
�

�

�

�

� �

44
Input–Output Stability

44.1 Introduction ......................................................44-1
44.2 Systems and Stability ........................................44-1
44.3 Practical Conditions and Examples .................44-4

The Classical Small Gain Theorem • The Classical
Passivity Theorem • Simple Nonlinear Separation
Theorems • General Conic Regions

Defining Terms..........................................................44-21
References ..................................................................44-22
Further Reading .........................................................44-23

A.R. Teel
University of Minnesota

T.T. Georgiou
University of Minnesota

L. Praly
Mines Paris Institute of Technology

Eduardo D. Sontag
Rutgers University

44.1 Introduction

A common task for an engineer is to design a system that reacts to stimuli in some specific and desirable
way. One way to characterize appropriate behavior is through the formalism of input–output stability. In
this setting a notion of well-behaved input and output signals is made precise and the question is posed:
do well-behaved stimuli (inputs) produce well-behaved responses (outputs)?

General input–output stability analysis has its roots in the development of the electronic feedback
amplifier of H.S. Black in 1927 and the subsequent development of classical feedback design tools for lin-
ear systems by H. Nyquist and H.W. Bode in the 1930s and 1940s, all at Bell Telephone Laboratories. These
latter tools focused on determining input–output stability of linear feedback systems from the characteris-
tics of the feedback components. Generalizations to nonlinear systems were made by several researchers in
the late 1950s and early 1960s. The most notable contributions were those of G. Zames, then at M.I.T., I.W.
Sandberg at Bell Telephone Laboratories, and V.M. Popov. Indeed, much of this chapter is based on the
foundational ideas found in [5,7,10], with additional insights drawn from [6]. A thorough understanding
of nonlinear systems from an input–output point of view is still an area of ongoing and intensive research.

The strength of input–output stability theory is that it provides a method for anticipating the qualitative
behavior of a feedback system with only rough information about the feedback components. This, in turn,
leads to notions of robustness of feedback stability and motivates many of the recent developments in
modern control theory.

44.2 Systems and Stability

Throughout our discussion of input–output stability, a signal is a “reasonable” (e.g., piecewise continuous)
function defined on a finite or semi-infinite time interval, i.e., an interval of the form [0, T) where T is
either a strictly positive real number or infinity. In general, a signal is vector-valued; its components
typically represent actuator and sensor values. A dynamical system is an object which produces an output
signal for each input signal.
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44-2 Control System Advanced Methods

To discuss stability of dynamical systems, we introduce the concept of a norm function, denoted || · ||,
which captures the “size” of signals defined on the semi-infinite time interval. The significant properties
of a norm function are that 1) the norm of a signal is zero if the signal is identically zero, and is a strictly
positive number otherwise, 2) scaling a signal results in a corresponding scaling of the norm, and 3) the
triangle inequality holds, i.e., ||u1+ u2|| ≤ ||u1|| + ||u2||. Examples of norm functions are the p-norms.
For any positive real number p≥ 1, the p-norm is defined by

||u||p :=
(∫ ∞

0
|u(t)|p

) 1
p

(44.1)

where | · | represents the standard Euclidean norm, i.e., |u| =
√√√√ n∑

i=1

u2
i . For p=∞, we define

||u||∞ := sup
t≥0
|u(t)|. (44.2)

The ∞-norm is useful when amplitude constraints are imposed on a problem, and the 2-norm is of
more interest in the context of energy constraints. The norm of a signal may very well be infinite. We
will typically be interested in measuring signals which may only be defined on finite time intervals or
measuring truncated versions of signals. To that end, given a signal u defined on [0, T) and a strictly
positive real number τ, we use uτ to denote the truncated signal generated by extending u onto [0,∞) by
defining u(t)= 0 for t ≥ T , if necessary, and then truncating, i.e., uτ is equal to the (extended) signal on
the interval [0, τ] and is equal to zero on the interval (τ,∞).

Informally, a system is stable in the input–output sense if small input signals produce correspondingly
small output signals. To make this concept precise, we need a way to quantify the dependence of the
norm of the output on the norm of the input applied to the system. To that end, we define a gain function
as a function from the nonnegative real numbers to the nonnegative real numbers which is continuous,
nondecreasing, and zero when its argument is zero. For notational convenience we will say that the “value”
of a gain function at ∞ is ∞. A dynamical system is stable (with respect to the norm || · ||) if there is a
gain function γ which gives a bound on the norm of truncated output signals as a function of the norm
of truncated input signals, i.e.,

||yτ|| ≤ γ(||uτ||), for all τ. (44.3)

In the very special case when the gain function is linear, i.e., there is at most an amplification by a constant
factor, the dynamical system is finite gain stable. The notions of finite gain stability and closely related
variants are central to much of classical input–output stability theory, but in recent years much progress
has been made in understanding the role of more general (nonlinear) gains in system analysis.

The focus of this chapter will be on the stability analysis of interconnected dynamical systems as
described in Figure 44.1. The composite system in Figure 44.1 will be called a well-defined interconnection
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FIGURE 44.1 Standard feedback configuration.
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Input–Output Stability 44-3

if it is a dynamical system with

(
d1

d2

)
as input and

(
y1

y2

)
as output, i.e., given an arbitrary input signal

(
d1

d2

)
, a signal

(
y1

y2

)
exists so that, for the dynamical system Σ1, the input d1+ y2 produces the output

y1 and, for the dynamical system Σ2, the input d2+ y1 produces the output y2. To see that not every
interconnection is well-defined, consider the case where both Σ1 and Σ2 are the identity mappings.

In this case, the only input signals

(
d1

d2

)
for which an output

(
y1

y2

)
can be found are those for which

d1+ d2 = 0. The dynamical systems which make up a well-defined interconnection will be called its
feedback components.

For stability of well-defined interconnections, it is not necessary for either of the feedback components
to be stable nor is it sufficient for both of the feedback components to be stable. On the other hand,
necessary and sufficient conditions for stability of a well-defined interconnection can be expressed in
terms of the set of all possible input–output pairs for each feedback component. To be explicit, following
are some definitions. For a given dynamical system Σ with input signals u and output signals y, the set
of its ordered input–output pairs (u, y) is referred to as the graph of the dynamical system and is denoted
GΣ. When the input and output are exchanged in the ordered pair, i.e., (y, u), the set is referred to as the
inverse graph of the system and is denoted GI

Σ. Note that, for the system in Figure 44.1, the inverse graph
of Σ2 and the graph of Σ1 lie in the same Cartesian product space called the ambient space. We will use
as norm on the ambient space the sum of the norms of the coordinates.

