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a b s t r a c t

This note deals with the problem of output regulation for nonlinear systems in presence of periodic
exogenous signals. We investigate the asymptotic properties of a controller given by an internal model
designed by adding harmonics on the regulation error, and a static state feedback stabilizing the
augmented system of the plant and of the internal model. The solution mimics internal model-based
structures adopted for linear systems by showing the asymptotic properties that are guaranteed in the
nonlinear case in presence of ‘‘generic’’ plant variations. Forwarding technique is adopted in the design
of the stabilizer. We shed also light on the linear case by presenting a new easy-to-check condition
under which the regulator equations admit a robust solution.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The problem of tracking desired references while rejecting dis-
urbances in spite of model uncertainties is generically known as
obust output regulation. In this context, the exogenous variables
i.e. the references and the disturbances) are usually supposed
o be generated by a known autonomous system. In the context
f linear dynamics such a problem was independently addressed
nd solved around the ’70s in the set of works [1,2], in which the
o-called internal model principle was introduced. The principle
tates that the problem is solved as long as the regulator ‘‘incor-
orates a suitably reduplicated model of the dynamic structure
f the disturbance and reference signals’’. The solution to the
roblems lies therefore in the design of a regulator composed of
wo components: an internal model unit, containing a copy of the
odel of the exosystem, and a stabilizer unit selected so that to
uarantee overall closed-loop stability.
For nonlinear dynamics, a general solution to the output regu-

ation is still missing. Necessary local conditions were first studied
n [3]. Afterwards, a lot of efforts was given to the characteriza-
ion of the so-called regulator equations defining the ‘‘zeroing’’
teady-state, i.e. the manifold on which the regulated output is
onstantly equal to zero, and the corresponding steady-state in-
ut, often denoted as ‘‘friend’’. The relevance of these equations in
general non-equilibrium output regulation context was studied

∗ Corresponding author.
E-mail addresses: daniele.astolfi@univ-lyon1.fr (D. Astolfi),

aurent.praly@mines-paristech.fr (L. Praly), lorenzo-marconi@unibo.it
L. Marconi).
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in [4]. The main difficulties in the regulator design lie in the
intrinsic interdependency between the internal model unit (intu-
itively responsible for the generation of the steady-state control
input) and the stabilizing unit (intuitively having the role of mak-
ing the steady-state attractive), whose design, unlike the linear
case, can be hardly kept disjoint and accomplished in separate
design stages. A crucial observation in such a context, early made
for instance in [5], is the fact that in a general nonlinear context,
the internal-model unit needs to incorporate more dynamics
than the one generated by the exosystem because of nonlinear
deformation phenomenon. The design of a nonlinear stabilizer
itself may contribute to such a phenomenon. These difficulties
lead to a ‘‘chicken-egg dilemma’’ highlighted in [6] that makes the
design of the units intertwined and hard to be accomplished in
practice. The problem is also particularly evident when there are
measurements available (and sometimes needed) for stabilization
that are not vanishing in steady-state [7], as in a state feedback
scenario. This justified why most of the contributions in literature
consider error feedback solutions in which the stabilizer, having
only the regulated output as available measurement, has the
origin as a natural steady-state. In these scenarios, the design
of the two units can be decoupled. Typical design approaches
follow a ‘‘friend-centric’’ perspective in which it assumed the
steady-state input falls into a specific class of signals that can
be generated by an (observable) autonomous dynamical system
[8–10]. This assumption allows to design an internal model unit
tailored to such a specific class of functions so that to provide the
right steady-state input. The stabilizer unit is typically selected

as a function of the sole regulated output. The highest points in
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his line of research [8,9] provide elegant solutions for the class
f regulated plants that are minimum-phase with respect to the
rror, in a semi-global context. Global results can be obtained
or minimum-phase systems with incrementally stable inverse
ynamics, based on combinations of high-gain arguments, back-
tepping techniques or passivity, see, e.g., [11–13]. The robustness
ssue is typically dealt with by assuming that variations in the
ctual process reflect into ‘‘fluctuations’’ of the friend within the
ame class of signals that, in turn, are mapped in appropriate
tructured parameterizations of the internal model unit [14,15].
his friend-centric perspective, however, leads to ‘‘fragile’’ reg-
lators that are not able to handle ‘‘generic’’ variations in the
lant. As conjectured in [16,17] a finite dimensional nonlinear
egulator that is able to achieve asymptotic regulation in face
f generic plant variations does not exist and practical, rather

than asymptotic, regulation is claimed to be the right target, see,
e.g., [18].

