
Essential and Redundant Internal Models
in Nonlinear Output Regulation

Lorenzo Marconi1 and Laurent Praly2

1 CASY-DEIS, University of Bologna, Italy.
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Summary. This paper is focused on the problem of output regulation for non-
linear systems within the main framework developed in [23]. The main goal is to
complement that theory with some new results showing how the dimension of the
internal model-based regulator can be reduced by preserving the so-called internal
model property. It is shown how the problem of reducing the regulator dimension
can be approached by identifying “observability” parts of the so-called steady-state
input generator system. A local analysis based on canonical geometric tools and
local observability decomposition is also presented to identify lower bounds on the
regulator dimension. Possible benefits in designing redundant internal models are
also discussed.

This work is dedicated to Prof. Alberto Isidori
on the occasion of his 65th birthday.

1 Introduction

One of the main issue in control theory is in the ability to capture information
about the plant to be supervised and the environment in which it operates and
to employ such a knowledge in the design of the controller in order to achieve
prescribed performances. A well-known control framework where such an issue
is particularly emphasized, is the one of output regulation (see, besides others,
[4], [19]) in which the problem is to design a regulator able to asymptotically
offset the effect, on a controlled system, of persistent exogenous signals which
are thought as generated by an autonomous system (the so-called exosystem)
of known structure but unknown initial condition. Indeed, as pioneered in
a linear setting in [12] and in a nonlinear setting in [18], the controller, to suc-
ceed in enforcing the desired asymptotic properties, is necessarily required to
be designed by employing the a-priori knowledge of the environment in which
the plant operates provided, in the classical framework, by the structure of
the exo-system. This, in turn, has led to the fundamental concept of internal
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model and to the identification of design procedures for internal model-based
regulators. To this respect the crucial property required to any regulator solv-
ing the problem is to be able to generate all possible steady state“feed-forward”
control inputs needed to enforce an identically zero regulation error, namely
the control inputs able to render invariant the so-called zero error manifold.
This is what, in the important work [4], has been referred to as internal model
property.

The design of regulators with the internal model property in a nonlinear
context necessarily requires the ability to address two major points. The first
regards the extension of the notion of steady state for nonlinear systems which,
clearly, is instrumental to properly formulate the internal model property. The
number of attempts along this direction which appeared in the related litera-
ture started with the work [18], in which the steady state has been character-
ized in terms of the solution of the celebrated regulator equations (somewhere
also referred to as Francis-Isidori-Byrnes equations), and culminated with the
notion recently given in [4]. In this work the authors showed how the right
mathematical tool to look for is the omega limit set of a set and, upon this
tool, they built up a non-equilibrium framework of output regulation.

The second critical point to be addressed consists of identifying method-
ologies to design regulators which on one hand posses the internal model
property, and, on the other hand, enforce in the closed-loop system a steady
state with zero regulated error. This double requirement justifies the usual
regulator structure constituted by a first dynamical unit (the internal model),
designed to provide the needed steady-state control action, and a second dy-
namical unit (the stabilizer), whose role is to effectively steer the closed-loop
trajectories towards the desired steady-state. Of course the design of the two
units are strongly interlaced in the sense that the ability of designing a sta-
bilizer is affected by the specific structure of the internal model which, as
a consequence, has to be identified with an eye to the available stabiliza-
tion tools. The need of satisfying simultaneously the previous two properties
motivated the requirement, characterizing all the frameworks appeared in lit-
erature, that the dynamical system defining all possible “feed-forward” inputs
which force an identically zero regulation error be “immersed” into a system
exhibiting certain structural properties. This requirement is what, in litera-
ture, is referred to as “immersion assumption”. This is the side where, in the
literature of the last fifteen years or so, the research attempts have mostly
concentrated by attempting to weaken even more the immersion assumption.
At the beginning, the system in question was assumed to be immersed into
a linear known observable system (see [15], [21], [3], [24]). This assumption has
been then weakened, in the framework of adaptive nonlinear regulation (see
[25]), by asking immersion into a linear un-known (but linearly parameterized)
system. Subsequent extensions have been presented in [6] (where immersion
into a linear system having a nonlinear output map is assumed) and in [7]
(where immersion into a nonlinear system linearizable by output injection is
assumed). Finally the recent works in [5] and [8] (see also [9]) have definitely
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focused the attention on the design of nonlinear internal models requiring
immersion into nonlinear systems described, respectively, in a canonical ob-
servability form and in a nonlinear adaptive observability form.

As clearly pointed out in [9], the inspiring idea in all the previous works
was to adopt methodologies for the design of the internal model inherited by
the design of observers. This perspective, along with the new theory to design
nonlinear observers proposed in [20] and developed in [1], played a crucial role
to completely drop the immersion assumption in the work [23]. In plain words
the main achievement in [23] has been to show that the steady state input
rendering invariant a compact attractor to be stabilized by output feedback
can be dynamically generated, in a robust framework, by an appropriately
designed regulator without any specific condition on this input (required, on
the contrary, in the past through the immersion assumption).

This paper aims to extend [23] by exploring conditions under which the di-
mension of the controller can be decreased while preserving the internal model
property and, on the other side, to show potential advantage in the regula-
tor design resulting from a redundant implementation of the internal model.
The major achievement in the reduction results is to show that the identifica-
tion of an “essential” internal model is intimately related to the identification
of “observability” parts of the so-called steady-state input generator system.
Motivated by this result we show how a local analysis based on canonical geo-
metric tools and local observability decomposition is useful to identify lower
bounds on the regulator dimension. On the other side, it is presented a result
showing that implementing a not essential internal model, in the sense better
specified in the paper, leads to a simplification in the structure of the stabilizer
which can be taken linear. Basically, the results presented in the paper reveal
a trade-off between the redundancy of the internal model and the simplicity
of the stabilizer.

The paper is organized as follows. In the next section we briefly review
the framework of output regulation and the solution given in [23]. Section 3,
articulated in two subsections, present the new results regarding essen-
tial regulators and the potential advantage coming from redundant internal
models. Finally, Section 4 presents some concluding remarks.