The basic observation regarding input–output stability for a well-defined interconnection says, in
informal terms, that if a signal in the inverse graph ofΣ2 is near any signal in the graph ofΣ1 then it must
be small. To formalize this notion, we need the concept of the distance to the graph of Σ1 from signals x
in the ambient space. This (truncated) distance is defined by

dτ(x, GΣ1 ) := inf
z∈GΣ1

||(x− z)τ||. (44.4)

Theorem 44.1: Graph Separation Theorem

A well-defined interconnection is stable if, and only if, a gain function γ exists which gives a bound on the
norm of truncated signals in the inverse graph ofΣ2 as a function of the truncated distance from the signals
to the graph of Σ1, i.e.,

x ∈ GI
Σ2
=⇒ ||xτ|| ≤ γ

(
dτ
(
x, GΣ1

))
, for all τ. (44.5)

In the special case where γ is a linear function, the well-defined interconnection is finite gain stable.

The idea behind this observation can be understood by considering the signals that arise in the closed
loop which belong to the inverse graph ofΣ2, i.e., the signals (y2, y1+ d2). (Stability with these signals taken
as output is equivalent to stability with the original outputs.) Notice that, for the system in Figure 44.1,
signals in the graph of Σ1 have the form (y2+ d1, y1). Consequently, signals x ∈ GI

Σ2
and z ∈ GΣ1 , which

satisfy the feedback equations, also satisfy

(x− z)τ = (d1,−d2)τ (44.6)

and
||(x− z)τ|| = ‖(d1, d2)τ‖ (44.7)

for truncations within the interval of definition. If there are signals x in the inverse graph ofΣ2 with large
truncated norm but small truncated distance to the graph ofΣ1, i.e., there exists some z ∈ GΣ1 and τ> 0
such that ||(x− z)τ|| is small, then we can choose (d1, d2) to satisfy Equation 44.6 giving, according to
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44-4 Control System Advanced Methods

Equation 44.7, a small input which produces a large output. This contradicts our definition of stability.
Conversely, if there is no z which is close to x, then only large inputs can produce large x signals and thus
the system is stable.

The distance observation presented above is the unifying idea behind the input–output stability criteria
applied in practice. However, the observation is rarely applied directly because of the difficulties involved
in exactly characterizing the graph of a dynamical system and measuring distances. Instead, various
simpler conditions have been developed which constrain the graphs of the feedback components to
guarantee that the graph of Σ1 and the inverse graph of Σ2 are sufficiently separated. There are many
such sufficient conditions, and, in the remainder of this chapter, we will describe a few of them.

44.3 Practical Conditions and Examples

44.3.1 The Classical Small Gain Theorem

One of the most commonly used sufficient conditions for graph separation constrains the graphs of
the feedback components by assuming that each feedback component is finite gain stable. Then, the
appropriate graphs will be separated if the product of the coefficients of the linear gain functions is
sufficiently small. For this reason, the result based on this type of constraint has come to be known as the
small gain theorem.

Theorem 44.2: Small Gain Theorem

If each feedback component is finite gain stable and the product of the gains (the coefficients of the linear
gain functions) is less than one, then the well-defined interconnection is finite gain stable.

Figure 44.2 provides the intuition for the result. If we were to draw an analogy between a dynamical
system and a static map whose graph is a set of points in the plane, the graph ofΣ1 would be constrained
to the darkly shaded conic region by the finite gain stability assumption. Likewise, the inverse graph of
Σ2 would be constrained to the lightly shaded region. The fact that the product of the gains is less than
one guarantees the positive aperture between the two regions and, in turn, that the graphs are separated
sufficiently.

To apply the small gain theorem, we need a way to verify that the feedback components are finite gain
stable (with respect to a particular norm) and to determine their gains. In particular, any linear dynamical
system that can be represented with a real, rational transfer function G(s) is finite gain stable in any of the
p-norms if, and only if, all of the poles of the transfer function have negative real parts. A popular norm
to work with is the 2-norm. It is associated with the energy of a signal. For a single-input, single-output
(SISO) finite gain stable system modeled by a real, rational transfer function G(s), the smallest possible
coefficient for the stability gain function with respect to the 2-norm, is given by

γ̄ := sup
ω
|G(jω)|. (44.8)

For multi-input, multioutput systems, the magnitude in Equation 44.8 is replaced by the maximum
singular value. In either case, this can be established using Parseval’s theorem. For SISO systems, the
quantity in Equation 44.8 can be obtained from a quick examination of the Bode plot or Nyquist plot for
the transfer function. If the Nyquist plot of a stable SISO transfer function lies inside a circle of radius
γ̄ centered at the origin, then the coefficient of the 2-norm gain function for the system is less than or
equal to γ̄.
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Inverse
graph of ∑2

Graph of ∑1
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u

1/γ2

γ1

FIGURE 44.2 Classical small gain theorem.

More generally, consider a dynamical system that can be represented by a finite dimensional ordinary
differential equation with zero initial state:

ẋ = f (x, u), x(0)= 0 and y = h(x, u). (44.9)

Suppose that f has globally bounded partial derivatives and that positive real numbers �1 and �2 exist
so that

|h(x, u)| ≤ �1|x| + �2|u|. (44.10)

Under these conditions, if the trajectories of the unforced system with nonzero initial conditions,

ẋ = f (x, 0), x(0)= x◦, (44.11)

satisfy
|x(t)| ≤ k exp(−λt)|x◦|, (44.12)

for some positive real number k and λ and any x◦ ∈ R
n, then the system (Equation 44.9) is finite gain

stable in any of the p-norms. This can be established using Lyapunov function arguments that apply to
the system (Equation 44.11). The details can be found in the textbooks on nonlinear systems mentioned
later.

Example 44.1:

Consider a nonlinear control system modeled by an ordinary differential equation with state x ∈ R
n,

input v ∈ R
m and disturbance d1 ∈ R

m :

ẋ = f (x , v+ d1). (44.13)

Suppose that f has globally bounded partial derivatives and that a control v = α(x) can be found,
also with a globally bounded partial derivative, so that the trajectories of the system

ẋ = f (x , α(x)), x(0)= x◦ (44.14)
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satisfy the bound
|x(t)| ≤ k exp(−λt)|x◦| (44.15)

for some positive real numbers k and λ and for all x◦ ∈ R
n. As mentioned above, for any function h

satisfying the type of bound in Equation 44.10, this implies that the system

ẋ = f (x , α(x)+ d1), x(0)= 0 and y = h(x , d1) (44.16)

has finite 2-norm gain from input d1 to output y. We consider the output

y := α̇= ∂α

∂x
f (x , α(x)+ d1) (44.17)

which satisfies the type of bound in Equation 44.10 because α and f both have globally bounded
partial derivatives.

We will show, using the small gain theorem, that disturbances d1 with finite 2-norm continue to
produce outputs y with finite 2-norm even when the actual input v to the process is generated by
the following fast dynamic version of the commanded input α(x):

εż = Az+ B(α(x))+ d2, z(0)=−A−1Bα(x(0))

v = Cz.
(44.18)

Here, ε is a small positive parameter, the eigenvalues of A all have strictly negative real part (thus A is
invertible), and−CA−1B = I. This system may represent unmodeled actuator dynamics.