This article aims to explore a design methodology that is not
tailored around a specific ‘‘friend’’ so that to decouple the design
of the internal-model from the stabilizer. We focus on the case
in which the exogenous signals are supposed to be differentiable
T -periodic signal, with T being known. In the spirit of [19,20],
the ideal, but fragile, property ‘‘regulation error asymptotically
vanishing’’ is replaced by the property ‘‘Fourier coefficients linked
to the frequencies copied in the internal model are canceled on
the asymptotic error’’ that is however preserved without hard re-
strictions on topologies governing the plant variations. As shown
in many applications, e.g., [20–23] and references therein, such
a desirable property is often satisfactory from a practical point
of view. The targeted regulator follows the design principle ‘‘add
harmonics on the regulation error and stabilize the extended
system’’, namely consists of a linear internal model unit obtained
by simply embedding a harmonic at the corresponding frequency
2π
T of the periodic signal w and a certain number of higher
rder harmonics, and of a nonlinear stabilizing unit which is
esigned following the so-called forwarding technique [24,25].
t is shown that in presence of periodic exosignals of ‘‘small’’
agnitude, the closed-loop system trajectories converge to a
eriodic steady-state on which the desired harmonic regulation
bjective is obtained. The domain of attraction of such a periodic
teady-state is semi-global in the set of initial conditions of the
lant. Such a property is also robust to (small) arbitrary variations
f the plant’s dynamics. This work can be seen as an extension
f principles introduced [25] addressing the case of constant
erturbations combined with our preliminary conference result
19].

The proposed approach is then specialized to the class of
ilinear systems for which no general theory on output regu-
ation exists (see, e.g., the case of constant perturbations [26])
espite many engineering applications of practical interest can
e modeled with bilinear dynamics, see, e.g., [27,28]. Finally as
by-product of the proposed forwarding-based framework, we
lso present a new easy-to-check condition for the existence of
he linear regulator equations which is equivalent to the standard
on-resonance condition [1,2].

. Main results

.1. Problem statement and regulator design

Consider a multi-input multi-output nonlinear system with
ominal dynamics taking the form

ẋ = f (x, w) + g(x, w)u
e = h(x, w) (1)

where x ∈ Rn, u ∈ Rm, e ∈ Rp. We consider the particular,
yet relevant, case in which the exogenous signal w ∈ Rρ is any
2

bounded C1 T -periodic signal, with T being known. The following
assumptions are made.

Assumption 1 (Stabilizability). There exists a C1 function α :

Rn
→ Rm, α(0) = 0, such that the system ẋ = f (x, 0)+g(x, 0)α(x)

s asymptotically and locally exponentially stable with domain of
ttraction an open set A ⊆ Rn.

ssumption 2 (Non-resonance Condition). There exists a positive
nteger ν > 0 so that following matrix

A − λI B
C 0

)
as independent rows for each λ = ik 2π

T , k ∈ {0, 1, . . . , ν}, with
the triplet (A, B, C) defined as

A :=
∂ f
∂x

(0, 0) , B := g(0, 0) , C :=
∂h
∂x

(0, 0) . (2)

Assumption 1 asks for the existence of a stabilizer for the
origin of the nominal system (1) in the absence of perturba-
tions, with some desired domain of attraction A. In the linear
context such an assumption simply coincides with the stabiliz-
ability of the system (see below in Section 3) and it is shown
to be necessary [1,2]. For nonlinear systems, it can be obtained
via different techniques (e.g., high-gain feedback, backstepping,
forwarding, passivity, Lyapunov-based) for which we will now
enter in the merit. Assumption 2 asks for the standard non-
resonance condition to hold, although only locally around the
origin. Again, such an assumption is shown to be necessary in the
linear context [1,2].

By following the paradigm ‘‘add harmonics on the regulation
error and stabilize the extended system’’, the internal model unit
is immediately chosen as

ξ̇ = Φξ + Γ e (3)

where ξ = col(ξ1, . . . , ξp), ξk ∈ R1+2ν , k = 1, . . . , p,

Φ = blkdiag(φ, . . . , φ  
p times

), Γ = blkdiag(G, . . . ,G  
p times

),

with

φ = blkdiag
(
0, φ1, . . . , φρ

)
, φk =

(
0 k 2π

T
−k 2π

T 0

)
, (4)

and G = col(γ ,G, . . .G), with γ a positive scalar and G ∈ R2×1

chosen so that the pairs (φk,G), k = 1, . . . , ν, are controllable.
Without loss of generality we can take γ = 1 and G = (0 1)⊤.
We recall the following result [19] showing a first preliminary
property of a regulator having the structure (3) in closed-loop
with a state-feedback stabilizing unit of the form

u = K (x, ξ ). (5)

Proposition 1. Suppose there exists a C1 function K : Rn
×

R(2ν+1)p
→ Rm such that system (1), (3), (4) in closed loop with

(5), with w being a bounded C1 T-periodic function, admits a C1

T-periodic solution (x◦, ξ ◦). Then, this periodic solution is such that
the Fourier coefficients of e◦

= h(x◦, w) associated to the frequencies
2kπ/T , with k = 0, 1, . . . , ν , are zero, namely

0 =

∫ T

0

(
sin
(
k 2π

T t
)

cos
(
k 2π

T t
)) e◦

i (t)dt
i = 1, . . . , p,
k = 0, 1, . . . , ν.