2 The Framework of Output Regulation

2.1 The Class of Systems and the Problem

The typical setting where the problem of nonlinear output regulation is for-
mulated is the one in which it is given a smooth nonlinear system described
in the form3

3 The form (1) is easily recognized to be the well-known normal form with rel-
ative degree 1 and unitary high-frequency gain (see [17]). As discussed in [23],
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ż = f(w, z, y)
ẏ = q(w, z, y) + u , (1)

with state (z, y) ∈ R
n ×R and control input u ∈ R and measurable output y,

influenced by an exogenous input w ∈ R
s which is supposed to be generated

by the smooth exosystem
ẇ = s(w) (2)

whose initial state w(0) is supposed to range on an invariant compact set
W ⊂ R

s. Depending on the control scenario, the variable w may assume
different meanings. It may represent exogenous disturbances to be rejected
and/or references to be tracked. It may also contain a set of (constant or
time-varying) uncertain parameters affecting the controlled plant. Associated
with (1) there is a regulated error e ∈ R expressed as

e = h(w, z, y) (3)

in which h : R
s × R

n × R→ R is a smooth function.
For system (1)–(2)–(3) the problem of semiglobal output regulation is de-

fined as follows. Given arbitrary compact sets Z ⊂ R
n and Y ⊂ R find, if

possible, an output feedback controller of the form

η̇ = ϕ(η, y)
u = #(η, y) (4)

with state η ∈ R
ν and a compact set M ⊂ R

ν such that, in the associated
closed-loop system (1), (2), (4) the positive orbit of W×Z×Y ×M is bounded
and, for eachw(0), z(0), y(0), η(0) ∈W×Z×Y×M , limt→∞ e(t) = 0 uniformly
in w(0), z(0), y(0), η(0).

As in [23], we approach the solution of the problem at issue under the
following assumption formulated on the zero dynamics (with respect to the
input u and output y) of system (1), namely on the system

ẇ = s(w)
ż = f(w, z, 0) . (5)

Note that, as a consequence of the fact that W is an invariant set for ẇ =
s(w), the closed cylinder C := W × R

n is locally invariant for (2)–(5) and
thus it is natural to regard this system on C and endow the latter with the
subset topology. This, indeed, is done in all the forthcoming analysis and, in
particular, in the next assumption.

Assumption 1. There exists a compact set A ⊂ R
s+n which is locally asymp-

totically stable for (5) with a domain of attraction which contains the set of
initial conditions W × Z. Furthermore, h(w, z, 0) = 0 for all (w, z) ∈ A.

Section 2.2, (see also [8]) the more general case (higher relative degree and not
unitary high frequency gain) can be dealt with with simple modifications which,
for sake of compactness, are not repeated here.
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Following [4] this assumption can be regarded as a “weak” minimum phase
assumption, with the adjective weak to highlight the fact that the “forced”
zero dynamics of the plant ż = f(w, z, 0) is not required to posses input-to-
state stability (with respect to the input w) properties nor that the “unforced”
ż = f(0, z) dynamics exhibit equilibrium points with prescribed stability prop-
erties.

2.2 The Asymptotic Regulator in [23]

The regulator proposed in [23] to solve the problem at hand is a system of
the form

η̇ = Fη +Gu η ∈ R
m

u = γ(η) + v

v = −κ(y) ,

(6)

in which m > 0, (F,G) ∈ R
m×m × R

m is a controllable pair with F Hurwitz
and γ : R

m → R and κ : R → R are suitable continuous maps. The initial
condition of (6) is supposed to be in an arbitrary compact set M ⊂ R

m.
The key result proved in [23] is that, under the only assumption stated

in Section 2.1, there exist a lower bound for m, a choice of the pair (F,G)
and of the maps γ and κ such that the regulator (6) succeeds in solving the
problem at hand. In this subsection we run very briefly over the key steps and
ideas followed in [23] to prove this, which are instrumental for the forthcoming
analysis in Section 3.

First of all, for sake of compactness, define z := col(w, z) and rewrite
system (5) as ż = f0(z) where

f0(z) := col(s(w), f(w, z, 0)) . (7)

Consistently set q0(z) := q(w, z, 0). A key role in the regulator (6) is played
by the function γ( · ) which is supposed to be an at least continuous function
satisfying the design formula

q0(z) + γ ◦ τ(z) = 0 ∀ z ∈ A (8)

with the function τ : A → R
m a continuous function satisfying

Lf0τ(z) = Fτ(z) −Gq0(z) ∀ z ∈ A (9)

where Lf0 denotes the Lie derivative along f0.
In order to motivate the design formulas (8)–(9), consider the closed-loop

system (1), (2), (6) given by

ẇ = s(w)
ż = f(w, z, y)
η̇ = Fη +Gγ(η) + v
ẏ = q(w, z, y) + v .

(10)
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The crucial property exhibited by this system is that, by the fact that the set
A is forward invariant for (5) (as a consequence of the fact that A is locally
asymptotically stable for (5)) and by (8), (9), the set

graph(τ)× {0} = {(z, η, y) ∈ A× R
m × R : η = τ(z) , y = 0} (11)

is a forward invariant set for (10) (with v ≡ 0) on which, by assumption,
the regulation error e is identically zero. This, in turn, makes it possible to
consider the problem of output regulation as a set stabilization problem in
which the issue is to design the function κ so that the set (11) is locally
asymptotically stable for (10) with v = κ(y) with a domain of attraction
containing the set of initial conditions. Both the existence of a γ (and of the
pair (F,G)) satisfying (8), (9) and the existence of κ so that the set (11) is
locally asymptotically stable for (10) with v = κ(y) are issues which have been
investigated in [23] and [22]. In the remaining part of the section we present
the main result along this direction. We start with a proposition presenting
the main result as far as the existence of γ is concerned (see Propositions 2
and 3 in [23]).

Proposition 1. Set
m ≥ 2(s+ n) + 2 .

There exist an  > 0 and a set S ⊂ CI of zero Lebesgue measure such that if
σ(F ) ⊂ {λ ∈ CI : Reλ < −} \ S, then there exists a function τ : A → R

m

solution of (9) which satisfies the partial injectivity condition

|q0(z1)− q0(z2)| ≤ #(|τ(z1)− τ(z2)|) for all z1, z2 ∈ A (12)

where # is a class-K function. As a consequence of (12) there exists a contin-
uous function γ satisfying (8).