To see the stability result, we will consider the composite system in the coordinates x and ζ=
z+A−1Bα(x). Using the notation from Figure 44.1,

ẋ = f (x , α(x)+ u1), x(0)= 0

Σ1:
y1 = A−1Bα̇(x),

(44.19)

and

ζ̇= ε−1Aζ+ u2, ζ= 0

Σ2:
y2 = Cζ,

(44.20)

with the interconnection conditions

u1 = y2+ d1, and u2 = y1+ ε−1d2. (44.21)

Of course, if the system is finite gain stable with the inputs d1 and ε−1d2, then it is also finite gain
stable with the inputs d1 and d2. We have already discussed that the system Σ1 in Equation 44.19
has finite 2-norm gain, say γ1. Now consider the systemΣ2 in Equation 44.20. It can be represented
with the transfer function

G(s)= C(sI− ε−1A)−1,

= εC(εsI−A)−1,

=: εḠ(εs).

(44.22)

Identifying Ḡ(s)= C(sI−A)−1, we see that, if

γ2 := sup
ω
σ(Ḡ(jω)), (44.23)

then
sup
ω
σ(G( jω))= εγ2. (44 24)

We conclude from the small gain theorem that, if ε<
1
γ1γ2

, then the composite system (Equa-

tions 44.19 through 44 21), with inputs d1 and d2 and outputs y1 = A−1Bα̇(x) and y2 = Cζ, is finite
gain stable.
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44.3.2 The Classical Passivity Theorem

Another very popular condition used to guarantee graph separation is given in the passivity theorem.
For the most straightforward passivity result, the number of input channels must equal the number of
output channels for each feedback component. We then identify the relative location of the graphs of the
feedback components using a condition involving the integral of the product of the input and the output
signals. This operation is known as the inner product, denoted 〈·, ·〉. In particular, for two signals u and y
of the same dimension defined on the semi-infinite interval,

〈u, y〉 :=
∫ ∞

0
uT (t)y(t) dt. (44.25)

Note that 〈u, y〉 = 〈y, u〉 and 〈u, u〉 = ||u||22. A dynamical system is passive if, for each input–output pair
(u, y) and each τ> 0, 〈uτ, yτ〉 ≥ 0. The terminology used here comes from the special case where the input
and output are a voltage and a current, respectively, and the energy absorbed by the dynamical system,
which is the inner product of the input and output, is nonnegative.

Again by analogy to a static map whose graph lies in the plane, passivity of a dynamical system can
be viewed as the condition that the graph is constrained to the darkly shaded region in Figure 44.3,
i.e., the first and third quadrants of the plane. This graph and the inverse graph of a second system
would be separated if, for example, the inverse graph of the second system were constrained to the
lightly shaded region in Figure 44.3, i.e., the second and fourth quadrants but bounded away from
the horizontal and vertical axes by an increasing and unbounded distance. But, this is the same as
asking that the graph of the second system followed by the scaling “−1,” i.e., all pairs (u,−y), be
constrained to the first and third quadrants, again bounded away from the axes by an increasing and
unbounded distance, as in Figure 44.4a. For classical passivity theorems, this region is given a linear
boundary as in Figure 44.4b. Notice that, for points (u◦, y◦) in the plane, if u◦ · y◦ ≥ ε(u2◦ + y2◦) then
(u◦, y◦) is in the first or third quadrant, and (ε)−1|u◦| ≥ |y◦| ≥ ε|u◦| as in Figure 44.4b. This leads to

Inverse
graph of ∑2

Graph of ∑1

y

u

FIGURE 44.3 General passivity-based interconnection.
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Graph of ∑

(a) (b)y

u

Graph of ∑

y

u

FIGURE 44.4 Different notions of input and output strict passivity.

the following stronger version of passivity. A dynamical system is input and output strictly passive
if a strictly positive real number ε exists so that, for each input–output pair (u, y) and each τ> 0,
〈uτ, yτ〉 ≥ ε

(||uτ||22+ ||yτ||22).
There are intermediate versions of passivity which are also useful. These correspond to asking for an

increasing and unbounded distance from either the horizontal axis or the vertical axis but not both. For
example, a dynamical system is input strictly passive if a strictly positive real number ε exists so that, for
each input–output pair (u, y) and each τ> 0, 〈uτ, yτ〉 ≥ ε||uτ||22. Similarly, a dynamical system is output
strictly passive if a strictly positive real number ε exists so that, for each input–output pair (u, y) and
each τ> 0, 〈uτ, yτ〉 ≥ ε||yτ||22. It is worth noting that input and output strict passivity is equivalent to
input strict passive plus finite gain stability. This can be shown with standard manipulations of the inner
product. Also, the reader is warned that all three types of strict passivity mentioned above are frequently
called “strict passivity” in the literature.

Again by thinking of a graph of a system as a set of points in the plane, output strict passivity is the
condition that the graph is constrained to the darkly shaded region in Figure 44.5, i.e., the first and third
quadrants with an increasing and unbounded distance from the vertical axis. To complement such a
graph, consider a second dynamical system which, when followed by the scaling “−1,” is also output
strictly passive. Such a system has a graph (without the “−1” scaling) constrained to the second and
fourth quadrants with an increasing and unbounded distance from the vertical axis. In other words, its
inverse graph is constrained to the lightly shaded region of Figure 44.5, i.e., to the second and fourth
quadrants but with an increasing and unbounded distance from the horizontal axis. The conclusions
that we can then draw, using the graph separation theorem, are summarized in the following passivity
theorem.

Theorem 44.3: Passivity Theorem

If one dynamical system and the other dynamical system followed by the scaling “−1” are

• both input strictly passive, OR
• both output strictly passive, OR
• respectively, passive and input and output strictly passive,

then the well-defined interconnection is finite gain stable in the 2-norm.
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Inverse
graph of ∑2

Graph of ∑1

y

u

FIGURE 44.5 Interconnection of output strictly passive systems.

To apply this theorem, we need a way to verify that the (possibly scaled) feedback components are
appropriately passive. For stable SISO systems with real, rational transfer function G(s), it again follows
from Parseval’s theorem that, if

Re G( jω)≥ 0,

for all real values of ω, then the system is passive. If the quantity Re G(jω) is positive and uniformly
bounded away from zero for all real values ofω, then the linear system is input and output strictly passive.
Similarly, if ε> 0 exists so that, for all real values of ω,

Re G(jω− ε)≥ 0, (44.26)

then the linear system is output strictly passive. So, for SISO systems modeled with real, rational transfer
functions, passivity and the various forms of strict passivity can again be easily checked by means of a
graphical approach such as a Nyquist plot.