(6)

Motivated by the previous proposition we look now for a
control law (5) able to enforce a T -periodic trajectory that is
locally asymptotically stable. This, in turn, will guarantee that the
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losed-loop trajectory will reach a steady-state in which the first
Fourier coefficients of the regulation error are zero.
The cascade structure of (1) with (3) suggests to use forward-

ng techniques, see, e.g., [24,25]. We approach the problem by
onsidering the nominal plant (1) with w = 0 and we show how
the plant stabilizer introduced in Assumption 1 can be completed
to include also the (critically stable) internal model unit.

To this end, we first introduce the following function

M(x) := lim
t→∞

∫ t

0
exp(Φs)Γ h(ϕx(x, s), 0)ds (7)

in which ϕx(x, s) is the trajectory of ẋ = f (x, 0) + g(x, 0)α(x) at
time s with initial condition x at time s = 0. The following result
holds.

Lemma 1. Under Assumption 1, the function M : A → Rνp defined
in (7) is C2 and solution of
∂M
∂x

(x) (f (x, 0) + g(x, 0)α(x)) = Φ M(x) + Γ h(x, 0) . (8)

Moreover, if Assumption 2 holds, then the pair (B⊤M⊤, Φ) is observ-
able, where B is defined in (2) and

M :=
∂M
∂x

(0).

Proof. The fact that (7) is a solution to (8) can be established
by following [24, Lemma IV.2]. Then, in order to show the ob-
servability of the pair (B⊤M⊤), linearize the PDE (7) around the
origin. We obtain M(A + BN) = ΦM + Γ C where N =

∂α
∂x (0). In

ight of Assumption 1, the matrix A + BN is Hurwitz. Recall that
he matrix Φ is neutrally stable. Therefore, the solution of the
previous Sylvester equation is unique since the spectra of (A+BN)
and Φ are disjoint. Then, let −λ be an eigenvalue of Φ and let v

e its associated eigenvector, i.e. −λv = Φv. Since Φ is skew-
ymmetric also λ is an eigenvalue of Φ . Furthermore, Φ = −Φ⊤.
s a consequence

−λv)⊤ = (Φv)⊤ = v⊤Φ⊤
= −v⊤Φ H⇒ λv⊤

= v⊤Φ.

y pre-multiplying Eq. (20) by v⊤, we obtain
⊤M(λI − A − BN) + v⊤Γ C = 0.

ssume v is the in kernel of M⊤B⊤, namely B⊤M⊤v = 0 and
therefore v⊤MB = 0. By collecting the previous relations, and by
using the fact that v⊤MBN = 0, we get(
v⊤M v⊤Γ

) (λI − A B
C 0

)
= 0.

But this contradicts Assumption 4. As a consequence there is no
non-zero vector v satisfying (λI − Φ)v = 0 and B⊤M⊤v = 0 and
therefore the PBH observability test

rank
[

λI − Φ

B⊤M⊤

]
= n ∀ λ ∈ σ (Φ),

where σ (Φ) denotes the spectrum of Φ , is satisfied, concluding
the proof. ■

The function M is the seed to design a state-feedback sta-
bilizer of the form (5) for the system (1), (3) with w = 0. For
this, recall that, in view of Assumption 1, a converse Lyapunov
function (see, for instance, [29]) can be used to establish the
existence of a C1 function V : A → R which is positive definite
and proper on A and a positive definite function W : A → R
quadratic around the origin such that
∂V

(x)f (x, 0) ≤ −W (x) ∀ x ∈ A . (9)

∂x

3

Then, let θ : A × Rν
→ Rm

θ (x, ξ ) := −b
(

∂V (x)
∂x g(x, 0)

)⊤
+
(

∂M(x)
∂x g(x, 0)

)⊤
Λ(ξ − M(x)) (10)

where b, Λ are degree-of-freedom that can be used to tune the
performances of the control law, with b > 0 and Λ > 0 being
any matrix satisfying ΛΦ + Φ⊤Λ = 0. The following result then
holds.

Theorem 1. Let Assumptions 1 and 2 hold. Then, the origin of the
system (1), (3) with w = 0 controlled by (5) with

K (x, ξ ) = α(x) + θ (x, ξ ), (11)

where α is given by Assumption 1 and θ is selected as (10), is
asymptotically and locally exponentially stable with A × Rνp as
domain of attraction.