On the other hand the problem of designing the function κ so that (11) is lo-
cally asymptotically stable for (10) with v = κ(y) can be successfully handled
by means of a generalization of the tools proposed in [27] (see also [17]) for
stabilization of minimum-phase systems via high-gain output feedback. Here,
in particular, is where the “weak” minimum phase assumption presented in
Section 2.1 plays a role. The main result in this direction is presented in the
following proposition collecting the main achievements of Theorems 1 and 2
and Proposition 1 in [23].

Proposition 2. Let the pair (F,G) and the function γ be fixed according to
Proposition 1. There exists a continuous κ such that the set graph(τ) × {0}
is asymptotically stable for (10) with v = −κ(y) with a domain of attraction
containing W × Z ×X × Y .
Furthermore, if γ is also locally Lipschitz and A is locally exponentially stable
for (5) then there exists a k� > 0 such that for all k ≥ k�, the set (11) is
locally asymptotically stable for (10) with v = −ky.
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The issue of providing an explicit expression of γ, whose existence is guaran-
teed by Proposition 1, has been dealt with, in an exact and approximated way,
in the work [22]. For compactness we present only one of the two expressions
of γ given in [22] to which the interested reader is referred for further details.
In formulating the expression of γ it is argued that the class-K function # in
(12) satisfies

#(|x3 − x1|) ≤ #(|x3 − x2|) + #(|x1 − x2|) ∀ (x1, x2, x3) ∈ R
3m . (13)

This, indeed, can be assumed without loss of generality as shown in the proof
of Proposition 3 of [22].

Proposition 3. Let τ be fulfilling (12) with a function # satisfying (13). Then
the function γ : R

m → R defined by

γ(x) = inf
z∈A
−q0(z) + min{#(|x− τ(z)|), 2Q} (14)

where Q = supz∈A q0(z) satisfies (8).

2.3 Comments on the Results

As clear by the previous analysis, the desired asymptotic behavior of the sys-
tem (1) is the one in which the components (w, z) of the overall trajectory
evolve on A and the y component is identically zero. This, in turn, guaran-
tees, by the second part of the Assumption in Section 2.1, that the regulation
error (3) is asymptotically vanishing. In order to have this asymptotic desired
behavior enforced, a crucial property required to the regulator is to be able
to generate any possible asymptotic control input which is needed to keep y
identically zero while having (w, z) evolving on A. This, in turn, is what in [4]
has been referred to as internal model property (with respect to A), namely
the property, required to any regulator solving the problem at hand, of repro-
ducing all the “steady state” control inputs needed to keep the regulated error
to zero. By bearing in mind (10) and the notation around (8)–(9), it is not
hard to see that, in our specific context, the regulator (6) posses the asymp-
totic internal model property with respect to A if for any initial condition
z0 ∈ A of the system

ż = f0(z)
yz = −q0(z)

(15)

yielding a trajectory z(t), t ≥ 0, there exists an initial condition η0 ∈ R
m of

the system
η̇ = Fη −Gq0(z(t))
yη = γ(η) (16)

such that the corresponding two output trajectories yz(t) and yη(t) are such
that yz(t) = yη(t) for all t ≥ 0. This, indeed, is what is guaranteed by the
design formulas (8)–(9). As a matter of fact, by taking η0 = τ(z0), the two
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formulas (8)–(9) along with the fact that A is forward invariant for (15), imply
that the corresponding state trajectory η(t) of (16) is such that η(t) = τ(z(t))
for all t ≥ 0 and, by virtue of (8), that yz(t) = yη(t) for all t ≥ 0. In these terms
the triplet (F,G, γ( · )) qualifies as an internal model able to reproduce all the
asymptotic control inputs which are required to enforce a zero regulation error.

Seen from this perspective, Proposition 1 fixes precise conditions under
which the asymptotic internal model property can be achieved by a regulator
of the form (6). In particular it is interesting to note that, for the function γ
to exist, the dimension m of the internal model is required to be sufficiently
large with respect to the dimension s+n of the dynamical system (15) whose
output behaviors must be replied.

The result previously presented gains further interest in relation to the
theory of nonlinear observers recently proposed in [20] and developed in [1],
which has represented the main source of inspiration in [23]. In the observation
framework of [20], systems (15), (16) are recognized to be the cascade of the
“observed” system (15), with state z and output yz, driving the “observer”
(16) whose output γ(η) is designed to provide an asymptotic estimate of the
observed state z. To this purpose, in [1], the map γ( · ) is computed as the
left-inverse of τ( · ), i.e. such that γ(τ(z)) = z for all z ∈ A, with τ solution
of (9). Such a left-inverse, as shown in [1], always exists provided that the
dimension of η is sufficiently large (precisely dim(η) ≥ 2dim(z) + 2 as in
Proposition 1) and certain observability conditions for the system (f0,q0) hold.
To this regard it is interesting to note that, in the context of output regulation,
the observability conditions are not needed as the design of γ( · ), in order
to achieve the internal model property, is done in order to reconstruct the
output q0(z) of the observed system and not the full state z. This motivates
the absence of observability conditions for the system (f0,q0) in Proposition 1
and, in turn, the absence of immersion conditions in the above framework.

3 Essential and Redundant Internal Models

3.1 Essential Regulators

The goal of this part is to enrich the results previously recalled by exploring
conditions under which the dimension m of the regulator (6) (fixed, according
to Proposition 1, to be 2(s + n) + 2) can be reduced in order to obtain an
essential regulator preserving the internal model property.

As discussed in Section 2.3, the crucial feature required to the regulator
(6) in order to posses the internal model property with respect to A is that
system (16) is able, through its output yη, to reproduce all the possible output
motions of the system (15) with initial conditions taken in the set A, the latter
being a compact set satisfying the basic assumption in Section 2.1. From
this, it seems natural to approach the problem of identifying an essential
regulator by addressing two subsequent issues. First, to address if there exists
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a minimal set A0 satisfying the basic assumption in Section 2.1. This would
lead to identify steady state trajectories for (5) which originate essential output
behaviors of (15) to be captured by the internal model. Second, to identify
conditions under which all the output behaviors of (15) originating from initial
conditions in A0 can be reproduced by the output of a system of the form
(16) of minimal dimension (i.e. lower than 2(s+ n) + 2). This would lead to
identify an essential internal model (F,G, γ( · )) possessing the internal model
property with respect to A0 and thus suitable to obtain an essential regulator
of the form (6).