More generally, for any dynamical system that can be modeled with a smooth, finite dimensional
ordinary differential equation,

ẋ = f (x)+ g(x)u, x(0)= 0

y = h(x),
(44.27)

if a strictly positive real number ε exists and a nonnegative function V : Rn → R≥ 0 with V (0)= 0
satisfying

∂V

∂x
(x)f (x)≤−εhT (x)h(x), (44.28)

and
∂V

∂x
(x)g(x)= hT (x), (44.29)

then the system is output strictly passive. With ε= 0, the system is passive. Both of these results are
established by integrating V̇ over the semi-infinite interval.
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Example 44.2:

(This example is prompted by the work in Berghuis and Nijmeijer, Syst. Control Lett., 1993, 21, 289–
295.) Consider a “completely controlled dissipative Euler-Lagrange” system with generalized “forces”
F , generalized coordinates q, uniformly positive definite “inertia” matrix I(q), Rayleigh dissipation
function R(q̇) and, say positive, potential V (q) starting from the position qd . Let the dynamics of the
system be given by the Euler-Lagrange-Rayleigh equations,

˙︷ ︸︸ ︷
∂L

∂q̇
(q, q̇)= ∂L

∂q
(q, q̇)+ F, − ∂L

∂q
(q̇)

q(0)= qd, q̇(0)= 0, (44.30)

where L is the Lagrangian

L(q, q̇)= 1
2

q̇,I(q) q̇− V (q). (44.31)

Along the solution of Equation 44.30,

L̇= ∂L

∂q̇
q̈+ ∂L

∂q
q̇= ∂L

∂q̇
q̈+

⎡
⎢⎣
˙︷︸︸︷

∂L

∂q̇
− F, + ∂R

∂q̇

⎤
⎥⎦ q̇, (44.32)

=
˙︷ ︸︸ ︷(

∂L

∂q̇
q̇

)
−
[

F, − ∂R

∂q̇

]
q̇=

˙︷ ︸︸ ︷(
∂q̇,I(q) q̇

)
−
[

F, − ∂R

∂q̇

]
q̇, (44.33)

= 2
˙︷ ︸︸ ︷

L+ V −
[

F, − ∂R

∂q̇

]
q̇=−2 V̇ +

[
F, − ∂R

∂q̇

]
q̇. (44 34)

We will suppose that ε> 0 exists so that

∂R

∂q̇
(q̇) q̇ ≥ ε |q̇|2. (44.35)

Now let Vd be a function so that the modified potential

Vm = V + Vd (44.36)

has a global minimum at q= qd , and let the generalized “force” be

F = −∂Vd
∂q

(q) + Fm. (44.37)

We can see that the system (Equation 44.30) combined with Equation 44.37, having input Fm and
output q̇, is output strictly passive by integrating the derivative of the defined Hamiltonian,

H = 1
2

q̇,I(q) q̇ + Vm(q) = L + 2 V + Vd . (44.38)

Indeed the derivative is

Ḣ =
[

F,m −
∂R

∂q̇

]
q̇ (44.39)

and, integrating, for each τ 〈[
Fmτ −

∂R

∂q̇
(q̇τ),

]
, q̇τ

〉
= H(τ)−H(0). (44.40)

Since H ≥ 0, H(0)= 0 and Equation 44.35 holds

〈Fmτ, q̇τ〉 ≥ ε||q̇τ||22. (44.41)

Using the notation from Figure 44.1, let Σ1 be the system (Equations 44.30 and 44.37) with input
Fm and output q̇. Let Σ2 be any system that, when followed by the scaling “−1,” is output strictly
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passive. Then, according to the passivity theorem, the composite feedback system as given in Fig-
ure 44.1 is finite gain stable using the 2-norm. One possibility for Σ2 is minus the identity mapping.
However, there is interest in choosing Σ2 followed by the scaling “−1” as a linear, output strictly
passive compensator which, in addition, has no direct feed-through term. The reason is that if, d2 in
Figure 44.1 is identically zero, we can implement Σ2 with measurement only of q and without q̇. In
general,

G(s)q̇= G(s)s

(
1
s

q̇

)
= G(s)s(q− qd ), (44.42)

and the system G(s)s is implementable if G(s) has no direct feed-through terms. To design an output
strictly passive linear system without direct feed-through, let A be a matrix having all eigenvalues
with strictly negative real parts so that, by a well-known result in linear systems theory, a positive
definite matrix P exists satisfying

AT P+ PA=−I. (44.43)

Then, for any B matrix of appropriate dimensions, the system modeled by the transfer function,

G(s)=−BT P(sI−A)−1B, (44.44)

followed by the scaling “−1,” is output strictly passive. To see this, consider a state-space realization

ẋ = Ax+ Bu x(0)= 0

y = BT Px ,
(44.45)

and note that

˙︷ ︸︸ ︷
x,P x =−x,x + 2 x,P B u (44.46)

=−x,x + 2 y,u. (44.47)

But, with Equation 44.45, for some strictly positive real number c,

2c y,y ≤ x,x . (44.48)

So, integrating Equation 44.47 and with P positive definite, for all τ,

〈yτ, uτ〉 ≥ c||yτ||22. (44.49)

As a point of interest, one could verify that

G(s)s=−BT PA(sI−A)−1B− BT PB. (44.50)

44.3.3 Simple Nonlinear Separation Theorems

In this section we illustrate how allowing regions with nonlinear boundaries in the small gain and passivity
contexts may be useful. First we need a class of functions to describe nonlinear boundaries. A proper
separation function is a function from the nonnegative real numbers to the nonnegative real numbers
which is continuous, zero at zero, strictly increasing and unbounded. The main difference between a gain
function and a proper separation function is that the latter is invertible, and the inverse is another proper
separation function.

44.3.3.1 Nonlinear Passivity

We will briefly discuss a definition of nonlinear input and output strict passivity. To our knowledge, this
idea has not been used much in the literature. The notion replaces the linear boundaries in the input
and output strict passivity definition by nonlinear boundaries as in Figure 44.4a. A dynamical system
is nonlinearly input and output strictly passive if a proper separation function ρ exists so that, for each
input–output pair (u, y) and each τ> 0, 〈uτ, yτ〉 ≥ ||uτ||2ρ(||uτ||2)+ ||yτ||2ρ(||yτ||2). (Note that in the
classical definition of strict passivity, ρ(ζ)= εζ for all ζ≥ 0.)



�

�

�

�

� �

44-12 Control System Advanced Methods

Theorem 44.4: Nonlinear Passivity Theorem

If one dynamical system is passive and the other dynamical system followed by the scaling “−1” is nonlinearly
input and output strictly passive, then the well-defined interconnection is stable using the 2-norm.

Example 44.3:

LetΣ1 be a single integrator system,

ẋ1 = u1 x1(0)= 0

y1 = x1.
(44.51)

This system is passive because

0≤ 1
2 x1(τ)2 =

∫ τ

0

d

dt
1
2 x(t)2 dt =

∫ τ

0
y1(t)u1(t) dt = 〈y1τ , u1τ 〉. (44.52)

LetΣ2 be a system which scales the instantaneous value of the input according to the energy of the
input:

ẋ2 = u2
2 x2(0)= 0

y2 =−u2

(
1

1+ |x2|0.25

)
.

