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Abstract
In linear system theory, it is awell-known fact that a regulator given by the cascade of an
oscillatory dynamics, driven by some regulated variables, and of a stabiliser stabilising
the cascade of the plant and of the oscillators has the ability of blocking on the steady
state of the regulated variables any harmonics matched with the ones of the oscillators.
This is the well-celebrated internal model principle. In this paper, we are interested
to follow the same design route for a controlled plant that is a nonlinear and periodic
system with period T : we add a bunch of linear oscillators, embedding no harmonics
that are multiple of 2π/T , driven by a “regulated variable” of the nonlinear system,
we look for a stabiliser for the nonlinear cascade of the plant and the oscillators, and
we study the asymptotic properties of the resulting closed-loop regulated variable.
In this framework, the contributions of the paper are multiple: for specific class of
minimum-phase systems we present a systematic way of designing a stabiliser, which
is uniform with respect to no, by using a mix of high-gain and forwarding techniques;
we prove that the resulting closed-loop system has a periodic steady state with period
T with a domain of attraction not shrinking with no; similarly to the linear case, we
also show that the spectrum of the steady-state closed-loop regulated variable does not
contain the n harmonics embedded in the bunch of oscillators and that the L2 norm
of the regulated variable is a monotonically decreasing function of no. The results
are robust, namely the asymptotic properties on the regulated variable hold also in
the presence of any uncertainties in the controlled plant not destroying closed-loop
stability.
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1 Introduction

The problem of rejecting or tracking asymptotically periodic or quasi-periodic signals
is of primary importance in many applications [30,31,50], like robotics [26,42], power
electronics [39] and bio-medics engineering [19], just to cite a few. Such a problem is
commonly known in control system theory as robust output regulation, see [12,14,17],
where the adjective robust refers to the fact that the asymptotic properties are desired to
hold not only for the nominal model of the system but also for small perturbations of it.
The solution to the robust output regulation problem for finite-dimensional linear time-
invariant systems is accredited to Francis,Wonham andDavison who at the same time,
but independently, published their main works during the 1970s, see, e.g., [14,17]. The
proposed solution relies on the so-called internal model principle coined by Francis
and Wonham in their celebrated work [17], stating that output regulation property is
insensitive to plant parameter variations “only if the controller utilises feedback of the
regulated variable and incorporates in the feedback path a suitably reduplicated model
of the dynamic structure of the exogenous signals which the regulator is required to
process”. In turns, if some overall stability properties are guaranteed, the presence of a
copy of the exogenous dynamics (also denoted as exosystem) in the regulator provides
a “blocking-zero” effect on the desired regulated output at the dynamics excited by
such exogenous signals. In other words, the regulated output cannot contain any mode
of the exosystem if the overall trajectories are bounded. In practice, an integral action
in the controller allows one to achieve zero-DC value of the regulated output, while
a given oscillator at a certain frequency ensures to have zero spectral component at it
[4,20].

In our preliminary contribution [4], focused on the problem of nonlinear robust
output regulation in the presence of periodic exosignals, we have proposed a solution
for input-affine nonlinear systems that mimics the aforementioned linear paradigm
[14,17]. It involves the following two main components:

1. An internal-model unit processing the regulated output which is composed by
a bunch of oscillators at a given fundamental frequency and a certain number
no, possibly infinite, of its multiples. Such an internal model unit guarantees a
blocking-zero property on the regulated error in terms of spectral components, i.e.
the regulated output cannot have harmonics at the frequencies embedded in the
internal model unit, see [4, Proposition 3] or [20, Proposition 1]. Such a property
is insensitive to model perturbations as long as system trajectories are bounded.
In doing so (contrary to large part of nonlinear output regulation theory, see,
e.g., [10,11,34]), a precise description of the generator of the exosignals is not
needed as long as the fundamental period characterising all the spectrum is known.
This motivates us in describing the plant dynamics as a T -periodic time-varying
nonlinear system, without need of a precise description of the exogenous signal
dynamics.
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2. A state feedback stabiliser is composed by two parts: a preliminary state feedback
in charge of stabilising the equilibrium assumed to exist when the exosignals are
zero, augmented by a forwarding feedback which serves at stabilising the overall
extended dynamics composed by plant and the internal-model unit (see, e.g., [3–
5]).

Themotivation for such a solution comes from the well-known fact that an input-to-
state stable system driven by a periodic input admits (at least locally) periodic solutions
of the same period [46, §12]. In our preliminary work [4], however, some important
issues were still open. In particular, it was not clear whether the domain of attraction
of the steady-state periodic solution shrinks to zero by increasing the dimension of the
internal-model unit (i.e. the number of oscillators), and whether asymptotic regulation
can be achieved by means of a (countable) infinite-dimensional internal model (i.e. by
using an infinite number of oscillators). We gave a partial answer to this latter question
in our second preliminary contribution [5].

The objective of this work is therefore to give an exhaustive answer to both open
questions by providing a unifying result and by showing the practical interest of the
proposed approach in periodic output regulation frameworks. For this, as in [5], we
restrict our attention to the particular class of minimum-phase nonlinear systems, that
is, systems possessing a well-defined relative degree with constant high-frequency
gain, which are described in normal form (possibly after a change of coordinates), see
[25, Chapter 4], and with locally exponentially stable zero-dynamics. This allows us to
choose an elementary high-gain feedback as a preliminary stabilising feedback (see,
e.g., [47, Lemma 2.2]) and a linear forwarding feedback. In this simplified context, it
is shown that the behaviour of the proposed regulator is robust with respect to model
uncertainties and uniform in the dimension of the internal model unit (i.e., the number
no of oscillators), in the following sense:

• The high-gain feedback does not need to be re-parameterised if the number of
oscillators vary. It is chosen beforehand, based on the Lipschitz system properties
(i.e., the precise knowledge of the plant’s dynamics is not needed).

• The proposed regulator ensures boundedness of the overall closed-loop system
trajectories and the existence of a (locally) exponentially stable T -periodic solu-
tion, with a domain of attraction which is uniform in the number of oscillators no,
and independent of their frequencies. In other words, a precise knowledge of the
period T characterising the plant’s dynamics (that is, the period of the exosignals)
is not needed to ensure such a boundedness property.

• If the fundamental frequency of the internal-model unit oscillators is selected
exactly as the one characterising the plant’s dynamics 2π

T , then the regulated output
cannot contain harmonics at the frequencies of such oscillators, and approximate
regulation is achieved1. Furthermore, the L2 norm (over a period) of the steady-
state output is inversely proportional to the number of oscillators: the quality of
approximate regulation can be therefore improved by augmenting the number
of oscillators (and not by increasing the parameters of the high-gain feedback
regulator as in high-gain feedback control).

1 Note that the notion of approximate considered here is different from the notion of k-th order approximate
regulation defined in [24], [12, Chapter 2.5].
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• If the number of oscillators is infinite, then asymptotic2 output regulation is
achieved. This infinite-dimensional regulator preserves the same bounds in terms
of high-gain feedback and domain of attraction.

In conclusion, we show that the problem of periodic robust output regulation can
be generically solved by an infinite-dimensional internal-model-based regulator
containing oscillators at all multiples of the basic periodic. Moreover, a good finite-
dimensional approximation of such a regulator can be obtained byusing afinite number
of oscillators. In doing so, one obtains a desired accuracy (in terms of L2 norm) with
bounds of the high-gain term and the domain of attraction which are uniform (i.e.,
independent) in the desired approximation (i.e., the number of oscillators).