Proof. For compactness, in the rest of this proof we will denote
f (x) := f (x, 0), g(x) := g(x, 0), h(x) := h(x, 0). Consider the
function U : Rn

× Rνp
→ R defined as

U(x, ξ ) := b V (x) +
1
2 (ξ − M(x))⊤Λ(ξ − M(x)).

In view of the properties of V and M, such a function U satisfies

a
(

|x|
[
1 +

1
d(x, ∂A)

]
+ |ξ |

)
≤ U(x, ξ ), ∀ x ∈ A,

for some class-K∞ function a which is quadratic near the origin,
and with d(x, ∂A) denoting the distance of x from the set bound-
ary of the closure of the set A, see for instance [9, Appendix A].
Moreover, U is proper on A × Rνp. Now, by deriving U , and by
using (8), (9), and by recalling that ΛΦ+Φ⊤Λ = 0, the following
holds

U̇ ≤ b ∂V
∂x (f (x) + g(x)(α(x) + θ (x, ξ )))

+(ξ − M(x))⊤Λ

[
Φξ + Γ h(x) −

∂M
∂x f (x)

−
∂M
∂x g(x)(α(x) + θ (x, ξ ))

]
≤ −bW (x) +

(
b ∂V

∂x − (ξ − M(x))⊤Λ ∂M
∂x

)
g(x)θ (x, ξ )

≤ −bW (x) − θ (x, ξ )⊤θ (x, ξ ) .

y La Salle arguments, the solution then converges to the largest
nvariant set I contained in the set

(x, ξ ) ∈ Rn
× Rνp

: W (x) = 0 , θ (x, ξ ) = 0
}
.

By using the fact that W (x) = 0 if and only if x = 0, that
∂V
∂x (0) = 0 and that M(0) = 0, the previous set reduces to{
(x, ξ ) ∈ Rn

× Rνp
: x = 0 , B⊤M⊤Λ ξ = 0

}
,

with B defined in (2) and M defined in Lemma 1. Hence, by using
the fact that the pair (B⊤M⊤, Φ) is observable (see Lemma 1),
we conclude that the set I is the origin. Therefore the origin is
asymptotically stable with a domain of attraction A ×Rνp. Locally
exponentially stability immediately follows from Assumption 1
from linearization of the closed-loop system at the origin. ■

It is worth observing that the design of θ in (10) relies on the
exact knowledge of the function V ,M, but alternative designs
of a stabilized feedback law based on the approximation of V
and/or M are possible, see, for instance [24], [25, Section III] and
references therein.

2.2. Robustness analysis

The proposed state feedback stabilizer succeeds in making the
origin of the nominal system asymptotically and locally exponen-
tially stable when w = 0 by preserving the domain of attraction
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nforced by the stabilizer of the regulated plant and globally with
espect of the initial state of the internal model unit. The next
heorem, which is the main result of the paper, highlights the
obustness properties of the stabilizer (3), (5), designed for the
ominal model (1), which is supposed to be an approximation of
real process described as systems of the form

ẋ = f̃ (x, w, u),
e = h̃(x, w, u),

(12)

hen the exosystem signal w(t) is injected in the loop. It is shown
that the trajectory of the system originated by an arbitrary large
compact set contained in A × Rνp is asymptotically attracted
y a T -periodic trajectory provided that the nominal plant is
‘sufficiently’’ close to the real process and the amplitude of the
xosystem is sufficiently small. Closeness of the real process
o the nominal model is expressed in terms of the following
unctions

∆f (w, x, ξ ) := f̃ (w, x, K ) −
(
f (w, x) + g(w, x)K

)
∆h(w, x, ξ ) := h̃(w, x, K ) − h(w, x)

∆∂xf (w, x, ξ ) :=
∂ f̃
∂x

(w, x, K ) −

(
∂ f
∂x

(w, x) +
∂g
∂x

(w, x)K
)

∆∂uf (w, x, ξ ) :=
∂ f̃
∂u

(w, x, K ) − g(w, x)K

∆∂xh(w, x, ξ ) :=
∂ h̃
∂x

(w, x, K ) −
∂h
∂x

(w, x)

∂uh(w, x, ξ ) :=
∂ h̃
∂u

(w, x, K )

in which, for easy of notation, we set K = K (x, ξ ).