(44.53)

This system followed by the scaling “−1” is nonlinearly strictly passive. To see this, first note that

x2(t)= ||u2t ||22 (44 54)

which is a nondecreasing function of t. So,

〈−y2τ , u2τ 〉 =
∫ τ

0
u2

2(t)
(

1

1+ |x2(t)|0.25

)
dt,

≥
(

1

1+ |x2(τ)|0.25

)∫ τ

0
u2

2(t) dt,

=
(

1

1+ ||u2τ ||0.5
2

)
||u2τ ||22.

(44.55)

Now we can define

ρ(ζ) := 0.5ζ

1+ ζ0.5 , (44.56)

which is a proper separation function, so that

〈−y2τ , u2τ 〉 ≥ 2ρ(||u2τ ||2)||u2τ ||2. (44.57)

Finally, note that

||y2τ ||22 =
∫ τ

0
u2

2(t)
1(

1+ x0.25
2 (t)

)2 dt ≤ ||u2τ ||22, (44.58)

so that
〈−y2τ , u2τ 〉 ≥ ρ(||u2τ ||2)||u2τ ||2+ ρ(||y2τ ||2)||y2τ ||2. (44.59)
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Inverse
graph of ∑2

Graph of ∑1

y

u

(γ2(ξ), ξ)

(ζ, γ1(ζ))

FIGURE 44.6 Nonlinear small gain theorem.

The conclusion that we can then draw from the nonlinear passivity theorem is that the interconnec-
tion of these two systems:

ẋ1 =−(x1+ d2)
(

1

1+ |x2|0.25

)
+ d1, ẋ2 = (x1+ d2)2,

y1 = x1, and y2 =−(x1+ d2)
(

1

1+ |x2|0.25

) (44.60)

is stable when measuring input (d1, d2) and output (y1, y2) using the 2-norm.

44.3.3.2 Nonlinear Small Gain

Just as with passivity, the idea behind the small gain theorem does not require the use of linear boundaries.
Consider a well-defined interconnection where each feedback component is stable but not necessarily
finite gain stable. Let γ1 be a stability gain function for Σ1 and let γ2 be a stability gain function for Σ2.
Then the graph separation condition will be satisfied if the distance between the curves (ζ, γ1(ζ)) and
(γ2(ξ), ξ) grows without bound as in Figure 44.6. This is equivalent to asking whether it is possible to add
to the curve (ζ, γ1(ζ)) in the vertical direction and to the curve (γ2(ξ), ξ) in the horizontal direction, by an
increasing and unbounded amount, to obtain new curves

(
ζ, γ1(ζ)+ ρ(ζ)

)
and

(
γ2(ξ)+ ρ(ξ), ξ

)
where ρ

is a proper separation function, so that the modified first curve is never above the modified second curve.
If this is possible, we will say that the composition of the functions γ1 and γ2 is a strict contraction. To say
that a curve (ζ, γ̃1(ζ)) is never above a second curve (γ̃2(ξ), ξ) is equivalent to saying that γ̃1(γ̃2(ζ))≤ ζ or
γ̃2(γ̃1(ζ))≤ ζ for all ζ≥ 0. (Equivalently, we will write γ̃1 ◦ γ̃2 ≤ Id or γ̃2 ◦ γ̃1 ≤ Id.) So, requiring that the
composition of γ1 and γ2 is a strict contraction is equivalent to requiring that a strictly proper separation
function ρ exists so that (γ1+ ρ) ◦ (γ2+ ρ)≤ Id (equivalently (γ2+ ρ) ◦ (γ1+ ρ)≤ Id). This condition
was made precise in [3]. (See also [2].) Note that it is not enough to add to just one curve because it is
possible for the vertical or horizontal distance to grow without bound while the total distance remains
bounded. Finally, note that, if the gain functions are linear, the condition is the same as the condition that
the product of the gains is less than one.
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Theorem 44.5: Nonlinear Small Gain Theorem

If each feedback component is stable (with gain functions γ1 and γ2) and the composition of the gains is a
strict contraction, then the well-defined interconnection is stable.

To apply the nonlinear small gain theorem, we need a way to verify that the feedback components are
stable. To date, the most common setting for using the nonlinear small gain theorem is when measuring
the input and output using the∞-norm. For a nonlinear system which can be represented by a smooth,
ordinary differential equation,

ẋ = f (x, u), x(0)= 0, and y = h(x, u), (44.61)

where h(0, 0)= 0, the system is stable (with respect to the∞-norm) if there exist a positive definite and
radially unbounded function V : Rn → R≥ 0, a proper separation function ψ, and a gain function γ̃ so
that

∂V

∂x
f (x, u)≤−ψ(|x|)+ γ̃(|u|). (44.62)

Since V is positive definite and radially unbounded, additional proper separation functions α and ᾱ exist
so that

α(|x|)≤ V (x)≤ ᾱ(|x|). (44.63)

Also, because h is continuous and zero at zero, gain functions φx and φu exist so that

|h(x, u)| ≤ φx(|x|)+φu(|u|). (44.64)

Given all of these functions, a stability gain function can be computed as

γ= φx ◦ α−1 ◦ ᾱ ◦ψ−1 ◦ γ̃+φu. (44.65)

For more details, the reader is directed to [8].

Example 44.4:

Consider the composite system,

ẋ = Ax+ Bsat(z+ d1), x(0)= 0

ż =−z+ ε(exp(|x| + d2)− 1) , z(0)= 0,
(44.66)

where x ∈ R
n, z ∈ R, the eigenvalues of A all have strictly negative real part, ε is a small parameter, and

sat(s)= sgn(s) min{|s|, 1}. This composite system is a well-defined interconnection of the subsystems

ẋ = Ax+ Bsat(u1), x(0)= 0

Σ1 :
y1 = |x|

(44.67)

and

ż =−z+ ε (exp(u2)− 1
)

, z(0)= 0

Σ2 :
y2 = z.

(44.68)
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A gain function for theΣ1 system is the product of the∞-gain for the linear system

ẋ = Ax+ Bu, x(0)= 0

y = x ,
(44.69)

which we will call γ̄1, with the function sat(s), i.e., for the systemΣ1,

||y||∞ ≤ γ̄1sat(||u1||∞). (44.70)

For the systemΣ2,

||z||∞ ≤ |ε| (exp
(||u2||∞

)− 1
)

. (44.71)

The distance between the curves (ζ, γ̄1sat(ζ)) and (|ε| (exp
(
ξ
)− 1

)
, ξ) must grow without bound.

Graphically, one can see that a necessary and sufficient condition for this is that

|ε|< 1
exp(γ̄1)− 1

. (44.72)

44.3.4 General Conic Regions

There are many different ways to partition the ambient space to establish the graph separation condition
in Equation 44.5. So far we have looked at only two very specific sufficient conditions, the small gain
theorem and the passivity theorem. The general idea in these theorems is to constrain signals in the graph
ofΣ1 within some conic region, and signals in the inverse graph ofΣ2 outside of this conic region. Conic
regions more general than those used for the small gain and passivity theorems can be generated by using
operators on the input–output pairs of the feedback components.