From a technical point of view, the main difficulty to deal with is the fact that each
time we modify the dimension of the internal model unit (i.e. we vary the number of
oscillators), we have to study a system with different state-space dimension. While
most of mathematical tools are well-suited to study the effect of parameter’s variations
in system dynamics (see, e.g., [28] or [3, Appendix]), it is very hard to compare
objects with different dimensions and we are unaware of generic tools developed for
this specific purpose. For this reason, in this work we analyse all the aforementioned
properties (all these contributions are newwith respect to our preliminary works [4,5])
by carefully re-doing all the proofs concerning the existence of periodic solutions
(which mainly relies on fixed-point theorems) and their stability properties (which
mainly relies on Lyapunov analysis), by showing that all these features are uniform
in the internal-model system dimension. In such a perspective, the fact of focusing
on minimum-phase systems with constant high-frequency gain and unitary relative
degree allows us to conceptually simplify most of the (already complex) proofs. The
case of higher relative degree can be easily dealt with by means of partial change of
coordinates as shown in [45]. Details are given in Sect. 3.5. The case of square multi-
input multi-output (i.e. same number of inputs and outputs) systems with constant
(and invertible) high-frequency matrix gain is also straightforward and not considered
in this work.

This rest of the article is organised as follows: In Sect. 2, we state the problem
formulation, and in Sect. 3, we provide the main results of this work. With these
precise elements at hand, we are in a better position to compare our results with what
is available in the literature. This is done in Sect. 3.4. A numerical example is proposed
in Sect. 4. Conclusions are drawn in Sect. 5. All proofs are postponed in Appendix.

Notation. R is the set of real numbers andR≥0 := [0,+∞);Z is the set of integers;
N is the set of non-negative integers, andN>0 is the set of positive integers,C is the set
of complex number and i = √−1. Given x ∈ C, we denote with x̄ its conjugate. We
denote by C k(X; Y ) the set of Ck functions from X to Y , and with C k

T ([0, T ]; X) the
set of Ck T -periodic functions from [0, T ] to X . For compactness, in the following,
C k
T ([0, T ]; X) will be simply denoted as C k

T (X).

2 In this case, exponential stability cannot be anymore guaranteed in view of the presence of an infinite
number of poles on the imaginary axis and the use of a bounded (in the sense of [48, Page 24]) control
operator. See also [2,43,44] for other examples of such a phenomenon.
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2 Problem statement

The objective of this work is to state and prove very precise results concerning the out-
put regulation problem for the particular systems that can be rewritten, under suitable
change of coordinates, in the form:

ẋ = f (w, x, e)
ė = q(w, x, e) + u

where (x, e) ∈ R
n×R is the state,with x unmeasured, u ∈ R is the control input, e ∈ R

is the measured output to be regulated to zero and w ∈ R
nx are exogenous signals

representing references to be tracked or disturbances to be rejected. The number of
control problems that can be recast in such a form is very large, and examples may
be found, for instance, in [2,10,11,27,32,34] and references therein. As discussed in
[11, Remark 1], the considered class of systems may look very particular, as it has
relative degree 1 between control input u and regulated output e. However, the design
methodology described in what follows lends itself to a straightforward extension
to systems with higher relative degree [10, eq. (33)]. More details are postponed
to Sect. 3.5. In this work, we suppose that w is T -periodic, in other words w is a
sufficiently smooth function fulfilling w(t + T ) = w(t). To simplify our notations,
throughout the rest of this paper we will replace w by t , and we will assume that the
functions f , q satisfies

f (t + T , x, e) = f (t, x, e), q(t + T , x, e) = q(t, x, e)

for any t . We are interested, moreover, in systems which are strongly minimum phase.
In particular, we suppose that when e = 0, the system

ẋ = f (t, x, 0)

admits a unique periodic solution x0(·), which is exponentially stable with some
domain of attraction. Since, in what follows, the knowledge of x0 is not required
and x is not accessible, there is no loss of generality in assuming that x0(t) is the ori-
gin of the coordinates for x at time t . This allows us to formulate our output regulation
problem for the following class of systems:

ẋ = f (t, x, e) (1a)

ė = q(t, x, e) + u (1b)

where f : R × R
n × R → R

n and q : R × R
n × R → R are C2 and T -periodic

in their first argument, f is such that f (t, 0, 0) = 0 for all t ≥ 0 and the function q
satisfies supt∈[0,T ] |q(t, 0, 0)| > 0 (otherwise the problem would trivially boil down
to a stabilisation context that would be solved, in a semi-global context, by a simple
high-gain feedback u = −σe, with σ > 0 sufficiently large, see, e.g., [47]).

123



Mathematics of Control, Signals, and Systems

Our approximate output regulation objective is

lim sup
t→∞

|e(t)| ≤ ep (2)

with ep arbitrarily chosen.
Evidently, a simple way to achieve such a practical regulation property could be

that of implementing a high-gain controller of the form u = −σe, with σ > 0 large
enough, see, e.g., [47, Example 2.1]. The drawback of this controller is that σ is the
only tunable parameter, and it has the undesirable property of amplification of possible
(high-frequency)measurement noise, thus beingunsuited in practical applications.The
regulator we propose incorporates also a tunable internal model allowing to satisfy
(2) but also stronger properties that a standard high-gain controller could not achieve.
Also, as explained in the introduction, we want a result as less dependent on f and
q as possible. The aim of this weak dependency is to make property (2) robust to
uncertainties in f and q. This is achieved by asking not the exact knowledge of the
pair ( f , q) but only that it belongs to a family. Precisely, say that we have a model
pair ( fm, qm). We define from it the set of bounding functions

sup
(t,x,e)∈ST (x,e)

| fm(t, x, e)| ≤ f(x, e), sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂ fm
∂e

(t, x, e)

∣
∣
∣
∣
≤ fe(x, e),

sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂2 fm
∂x∂x

(t, x, e)

∣
∣
∣
∣
≤ fxx (x, e), sup

(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂2 fm
∂e∂x

(t, x, e)

∣
∣
∣
∣
≤ fex (x, e),

sup
(t,x,e)∈ST (x,e)

|qm(t, x, e)| ≤ q(x, e), sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂qm
∂e

(t, x, e)

∣
∣
∣
∣
≤ qe(x, e),

sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂qm
∂x

(t, x, e)

∣
∣
∣
∣
≤ qx (x, e), sup

(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂qm
∂t

(t, x, e)

∣
∣
∣
∣
≤ qt (x, e).

where we have introduced the sets

Sx (x) := {x : |x | ≤ x}, Se(e) := {x : |e| ≤ e},
S (x, e) := Sx (x) × Se(e), ST (x, e) := [0, T ] × Sx (x) × Se(e),

Then we forget ( fm, qm) and instead consider the families of functions F and Q
defined as follows.

Definition 1 (Family F ) Given a triplet of positive numbers Px , Px , α > 0 and a
pair of positive numbers x, e > 0, we say that the function f : R≥0 ×R

n ×R �→ R
n

belongs to the familyF (Px , Px , α, x, e) if the following statements holds.