Theorem 2. Let Assumptions 1 and 2 hold and let K (xξ ) be fixed
as in Theorem 1. Let X × Ξ ⊂ A × Rνp be an arbitrary compact
set and let S ⊂ A ×Rνp be the forward invariant set containing the
trajectories of (1), (3) with w = 0 originating from initial conditions
in X × Ξ ⊂ S . Then, for all compact sets X ′

⊂ X and Ξ ′
⊂ Ξ there

exist positive δ and w̄ such that for any C1 T-periodic trajectory
satisfying ∥w(t)∥ ≤ w̄ for all t ≥ 0 and any real process satisfying

∥∆f (w, x, ξ ) + ∆h(w, x, ξ )∥ ≤ δ( ∆∂xf (w, x, ξ ) ∆∂uf (w, x, ξ )
∆∂xh(w, x, ξ ) ∆∂uh(w, x, ξ )

) ≤ δ

for all (x, ξ ) ∈ S and ∥w∥ ≤ w̄, the actual closed-loop system
(12), (3), (5) has a C1 T-periodic solution (x◦(t), ξ ◦(t)) which is
asymptotically stable with a domain of attraction containing X ′

×Ξ ′.
As a consequence, the Fourier coefficients of the regulation error
e(t) associated to the frequencies 2kπ/T , with k = 0, 1, . . . , ν , are
asymptotically vanishing.

Proof. Consider the closed-loop system (1), (3), (5) with w = 0.
Following the same line of [25, Proposition 3], direct application
of [25, Lemma 5] establishes, for some sufficiently small δ > 0,
the existence of an equilibrium x◦, ξ ◦ (possibly different from
the origin) which is locally exponentially stable and asymptot-
ically stable with a domain of attraction containing S , for the
closed-loop system (12), (3), (5). Rewriting the system closed-
loop system (12), (3), (5) in the error coordinates x − x◦ and ξ ◦

allows to apply Theorem 3 given in the Appendix to show the ex-
istence of a periodic solution which is asymptotically stable with
a domain of attraction including X ′

× Ξ ′. Applying Proposition 1
on such a steady-state periodic solution, the proof concludes. ■

Remark 1. The control law proposed in Theorems 1 and 2 is
based on the full knowledge of the state x. When x is not fully
4

available, an output-feedback approach can be pursued by means
of state-observers. We refer to [25] for further details. □

We remark that the proof of Theorem 2 is based on a (conser-
vative) ‘‘total-stability’’ result that involves the stability margin
of the closed-loop system. Such a stability margin may in general
decrease with the number of oscillators. As a consequence, the
admissible size w̄ of the exosignals w may in principle decrease
to zero by letting the number of oscillators ν go to infinity.
However, as shown in the technical result [30] for the particular
case of minimum-phase systems, this is not the case. In other
words, one can choose an arbitrary number of oscillators, by
preserving the same properties with respect to the size w̄ of the
exosignal w, and at the same time by improving the L2 norm of
the asymptotic output error e, namely improving the approximate
output regulation objective in the following sense

lim
ν→∞

lim sup
t→∞

e(t) = 0.

3. New insights on linear output regulation

In this section we revise the design procedure proposed in
Section 2 for linear systems of the form

ẇ = Sw
ẋ = Ax + Bu + Pw

e = Cx + Qw.
(13)

with w ∈ Rρ . In this context, the Assumptions 1 and 2 read
as follow. Recall that they are necessary and sufficient for the
existence of a robust regulator [1,2].

Assumption 3 (Stabilizability).The pair (A, B) is stabilizable.

Assumption 4 (Non-resonance Condition). The following matrix(
A − λI B

C 0

)
has independent rows for each λ which is an eigenvalue of S.

The internal model unit is simply designed by adding p copies
of the exosystem dynamics on the regulation error as in (3),
where (φ,G) is a controllable pair with φ such that its charac-
teristic polynomial coincides with the minimal polynomial of S.
The control law (5) is then selected in this context as

u = Kxx + Kξ ξ (14)

aking the resulting closed loop system asymptotically stable
hen w = 0, namely so that the matrix

cl :=

(
A + BKx BKξ

Γ C Φ

)
(15)

is Hurwitz. The regulator given by (3), (14) solves the asymptotic
output regulation problem. As a matter of fact, by letting the
closed-loop dynamics

ẇ = Sw
ẋe = Aclxe + Pclw

in which xe := col(x, ξ ) and Pcl is an appropriately defined matrix,
the fact that Acl is Hurwitz guarantees that xe(t) asymptotically
reaches a steady-state of the form Πew(t) with Πe solution of
the Sylvester equation

ΠeS − AclΠe = Pcl . (16)

Furthermore, by partitioning Πe as Πe = col(Πx, Πξ ) coherently
with the definition of xe, the fact that the characteristic polyno-
mial of φ coincides with the minimal polynomial of S can be used
to prove that

