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Nonlinear Observers
Laurent Praly

Abstract—Observers are objects delivering estimation of vari-
ables which cannot be directly measured. The access to such
hidden variables is made possible by combining modeling and
measurements. But this is bringing face to face real world
and its abstraction with, as a result, the need for dealing
with uncertainties and approximations leading to difficulties in
implementation and convergence.

Index Terms—Estimation, distinguishability, detectability.

I. OBSERVATION PROBLEM AND ITS SOLUTIONS

A. The context

Observers are answers to the question of estimating, from
observed/measured/empirical variables, denoted y, and deliv-
ered by sensors equipping a real world system, some “theo-
retical” variables, called hidden variables in this text, denoted
z, which are involved in a mathematical model related to this
system. The measured variables make what is called the a
posteriori information on the hidden variables, whereas the
model is part of the a priori information. Because a model
cannot fit exactly a system, introduction of uncertainties is
mandatory.

Typically this model describing the link between hidden and
measured variables is made of three components:
• a dynamic model describes the dynamics/evolution1:

ẋ(t) = f(x(t), t, δs(t)) resp. xk+1 = fk(xk, δ
s
k) , (1)

where t, in the continuous case, or k, in the discrete case, is
an evolution parameter, called time is this text, x is a state,
assumed finite dimensional in this text, and δs represents
the uncertainties in the state dynamics. Any possible known
inputs is represented here by the time-dependence of f .
• a sensor model relates state and measured variables:

y(t) = h(x(t), t, δm(t)) resp. yk = hk(xk, δ
m
k ) (2)

with δm representing the uncertainties in the measurements.
• a model which relates state and hidden variables:

z(t) =

h

(x, t, δh(t)) resp. zk =

h

k(xk, δ
h
k ) . (3)

where again δh represents the uncertainties in the hidden
variables.

In a deterministic setting, the a priori information on the
uncertainties (δs, δm, δh) may be that the values of δs, δm

and δh are unknown but belong to known sets ∆s, ∆m and
∆h. Namely we have:

δs(t) ∈ ∆s(t) , δm(t) ∈ ∆m(t) , δh(t) ∈ ∆h(t) ,

respectively δsk ∈ ∆s
k , δ

m
k ∈ ∆m

k , δhk ∈ ∆h
k .

(4)

In a stochastic setting and more specifically in a Bayesian

1ẋ denotes the time derivative dx
dt

.

approach, it may be that δs, δm and δh are unknown realization
of stochastic processes for which we know the probability
distributions.

Similarly we may also know a priori that we have:

x(t) ∈ X (t) , z(t) ∈ Z(t)
respectively xk ∈ Xk , zk ∈ Zk

(5)

where the sets X and Z are known or we may have a priori
probability distribution for x and z.

In this context, the a priori information is the data of
the functions f , h and

h

, of the sets ∆s, ∆m, ∆h or the
corresponding probability distribution and so maybe also of
the sets X and Z or the corresponding a priori probability
distribution.

In the next section, we state the observation problem and
give the solutions which are direct consequences of the deter-
ministic and stochastic setting given above. This will allow
us to see that an observer is actually a dynamical system
with the measurements as inputs and the estimate as output.
But approximations in the implementation of these solutions,
not knowing how to initialize, . . . may lead to convergence
problems even when the uncertainties disappear. The second
part of this text is devoted to this convergence topic.

To ease the presentation we deal only with the discrete time
case in Section I-C, and the continuous time case in Section
I-D and part II.

B. The observation problem

Let Xδs(x, t, s), respectively X
δs

l (x, k), denote a solution
of (1) at time s, respectively l, going through x at time t,
respectively k, and under the action of δs.

Observation problem: At each time t, respectively k, given
the function s ∈]t − T, t] 7→ y(s), respectively the sequence
l ∈ {k−K, . . . , k} 7→ yl, find an estimation ẑ(t), respectively
ẑk, of z(t), respectively zk, satisfying:

ẑ(t) =

h

(x̂(t), t, δh(t)) resp. ẑk =

h

k(x̂k, δ
h
k ) .

where x̂(t), respectively x̂k, is to be found as a solution of:

x̂(t) ∈ X (t) ,

y(s) = h(Xδs(x̂(t), t, s), s, δm(s)) ∀s ∈]t− T, t] ,

respectively

x̂k ∈ Xk ,
yl = hl(X

δs

l (x̂k, k), δml ) ∀l ∈ {k −K, . . . , k}

and where the time functions δs, δm and δh must agree
with the a priori (deterministic/stochastic) information or
minimized in some way.
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In this statement T , respectively K, quantify the time
window length or memory length during which we record the
measurement. The accumulation with time of measurements,
together with the model equations (1) to (3) and the assump-
tions on (δs, δm, δh), give a redundancy of data compared with
the number of unknowns that the hidden variables are. This is
why it may be possible to solve this observation problem.