• The function f is C2, T -periodic in the first argument and satisfies the following
set of inequalities

sup
(t,x,e)∈ST (x,e)

| f (t, x, e)| ≤ f(x, e), sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂ f

∂e
(t, x, e)

∣
∣
∣
∣

≤ fe(x, e),

sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣
∣

∂2 f

∂x∂x
(t, x, e)

∣
∣
∣
∣
∣

≤ fxx (x, e), sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣
∣

∂2 f

∂e∂x
(t, x, e)

∣
∣
∣
∣
∣

≤ fex (x, e).
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sup
(t,x,e)∈ST (x,e)

| f (t, x, e)| ≤ f(x, e), sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂ f

∂e
(t, x, e)

∣
∣
∣
∣

≤ fe(x, e),

sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣
∣

∂2 f

∂x∂x
(t, x, e)

∣
∣
∣
∣
∣

≤ fxx (x, e), sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣
∣

∂2 f

∂e∂x
(t, x, e)

∣
∣
∣
∣
∣

≤ fex (x, e).
(3)

• There exists aT -periodicC1 positive definitematrix Px : R≥0 → R
n×n , satisfying

0 < Px I ≤ Px (t) ≤ Px I , (4)

Ṗx (t)+ Px (t)
∂ f

∂x
(t, 0, 0) + ∂ f 	

∂x
(t, 0, 0)Px (t) ≤ −2αPx . (5)

Definition 2 (Family Q) Given a pair of positive numbers x, e > 0, we say that the
function q : R≥0×R

n ×R �→ R
n belongs to the familyQ(x, e) if it isC2, T -periodic

in its first argument and satisfies the following set of inequalities

sup
(t,x,e)∈ST (x,e)

|q(t, x, e)| ≤ q(x, e), sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂q

∂e
(t, x, e)

∣
∣
∣
∣
≤ qe(x, e),

sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂q

∂x
(t, x, e)

∣
∣
∣
∣
≤ qx (x, e), sup

(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂q

∂t
(t, x, e)

∣
∣
∣
∣
≤ qt (x, e).

(6)

Note that systems of form (1) satisfying f , q ∈ F ,Q are typically obtained when
deriving a normal form in the presence of smooth periodic reference to be tracked or
perturbation to be rejected. See, for instance, [2,27,32] and references therein.
RemarkNote that in light of (4), (5), the setF (Px , Px , α, x, e) characterises functions
for which the zero-dynamics of (1), namely ẋ = f (t, x, 0), is locally exponentially
stable, with a given decreasing rate −α. Indeed, the function V (t, x) = x	Px (t)x
can be used as Lyapunov function to establish such stability properties. Since in this
work we are not interested in establishing semi-global results, properties (4) and (5)
will be the only assumptions made on the zero-dynamics (1a). Such assumptions are
indeed milder than those commonly stated in semi-global output regulation results,
where typically the zero-dynamics (1a) is asked to be input-to-state stable (in short,
ISS) or integral ISS (in short, iISS) with respect to e, see, e.g., [11,27,45,51].

3 Main results

3.1 Internal-model based regulator design

The feedback law we propose is made of two sets of tunable parameters:

• an integer no ∈ N and two positive real numbers σ,μ > 0;
• two sequences of positive real numbers nz� and ω� satisfying

∞
∑

�=0

nz� = N
2
z < +∞ , (7a)
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nz(�+1) < nz� ∀ 0 ≤ � , (7b)

� nz� ≤ m nzm ∀(�,m) : 0 < m ≤ � , (7c)

�2 nz� ≤ m2 nzm ∀(�,m) : 0 ≤ � ≤ m , (7d)

ω� = �ω̂ ∀� > 0 , (7e)

for some ω̂ > 0. Actually, as an illustration or for more specificity, we consider
often the particular case

nz0 = 2,

nz� = 1

�1+ε
, ∀ � ∈ N>0 ε ∈ (0, 1]. (8)

The proposed dynamic controller takes the form

ż = Φz + Γ e (9a)

u = −σe + μM	Nz(z − Me) , (9b)

where z = (z0, . . . , zno) ∈ R
2no+1, is the state of the controller and the matrices

Φ, Nz ∈ R
(2no+1)×(2no+1) and Γ ,M ∈ R

2no+1 are defined as

Φ := blkdiag
(

0, Φ1, . . . , Φno

)

, Φ� =
(

0 ω�

−ω� 0

)

,

Nz = blkdiag
(

nz0, Nz1, . . . , Nzno

)

, Nz� = nz� I2 ∀ � = 1, . . . , no,

M = (1,M	
1 , . . . ,M

	
no)

	, M� = (1, 0)	 ∀ � = 1, . . . , no,

Γ = −(Φ + σ I )M .

(10)

It can be readily seen from the definition of (10), that regulator (9) is composed of two
parts: an internal-model unit (9a), that is, the z-dynamics, characterised by an integrator
and a bunch of linear oscillators at frequencies ω�, and a linear stabilising term (9b)
having embedded the high-gain feedback law −σe needed for stability purposes (see,
e.g., [34,47]). As shown in the rest of the paper, the feedback law (9) guarantees that
(2) holds with any (arbitrarily small) ep chosen a priori and independent of no, and
moreover

lim
no→+∞ lim sup

t→+∞
|e(t)| = 0, (11)

when the basic frequency characterising the oscillators Φ� of the internal-model unit
is selected as ω̂ = 2π

T , that is ω� = � 2πT for any � = 1, . . . , no.
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3.2 Approximate regulation

First, we study the interconnection of the finite-dimensional controller (9) in closed-
loop with system (1) and we establish a certain number of properties concerning the
existence and stability of a steady-state trajectory and the norm of the corresponding
regulated output. The proof of the following theorem is postponed to Sect. A.

Theorem 1 Given a triplet (Px , Px , α) and any fixed μ ≥ 1, there exist positive
real numbers x, e, z, σ �, independent of no, such that the closed-loop system (1), (9),
with any f ∈ F (2x, 2e, Px , Px , α) and any q ∈ Q(2x, 2e), satisfies the following
statements:

1) for anyσ > σ� and any no > 0, the closed-loop system (1), (9) admits a T -periodic
solution (xp, ep, z p) ∈ C 2

T (R
n × R × R

2no+1) satisfying

sup
t∈[0,T ]

|xp(t)| ≤ x , sup
t∈[0,T ]

|ep(t)| ≤ e , sup
t∈[0,T ]

√

z p(t)	Nzz p(t) ≤ z .

(12)

Moreover, (xp, ep, z p) is locally exponentially stable with a domain of attraction
that includes the set

N (x, e, z) =
{

(x, e, z) : |x | ≤ 2x, |e| ≤ 2e,
√

z	Nzz ≤ 2z
}

(13)

which is independent of no.
2) There exists ψ1, ψx > 0, independent of no, σ, μ, such that, for any σ > σ� and

any no > 0, the corresponding T -periodic solution (xp, ep, z p) of the closed-loop
system (1), (9) established in item 1) satisfies

sup
t∈[0,T ]

|ep(t)| ≤ ψ1

σ
, sup

t∈[0,T ]
|xp(t)| ≤ ψx

σ
. (14)

3) Let σ > σ� and no be fixed. If, for some � in {1, . . . , no}, there exists an integer
K� > 0 such that ω� in (9), satisfies

ω� = K�
2π
T ,

then the corresponding T -periodic solution (xp, ep, z p) of the closed-loop system
(1), (9) established in item 1) satisfies

∫ T

0
sin(K�

2π
T t)ep(t) =

∫ T

0
cos(K�

2π
T t)ep(t) = 0. (15)

4) Suppose that we have ω̂ = 2π
T in (7e). Then, there exists ψ2 > 0, independent of

no, σ, μ, such that, for any σ > σ� and no > 0, the corresponding T -periodic
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solution (xp, ep, z p) of the closed-loop system (1), (9) established in item 1) sat-
isfies

∫ T

0
|ep(t)|2dt ≤ ψ2

(no + 1)2
, (16)

∫ T

0

(

cos(ω�t)
sin(ω�t)

)

ep(t)dt = 0 ∀� ∈ {1, . . . , no}.