CΠ + Q = 0 , (17)
x
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amely the regulation error converges to zero asymptotically.
ote that this property is robust to small parametric uncertainties
ffecting the matrices in (13), see [1,2]. In addition, it is imme-
iately realized that the matrices (Πx, Πξ ), whose existence is
uaranteed by Acl Hurwitz, fulfill the relation

xS = AΠx + BΨ + P (18)

ith Ψ := KxΠx + KξΠξ . The set of equations (17)–(18), inter-
reted as equations in the unknowns Πx and Ψ , are recognized
o be the ‘‘regulator equations’’ linked to (13) and expressing the
esired steady-state for the state x(t), which is Πxw(t), and for
he input u(t), which is Ψ w(t). Stabilizability of the extended
system (13), (3) with w = 0, namely Assumptions 3 and 4, is
hus sufficient conditions to solve the regulator equations (17)–
18) for any instance of the pair (P,Q ). Related to this, it is a well
known fact (see, e.g., [31, Lemma 1.4,2]) that (17)–(18) admit a
solution (Πx, Ψ ) for all possible set of matrices (P,Q ) if and only
f the non resonance condition expressed by Assumption 4 holds.

Now, the tools presented in Section 2 can be clearly specialized
o the case of linear systems (13) by obtaining a possible design
trategy for the linear stabilizer (14), namely of the matrices Kx
nd Kξ . The strategy can be summarized in a few steps as follows.
y using Assumption 3, let N be a matrix such that A + BN is
urwitz and let P = P⊤ > 0 be the solution of the Lyapunov
quation

(A + BN) + (A + BN)⊤P = −2aI (19)

ith a > 0. Then, let M be the solution of the following Sylvester
quation (see (8))

(A + BN) = ΦM + Γ C . (20)

ince the spectra of (A+ BN) and Φ are disjoints, such a solution
is well defined and unique. Then, with an eye to (10), (11), select
the matrices Kx and Kξ of (14) as

Kx = N − bB⊤P − B⊤M⊤ΛM, Kξ = B⊤M⊤Λ, (21)

where b > 0 and Λ > 0 are degree-of-freedom with Λ satisfying
ΛΦ + Φ⊤Λ = 0. If Assumption 4 holds, then the closed-loop
system matrix (15) is Hurwitz (see Theorem 1 specialized to the
linear case), and the output regulation problem is solved.

The next proposition establishes a deep connection between
the non-resonance condition of Assumption 4, the existence of a
solution to the regulator equations (18), (17), and the observabil-
ity property of the pair (BTMT , Φ), showing that these conditions
are indeed equivalent.

Proposition 2. Consider system (13). Suppose S is neutrally
stable, and Assumption 3 holds. Then, the following sentences are
equivalent.

(i) There exist matrices Πx, Ψ solution of the regulator equa-
tions (17), (18) for any matrices P,Q .

(ii) Assumption 4 holds.
(iii) Let Φ, Γ be selected as in (3), let N be any matrix such that

σ (A+BN)∩σ (Φ) = ∅ and let M be solution of (20). The pair
(B⊤M⊤, Φ) is observable.

Proof. The implications (i) ⇔ (ii) are given in [31, Lemma 1.4.2].
Therefore, we will prove only the implications (i) ⇔ (iii).

First, we prove that (iii) ⇒ (i). To this end, select u as in (14)
with Kx = N − B⊤M⊤M⊤M and Kξ = B⊤M⊤. Applying the linear
change of coordinates ξ ↦→ η := ξ − Mx the closed-loop system
(15) reads

ẇ = Sw
˙ ˜ ˜
x̃e = Aclx̃e + Pclw

5

with x̃e = col(x, η) and

Ãcl :=

(
A + BN BB⊤M

0 Φ − MBB⊤M

)
and some appropriate defined matrix P̃ . Since the matrix Φ is
neutrally stable and the pair (B⊤M⊤, Φ) is observable, the matrix
Φ −MBB⊤M⊤ is Hurwitz (this can be shown by using LaSalle like
arguments). Hence, due to the block-triangular structure, the fact
that the spectrum of A+BN and S are disjoint, and Φ−MBB⊤M⊤ is
Hurwitz, we conclude that the spectrum of Ãcl and S are disjoint.
Since the matrices Ãcl and Acl are similar, for any (P,Q ) the
Sylvester equation (16) admits a unique solution. Controllability
of the pair (Φ, Γ ) implies (17) and with Ψ = KxΠx + KξΠξ we
obtain (18) concluding the first part of the proof.

We prove now that (i) ⇒ (iii) by contradiction. In particular,
assume a solution to the regulator equations (17), (18) exists.
Let N be any matrix such that the spectra of Φ and (A + BN)
are disjoints. This is always possible by Assumption 3 and the
fact that Φ is neutrally stable. Let the pair (Φ, Γ ) be controllable
and M solution to (20). Now, by adding and subtracting the term
BNΠx, and by pre-multiplying by M Eq. (18) we get

MΠxS = M(A + BN)Πx + MB(Ψ − NΠx) + MP
0 = CΠx + Q .