In the next proposition we address the first of the previous issues, by
showing the existence of a minimal set satisfying the assumption in Section 2.1
which turns out to be (forward and backward) invariant for (5) as precisely
formulated in the following. The set in question turns out to be the ω-limit set
of the set W × Z of system (5), denoted by ω(W × Z) (see [13]), introduced
in [4] in the context of output regulation.

Proposition 4. Let A be a set satisfying the assumption in Section 2.1. Then
the set A0 := ω(W × Z) is the unique invariant set such that A0 ⊆ A which
is asymptotically stable for (5) with a domain of attraction W ×D with Z ⊂
D. Furthermore the set in question is minimal, that is there does not exist
a compact set A1 ⊂ A0 which is asymptotically stable for (5) with a domain
of attraction of the form W ×D with Z ⊂ D.

Proof. With the notation introduced around (7) in mind and by defining
Z = W × Z, note that, as the positive flow of (5) is bounded, the omega
limit set4 ω(Z) of the set Z exists, is bounded and uniformly attracts the
trajectories of (5) originating from Z, namely for any ε > 0 there exists a
tε > 0 such that dist(z(t, z), ω(Z)) ≤ ε for all t ≥ tε and z ∈ Z where z(t, z)
denotes the trajectory of ż = f0(z) at time t passing through z at time t = 0
(see [13]). Furthermore it is possible to prove that ω(Z) ⊆ A. As a matter of
fact suppose that it is not true, namely that there exists a z̄ ∈ ω(Z) and an
ε > 0 such that |z̄|A ≥ ε. By definition of ω(Z), there exist sequences {zn}∞0
and {tn}∞0 , with zn ∈ Z and limn→∞ tn =∞, such that

lim
n→∞ z(tn, zn) = z̄ .

This, in particular, implies that for any ν > 0 there exists a nν > 0 such that
|z(tn, zn)− z̄| ≤ ν for all n ≥ nν . But, by taking ν = min{ε/2, ν1} with ν1 such
that tn ≥ tε/2 for all n ≥ nν1 , this contradicts that A uniformly attracts the
trajectories of (5) from Z (which, in turn, is implied by asymptotic stability
of A and compactness of Z). This proves that ω(Z) ⊂ A. From this, using
the fact that A is asymptotically stable for ż = f0(z) and the definition of

4 We recall that the ω-limit set of the set Z, written ω(Z), is the totality of all
points z ∈ R

n+s for which there exists a sequence of pairs (zk, tk), with zk ∈ Z
and tk → ∞ as k → ∞, such that limk→∞ z(tk, zk) = z.
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ω-limit set of the set Z (see [13]), it is possible to conclude that ω(Z) is also
asymptotically stable and that the first statement of the proposition holds
with A0 = ω(Z).

To prove the second statement of the proposition (namely that A0 is min-
imal) suppose that it is not true, that is there exists a closed set A1 ⊆ A0

which is asymptotically stable with a domain of attraction containing Z. Let
z̄ ∈ A0 and ε > 0 such that |z̄|A1 = 2ε. By assumption, A1 uniformly attracts
trajectories of (5) originating from Z which implies that there exists a tε > 0
such that |z(t, z)|A1 ≤ ε for any z ∈ Z and for all t ≥ tε. Now set

z� = z(−(tε + 1), z̄)

and note that z� ∈ A0 ⊆ Z, as Ai is invariant, and z̄ = z((tε + 1), z�)
by uniqueness of trajectories. But the latter contradicts the fact that A1

uniformly attracts trajectories of (5) originating from Z and proves the claim.
From this also uniqueness of the invariant set A0 immediately follows. ��

Remark 1. By using the terminology introduced in [4], the setA0 := ω(W×Z)
is precisely the steady state locus of (5) with the trajectories of f0|A0

being the
steady state trajectories of (5). Furthermore, as shown in [4], the triangular
structure of (5) leads to a specific structure of A0. In particular it has been
shown in [4] that there exists a (possibly set-valued) upper semi-continuous
map π : R

s → R
n such that the set A0 is described as

A0 = {(w, z) ∈W × R
n : z = π(w)} . (17)

�

Remark 2. Note that, as A0 ⊆ A and h(w, z, 0) = 0 for all (w, z) ∈ A, it turns
out that h(w, z, 0) = 0 for all (w, z) ∈ A0. In particular, this and the claim
of the previous proposition yield that the set A0 fulfills the assumption in
Section 2.1. �

With this result at hand we pass now to consider the second issue pointed
out before, namely the existence of an internal model (F,G, γ( · )) of dimen-
sion lower than 2(s+ n) + 2 having the internal model property with respect
to A0. To this respect it is possible to prove that what determines the dimen-
sion of the essential internal model is not the dimension (s + n) of (15) but
rather the dimension of the lowest dimensional system able to reproduce, in
an appropriate sense, the output behavior of (15). Details are as follows.

Assume the existence of an integer r < n+s, of a Riemannian differentiable
manifold of dimension r of a compact subset A′

0 of M, of C1 vector field
f ′0 : M → TM which leaves A′

0 backward invariant and of a C1 function
q′

0 :M→ R, such that for any z0 ∈ A0 there exists a z′0 ∈ A′
0 satisfying

q0(z(t, z0)) = q′
0(z

′(t, z′0)) ∀t ≤ 0.
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If a triplet (f ′0,q′
0,A′

0) satisfying the previous properties exists, it turns out
that the internal model property with respect to A0 can be achieved by means
of a regulator of dimension m = 2r + 2. More specifically, it can be proved
that there exist an  > 0 and a set S ⊂ CI of zero Lebesgue measure, such
that if (F,G) ∈ R

m×m × R
m×1, with m = 2r + 2, is a controllable pair with

σ(F ) ⊂ {λ ∈ CI : Reλ < −} \ S then there exist a continuous τ : A0 → R
m

solution of

Lf0τ(z) = Fτ(z) −Gq0(z) ∀ z ∈ A0 (18)

and a continuous γ : R
m → R solution of

q0(z) + γ ◦ τ(z) = 0 ∀ z ∈ A0 . (19)

The proof of this claim immediately follows by specializing Proposition 6 in
Appendix A by taking A1, f1, q1, n1 and A2, f2, q2, n2 in the proposition
respectively equal to A0, f0, q0, n+ s and A′

0, f0′, q′
0, r.