Theorem 1 establishes several properties about the solutions of the closed-loop
system (1), (9). Item 1) states that for σ large enough, the closed-loop system admits an
exponentially stable T -periodic steady-state trajectory. Existence, stability and domain
of attraction of such a steady state is robust to model uncertainties and independent of
the parameters of the internal-model unit in (9), that it is independent of no, and the
sequences nz�, ω� characterising the frequencies of the oscillators of the z-dynamics,
provided conditions (7) hold. Furthermore, it is shown that the initial condition z(0) =
0 for the internal-model unit (9) is always a “good initial solution” as it is always
contained in the domain of attraction (13).

Item 2 establishes that controller (9) preserves the high-gain property of a feedback
without internal model: the infinity norm of the steady-state trajectory of the regulated
output e can be arbitrarily made small by augmenting the parameter σ , see (14). In
other words, we do not loose the properties of a simple high-gain feedback u = −σe.
Moreover, such a high-gain property is robust to model uncertainties and independent
of the parameters nz�, ω� in (7).

Item 3 characterises the behaviour of the steady state of the regulated output ewhen
the frequency of one oscillator is a multiple of the basic frequency 2π

T characterising
the periodicity of the frequencies f , q. In this case, the Fourier coefficient of e cor-
responding to that frequency is zero. Such a property evidently suggests a strategy to
select the parameters ω� in (9) when the periodicity T of the functions f , q is known.
This is well established in item 4.

In particular, inequality (16) shows that the L2 norm of the steady-state regulated
output e can be made arbitrarily small by augmenting the number of oscillators, if
those are chosen so that their frequency is multiple of the basic frequency 2π

T . This
is a consequence of the fact that each corresponding Fourier coefficient is zero, as
established by (15). Note that although a similar result was already proved in [4],
[20], the novelty of item 4) is that here we are able to show that inequality (16) is
uniform in the parameters of controller (9). This implies that, from a practical point of
view, one can first fix the parameters μ, σ , and then arbitrarily increase no so that to
reduce the L2 norm of the regulated output. Furthermore, in doing so, the domain of
attraction is guaranteed to always exist and contain a prescribed set of initial conditions
independent of the parameters of the internal model. In other words, when the period
T is known, the approximate regulation objective (2) can be satisfied by augmenting
the number of oscillators and not the high-gain parameter.
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In the next section, we will show that bound (11) hold when considering the non-
implementable infinite-dimensional case, corresponding to the limit case of regulator
(9) in which no = +∞.

3.3 Exact regulation

In this section, we want to study the limit case (non-implementable) in which the
period T is perfectly known and the number of oscillators in regulator (9) is chosen
as infinite no = ∞, with ω̂ = 2π

T , that is ω� = 2π
T for all � ∈ {0, 1, . . . ,∞}. In

particular, we aim at establishing that, in such a case, exact regulation is achievable
and (11) is satisfied. To this end, let us define the linear operators Φ, Nz,M, Γ as

Φ := (

Φ�

)

�∈N0
, Φ0 := 0, Φ� := �

2π

T

(

0 1
−1 0

)

,

Nz := (

Nz�
)

�∈N0
, Nz0 := nz0, Nz� := nz�

(

1 0
0 1

)

,

M := (

M�

)

�∈N0
, M0 := 1, M� := (1, 0)	,

Γ := −(Φ + σ I )M

(17)

with (nz�)�∈N≥0 being the sequence defined in (7a). We denote with Z the space of
sequences:

Z := {z = (z�)�∈N0 , z0 ∈ R, z� ∈ R
2, � ∈ N} (18)

and we define the spaceL 2
Nz

as

L 2
Nz

:=
{

z ∈ Z : ‖z‖2Nz
:= z	Nzz =

∞
∑

�=0

nz�|z�|2 < ∞
}

(19)

with Nz being defined in (17). This space, being linearly isometric with the standard
L 2 space, is complete. In this section, we address the specific case in which the
regulator is selected as:

ż = Φz + Γ e

u = −σe + μM	Nz(z − Me) ,
(20)

where z ∈ Z , is the statewith the initial condition z(0) ∈ L 2
Nz
, and the linear operators

Φ,M, Nz are now defined as in (17). As now the state z is a vector of infinite, but
countable dimension, we will consider only solutions in the space L 2

Nz
. We have

the following result, showing that exact regulation can be achieved. The proof of the
following theorem is postponed to Sect. A.

Theorem 2 Let the triplet (Px , Px , α) be given and fix any μ ≥ 1. Consider the real
numbers x, e, z and σ� given by Theorem 1. There exists σ�∞ < σ� such that, for
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any σ > σ�∞, any trajectory (x(t), e(t), z(t)) of the closed-loop system (1), (9), with
f ∈ F (2x, 2e, Px , Px , α) and q ∈ Q(2x, 2e), starting in the set

{(x, e, z) ∈ R
n × R × L 2

Nz
: |x | ≤ 2x, |e| ≤ 2e, ‖z‖Nz ≤ 2z},

is defined and complete forward in time, bounded in R
n × R × L 2

Nz
, and satisfies

limt→∞ e(t) = 0 and limt→∞ x(t) = 0.

Theorem 2 establishes that with an infinite-dimensional regulator, exact regulation
can be achieved if the period T characterising the functions f , q is perfectly known,
and if the regulator embeds an infinite number of oscillators at 2πT and all its multiples.
In practice, such a result confirms property (11) of the finite-dimensional regulator (9).
It is noticed that in statementwe showed that the domain of attraction in terms of (x, e)-
coordinates is not reduced with respect to those given by Theorem 1. Furthermore,
for the same values of x, e, the resulting high-gain parameter σ can be chosen smaller
with an exact infinite-dimensional regulator. The main motivation to this fact is that,
in the approximate case, the steady-state solution xp does not coincide with the origin,
thus reducing the stability margins ensured by (5). In turn, σ has to be chosen larger
to compensate such a loss.

3.4 Literature review

The problem of periodic output regulation has been studied in the past decades by
many authors with many different tools and ideas. Although various approaches as
ours allow to cope with more general dynamics, for the sake of precision, we restrict
our discussion to systems which admit a normal form like the one at the beginning of
Sect. 2 or more generally like (21). We revisit the following main approaches based
on the use of “smooth regulators”.

– Nonlinear output regulation. Starting from the notable results on the so-called non-
linear regulator equations [10] in a non-equilibrium context, the development of
output regulation theory has beenmainly pursued in the context ofminimum-phase
systems of form (1). The design of internal models has been focused mainly in the
sense of input cancellation/observation, that is, with the purposes of reproducing
the asymptotic behaviour of the zeroing steady-state input −q(t, 0, 0) for system
(1b), see, e.g., [11,34]. Although these approaches can ensure asymptotic regula-
tion with finite-dimensional regulators, it is not clear whether they can be extended
in a non-matching case, i.e. without the use of a normal form (1). Furthermore, as
discussed in see [7,8], asymptotic regulation is lost as soon as unstructured model
uncertainties are considered. Approximate asymptotic solutions have been also
proposed in [9,18,33], but again, the extension to more general classes of systems
(as in [4]) is not clear.

– Repetitive control.Basedon the fact that a delay canbeused as a universal generator
of periodic signal, the repetitive control approach was first proposed at the end of
the 1980s, [23] for linear systems in order to solve periodic output regulation
problems, with remarkable results in the context of discrete-time systems [31] and
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practical applications [30]. Nonlinear extensions were proposed, for instance, in
[2,20,39]. Similarly to our approach, finite-dimensional approximations based on
Fourier approximation were used in [20], based on the fact that a delay can be
equivalently represented by an infinite number of oscillators3 In this spirit, our
work contributes also to the repetitive control theory clarifying the uniformity
aspects in terms of basin of attraction of periodic solutions with respect to the
approximation of the internal-model unit.