Let C and R be operators on truncated ordered pairs in the ambient space, and let γ be a gain function.
We say that the graph ofΣ1 is inside Cone(C, R, γ) if, for each (u, y)=: z belonging to the graph ofΣ1,

||C(zτ)|| ≤ γ(||R(zτ)||), for all τ. (44.73)

On the other hand, we say that the inverse graph ofΣ2 is strictly outside Cone(C, R, γ) if a proper separation
function ρ exists so that, for each (y, u)=: x belonging to the inverse graph ofΣ2,

||C(xτ)|| ≥ γ ◦ (Id+ ρ)(||R(xτ)||)+ ρ(||xτ||), for all τ. (44.74)

We will only consider the case where the maps C and R are incrementally stable, i.e., a gain function γ̄
exists so that, for each x1 and x2 in the ambient space and all τ,

||C(x1τ )−C(x2τ )|| ≤ γ̄(||x1τ − x2τ ||)
||R(x1τ )−R(x2τ )|| ≤ γ̄(||x1τ − x2τ ||).

(44.75)

In this case, the following result holds.

Theorem 44.6: Nonlinear Conic Sector Theorem

If the graph ofΣ1 is inside CONE(C, R, γ) and the inverse graph ofΣ2 is strictly outside CONE(C, R, γ), then
the well-defined interconnection is stable.

When γ and ρ are linear functions, the well-defined interconnection is finite gain stable.
The small gain and passivity theorems we have discussed can be interpreted in the framework of the

nonlinear conic sector theorem. For example, for the nonlinear small gain theorem, the operator C is a
projection onto the second coordinate in the ambient space, and R is a projection onto the first coordinate;
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ϕ(u, t)

u

–(c – r)

–(c + r)

FIGURE 44.7 Instantaneous sector.

γ is the gain function γ1, and the small gain condition guarantees that the inverse graph of Σ2 is strictly
outside of the cone specified by this C, R and γ.

In the remaining subsections, we will discuss other useful choices for the operators C and R.

44.3.4.1 The Classical Conic Sector (Circle) Theorem

For linear SISO systems connected to memoryless nonlinearities, there is an additional classical result,
known as the circle theorem, which follows from the nonlinear conic sector theorem using the 2-norm
and taking

C
(
u, y

)= y+ cu

R
(
u, y

)= ru r ≥ 0

γ(ζ)= ζ.
(44.76)

Suppose φ is a memoryless nonlinearity which satisfies

|φ(u, t)+ cu| ≤ |ru| for all t, u. (44.77)

Graphically, the constraint on φ is shown in Figure 44.7. (In the case shown, c > r > 0.) We will use the
notation Sector[−(c+ r),−(c− r)] for the memoryless nonlinearity. It is also clear that the graph of φ lies
in the CONE(C, R, γ) with C, R, γ defined in Equation 44.76. For a linear, time invariant, finite dimensional
SISO system, whether its inverse graph is strictly outside of this cone can be determined by examining
the Nyquist plot of its transfer function. The condition on the Nyquist plot is expressed relative to a disk
Dc,r in the complex plane centered on the real axis passing through the points on the real axis with real
parts−1/(c+ r) and−1/(c− r) as shown in Figure 44.8.

Theorem 44.7: Circle Theorem

Let r ≥ 0, and consider a well-defined interconnection of a memoryless nonlinearity belonging to
SECTOR[−(c+ r),−(c− r)] with a SISO system having a real, rational transfer function G(s). If
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D

– 1
(c – r)

– 1

ℑ[s]

IR[s]

(c + r)– 1
c

FIGURE 44.8 A disc in the complex plane.

• r > c, G(s) is stable and the Nyquist plot of G(s) lies in the interior of the disc Dc,r , or
• r = c, G(s) is stable and the Nyquist plot of G(s) is bounded away and to the right of the vertical line

passing through the real axis at the value−1/(c+ r), or
• r < c, the Nyquist plot of G(s) (with Nyquist path indented into the right-half plane) is outside of

and bounded away from the disc Dc,r , and the number of times the plot encircles this disc in the
counterclockwise direction is equal to the number of poles of G(s) with strictly positive real parts,

then the interconnection is finite gain stable.

Case 1 is similar to the small gain theorem, and case 2 is similar to the passivity theorem. We will now
explain case 3 in more detail. Let n(s) and d(s) represent, respectively, the numerator and denominator
polynomials of G(s). Since the point (−1/c, 0) is inside the disc Dc,r , it follows, from the assumption of the
theorem together with the well-known Nyquist stability condition, that all of the roots of the polynomial
d(s)+ cn(s) have negative real parts. Then y = G(s)u= N(s)D(s)−1u where

D(s) := d(s)

d(s)+ cn(s)
, and N(s) := n(s)

d(s)+ cn(s)
, (44.78)

and, by taking z = D(s)−1u, we can describe all of the possible input–output pairs as

(u, y)= (D(s)z, N(s)z
)

. (44.79)

Notice that D(s)+ cN(s)= 1, so that

||u+ cy||2 = ||z||2. (44.80)

To put a lower bound on this expression in terms of ||u||2 and ||y||2, to show that the graph is strictly
outside of the cone defined in Equation 44.76, we will need the 2-norm gains for systems modeled by the
transfer functions N(s) and D(s). We will use the symbols γN and γD for these gains. The condition of
the circle theorem guarantees that γN < r−1. To see this, note that

N(s)= G(s)

1+ cG(s)
(44.81)
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implying

γN := sup
ω∈R

∣∣∣∣ G(jω)

1+ cG(jω)

∣∣∣∣ . (44.82)

But

|1+ c G(jω)|2− r2|G( jω)|2
= (c Re

{
G( jω)

}+ 1
)2+ c2 Im2 {G( jω)

}− r2 Re2 {G( jω)
}− r2 Im2 {G( jω)

}
,

= (c2− r2)

(
Re
{

G( jω)
}+ c

c2− r2

)2

+ (c2− r2) Im2 {G( jω)
}− r2

c2− r2 .

(44.83)

Setting the latter expression to zero defines the boundary of the disc Dc,r . Since the expression is positive
outside of this disc, it follows that γN < r−1.

Returning to the calculation initiated in Equation 44.80, note that γN < r−1 implies that a strictly
positive real number ε exists so that

(1− εγD)γ−1
N ≥ r+ 2ε. (44.84)

So,

||u+ cy||2 = ||z||2 = (1− εγD)||z||2+ εγD||z||2,

≥ (1− εγD)γ−1
N ||y||2+ ε||u||2,

≥ (r+ ε)||y||2+ ε(||u||2+ ||y||2).

(44.85)

We conclude that the inverse graph of the linear system is strictly outside of the CONE(C, R, γ) as defined
in Equation 44.76.

