

is a rotation matrix with $\theta = \arctan(\alpha/m)$ in the space span{ $|0\rangle, |1\rangle$ }. Similarly to the question 5, we have $\lim_{m\to\infty} p_m^g = 1$. Also, we have

$$|\psi_m^g\rangle = \mathbf{R}_{\arctan(\alpha/m)}^m |0\rangle + O(1/m)|\chi\rangle = \mathbf{R}_{m\arctan(\alpha/m)}|0\rangle + O(1/m)|\chi\rangle,$$

where χ is a normalized state in \mathcal{H}_c . Now, note that $\mathbf{R}_{m \arctan(\alpha/m)} |0\rangle$ converges to $\mathbf{R}_{\alpha}|0\rangle$ for *m* tending to infinity.

(c) We have shown that the measuring frequently the observable O_2 , we confine the dynamics of the harmonic oscillator to the two-dimensional subspace spanned by $|0\rangle$ and $|1\rangle$. A unitary displacement of the cavity state is therefore replaced by a Rabi oscillation for this effective two-level system. This is called Quantum Zeno Dynamics.