– Adaptive learning control. An approach similar to repetitive control is also the
one denoted as adaptive learning control, see, e.g., [16,35,49], developed in the
context ofminimum-phase systems (1), with the objective of estimating the Fourier
coefficients of the zeroing steady-state input −q(t, 0, 0) [16], or cancelling it by
means of delays [35,49]. Extensions to systems not possessing a normal forms and
practical implementations issues related to the delay (and therefore the asymptotic
properties of a discretised regulator) have not been discussed.

– Input disturbance observers. Finally, for systems in normal form, input disturbance
observers can be used in output regulation of minimum-phase systems (1), see,
e.g., [22]. Again, the extension of such an approach to more general classes of
systems (as in [4]) is not clear.

3.5 Higher-relative degree case via partial-state feedback

Consider now a system of relative degree higher than one and described by:

χ̇ = f0(t, χ, ξ1)
ξ̇i = ξi+1 i = 1, . . . , r − 1,
ξ̇r = q0(t, χ, ξ) + u,

(21)

with χ ∈ R
n , ξ = (ξ1, . . . , ξr )

	 ∈ R
n , and suppose that our output regulation

objective is now given by

lim sup
t→∞

|ξ1(t)| ≤ ξξξ1p. (22)

Following, for instance, [45], we consider the change of coordinates

ξr �→ e := ξr +
r−1
∑

i=1

aiξi

where ai are chosen so that λr−1+a1λr−2+. . .+ar2λ+ar−1 is a Hurwitz polynomial.
In the new coordinates, system (21) reads as:

ẋ = f (t, x, e)
ė = q(t, x, e) + u

(23)

3 This can be shown, for instance, by using Riesz bases, see Example 2.6.12 in [48].
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with x := (χ	, y	)	, y := (ξ1, . . . , ξr−1)
	,

f (t, x, e) :=
(

f0(t, χ,Cy)

Ay + Be

)

A :=
(

0r−2,1 Ir−2
−a1 −a2 · · · − ar−1

)

, B :=
(

0r−2,1
1

)

, C := (

1 01,r−1
)

,

q(t, x, e) := q0(t, χ, ξ1, . . . , ξr−1, e −
r−1
∑

i=1

ai ξi ) +
r−2
∑

i=1

ai ξi+1 + ar−1

⎛

⎝e −
r−1
∑

i=1

ai ξi

⎞

⎠ .

By construction, if f0, q0 areC2 and T -periodic, so are q and f . As a consequence, we
can apply the control design proposed in Sects. 3.2, 3.3 to system (23). In particular,
concerning the result of Theorem 1, it is straightforward to see that the control law (9)
applies to system (23) insuring the desired properties for the new regulated output e
of system (23). Then, by linearity of the change of coordinates, the properties on y, e
can be used to analyse the behaviour of ξ1. Indeed, the r -th derivative of ξ1, i.e. ξ

(r)
1 ,

is given by:

ξ
(r)
1 = −

r−1
∑

k=1

akξ
(r−1−k)
1 + e .

With λr−1 + a1λr−2 + . . . + ar2λ + ar−1 being a Hurwitz polynomial, we have

lim sup
t→∞

|ξ1(t)| ≤ k∞ep,
∫ T

0
ξ1(t)

2dt ≤ k2

∫ T

0
e(t)2dt

where the real numbers k∞ and k2 depend only on the ak . The regulation objective

(22) is then satisfied by selecting ep <
ξξξ1p

k∞
.

A formal theorem concerning the design of a regulator for the output regulation
problem for system (21) is therefore not given as it can be directly inherited by com-
bining the computations of this section and the results of Theorems 1 and 2.

4 Example

4.1 Linear Bode analysis

In this section, we provide a numerical example to corroborate the theoretical results of
Sect. 3. First, in order to have a deeper insight of the proposed algorithm, we consider
a simple linear case with no zero-dynamics given by:

ė = u + q(t) (24)
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and we analyse the difference between the transfer functions of a high-gain feedback
regulator:

u = −σe (25)

and the internal-model-based regulator (9). Figure 1 shows the transfer function
between the input q and the output e for the closed-loop systems (24), (25), respec-
tively (24), (9), when σ = 2 and the other parameters are selected as μ = 1, nz�
selected as in (8) with ε = 0.5, ω̂ = 2π , and no = 10. As expected, it is readily seen
that the effect of the internal model is to add blocking zeros at the desired frequencies
�ω̂, � = 0, 1, . . . , 10, while preserving the same transfer function of the high-gain
feedback (25) at higher frequencies. In the next section, we will show in a numerical
simulation that this blocking effect is preserved in the nonlinear context, confirming
the results of Theorems 1 and 2.

4.2 Numerical example

Consider here as a simple example a system with unitary relative degree of form (1).
For the simulations, the nominal functions f , q are selected as:

f (t, x, e) =
⎛

⎝

− 1
5 x1 + √

3x2 + 1
10 sin(x2)

−√
3x1 − x2 + 1

10 x
2
2

⎞

⎠ +
(

0
x2e

)

+
(

sin(2π t)

cos(4π t)(1 + sin(2π t))

)

,

q(t, x, e) = 1 + x1 + arctan(ex2) + ∑4
k=1 cos

k (2π t)

(26)

The functions f , q have been randomly chosen “ugly” so that other frameworks for
asymptotic regulation such as [11,34] cannot be explicitly applied. It is readily seen
that, around the origin, the x-dynamics is locally exponentially stable, while for large
values of x , it is unstable due to the term x22 . Furthermore, f , q are T -periodic smooth
functions with period T = 1. Hence, the f , q are included in the families F and Q
of Definitions 1 and 2.

We then evaluated the steady-state performances of a simple high-gain feedback
(25), and the internal-model-based regulator (9), in two scenarios: without any mea-
surement noise, and in the presence of high-frequency measurement noise v. In the
noisy scenario, the high-gain feedback (25) becomes:

u = −σ(e + v)

while the internal-model-based regulator (9) reads as:

ż = Φz + Γ (e + v)

u = −σe + μM	Nz[z − M(e + v)].
We then performed different simulations. Since we are not interested in transient
response, the initial conditions are selected always as x(0) = (1,−2), e(0) = 4
and z(0) = 0. For the high-gain feedback, we selected different values of σ =
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{2, 10, 20, 40}. For controller (9), we selected σ = 2, μ = 1 and nz� selected as
in (8) with ε = 0.5. The number of oscillators is varied in the range {0, . . . , 4}, with 0
corresponding to a pure integral action, while the basic frequency (7e) is selected as

ω̂ = { 2πT , 0.992π
T , 0.952π

T , 2π
T ϕg} with ϕg = 1+√

5
2 being the golden number. Simu-

lations have been performed with Matlab-Simulink, with a fixed-step time algorithm,
sampling time 10−5, over a time length of 150 seconds.

As established in Theorem 1, convergence to a steady-state trajectory ep is guar-
anteed no matter the dimension no and the frequency ω̂. Table 1 lists the values of
the L∞ norm and L2 norm of the steady-state error ep with the high-gain feedback
(25) for the different values of σ . Applying a FFT (fast Fourier transform) on the last
20 seconds of simulations (so that solutions reached their steady state), we identified
the corresponding main frequencies, as shown in Fig. 2, of the steady-state error ep
for σ = 2, showing that the main Fourier coefficients are at frequencies 2kπ , with
k = 0, 1, . . . , 4, as expected since T = 1. Then, Table 2 lists the values of the L∞
norm and L2 norm of the steady-state error ep for controller (9) in the different sce-
narios. The corresponding Fourier coefficients for ω̂ = {1, 0.99, 0.95} 2πT are shown
in Figs. 3, 4 and 5. We can observe that when the basic frequency ω̂ is less accurate,
the errors on the higher 3–4 frequencies become more important, and therefore, the
blocking effect of the zero becomes less useful. As a consequence, when the frequency
is not perfectly known, it may be not so interesting to put only multiple frequencies
of ω̂.