To simplify the following presentation, we restrict our
attention on the case2 where the hidden variables are actually
the full model state, i.e.

z =

h

(x) = x .

C. Set valued and conditional probability valued observers

Conceptually the answer to this problem is easy at least
when the memory increases with time (Ṫ (t) = 1 resp.
Kk+1 = Kk + 1 ) leading to an infinite non fading memory.
It consists in starting from all what the a priori information
makes possible and to eliminate what is not consistent with
the a posteriori information. In the set valued observer setting,
in the discrete time case, this gives the following observer.
To ease its reading, we underline the data given by the a
priori information. It requires the introduction of two sets
ξk, and ξk|k−1 which are updated at each time k when a
new measurement yk is made available. ξk is the set which
xk is guaranteed to belong to at time k, knowing all the
measurements up to time k, and ξk|k−1 is the same but with
measurements known up to time k − 1.
Set valued observer:

Initialization: ξ0 = X0

At each time k:
prediction
(flowing) ξk|k−1 = fk−1(ξk−1,∆

s
k−1)

restriction
(consistency) ξk =

{
x ∈

(
ξk|k−1

⋂
Xk
)

: yk ∈ hk(x,∆m
k )
}

estimation x̂k ∈ ξk

A key feature here is that this observer has a state ξk – a set
– and is a dynamical system in the form:

ξk+1 = ϕk(ξk, yk) , x̂k ∈ ξk

with y as input and x̂ as output which is not single valued.
Important also, the initial condition of the state ξ is given by
the a priori information.

In the stochastic setting, following the Bayesian paradigm,
the observer has the same structure but with the state ξk being
a conditional probability. See [17, Theorem 6.4] or [11, Table
2.1]. In that setting too the observer is not a single state;
it is the (a posteriori) conditional probability of the random
variable xk given the a priori information and the sequence of
measurements l ∈ {k −K, . . . , k} 7→ yl.

Comments
Implementation: For the time being, except for very specific

cases (Kalman filter, . . . ) the set valued and the conditional

2When z differs from x, observers are called functional observers.

probability valued observers remain conceptual since we do
not know how to manipulate numerically sets and probabil-
ity laws. Their implementation requires approximations. For
instance, see [21], [27] for the set case and [4], [10], [11],
[17] for the conditional probability case.

Need of finite or infinite but fading memory: In these ob-
servers, model states x which are consistent with the a
priori information but do not agree with the a posteriori
information are eliminated (set intersection or probability
product). But once a point is eliminated, this is for ever. As
a consequence if there is, at some time, a misfit between
a priori and a posteriori information, it is mistakenly prop-
agated in future times. A way to round this problem is to
keep the information memory finite or infinite but fading.
In particular, with fixed length memory, consistent points
which were disregarded due to measurements which are no
more in the memory are reintroduced. This says also that
observers should not be sensitive to their initial condition.

Not single valued estimate. The observers introduced above
realize a lossless data compression with extracting and
preserving all what concerns the hidden variables in the
redundant data given by a priori and a posteriori informa-
tion. But this “lossless compression” answer is not single
valued (set valued or conditional probability valued) as a
result of taking uncertainties into account. Actually, to get
a single valued answer, the observation problem must be
complemented by making precise for what the estimation is
made. For instance we may want to select the most likely
or the average or more generally some cost-minimizing
estimate x̂ among all the possible ones given by ξ. In this
way we obtain an observer giving a single valued estimate:

ξk+1 = ϕk(ξk, yk) , x̂k = τk(ξk)

respectively

ξ̇(t) = ϕ(ξ(t), y(t), t) , x̂(t) = τ(ξ(t), t) (6)

But then, in general, we loose information and in particular
we have no idea on the confidence level this estimate has.
Also, since the function τ , at least, encodes for what the
estimate x̂ is used, for different uses, different functions τ
may be needed.