Remark 3. Note that the key feature required to the r-dimensional system
ż′ = f ′0(z

′) with output yz′ = −q′
0(z

′) with initial conditions taken in the set
A′

0 is to be able to reproduce all the output behaviors (backward in time) of
the (n + s)-dimensional system (15) with output yz = −q0(z(t)) originating
from initial conditions in A0. �

Remark 4. Going throughout the proof of Proposition 6, it turns out that the
continuous function γ solution of (18)–(19) coincides with the solution of the
equation

q′
0(z

′) + γ ◦ τ ′(z′) = 0 ∀ z ∈ A′
0 (20)

with the function τ ′ : A′
0 → R

m satisfying

Lf ′0τ
′(z) = Fτ ′(z′)−Gq′

0(z
′) ∀ z ∈ A′

0 . (21)

In other words the internal model (F,G, γ) can be tuned by considering, in
the design formulas, the reduced-order triplet (f ′0,q′

0,A′
0). According to this,

in the following, we will say that the triplet (f ′0,q
′
0,A′

0) is similar (as far as
the design of γ is concerned) to the triplet (f0,q0,A0). �

It is interesting to note that a direct application of the previous considera-
tions in conjunction with the results discussed at the end of Remark 1, im-
mediately lead to a reduction of the regulator’s dimension with respect to the
one conjectured in Proposition 1 (equal to 2(s+ n) + 2). As a matter of fact,
assume that the function π in (17) admits a C2 selection πs(w). Set r = s
and let A′

0 ⊂ R
s be an arbitrary compact set containing W . Furthermore let

f ′0 : R
s → R

s be any differentiable function which agrees with s( · ) on W , and
define q′

0( · ) := q( · , πs( · ), 0). By the structure of A0 in (17) (with π replaced
by πs) along with the fact that the set W is invariant for (2), it turns out
that the triplets (f ′0,q

′
0,A′

0) and (f0,q0,A0) are similar (see Remark 4) and
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thus that the internal model property with respect to A0 can be achieved by
means of a regulator of dimension m = 2s+ 2.

It must be stressed, though, that the previous considerations highlight
only one of the underlying aspects behind the reduction result previously il-
lustrated, namely the fact that only the dimension of the restricted dynamics
f0|A0

(equal to s in the case the function π( · ) in (17) is single valued), and
not the full dimension of the dynamics (15) (equal to n + s), plays a role
in determining the dimension of the regulator. The second fundamental as-
pect behind the reduction procedure is that possible dynamics of f0|A0

which
have no influence on the output behavior of system (f0,q0) do not affect the
dimension of the regulator. This feature can be further explored by making
use of standard tools to study local observability decompositions of nonlinear
systems as detailed in the following.

In particular assume that A0 is a smooth manifold (with boundary) of
R

n+s, denote by ρ its dimension (with ρ = s if the map π in (17) is single
valued), and denote by < f0, dq0 > the minimal co-distribution defined on A0

which is invariant under f0 and which contains dq0, with the latter being the
differential of q0 (see [16]). Furthermore let Q be the distribution defined as
the annihilator of < f0, dq0 >, namely

Q :=< f0, dq0 >
⊥ .

It is well-known (see [14],[16]) that if, at a point z̄ ∈ A0, Q is not singular, it
is possible to identify a local change of variables transforming system (f0,q0)
into a special “observability” form. More precisely there exist an open neigh-
borhood Uz̄ of A0 containing z̄ and a (local) diffeomorphism Φ : Uz̄ → R

ρ

which transforms system (15) into the form

χ̇1 = f01(χ1) χ1 ∈ R
ρ−ν

χ̇2 = f02(χ1, χ2) χ2 ∈ R
ν

y = q01(χ1) ,
(22)

namely into a form in which only the first (ρ − ν) state variables influence
the output. This representation clearly shows that, locally around Uz̄, all the
output motions of system (15) can be generated by the system ξ̇ = f01(ξ)
with output yξ = q01(ξ) with dimension ρ − ν. In particular, according to
the previous arguments, this suggests that the internal model property, lo-
cally with respect to Uz̄, is potentially achievable by a regulator of dimension
2(ρ − ν) + 2. Of course, the local nature of the previous tools prevents one
to push further the above reasonings and to be conclusive with respect to
the dimension of the regulator possessing the internal model property with
respect to the whole A0. However, it is possible to employ the fact that the
co-distribution Q⊥ is minimal (which implies that the decomposition (22) is
maximal in a proper sense, see [16]), to be conclusive about a lower bound on
the dimension of any regulator possessing the internal model property with
respect to A0. This is formalized in the next lemma in which we identify
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a lower bound on the dimension r of any triplet (f ′0,q′
0,A′

0) similar (in the
sense of Remark 4) to (f0,q0,A0). The lemma is given under the assumption
that there exists a submersion σ : A0 →M satisfying

Lf0σ(z) = f ′0(σ(z))
q0(z) = q′

0(σ(z)) (23)

for all z ∈ A0

Lemma 1. Let A0 be a smooth manifold with boundary of dimension ρ and
assume the existence of a regular point z̄ ∈ A0 of the distribution Q =<
f0, dq0 >

⊥. Let ν < ρ be the dimension of Q at z̄. Assume, in addition, the
existence of a positive r ≤ ρ, of a smooth manifold M of dimension r, of
smooth functions f ′0 : M → TM and q′

0 : M → R, and of a submersion
σ : A0 →M, which satisfy (23). Then necessarily r ≥ ρ− ν.