FromTables 1 and 2, it is immediately seen the remarkable increase of performances
(in terms of steady-state L∞ and L2 norms) with the proposed controller, even with
a very bad knowledge of T , with respect to a pure high-gain feedback: for the same
value of σ , we obtain a sensible reduction of both norms when ω̂ = 2π

T ϕg , and to have
the similar performances with a high-gain feedback we should take a much higher
value of σ . However, note that when ω̂ is taken very distant from the nominal value
2π
T , adding extra oscillators is not very useful: indeed the sup and L2 norms are not
reduced anymore. On the contrary, when T is perfectly known, with only 4 oscillators
we are already able to achieve almost perfect tracking as the remaining error is nearly
negligible.

Finally, the same scenarios have been performed in the presence of high-frequency
measurement noise v generated by colouring some random white noise with a high-
pass filter. In simulations, we used a Simulink “Band-Limited White Noise” block
with noise power 10−3 and sampling time 10−5 and the following transfer function

H(s) = s2

s2 + 3s + 2

with s being the Laplace operator. Simulations show that supt∈[0,∞) |v(t)| ≤ 40. The
values of the L∞ and L2 norms (computed over one random period T among the last
30 seconds of simulations) of the asymptotic value of the error are listed in Tables 1
and 2. Again, simulations confirm the advantages (in terms of L∞ and L2 norms) of
the proposed internal-model-based regulator (9) over a high-gain feedback controller
(25).
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Table 1 Simulation of Example (26) with high-gain feedback control (25), for different selections of σ ,
with and without measurement noise

No measurement noise With measurement noise

σ supt∈[0,T ] |ep(t)| 1
T

∫ T
0 |ep(t)|2dt supt∈[0,T ] |ep(t)| 1

T

∫ T
0 |ep(t)|2dt

2 1.2555 0.9657 1.3023 0.9743

5 0.6577 0.4083 0.7995 0.4244

10 0.400 0.2166 0.6619 0.2489

20 0.2248 0.1126 0.6201 0.1765

40 0.1181 0.0572 0.6736 0.1735

The noise is generated as random white noise coloured with a high-pass filter

5 Conclusions

In thiswork,we addressed the problemof exact and approximate periodic robust output
regulation for minimum-phase systems. We investigated the use of an internal-model-
based regulator, which is a straightforward extension of the linear case established by
Francis, Wonham and Davison, and conceptually similar to what is used in practical
repetitive control scheme approaches. In practice, the internal model unit is composed
by a bunch of linear oscillators processing the regulated output.

The main contribution of this work is to establish that the domain of attraction of
an exponentially stable periodic solution is uniform in the parameters characterising
the proposed regulator (i.e. the number of oscillators and their frequencies). The result
is also robust to model uncertainties as only the Lipschitz properties of the system
dynamics (and not the exact expressions) are used in the computations. It is shown
that the quality (in terms of L2 norm) of the periodic steady state of the regulated
error improves by augmenting the number of oscillators and that exact regulation
can be achieved when the number of oscillator is infinite and the period is perfectly
known. Simulations confirm the theoretical findings and show the improvements of
the proposed regulator with respect to a pure high-gain feedback controller or a simple
PI controller.
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Fig. 1 Bode diagram of the transfer between e and q for the closed-loop systems (24), (25), in blue,
respectively (24), (9), in red
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Fig. 2 FFT (fast Fourier transform) of the steady-state regulated error ep(t) for Example (26) with high-gain
feedback (25), with σ = 2

The main results of this work show that the best performances with the proposed
regulator can be obtained when the period characterising the periodicity of distur-
bances/references is perfectly known. This consideration leads tomany open questions
concerning the knowledge of the frequencies of perturbations/references in practical
applications, optimal choices of the parameters of the regulator in terms of number of
oscillators and their frequencies, and possible strategies for offline/online identifica-
tion of such frequencies. For all these problems, adaptive, identification or learning
techniques may be a key tool, see [1,9,18,29,36,37,41,45,51] as few examples.
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Fig. 3 FFT (fast Fourier transform) of the steady-state regulated error ep(t) for Example (26)with controller

(9), and parameters selected as σ = 2, μ = 1, ε = 0.5, no = {0, . . . , 4} and ω̂ = 2π
T
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Fig. 4 FFT (fast Fourier transform) of the steady-state regulated error ep(t) for Example (26)with controller

(9), and parameters selected as σ = 2, μ = 1, ε = 0.5, no = {0, 1, 2} and ω̂ = 0.99 2πT . For no = 3, the
line is nearly overlapped with the one of no = 2

Finally, from the theoretical point of view, an exhaustive analysis and extension
of the results presented in this article to systems not in normal form and possibly
non-minimum phase, as in [3,4], remain an open problem.

A Proof of Theorem 1

A simple way to establish Theorem 1 could be by showing that the origin of (28) for
q = 0 is exponentially stable and then perturb such solution with a small q. Fixed
point theorems and exponential stability argumentswould prove the desired result, see,
e.g., Theorem 3.1, Chapter 8.3, in [40]. However, in doing so, all the results would
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Fig. 5 FFT (fast Fourier transform) of the steady-state regulated error ep(t) for Example (26)with controller

(9), and parameters selected as σ = 2, μ = 1, ε = 0.5, no = {0, 1, 2} and ω̂ = 0.95 2πT . From no > 1, the
curves are nearly overlapped

be no-dependent. Since the objective of this proof is to show that this is not the case,
namely the existence of a stable periodic solution is verified for any choice of no,
with bounds that do not depend on no, we are forced to redo the proof, following the
classical route but re-entering into the details and being careful and precise with the
bounds.

A.1 Preliminaries

First, let us make the following change of coordinates

z �→ ζ := z − Me (27)

which transform the closed-loop system (1), (9) into

ẋ = f (t, x, e) (28a)

ė = q(t, x, e) − σe + μM	Nzζ (28b)

ζ̇ = (Φ − μMM	Nz)ζ − Mq(t, x, e). (28c)

Our approach to study this system is to decompose it as :

ẋ+ = ∂ f
∂x (t, 0, 0)x

+ +
[

f (t, x−, e−)− ∂ f
∂x (t, 0, 0)x

−
]

ė+ = −σe+ + [

q(t, x−, e−) + η
] (29)

where x− and e− are inputs and η is the output of the system

ζ̇ = (Φ − μMM	Nz)ζ − Mq(t, x−, e−), η = μM	Nzζ (30)
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Indeed, we recover system (28) when inputs (x−, e−) equal outputs (x+, e+), and we
can benefit from the following properties :

• The origin of the subsystem ẋ = f (t, x, 0) and therefore of ẋ+ = ∂ f
∂x (t, 0, 0)x

+
is locally exponentially stable in light of (4), (5).

• The origin of subsystem ė = −σe is exponentially stable.
• The (linear) subsystem (30) with input q and output η is linear, and we shall show
in Lemma 1 below it is stable.

We give the ζ subsystem (30) a special treatment because of its strong dependence on
no. Annoying features are, for example,

• the dimension of ζ is 2no + 1;

• trace(Φ − μMM	Nz) = μ

[

1 +
no∑

k=1

nzk

]

which, with (7a) and Lemma 1, implies the real part of the eigen values of (Φ −
μMM	Nz) tends to 0 as no tends to infinity.