Note, incidentally, that N(s) is the closed loop transfer function from d1 to y1 for the special case
where the memoryless nonlinearity satisfies φ(u)=−cu. This suggests another way of determining sta-
bility: first make a preliminary loop transformation with the feedback −cu, changing the original linear
system into the system with transfer function N(s) and changing the nonlinearity into a new nonlin-
earity φ̃ satisfying |φ̃(u, t)| ≤ r|u|. Then apply the classical small gain theorem to the resulting feedback
system.

Example 44.5:

Let

G(s)= 175

(s− 1)(s+ 4)2 . (44.86)

The Nyquist plot of G(s) is shown in Figure 44.9. Because G(s) has one pole with positive real part, only
the third condition of the circle theorem can apply. A disc centered at−8.1 on the real axis and with
radius 2.2 can be placed inside the left loop of the Nyquist plot. Such a disc corresponds to the values
c = 0.293 and r = 0.079. Because the Nyquist plot encircles this disc once in the counterclockwise
direction, it follows that the standard feedback connection with the feedback components G(s) and
a memoryless nonlinearity constrained to the SECTOR[−0.372,−0.214] is stable using the 2-norm.

44.3.4.2 Coprime Fractions

Typical input–output stability results based on stable coprime fractions are corollaries of the conic sector
theorem. For example, suppose both Σ1 and Σ2 are modeled by transfer functions G1(s) and G2(s).
Moreover, assume stable (in any p-norm) transfer functions N1, D1, Ñ1, D̃1, N2 and D2 exist so that D1,
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FIGURE 44.9 The Nyquist plot for G(s) in Example 44.5.

D2 and D̃1 are invertible, and

G1 = N1D−1
1 = D̃−1

1 Ñ1

G2 = N2D−1
2

Id = D̃1D2− Ñ1N2.

(44.87)

Let C(u, y)= D̃1(s)y− Ñ1(s)u, which is incrementally stable in any p-norm, let R(u, y)= 0, and let
γ≡ 0. Then, the graph of Σ1 is inside and the inverse graph of Σ2 is strictly outside CONE(C, R, γ) and
thus the feedback loop is finite gain stable in any p-norm.

To verify these claims about the properties of the graphs, first recognize that the graph of Σi can be
represented as

GΣi =
(
Di(s)z, Ni(s)z

)
(44.88)

where z represents any reasonable signal. Then, for signals in the graph ofΣ1,

C
(
D1(s)zτ, N1(s)zτ

)= D̃1(s)N1(s)zτ− Ñ1(s)D1(s)zτ ≡ 0. (44.89)

Conversely, for signals in the inverse graph ofΣ2,

∥∥C
(
N2(s)zτ, D2(s)zτ

)∥∥= ∥∥D̃1(s)D2(s)zτ− Ñ1(s)N2(s)zτ
∥∥

= ‖zτ‖ ≥ ε
∥∥(N2(s)zτ, D2(s)zτ

)∥∥ (44.90)

for some strictly positive real number ε. The last inequality follows from the fact that D2 and N2 are finite
gain stable.

Example 44.6:

(This example is drawn from the work in Potvin, M-J., Jeswiet, J., and Piedboeuf, J.-C. , Trans.
NAMRI/SME 1994, XXII, pp 373–377.) Let Σ1 represent the fractional Voigt–Kelvin model for the
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relation between stress and strain in structures displaying plasticity. For suitable values of Young’s
modulus, damping magnitude, and order of derivative for the strain, the transfer function ofΣ1 is

g1(s)= 1

1+√s
.

Integral feedback control, g2(s)=−1
s

, may be used for asymptotic tracking. Here

N1(s)= 1
s+ 1

, D1(s)= 1+√s

s+ 1
,

N2(s)=− s+ 1

1+ s(1+√s)
, D2(s)= s(s+ 1)

1+ s(1+√s)
.

(44.91)

It can be shown that these fractions are stable linear operators, and thereby incrementally stable
in the 2-norm. (This fact is equivalent to proving nominal stability and can be shown using Nyquist
theory.) Moreover, it is easy to see that D1D2−N1N2 = 1 so that the feedback loop is stable and
finite gain stable.

44.3.4.3 Robustness of Stability and the Gap Metric

It is clear from the original graph separation theorem that, if a well-defined interconnection is stable, i.e.,
the appropriate graphs are separated in distance, then modifications of the feedback components will not
destroy stability if the modified graphs are close to the original graphs.

Given two systemsΣ1 andΣ, define 9δ(Σ1,Σ)= α if α is the smallest number for which

x ∈ GΣ, =⇒ dτ(x, GΣ1 )≤ α‖x‖τ for all τ.

The quantity 9δ(·, ·) is called the “directed gap” between the two systems and characterizes basic neighbor-
hoods where stability as well as closed-loop properties are preserved under small perturbations from the
nominal systemΣ1 to a nearby systemΣ.

More specifically, if the interconnection of (Σ1,Σ2) is finite gain stable, we define the gain βΣ1,Σ2 as
the smallest real number so that∥∥∥∥

(
d1+ y2

y1

)∥∥∥∥
τ

≤ βΣ1,Σ2

∥∥∥∥
(

d1

d2

)∥∥∥∥
τ

, for all τ.

IfΣ is such that
9δ(Σ1,Σ)βΣ1,Σ2 < 1,

then the interconnection of (Σ,Σ2) is also finite gain stable.
As a special case, letΣ,Σ1,Σ2 represent linear systems acting on finite energy signals. Further, assume

that stable transfer functions N , D exist where D is invertible, G1 = ND−1, and N and D are normalized
so that DT (−s)D(s)+NT (−s)N(s)= Id. Then, the class of systems in a ball with radius γ ≥ 0, measured
in the directed gap, is given by CONE(C, R, γ), where R = Id and

C = Id−
(

D(s)
N(s)

)
P+(DT (−s), NT (−s))

where P+ designates the truncation of the Laplace transform of finite energy signals to the part with poles
in the left half plane. At the same time, if βΣ1,Σ2 < 1/γ, then it can be shown thatΣ2 is strictly outside the
cone CONE(C, R, γ) and, therefore, stability of the interconnection of Σ with Σ2 is guaranteed for any Σ
inside CONE(C, R, γ).

GivenΣ andΣ1, the computation of the directed gap reduces to a standard H∞-optimization problem
(see [1]). Also, given Σ1, the computation of a controller Σ2, which stabilizes a maximal cone around
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Σ1, reduces to a standard H∞-optimization problem [1] and forms the basis of the H∞-loop shaping
procedure for linear systems introduced in [4].

A second key result which prompted introducing the gap metric is the claim that the behavior of the
feedback interconnection ofΣ andΣ2 is “similar” to that of the interconnection ofΣ1 andΣ2 if, and only
if, the distance between Σ and Σ1, measured using the gap metric, is small (i.e., Σ lies within a “small
aperture” cone aroundΣ1). The “gap” function is defined as

δ(Σ1,Σ)=max{9δ(Σ1,Σ), 9δ(Σ,Σ1)}
to “symmetrize” the distance function 9δ(·, ·) with respect to the order of the arguments. Then, the above
claim can be stated more precisely as follows: for each ε> 0, a ζ(ε) > 0 exists so that

δ(Σ1,Σ) < ζ(ε) =⇒ ‖x− x1‖τ < ε‖d‖τ
where d =

(
d1

d2

)
is an arbitrary signal in the ambient space and x (resp. x1) represents the response

(
d1+ y2

y1

)
of the feedback interconnection of (Σ,Σ2) (resp. (Σ1,Σ2)). Conversely, if ‖x− x1‖τ < ε‖d‖τ

for all d and τ, then δ(Σ1,Σ)≤ ε.