By using (20), we further obtain

MΠxS = (ΦM + Γ C)Πx + MB(Ψ − NΠx) + MP
0 = CΠx + Q ,

and therefore, by multiplying the second equation by Γ , it yields

MΠxS = ΦMΠx + (MP − Γ Q + MB(Ψ − NΠx)) . (22)

Now let −λ be an eigenvector of Φ and suppose the pair (B⊤M⊤,

Φ) is not observable, namely there exists v satisfying

Φv = −λv , B⊤M⊤v = 0 .

By using skew symmetry of Φ , it follows that v also satisfies
v⊤Φ = λv⊤. Since Φ and S have the same spectrum, there
exists a w ̸= 0 satisfying Sw = λw. As a consequence, by
pre-multiplying (22) by v⊤ and by post-multiplying by w, we get

v⊤(MΠx)λw = λv⊤(MΠx)w
+v⊤(MP − Γ Q + MB(Ψ − NΠx))w .

and v⊤(MP − Γ Q )w = 0. The latter can be expressed as∑
j,k,ℓ

vj Mj,k Pk,ℓ wℓ −

∑
j,k,ℓ

vj Γj,k Qk,ℓ wℓ = 0 .

By differentiating the previous equality with respect to Pℓ,ℓ we
obtain

∂

∂Pℓ,ℓ

⎛⎝∑
j,k,ℓ

vj Mj,k Pk,ℓ wℓ −

∑
j,k,ℓ

vj Γj,k Qk,ℓ wℓ

⎞⎠ =

∑
j,k,ℓ

vjMj,kwℓ = 0,

for all k, ℓ. Similarly, by differentiating with respect to Qk,ℓ, we
obtain

∂

∂Qk,ℓ

⎛⎝∑
j,k,ℓ

vj Mj,k Pk,ℓ wℓ −

∑
j,k,ℓ

vj Γj,k Qk,ℓ wℓ

⎞⎠ =

∑
j,k,ℓ

vj Γj,k wℓ = 0,



D. Astolfi, L. Praly and L. Marconi Systems & Control Letters 161 (2022) 105154

f
e
t

l

a

|

a
t
i

t
t

[
r
i

5

i
p
w
p
t
f
o
p
t

or all k, ℓ. Now let ℓ be such that wℓ ̸= 0. From the previous
xpressions we get v⊤ M = 0 and v⊤ Γ = 0. By using the fact
hat v⊤Φ = λv⊤ we have

v⊤
[
Γ ΦΓ · · · Φ(r×p)−1Γ

]
= v⊤

[
Γ λΓ · · · λ(r×p)−1Γ

]
= 0,

which contradicts the fact that the pair (Φ, Γ ) is controllable.
Hence, the pair (B⊤M⊤, Φ) must be observable and this concludes
the proof. ■

The novelty and the interest of Proposition 2 is that, under
the stabilizability Assumption 3, we can ensure the existence
of a regulator solving the output regulation problem for linear
systems, with a new set of necessary and sufficient conditions,
expressed by the item (iii), which can be checked by means of
simple and standard computational tools, namely the resolution
of a Sylvester equation. Although this result may not be always
useful in the finite-dimensional linear context,1 such a result may
be of large interest for other classes of systems for which the
computations of the invariant zeros are not an easy task. For
instance, in the context of infinite dimensional systems, the com-
putation of the range of an operator (i.e. the equivalent condition
in terms of the rank of a matrix) or the characterization of its
spectral properties is not always easy (see, e.g., [33, Assumption
2.2]). In this case, checking the observability property may result
to be an easier task. This is what happens, for instance, in the
context of the use of an integral action via forwarding feedback
for open-loop exponentially stable PDEs, see, e.g. [34, Section III].

4. Bilinear systems

As a special case of the system (1), consider the class of single-
input single-output bilinear systems that can be written in the
form
ẋ = Ax + (Dx + B)u + Pw

e = Cx + Qw
(23)

where x ∈ Rn, u, e ∈ R, and A, B, C,D, R,Q are matrices of
appropriate dimensions. Note that, generically, bilinear systems
have not a well-defined relative degree since the term Dx + B
may possess some singularities and vary its rank. Hence, we
cannot put the system in the canonical normal form employed in
standard output regulation problems such as [8,9]. In this section,
we follow the recipe given in Section 2.