D. An optimization approach
A short-cut to obtain directly an observer giving a single

valued estimate is to design it by trading off among a priori
and a posteriori information (see [13, pages 7-10], [1], . . . ).
For example, in the continuous time case, we can select the
estimate x̂(t) among the minimizers (in x) of:

C({s 7→ δs(s)}, x, t) =

∫ t

−∞
C
(
δs(s), y(s), Xδs(x, t, s), s

)
ds

where Xδs(x, t, s) is still the notation for a solution to (1)
and {s 7→ δs(s)}, representing the unmodelled effect on the
dynamics, is among the arguments for the minimization. The
infinitesimal cost C is chosen to take non negative values and
be such that C(0, h(x, s), x, s) is zero. For instance, it can be:

C(δs, y, x, s) = ‖δs‖2x + dy(y, h(x, s))2
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where ‖.‖x is a norm at the point x and dy is a distance in the
measurement space. In the same spirit, instead of optimization,
a minimax approach can be followed. See for instance [8], [6,
Chapter 7], [26].

With x fixed, the minimization of C is an infinite horizon
optimal control problem in reverse time. Solving on line
this problem is extremely difficult and again approximations
are needed. We do not go on with this approach, but we
remark that, under extra assumptions, the observer we obtain
following this approach can also be implemented in the form
of a dynamical system (6) but with the specificity that the
estimate x̂ is part of the observer state ξ and its dynamics are
a copy of the undisturbed model with a correction term which
is zero when the estimated state reproduce the measurement.
Namely we get:

˙̂x(t) = f(x̂(t), t, 0) + E
(
{σ 7→ y(σ)}, x̂(t), y(t), t

)
where E is zero when h(x̂(t), t) = y(t). But, as opposed
to what we saw in the previous section, the initial condition
for the part x̂ of the observer state is unknown. Hence we
encounter again the need for the observer to forget its initial
condition.

II. CONVERGENT OBSERVERS

We have mentioned that often an observer can be imple-
mented as a dynamical system, but without knowing nec-
essarily how to initialize it. Also approximation is involved
both in its design and its implementation. So, at least when it
gives a single valued estimate, we are facing the problem of
convergence of this estimate to the “true” value, at least when
there is no uncertainties. We concentrate now our attention
on the study of this convergence, but, to simplify, in the
continuous time case only.

Let the model and observer dynamics be:

ẋ(t) = f(x(t), t) , y(t) = h(x(t), t) (7)

ξ̇ = ϕ(ξ(t), y(t), t) , x̂(t) = τ(ξ(t), y(t), t) (8)

with the observer state ξ of finite dimension m. We denote by
(X(x, t, s),Ξ((x, ξ), t, s)) a solution of (7)-(8).

Since we are dealing with convergence, the focus is on what
is going on when the time becomes very large and in particular
on the set Ω of model states which are accumulation points of
some solution. Specifically we are interested in the stability
properties of the set

Z(t) =
{

(x, ξ) : x ∈ Ω & x = τ(ξ, h(x, t), t)
}

which is contained in the zero estimation error set associated
with the given model-observer pair.

Definition 1 (Convergent observer): We say the observer
(8) is convergent if, for each t, there exists a set Za(t) ⊂ Z(t),
such that, on the domain of existence of the solution, a
distance between the point (X(x, t, s),Ξ((x, ξ), t, s)) and the
set Za(s) is upperbounded by a real function s 7→ βcx,ξ,t(s),
maybe dependent on (x, ξ, t), with non negative values, strictly
decreasing and going to zero as s goes to infinity.

A. Necessary conditions for observer convergence

1) No restriction on τ :
It is possible to prove that, if the observer is convergent then,

Necessity of detectability: When h and τ are uniformly
continuous in x and ξ respectively, the estimate x̂ does
converge to the model state x. In this case, two solutions
of the model (7) which produce the same measurement
must converge to each other. This is an asymptotic distin-
guishability property called detectability.
If we are interested, not only in the asymptotic behavior,
but also in the transient (as for output feedback) a property
stronger than detectability is needed. In particular instan-
taneous distinguishability (see Section II-B2) is necessary
if we want to be able to impose the decay rate of the
function βcx,ξ,t.

Necessity of m ≥ n − p: For each t, there exists a subset
Xa(t) of Ω, supposed to collect the model states which
can be asymptotically estimated, and such that we can
associate, to each of its point x, a set τ i(x, t) allowing us
to redefine the set Za(t) as:

Za(t) =
{

(x, ξ) : x ∈ Xa(t) & ξ ∈ τ i(x, t)
}
.