Defining Terms

Ambient space: the Cartesian product space containing the inverse graph ofΣ2 and the graph ofΣ1.
Distance (from a signal to a set): measured using a norm function; the infimum, over all signals in the

set, of the norm of the difference between the signal and a signal in the set; see Equation 44.4; used
to characterize necessary and sufficient conditions for input–output stability; see Section 44.2.

Dynamical system: an object which produces an output signal for each input signal.
Feedback components: the dynamical systems which make up a well-defined interconnection.
Finite gain stable system: a dynamical system is finite gain stable if a nonnegative constant exists so that,

for each input–output pair, the norm of the output is bounded by the norm of the input times
the constant.

Gain function: a function from the nonnegative real numbers to the nonnegative real numbers which is
continuous, nondecreasing and zero when its argument is zero; used to characterize stability;
see Section 44.2; some form of the symbol γ is usually used.

Graph (of a dynamical system): the set of ordered input–output pairs (u, y).
Inner product: defined for signals of the same dimension defined on the semi-infinite interval; the integral

from zero to infinity of the component-wise product of the two signals.
Inside (or strictly outside) CONE(C, R, γ): used to characterize the graph or inverse graph of a system;

determined by whether or not signals in the graph or inverse graph satisfy certain inequalities
involving the operators C and R and the gain function γ; see Equations 44.73 and 44.74; used in
the conic sector theorem.

Inverse graph (of a dynamical system): the set of ordered output-input pairs (y, u).
Norm function (|| · ||): used to measure the size of signals defined on the semi-infinite interval; examples

are the p-norms p ∈ [1,∞] (see Equations 44.1 and 44.2).
Parseval’s theorem: used to make connections between properties of graphs for SISO systems modeled

with real, rational transfer functions and frequency domain characteristics of their transfer
functions; Parseval’s theorem relates the inner product of signals to their Fourier transforms
if they exist. For example, it states that, if two scalar signals u and y, assumed to be zero for
negative values of time, have Fourier transforms û(jω) and ŷ(jω) then

〈u, y〉 = 1

2π

∫ ∞

−∞
ŷ∗(jω)û(jω) dω.
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Passive: terminology resulting from electrical network theory; a dynamical system is passive if the inner
product of each input–output pair is nonnegative.

Proper separation function: a function from the nonnegative real numbers to the nonnegative real num-
bers which is continuous, zero at zero, strictly increasing and unbounded; such functions are
invertible on the nonnegative real numbers; used to characterize nonlinear separation theorems;
some form of the symbol ρ is usually used.

Semi-infinite interval: the time interval [0,∞).
Signal: a “reasonable” vector-valued function defined on a finite or semi-infinite time interval; by “rea-

sonable” we mean piecewise continuous or measurable.
SISO systems: an abbreviation for single input, single output systems.
Stable system: a dynamical system is stable if a gain function exists so that, for each input–output pair,

the norm of the output is bounded by the gain function evaluated at the norm of the input.
Strict contraction: the composition of two gain functions γ1 and γ2 is a strict contraction if a proper

separation function ρ exists so that (γ1+ ρ) ◦ (γ2+ ρ)≤ Id, where Id(ζ)= ζ and γ̃1 ◦ γ̃2(ζ)=
γ̃1(γ̃2(ζ)). Graphically, this is the equivalent to the curve (ζ, γ1(ζ)+ ρ(ζ)) never being above the
curve (γ2(ξ)+ ρ(ξ), ξ). This concept is used to state the nonlinear small gain theorem.

Strictly passive: We have used various notions of strictly passive including input-, output-, input and
output-, and nonlinear input and output-strictly passive. All notions strengthen the requirement
that the inner product of the input–output pairs be positive by requiring a positive lower bound
that depends on the 2-norm of the input and/or output.

Truncated signal: A signal defined on the semi-infinite interval which is derived from another signal (not
necessarily defined on the semi-infinite interval) by first appending zeros to extend the signal
onto the semi-infinite interval and then keeping the first part of the signal and setting the rest
of the signal to zero. Used to measure the size of finite portions of signals.

Well-defined interconnection: An interconnection of two dynamical systems in the configuration of
Figure 44.1 which results in another dynamical system, i.e., one in which an output signal is
produced for each input signal.
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Further Reading

As mentioned at the outset, the material presented in this chapter is based on the results in [6,7,9,10]. In the
latter, a more general feedback interconnection structure is considered where nonzero initial conditions
can also be consider as inputs.

Other excellent references on input–output stability include The Analysis of Feedback Systems, 1971,
by J.C. Willems and Feedback Systems: Input–Output Properties, 1975, by C. Desoer and M. Vidyasagar.
A nice text addressing the factorization method in linear systems control design is Control Systems
Synthesis: A Factorization Approach, 1985, by M. Vidyasagar. A treatment of input–output stability for
linear, infinite dimensional systems can be found in Chapter 6 of Nonlinear Systems Analysis, 1993, by
M. Vidyasagar. That chapter also discusses many of the connections between input–output stability and
state-space (Lyapunov) stability. Another excellent reference is Nonlinear Systems, 1992, by H. Khalil.

There are results similar to the circle theorem that we have not discussed. They go under the heading
of “multiplier” results and apply to feedback loops with a linear element and a memoryless, nonlinear
element with extra restrictions such as time invariance and constrained slope. Special cases are the well-
known Popov and off-axis circle criterion. Some of these results can be recovered using the general conic
sector theorem although we have not taken the time to do this. Other results, like the Popov criterion,
impose extra smoothness conditions on the external inputs which are not found in the standard problem.
References for these problems are Hyperstability of Control Systems, 1973, V.M. Popov, the English
translation of a book originally published in 1966, and Frequency Domain Criteria for Absolute Stability,
1973, by K.S. Narendra and J.H. Taylor.

Another topic closely related to these multiplier results is the structured small gain theorem for linear
systems which lends to much of the μ-synthesis control design methodology. This is described, for
example, in μ-Analysis and Synthesis Toolbox, 1991, by G. Balas, J. Doyle, K. Glover, A. Packard and R.
Smith.

There are many advanced topics concerning input–output stability that we have not addressed. These
include the study of small-signal stability, well-posedness of feedback loops, and control design based on
input–output stability principles. Many articles on these topics frequently appear in control and systems
theory journals such as IEEE Transactions on Automatic Control, Automatica, International Journal of
Control, Systems and Control Letters, Mathematics of Control, Signals, and Systems, to name a few.
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