Proof. The proof proceeds by contradiction. Suppose that the claim of the
lemma is false namely that there exist a positive r < ρ − ν, a triplet
(f0′,q0

′,M) withM a smooth manifold of R
r and a submersion σ : A0 →M

such that (23) holds for all z ∈ A0. As rank(dσ(z)/dz|z̄) = r (since σ is
a submersion) it follows that it is always possible to identify a submersion
λ : A0 →M such that, by defining

Φ′(z) =
(
Φ′

1(z)
Φ′

2(z)

)

:=
(
σ(z)
λ(z)

)

,

rank(dΦ′(z)/dz|z̄) = ρ, namely Φ′ qualifies as a local diffeomorphism at z̄.
This, in view of (23), guarantees the existence of an open neighborhood U ′̄

z of
A0 including z̄ such that system (f0,q0) in the new coordinates reads locally
at U ′̄

z as
˙̃χ1 = f1(χ̃1) χ̃1 ∈ R

r

˙̃χ2 = f2(χ̃1, χ̃2) χ̃2 ∈ R
ρ−r

y = q1(χ̃1) ,
(24)

Now partition the change of variables Φ as Φ(z) = col(Φ1(z), Φ2(z)) according
to (22) and let z′ be a point of Uz̄

⋂
U ′̄

z such that Φ′
1(z′) = Φ′

1(z̄) and Φ1(z′) �=
Φ1(z̄) (which is possible as r < ρ − ν). By (24) it turns out that, as long
as the trajectories z(t, z′) and z̄(t, z) belongs to Uz̄

⋂
U ′̄

z, the corresponding
outputs coincides. This, by minimality of the co-distribution Q⊥ implies that
Φ1(z′) = Φ1(z̄) (see Theorem 1.9.7 in [16]) which is a contradiction. ��

3.2 The Potential Advantage of Redundant Regulators

The fact of fulfilling the internal model property with respect to a generic set
A (satisfying the main assumption in Section 2.1), not necessarily coincident
with the essential steady state set A0, inevitably leads to design a regula-
tor (6) which is redundant, namely whose dimension is larger than that is
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strictly necessary. In more meaningful terms, by bearing in mind the discus-
sion in Section 2.3, the redundancy shows up in the fact that system (16),
with (F,G, γ( · )) having the internal model property with respect to A ⊃ A0,
posses the ability of reproducing the output behaviors of (15) generated by
trajectories inA\A0 which are not, strictly speaking, steady state trajectories.

It’s legitimate to wonder what, if there, is the advantage of designing
a redundant regulator. The answer to this is given in the next proposition,
of interest by its own, in which it is claimed that any “redundant” set is
always exponentially stable for (5). The result of this proposition, proved in
Appendix B, gains interest in conjunction with Proposition 2 as discussed
after the statement.

Proposition 5. Any compact set A which is asymptotically stable for (5) and
such that A0 ⊂ intA is also locally exponentially stable for (5) .

In terms of the framework presented in Section 2, the previous result gains
interest in conjunction with Proposition 2 which, besides others, claims that
a linear stabilizer κ( · ) can be obtained if the set A is locally exponentially
stable for5 (5). In other words the results of Propositions 5 and 2 in relation
to the results of Proposition 4 and Remark 2, reveal a trade-off between the
simplicity of the stabilizer κ( · ) and the dimension of the regulator (6). As
a matter of fact in Proposition 4 it is claimed that the set A can be always
“shrunk” to obtain a minimal invariant set A0 instrumental to obtain an
essential (low-order) internal model as detailed in the previous section. The
possible drawback in this, is that the set A0 is not guaranteed to be exponen-
tially stable if the set A is such. This means that a reduced order regulator
can be obtained by possibly complicating the function κ( · ) in (6). On the
other hand Proposition 5 asserts that exponential stability can be gained by
enlarging a bit the set A0 but, so doing, necessarily loosing backward invari-
ance as claimed in Proposition 4. This means that a linear function κ( · ) can
be possibly obtained by necessarily accepting a not essential regulator.

The previous considerations highlight a possible benefit in the design of
the stabilizer κ( · ) coming from the redundancy of the regulator, where the
redundancy comes from the fact of considering, in the design of the triplet
(F,G, γ( · )), a redundant set A ⊃ A0 instead of the steady state set A0. At
this point one would be tempted to wonder if the redundancy of the regulator
can be employed also to obtain a benefit in the design of the function γ( · )
which, according to the previous arguments, is the true bottleneck in the
design procedure of the regulator. A possible answer to this point will be
given in the following in which it is assumed fixed a compact set A ⊇ A0

which is locally exponentially stable for (5) and it is assumed that the triplet
(f0,q0,A) is similar, in the sense specified below, to a linear system.

5 Indeed, the extra condition required in Proposition 2 is that the function γ( · )
is locally Lipschitz. In this paper we do not address this issue and assume it is
satisfied.
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In the case A is backward invariant, in the following we simply let A1 = A,
f1 = f0, and q1 = q0. In the case A is not backward invariant, let A1 be an
arbitrary compact set such that A ⊂ Int(A1) and f1 : R

n+s → R
n+s be

an arbitrary differentiable function such that f1 agrees with f0 on A and
f1(z1) = 0 for all z1 ∈ R

n+s \ A1. Furthermore, set q1 = q0 and note that,
by construction, the set A1 is invariant for ż1 = f1(z1). Assume now the
existence of an integer r ≥ n+ s, of a linear pair (F2, Q2) ∈ R

r×r ×R
r×1 and

of a compact set A2 ∈ R
r such that the triplet (F2, Q2,A2) is similar (in the

sense of Remark 4) to the triplet (f1, q1,A1), that is for all z10 ∈ A1 there
exists a z20 ∈ A2 such that6

q1(z1(t, z10)) = Q2e
F2tz20 ∀ t ≤ 0 .

In this setting Proposition 6 in Appendix A, with n1 and n2 respectively set to
n+ s and r, immediately yields that the internal model property with respect
to A can be achieved by means of a linear internal model. More specifically,
setting m ≥ 2r + 2, Proposition 4 yields that there exists an  > 0 and
a set S ⊂ CI of zero Lebesgue measure such that if (F,G) ∈ R

m×m × R
m is

a controllable pair with σ(F ) ⊂ {λ ∈ CI : Reλ < −} \ S, then there exists
a continuous function τ1 : A1 → R

m solution of

Lf1τ1(z1) = Fτ1(z1)−Gq1(z1) ∀ z1 ∈ A1 (25)

and a linear function Γ : R
m → R satisfying

Γτ1(z1) + q1(z1) = 0 ∀ z1 ∈ A1 . (26)

From this, using the fact that f1 agrees with f0 on A and that q1 = q0, it
turns out that equations (9) and (8) are satisfied with τ = τ1|A and with
γ = Γ . This implies that the regulator (4) having the internal model property
with respect to A can be taken linear.