In the following, we start by studying the ζ -subsystem. Then we show that, with a
suitable choice of σ,μ and bounds x, e, arguments of our bounding functions in (3)
and (6) for f , ∂ f

∂x and q, there is a periodic solution (xp, ep) satisfying :

(xp, ep) = (x−, e−) = (x+, e+)

Finally we prove it is exponentially stable and study its domain of attraction and its
properties.

A.2 Study of system (30)

Lemma 1 Let Φ, M, Nz be defined as in (10). Then, for any no ∈ N and any μ > 0,
the pair (Φ,M	Nz) is observable and the matrix (Φ − μMM	Nz) is Hurwitz. In
particular, there exists a symmetric positive definite matrix Pζ , depending on no, and,
for any strictly positive real number μ, there exists a strictly positive real number κ ,
depending on no, such that we have

(Nz + κPζ )(Φ − μMM	Nz) + (Φ − μMM	Nz)
	(Nz + κPζ ) ≤ −μNzMM	Nz − κNz . (31)

Proof The pair (Φ�,M�) in (10) is observable. Then, observability of (Φ,M	Nz) is
a direct consequence of the block-diagonal structure of the matrix Φ and the fact that
Nz is diagonal. Since the pair (Φ,M	Nz) is observable and Nz is positive definite,
there exist a matrix K and a positive definite matrix Pζ satisfying

Pζ (Φ − KM	Nz) + (Φ − KM	Nz)
	Pζ = −2Nz .

On the other hand, since (10) implies NzΦ + Φ	Nz = 0, we obtain adding and
subtracting the term μNzMM	Nz ,

Nz(Φ − μMM	Nz) + (Φ − μMM	Nz)
	Nz + 2μNzMM	Nz = 0.
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By combining these two equations, we get, with κ any strictly positive real number,

(Nz + κPζ )(Φ − μMM	Nz) + (Φ − μMM	Nz)
	(Nz + κPζ )

= −2μNzMM	Nz − 2κNz − κμ(PζMM	Nz + NzMM	Pζ )

+κ(Pζ KM	Nz + NzMK	Pζ ). (32)

But, for any matrices A and B and real numbers κ and μ, we have the following
identity

μAA	 + κ
(

BA	 + AB	) =
(√

μA + κ√
μ
B

)(√
μA + κ√

μ
B

)	
− κ2

μ
BB	.

By using previous identity in which A = NzM and B = Pζ (μM − K ), we obtain

−μNzMM	Nz − κμ
(

PζMM	Nz + NzMM	Pζ
)

+ κ
[

Pζ KM	Nz + NzMK	Pζ
]

= −
(√

μNzM + κ√
μ
Pζ (μM − K )

)(√
μNzM + κ√

μ
Pζ (μM − K )

)	

+κ2

μ
Pζ (μM − K )(μM − K )	Pζ .

Hence, by combining such identity with (32), we obtain

(Nz + κPζ )(Φ − μMM	Nz) + (Φ − μMM	Nz)
	(Nz + κPζ )

= −
(√

μNzM + κ√
μ
Pζ (μM − K )

)(√
μNzM + κ√

μ
Pζ (μM − K )

)	

−κ

(

Nz − κ

μ
Pζ (μM − K )(μM − K )	Pζ

)

− μNzMM	Nz − κNz .

Finally, by selecting κ small enough so that

Nz ≥ κ

μ
Pζ (μM − K )(μM − K )	Pζ ,

we obtain (31). �


Lemma 2 Consider system

ζ̇ = (Φ − μMM	Nz)ζ − Mv (33)
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withΦ, M, Nz be defined as in (10) and nzk satisfying (7a), e.g., as in (8). The transfer

function between v and N
1
2

z ζ satisfies:

ζ̄ (iω)	Nzζ(iω) =

no∑

�=0

ω2 + ω2
�

(ω2
� − ω2)2

nz�

1 + μ2

( no∑

�=0

ω

ω2
� − ω2

nz�

)2 |v(iω)|2. (34)

Furthermore, there exists κ0, κ1 > 0 independent of no such that

ζ̄ (iω)	Nzζ(iω) ≤ (κ0 + κ1ω
2)|v(iω)|2 ∀ω ∈ R. (35)

Proof Consider the change of coordinates η �→ y := N
1
2
z ζ giving

ẏ = (Φ − μN
1
2
z MM	N

1
2
z )y − N

1
2
z Mv.

By defining with G(iω) the transfer function between v and y, it is readily seen that
it can be computed as:

G(iω) =
[

iωI − Φ + μN
1
2
z MM	N

1
2
z

]−1

N
1
2
z M

and its transpose conjugate given by

G∗(iω) = M	N
1
2
z

[

−iωI + Φ + μN
1
2
z MM	N

1
2
z

]−1

where we used the fact that Φ	 = −Φ. By temporarily using the compact notation

Λ := iωI −Φ, and Υ := μ
1
2 N

1
2
z M , and by Woodbury matrix identity4 (recall that Υ

is a vector), we obtain

G∗(iω)G(iω) = 1

μ
Υ 	(−Λ + ΥΥ 	)−1(Λ + ΥΥ 	)−1Υ

= 1

μ
Υ 	

[

(−Λ)−1 − Λ−1ΥΥ 	Λ−1

1 + Υ 	(−Λ−1)Υ

] [

Λ−1 − Λ−1ΥΥ 	Λ−1

1 + Υ 	Λ−1Υ

]

Υ

= 1

μ

−Υ 	Λ
1 − Υ 	Λ−1Υ

ΛΥ

1 + Υ 	Λ−1Υ
= − 1

μ

Υ 	Λ−2Υ

1 − (Υ 	Λ−1Υ )2

= −M	N
1
2
z (iωI − Φ)−2N

1
2
z M

1 − μ2(M	N
1
2
z (iωI − Φ)−1N

1
2
z M)2

.

4 Also known as matrix inversion lemma, theWoodbury matrix identity states that for A invertible and u, v
column vectors, the following holds: (A + uv	)−1 = A−1 − 1

1+v	A−1u
A−1uv	A−1.
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Now, note that we have algebraically

(iωI − Φ�)
−1 =

(

iω −ω�
ω� iω

)−1

= 1

ω2
� − ω2

(

iω ω�
−ω� iω

)

M	
� N

1
2
z�(iωI − Φ�)

−1N
1
2
z�M� = iω

ω2
� − ω2

|M�|2nz�.

Moreover,

(iωI − Φ�)
−2 =

(

iω −ω�
ω� iω

)−2

= −1

(ω2
� − ω2)2

(

ω2 + ω2
� −2iωω�

2iωω� ω2 + ω2
�

)

M	
� N

1
2
z�(iωI − Φ�)

−2N
1
2
z�M� = − ω2 + ω2

�

(ω2
� − ω2)2

|M�|2nz�.

This yields

M	
� N

1
2
z�(iωI − Φ�)

−1N
1
2
z�M� = i

no∑

�=0

ω

ω2
� − ω2

|M�|2nz�

M	
� N

1
2
z�(iωI − Φ�)

−2N
1
2
z�M� = −

no∑

�=0

ω2 + ω2
�

(ω2
� − ω2)2

|M�|2nz�

which finally gives expression (34) in which we used also the definition M� = (1, 0)
and the block diagonal form of the matrix Φ.

We are left with proving inequality (35). Unfortunately, with the same problem that
Pierre de Fermat faced5, our proof is much too long (and also ugly) to be presented in
this publication. The interested reader will find it in the longer version of this paper
available on ArXiv at [6].