This implies that, for each t and each x in Xa(t), there is
a point ξ satisfying:

x = τ(ξ, h(x, t), t) . (9)

This is a surjectivity property of the function τ but of a
special kind since h(x, t) is an argument of τ . We say that,
for each t, the function τ is surjective to Xa(t) given h. In
a “generic” situation this property requires the dimension
m of the observer state ξ to be larger or equal to the
dimension n of the model state x minus the dimension p
of the measurement y.

2) τ is injective given h:
We consider now the case where the observer has been
designed with a function τ which is injective given h, namely
we have the following implication, when x is in Xa(t),[
τ(ξ1, h(x, t), t) = τ(ξ2, h(x, t), t) & ξ1 ∈ τ i(x, t)

]
=⇒ ξ1 = ξ2 .

In a “generic” situation, this property together with the surjec-
tivity given h, implies that the dimension m of the observer
state ξ should be between n− p and n.

If a convergent observer has a such a function τ , then
(x, t) 7→ τ i(x, t), which is (of course) a (single valued)
function, admits a Lie derivative3 Lfτ

i satisfying:

Lfτ
i(x, t) = ϕ(τ i(x, t), h(x, t), t) ∀x ∈ Xa(t) (10)

This says (very approximatively) that ϕ is nothing but the
image of the vector field f , under the change of coordinates
(x, t) 7→ (τ i(x, t), t) but again all this given h. As partly
obtained in the optimization approach, the observer dynamics
are then a copy of the model dynamics with maybe a correction

3 Lf τ
i(x, t) = lim

dt→0

τ i(X(x, t, t+ dt), t+ dt)− τ i(x, t)

dt
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term which is zero when the estimated state reproduce the
measurement.

If moreover the functions h and τ are uniformly continuous
in x and ξ respectively, then, given ξ1 and ξ2 a distance
between Ξ((x, ξ1), t, s) and Ξ((x, ξ2), t, s) goes to zero as s
goes to infinity. This property is related to what was called
extreme stability (see [28]) in the 50’s and 60’s and is called
incremental stability today (see [3]). It holds when, with
denoting by Ξy(ξ, t, s) the solution at time s of the observer
dynamics :

ξ̇(t) = ϕ(ξ(t), y(t), t)

going through ξ at time t and under the action of y, the flow
ξ 7→ Ξy(ξ, t, s) is a strict contraction4 for each s > t or, at
least, if a distance between any two solutions Ξy(ξ1, t, s) and
Ξy(ξ2, t, s), with the same input y, converges to 0.

B. Sufficient conditions

Knowing now how a convergent observer should look like,
we move to a quick description of some such observers.

1) Observers based on contraction:
Since the flow generated by the observer should be a con-
traction, we may start its design by picking the function ϕ
as:

ξ̇(t) = ϕ(ξ(t), y(t), t) = Aξ(t) + B(y(t), t)

where A, not related to f , is a matrix whose eigen values have
strictly negative real part. Under weak restriction, there exists
a function τ i satisfying (10), namely:

Lfτ
i(x, t) = Aτ i(x, t) + B(h(x, t), t) . (11)

To obtain a convergent observer it is then sufficient that there
exists a (uniformly continuous) function τ satisfying:

x = τ(τ i(x, t), h(x, t), t)

For this to be possible, the function τ i should be injective
given h. This injectivity holds when the observer state has
dimension m ≥ 2(n + 1), the model is distinguishable and
provided the eigen values of A have a sufficiently negative
real part and are not in a set of zero Lebesgue measure.

Unfortunately, we are facing again a possible difficulty
in the implementation since an expression for a function τ i

satisfying (11) is needed and the function τ : (ξ, y, t) 7→ x̂(t)
is known implicitly only as:

ξ = τ i(x̂(t), t) .

See [2], [20], [24].
2) Observers based on instantaneous distinguishability:

Instantaneous distinguishability means that we can distinguish
as quickly as we want two model states by looking at the paths
of the measurements they generate. A sufficient condition to
have this property can be obtained by looking at the Taylor
expansion in s of h(X(x, t, s), s). Indeed, we have:

h(X(x, t, s), s) =

m−1∑
i=0

hi(x, t)
(s− t)i

i!
+ o((s− t)m−1)

4See [18] for a bibliography on contraction.

where hi is a function obtained recursively as

h0(x, t) = h(x, t)

hi+1(x, t) =
˙︷ ︷

hi(x, t) =
∂hi
∂x

(x, t)f(x, t) +
∂hi
∂t

(x, t) .