Remark 5. The previous conditions can be interpreted as an immersion of
the system (f1, q1,A1) into a linear system (F2, Q2,A2) in the sense specified
before. In particular the theory in [11] can be used to identify sufficient condi-
tions under which such a immersion exists. It is worth also noting that, in the
way in which it is formulated, the existence of such a immersion is affected by
the choice of the set A1 and of the function f1 which can be arbitrarily chosen
as indicated above. This is not the case if the set A is backward invariant for
ż = f0(z) as the previous considerations are done with A1 = A, f1 = f0, and
q1 = q0, and the immersion conditions can be formulated by referring to the
“original” triplet (f0,q0,A). �

Remark 6. It is interesting to note that the computation of the (linear) internal
model (F,G, Γ ) does not require the knowledge of the immersing linear system
6 Note how the condition in question is satisfied if Assumption 2 of [4] holds (see

Lemma 7.1 of [4]).
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(F2, Q2) but only the knowledge of its dimension r. As a matter of fact, as
clear by the previous analysis, the computation of Γ can be carried out in
terms of the immersed triplet (f1, q1,A1) by means of the design formulas
(25)–(26) which are known to have a linear solution Γ if m ≥ 2r + 2. �

4 Conclusions

In this paper we presented some complementary results of [23] in the context
of output regulation for nonlinear systems. Specifically, we presented and dis-
cussed results on how to identify internal model-based regulators of minimal
dimension preserving the so-called internal model property. The reduction
tools consisted in the identification of “essential” steady state dynamics of
the regulated plant and on the identification of an “essential” internal model-
based regulators. Regarding the first aspect, it has been shown that the crucial
tool is the concept of omega-limit set of a set pioneered in [4] in the context
of output regulation. As far as the second aspect is concerned, we showed
how the crucial step is the identification of observability parts of the steady
state-input generator system. The usefulness of “redundant” regulators have
been also investigated in terms of design features of the high-gain stabilizer
which characterizes the proposed regulator.

A A Reduction Result

Proposition 6. Let f1 : R
n1 → R

n1 and q1 : R
n1 → R be locally Lipschitz

functions and let A1 be a compact backward invariant set for ż1 = f1(z1). Let
M be a Riemannian differentiable manifold7 of dimension n2 and A2 and A2e

be compact subsets of M with A2 subset of the interior Int(A2e) of A2e. Let
f2 :M→ TM be a C1 vector field which leaves A2e backward invariant and
q2 :M→ R a C1 function. Assume that, for all z1 ∈ A1, there exists z2 ∈ A2

such that
q1(ζ1(t, z1)) ≡ q2(ζ2(t, z2)) for all t ≤ 0 .

Set m = 2n2 + 2. There exist an  > 0 and a set S ⊂ CI of zero Lebesgue
measure such that, if (F,G) ∈ R

m×m×R
m is a controllable pair with σ(F ) ⊂

{λ ∈ CI : Reλ < −}\S, then there exists a continuous function τ1 : A1 → R
m

solution of

Lf1τ1(z1) = Fτ1(z1)−Gq1(z1) ∀ z1 ∈ A1 (27)

and a continuous function γ : R
m → R satisfying

γ ◦ τ1(z1) + q1(z1) = 0 ∀ z1 ∈ A1 .

7 We adopt here the definition [2, Definition III.1.2].
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Moreover, if M = R
n2 and f2 and q2 are linear, the above result holds and γ

can be chosen linear.

Proof. BecauseA1 is compact and backward invariant and q1 is continuous, we
can show, by following the same steps as the ones of the proof of Proposition
1 of [23], that if F is Hurwitz then the function τ : A1 �→ R

m defined as

τ1(z1) =
∫ 0

−∞
eFsGq1(ζ1(s, z1))ds (28)

is well-defined, continuous and solution of (27).
Also our assumptions imply that, for any z2 ∈ A2e, the solution t ∈

(−∞, 0] → ζ2(t, z2) ∈ A2e is well-defined and t ∈ (−∞, 0] → q2(ζ2(t, z2))
is a bounded function. So, τ2 : A2e �→ R

m defined as

τ2(ζ2) =
∫ 0

−∞
eFsGq2(ζ2(s, z2))ds (29)

is well-defined.
If M = R

n2 and f2 and q2 are linear, there exists  > 0 such that if
σ(F ) ⊂ {λ ∈ CI : Reλ < −}, then this expression makes sense and gives
a linear function.

In the case whereM is a more general Riemannian differentiable manifold,
we need some more involved steps to show that τ2 is C1 on Int(A2e). To
lighten their presentation we replace ζ2 by ζ, z2 by z, f2 by f and q2 by q.
Since q is C1, it defines a C0 covector denoted dq satisfying (see [2, Example
V.1.4] or [26, p. 150])

dqz(v) = Lvq(z) ∀v ∈ TzM , ∀z ∈M .

Here dqz denote the evaluation of dq at z and dqz(v) is the real number
given by the evaluation of the linear form dqz at the vector v. Then, let Ψ be
the contravariant tensor field of order 2 (i.e. the bilinear map) given by the
Riemannian metric. Since it is non-degenerate, it defines a covariant tensor
field Ψ of order 2 (See [2, Exercice V.5.5]) or [10, §3.19] or [26, pp. 414-416])
such that we have the following Cauchy-Schwarz inequality

|dqz(v)| ≤ Ψz(v, v)Ψz(dqz, dqz) ∀v ∈ TzM , ∀z ∈M . (30)

Also, A2e being compact, there exists a real number Q such that we have

0 ≤ Ψz(dqz , dqz) ≤ Q ∀z ∈ A2e . (31)

Finally, we note that the one-parameter group action z �→ ζ(t, z) defines the
induced one-parameter pushforward map dζ : TM → TM , mapping for each
t, vectors in TzM into vectors in Tζ(t,z)M (see [2, Theorem IV.1.2] or [26, pp.
88-89 and Theorem 3.1]).
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With this at hand, by following the arguments in the proof of Proposition
2 of [23], we can prove that τ is C1 provided there exist real numbers a and
 such that we have

dqζ(t,z)
(
dζζ(t,z)v

)
≤ a exp(|t|)

√
Ψz(v, v) ∀v ∈ TzM, ∀t ≤ 0, ∀z ∈ A2e .