For the sake of simplicity, we suppose that the matrix A is
Hurwitz. With respect to Assumption 1, we have α(x) = 0. It is
worth recalling that numerous control engineering applications
satisfy such an ‘‘open-loop stability’’ assumption, see for instance
the case of heat-exchangers [27] or power converters [28]. We
define P as the solution to the Lyapunov matrix inequality

PA + PA⊤
≤ −2aI,

so that the inequality (9) is satisfied with V = x⊤Px and W =

−2a|x|2. Then, we suppose that the triplet (A, B, C) satisfies As-
sumption 2. We design a regulator of the form (3), (4). Therefore,
the function M in Lemma 1 is a linear function obtained as
solution to the Sylvester equation

MA = ΦM + Γ C

and the state-feedback law (10) reads

θ (x, ξ ) = −2b(Dx + B)⊤Px + (Dx + B)⊤M⊤Λ(ξ − Mx). (24)

1 As a matter of fact, algorithms for the computation of invariant zeros of a
inear system are well known, see, e.g. [32].
 f

6

Table 1
Asymptotic value of the regu-
lated output e in (23) depending
on the number of oscillator ν.
ν lim supt→∞ |e(t)|

1 10−2

2 9.9 · 10−4

3 1.2 · 10−4

4 2.2 · 10−5

5 1.3 · 10−5

Fig. 1. Behavior of the regulated output of system (23)–(24) with an internal
model unit composed of 6 oscillators.

As a numerical example, we consider system (23) with nominal
parameters A, B, C,D given by

A =

(
−1 1
0 −2

)
, B =

(
1
1

)
, D =

(
0.1 0.2

−0.2 0.3

)
, C =

(
1 0

)
,

nd P,Q any non-zero matrices of unitary norm. We finally
consider the internal-model based regulator (3), (4), (24). In the
simulations, we consider w(t) = w0 +w1 sin(2π t) with |w0| ≤ 1,
w1| ≤ 1. In particular w0 = 0.5 and w1 =

√
2/2. In simula-

tions we considered different scenarios by varying the number of
oscillators ν from 1 to 6. In Table 1, we reported the asymptotic
value of the regulated output e, confirming the fact that, when
ugmenting the number of oscillators, the approximated regula-
ion objective is improved. Fig. 1 shows transient behaviors with
nitial conditions x(0) = (10, −7), ξ (0) = 0, and with the number
of oscillators ν selected as ν = 6. Note that, in order to improve
he transient behavior (which is very slow due to the presence of
he oscillators), one may use the technique proposed in [35].

The obtained simulations confirm the preliminary results in
19] for the special class of bilinear systems, and show similar
esults to those obtained for the class of minimum-phase systems
n [30].

. Conclusions

We investigated the problem of output regulation for multi-
nput multi-output input-affine nonlinear systems in presence of
eriodic exogenous trajectories. Following the linear paradigm,
e proposed an internal model approach which lies on the design
rinciple ‘‘add harmonics on the regulation error and stabilize
he extended system’’. A simple state-feedback design based on
orwarding approach is then proposed. The asymptotic behavior
f the closed-loop trajectories in presence of arbitrarily small
erturbations of the plant’s model is analyzed and it is shown
hat harmonic regulation is obtained, namely the Fourier coef-

icients linked to the frequencies copied in the internal model
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re canceled on the asymptotic error. The stability properties of
he closed-loop system are semi-global in the size of the initial
onditions of the plant but only local in the size of the pertur-
ation, i.e., its magnitude has to be small enough. A dependence
etween the size of the exosignals and the number of oscillator
s not completely clear. However, the technical results [30,36]
eveloped in the context of minimum-phase systems suggest that
his is not always the case, namely augmenting the number of
scillators has no influence on the admissible size of the pertur-
ation and/or references. We conjecture that in order to achieve
lobal results, incremental stability properties may need to be
nsured. Preliminary results in this direction for the simple case
f integral action have been investigated in [37].
Finally, as a by-product of the proposed forwarding approach,

e shed light on the linear case by presenting a new necessary
nd sufficient condition under which the linear robust output
egulation problem can be solved. The proposed condition does
ot rely on the so-called non-resonance assumption and it is easy
o check from the computational point of view.
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ppendix. Existence of stable periodic solutions

The following result concerns the existence and stability of a
eriodic solution to nonlinear system forced by a periodic input.

heorem 3. Let be given a C1 function ϕ : Rn
× Rρ

→ Rn such
that the origin of

ẋ = ϕ(x, 0) (A.1)

is asymptotically, locally exponentially, stable with a domain of
attraction A ⊆ Rn. Then, for any compact set X ⊂ A, there exists
ε > 0 such that, for any C1 T-periodic function w : R → Rρ

satisfying sup
s∈[0,T ]

|w(s)| ≤ ε, the system

ẋ = ϕ(x, w) (A.2)

admits a unique T-periodic solution x◦ which is asymptotically stable
with a domain of attraction that includes X.

The proof of this theorem is omitted for space reasons. It
can be derived by invoking standard and well-known results on
the existence and stability of periodic solutions (see, e.g., [38,
§8, Theorem 5.1, Theorem 6.2]) with ‘‘total-stability’’ and ISS
theorems (see, e.g. [9, Theorem 4 and Lemma 1] [25, Lemma 5,6]).
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