If there exists an integer m such that, in some uniform way
with respect to t, the function

x 7→ Hm(x, t) = (h0(x, t) , . . . , hm−1(x, t))

is injective then we do have instantaneous distinguishability.
We say the system is differentially observable of order m
when this injectivity property holds. When a system has such a
property, the model state space has a very specific structure as
discussed in [16, Section 1.9]. It means that we can reconstruct
x from the knowledge of y and its m−1 first time derivatives,
i. e. there exists a function Φ such that we have:

x = Φ (Hm(x, t), t) .

This way, we are left with estimating the derivatives of y. This
can be done as follows. With the notation ηi = hi−1(x, t),
we obtain:

η̇(t) = F η +Ghm
(
Φ(η(t), t) , t

)
where

F η = (η2 , . . . , ηm , 0) , G = (0 , . . . , 0 , 1) .

When the last term on the right hand side is Lipschitz, we can
find a convergent observer in the form:

ξ̇(t) = F ξ(t) +Ghm (x̂(t), t) +K(y(t)− ξ1(t)) ,

x̂(t) = τ (ξ(t), t) ,

with ξ being actually an estimation of η and where K is a
constant matrix and τ is a modified version of Φ keeping the
estimated state in its a priori given set X (t).

This is the high gain observer paradigm. See [15], [25]. The
implementation difficulty is in the function Φ̂, not to mention
sensitivity to measurement uncertainty.

3) Observers with τ bijective given h:
a) Case where τ is the identity function:

A convergent observer whose function τ is the identity has
the following form:

ξ̇ = f(ξ, t) + E
(
{σ 7→ y(σ)}, ξ(t), y(t), t

)
, x̂(t) = ξ(t) .

(12)
The only piece remaining to be designed is the correction
term E. It has to ensure convergence and may be also other
properties like symmetry preserving (see [9]).

For this design, a first step is to exhibit some specific
properties of the vector field f by writing it in some appro-
priate coordinates. For example, there may exist coordinates
such that the expression of f takes the form f(x(t), h(x, t), t)
and the corresponding observer (12) is such that there exists
a positive definite matrix P for which the function s 7→
(X(x, t, d)−X̂((x, x̂), t, s))′P (X(x, t, d)−X̂((x, x̂), t, s)) is
strictly decaying (if not zero). A necessary condition for this to
be possible is that f is monotonic tangentially to the level sets
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of the function h, i.e. for all (x, y, v, t) satisfying y = h(x, t)
and ∂h

∂x (x, t)v = 0, we have:

vTP
∂f

∂x
(x, y, t) v ≤ 0 . (13)

This is another way of expressing a detectability condition.
This expression is a coordinate dependent. Hence the impor-
tance of choosing the coordinates properly.

When this condition is strict and uniform in t, it is sufficient
to get a locally convergent observer and even a non local one
when h is linear in x, i.e. h(x, t) = H(t)x, again a coordinate
dependent condition. In this latter case the observer takes the
form:

ξ̇(t) = f(ξ(t), y(t), t)

+ `(ξ(t))P−1H(t)T [y(t)−H(t)ξ(t)] ,

x̂(t) = ξ(t) ,

where ` is a real function to be chosen with sufficiently large
values. If (13) is strict and uniform and holds for all v, the
correction term is not needed.

There are many other results of this type, exploiting one or
the other specificity of the dependence on x of the function f
– monotonicity, convexity, . . . . See [14], [19], [22], [23], . . .

b) Case where (x, t) 7→ (τ i(x, t), h(x, t), t) is a diffeo-
morphism:
At each time t we know already that the model state x we
want to estimate satisfy y(t) = h(x, t). So, as remarked in
[20], when (h(x, t), t) can be used as part of coordinates for
(x, t), we need to estimate the remaining part only. This can
be done if we find a function τ i, whose values are n − p
dimensional, such that (x, t) 7→ (y, η, t) = (h(x, t), τ i(x, t), t)
is a diffeomorphism and the flow η 7→ ηy(η, t, s) generated
by

η̇(t) =
∂τ i

∂x
(x(t), t)f(x(t), t) +

∂τ i

∂t
(x(t), t) ,

= ϕ(η(t), y(t), t)

is a strict contraction for all s > t. Indeed in this case the
observer dynamics can be chosen as:

ξ̇(t) = ϕ(ξ(t), y(t), t)

and the estimate x̂(t) is obtained as solution of:

τ i(x̂(t), t) = ξ(t) , h(x̂(t), t) = y(t) .

This is the reduced order observer paradigm. See for in-
stance [7, Proposition 3.2], [12], [20, Theorem 4].
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