With (30) and (31), this holds if we have

Ψ ζ(t,z)

(
dζζ(t,z)v, dζζ(t,z)v

)
≤exp(|t|)

√
Ψz(v, v) ∀v ∈ TzM , ∀t ≤ 0 , ∀z ∈ A2e.

(32)
This leads us to evaluate the Lie derivative along f of the contravariant tensor
field of order 2 given at the point ζ(t, z) by Ψ ζ(t,z)

(
dζζ(t,z)., dζζ(t,z).

)
(See [2,

Exercise V.2.8] or [10, §3.23.4] or [26, Problem 5.14]). This Lie derivative is
a contravariant tensor field of order 2 and therefore, Ψ being non-degenerate
and A2e being compact, there exists a positive real number  such that we
have

−2 Ψz (dζz., dζz.) ≤ LfΨz (dζz., dζz.) ∀z ∈ A2e .

From this (32) follows readily and hence τ2 is C1 on Int(A2e) if σ(F ) ⊂ {λ ∈
CI : Reλ < −}.

Now, coming back to our initial notations, asM is a differentiable manifold
and A2 is compact, it is possible to cover A2 with a finite set I of open sets
Oi each diffeomorphic to R

n2 (see [2, Theorem I.3.6]).
By using off-the-shelf the arguments in the proof of Proposition 2 of [23],

it is possible to claim for each of the open set Oi the existence of a set Si ⊂ CI
of zero Lebesgue measure such that, if σ(F ) ⊂ {λ ∈ CI : Reλ < −}\Si, then
we have

τ2(z2a) = τ2(z2b) ⇒ q2(z2a) = q2(z2b) ∀ z2a, z2b ∈ Oi . (33)

Since I is finite, the set S =
⋃

i∈I Si is of measure zero and, if σ(F ) ⊂
{λ ∈ CI : Reλ < −} \ S, then we have

τ2(z2a) = τ2(z2b) ⇒ q2(z2a) = q2(z2b) ∀ z2a, z2b ∈ A2 . (34)

With the above and by following the same arguments as the ones used at the
end of Proposition 2 of [23] which apply since A2 is compact, there exists
a continuous function γ : τ2(A2) ⊂ R

m → R satisfying

γ ◦ τ2(z2) + q2(z2) = 0 ∀ z2 ∈ A2 .

As in the proof of Proposition 3 of [23], this function can be extended to all
R

m. Clearly if τ2 and q2 are linear, then γ is linear.
Finally, pick any z1 ∈ A1. By condition (ii) there exist z2 ∈ A2 such that

q1(ζ1(t, z1)) = q2(ζ2(t, z2)) for all t ≤ 0 and therefore τ1(z1) = τ2(z2) and
q1(z1) = q2(z2). This implies

γ ◦ τ1(z1) = γ ◦ τ2(z2) = −q2(z2) = −q1(z1)

which concludes the proof. ��
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B Proof of Proposition 5

The proof strongly relies on notations and results used in the proof of Theorem
4 in [23] which, for compactness, are not repeated here. We prove the propo-
sition by showing that there exists a compact set Ae satisfying A0 ⊆ Ae ⊆ A
which is locally exponentially stable for (5). First of all note that, by as-
sumption, there exists a locally Lipschitz Lyapunov function V satisfying the
properties of Theorem 4 (with the set B replaced by A0) in [23] and in par-
ticular

a(|z|A0) ≤ V (z).

Now let

r = min
z∈Rn+s\A

|z|A0 > 0 and c1 =
1
2
a(r) > 0 ,

fix
Ae = V −1([0, c1]) ,

and note that Ae is forward invariant. Moreover A0 ⊂ Ae. We prove now that
Ae is locally exponentially stable by proving the following two facts.

Fact #1 there exists a time T such that |z(t, z0)|Ae = 0 for all z0 ∈ Z := W×Z
and for all t ≥ T (finite time convergence).

Fact #2 there exists a constant L > 0 such that |z(t, z0)|Ae ≤ L|z0|Ae for all
z0 ∈ Z and for all t ≥ 0.

To prove fact #1 note that, by property (a) in Theorem 4 of [23] there exists
an a ≥ c1 such that Z ⊂ V −1([0, a]) and, by property (c) in the same theorem,
there exists c > 0 such that D+V (z(t, z0)) ≤ −cV (z(t, z0)) for all z0 ∈ Z. By
this, using the appropriate comparison lemma, it turns out that

V (z(t, z0)) ≤ e−ctV (z0) ≤ e−cta for all t ≥ 0 z0 ∈ Z

by which standard arguments can be used to prove that Ae is a forward
invariant set and that fact #1 holds with T = 1/c ln a/c1.

To prove fact #2, since V −1([0, a]) is a compact set, we can let

F = max
z∈V −1([0,a])

|∂f0(z)/∂z| .

Note that, since V (z(t, z0)) is non increasing in t, for all z1, z2 ∈ Z and for
all t ≥ 0

|z(t, z1)− z(t, z2)| ≤ eFt|z1 − z2| .
Now fix z1 ∈ Z and let z2 ∈ Ae be such that |z1 − z2| = |z1|Ae . As Ae is
forward invariant, it turns out that z(t, z2) ∈ Ae for all t ≥ 0. Moreover, by
fact #1, z(t, z1) ∈ Ae for all t ≥ T . From this |z(t, z1)|Ae = 0 for all t ≥ T
and

|z(t, z1)|Ae ≤ |z(t, z1)− z(t, z2)| ≤ eFT |z1 − z2| ≤ eFT |z1|Ae .

This concludes the proof of fact #2 (taking L = eFT ) and of the proposition.
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