Here is a sketch of our arguments.
By letting x = ω

ω̂
, and recalling (7e), the fraction in (34) reads:

T(x) =

no∑

�=0

ω2 + ω2
�

(ω2
� − ω2)2

nz�

1 + μ2

( no∑

�=0

ω

ω2
� − ω2

nz�

)2 =

no∑

�=0

�2 + x2

(�2 − x2)2
nz�

1 + μ2x2
( no∑

�=0

1

�2 − x2
nz�

)2 (36)

5 Cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet. P. de Fermat.
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We decompose the expression of T(x) as:

T(x) =
nzm

[
x2 + m2

(x2 − m2)2
+ x2 + (m + 1)2

((m + 1)2 − x2)2
nz(m+1)

nzm

]

1 + μ2x2n2zm

(

Sm(x) + 1

x2 − m2 − 1

(m + 1)2 − x2
nz(m+1)

nzm

)2

+

no∑

�=0,�=m,�=m+1

x2 + �2

(x2 − �2)2
nz�

1 + μ2x2n2zm

(

Sm(x) + 1

x2 − m2 − 1

(m + 1)2 − x2
nz(m+1)

nzm

)2 , (37)

where

Sm(x) := Sm(x) − Sm(x)

Sm(x) :=
m−1
∑

�=0

1

x2 − �2

nz�
nzm

, S0(x) = 0 ,

Sm(x) :=
no∑

�=m+2

1

�2 − x2
nz�
nzm

, Sno−1(x) = 0 ,

and consider the two cases. In the case where m < x < m + 1 ≤ no + 1, it is not too
difficult to get upperbounds for Sm , S and for the second term on the right-hand side
of decomposition (37). So we are left with the more complex problem of getting an
upperbound for

nzm

[
x2 + m2

(x2 − m2)2
+ x2 + (m + 1)2

((m + 1)2 − x2)2
nz(m+1)

nzm

]

1 + μ2x2n2zm

(

Sm(x) + 1

x2 − m2 − 1

(m + 1)2 − x2
nz(m+1)

nzm

)2 .

The problem with this term is with the sign of 1
x2−m2 − 1

(m+1)2−x2
which changes as

x goes from m+ to (m + 1)−. According to this, Sm(x) plays or not a significant role.
This motivates obtaining a bound for the above term separately with x2 in one of the
following 3 interval (m2, Xa], [Xa, Xb] and [Xb, (m + 1)2) where Xa and Xb have
to be tuned depending on m. This task is very tedious. Another way is to exploit the
known bound S for |Sm(x)| and to see the term above as a family of rational fractions
in x2, with a numerator of degree 3 and a denominator of degree 4, and indexd by S.
The idea is to look for an approximation of its maximising x in (m,m + 1) and an
approximation of its maximal value. But this way is as tedious as the former one. In
the case where and no + 2 ≤ x , we have simply T(x) ≤ T(no + 2) the latter being
bounded by terms independent of no. �
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Remark 1 Expression (34) can be also rewritten as:

ζ̄ (iω)	Nzζ(iω)

|v(iω)|2 =

no∑

�=0

(

ω2
� + ω2

)

nz�

⎡

⎣

no∏

m=0,�=�

(

ω2
m − ω2

)

⎤

⎦

2

[ no∏

m=0

(

ω2
m − ω2

)
]2

+ μ2ω2

⎡

⎣

no∑

�=0

nz�

no∏

m=0,�=�

(

ω2
m − ω2

)

⎤

⎦

2 (38)

showing that there is actually no singularity at ω = ω�, and we have in particular

ζ̄ (iω�)	Nzζ(iω�)

|v(iω�)|2 = 2

μ2nz�
.

Lemma 3 Consider again system

ζ̇ = (Φ − μMM	Nz)ζ − Mv(t) (39)

with v ∈ C 1
T (R) andΦ, M, Nz be defined as in (10) and nzk satisfying (7a), e.g. as in

(8). For any no ∈ N, it has a unique periodic solution ζp satisfying

μ2
∫ T

0
|M	Nzζp(t)|2dt ≤

∫ T

0
|v(t)|2dt, (40)

sup
t∈[0,T ]

ζp(t)
	Nzζp(t) ≤

(
1

μ
+ κ0

T

)∫ T

0
|v(t)|2dt + κ1

T

∫ T

0
|v̇(t)|2dt (41)

with κ0, κ1 given by Lemma 2.

Proof According to Lemma 1, the matrix Φ − μMM	Nz is Hurwitz. Hence (see
Lemma 4), system (39) admits a unique periodic solution given by:

ζp(t) = Ψ (Φ − μMM	Nz,−Mv(t))

with Ψ defined below in (53). Then, compute

1
2

˙︷ ︷

ζp(t)
	Nzζp(t) = ζp(t)	Nz[Φ − μMM	Nz]ζp(t)− ζp(t)	NzMv(t)

= −μ|M	Nzζp(t)|2 − ζp(t)	NzMv(t)

≤ −μ
2 |M	Nzζp(t)|2 + 1

2μ |v(t)|2.
(42)

By integrating and using periodicity, this yields to (40).
In order to show the second inequality of the statement of the lemma, the function

v being in C 1
T (R) can be expressed as the sum of its Fourier series as:

v(t) =
∑

k∈Z
vk exp(ik 2π

T t).
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By using the Bessel–Parseval identity and continuity of the derivative v̇, we have

[ 2π
T

]2
∞
∑

k=0

k2|vk |2 ≤ 1

T

∫ T

0
|v̇(t)|2dt . (43)

We have similarly

1

T

∫ T

0
ζp(t)

	Nzζp(t)dt =
∞
∑

k=0

ζ̄	
pk Nzζpk, ζpk = 1

T

∫ T

0
ζp(t) exp(ik 2π

T t)dt .

(44)

Now, by applying the expression of the transfer function (34) to each element of the
Fourier series of the product ζp(t)	Nzζp(t), we obtain

ζ̄	
pk Nzζpk =

no∑

�=0

ω2
� + [ 2π

T

]2
k2

(ω2
� − [ 2π

T

]2
k2)2

nz�

1 + μ2

( no∑

�=0

[ 2π
T

]2
k2

ω2
� − [ 2π

T

]2
k2

nz�

)2 |vk |2.

As a consequence, by using inequality (35) on previous identity and by using again
equations (43) and (44), we further obtain:

∞
∑

k=0

ζ̄	
pk Nzζpk ≤

∞
∑

k=0

(

κ0 + κ1
[ 2π
T

]2
k2
)

|vk |2

≤ κ0

T

∫ T

0
|v(s)|2ds + κ1

T

∫ T

0
|v̇(s)|2ds . (45)

We note also that, as a consequence of (42), we have

sup
t∈[0,T ]

ζp(t)
	Nzζp(t) − inf

t∈[0,T ] ζp(t)
	Nzζp(t) ≤ 1

μ

∫ T

0
|v(s)|2ds.

On the other hand, we have

inf
t∈[0,T ] ζp(t)

	Nzζp(t) ≤ 1

T

∫ T

0
ζp(t)

	Nzζp(t)ds.

This yields

sup
t∈[0,T ]

ζp(t)
	Nzζp(t) ≤ 1

T

∫ T

0
ζp(t)

	Nzζp(t)ds + 1

μ

∫ T

0
|v(s)|2ds , (46)
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Finally, by combining (46) with (44) and (45), we obtain (41). �


A.3 Existence of a periodic solution

Proposition 1 For any triplet (Px , Px , α), there exist strictly positive real numbers
xp, ep, ζζζ p, rx , re, σ �p > 0 (independent of no) such that, for any no > 0, any σ > σ�p,

and μ ≥ 1, system (28), with f ∈ F (xp, ep, Px , Px , α) and q ∈ Q(xp, ep), admits
a T -periodic solution (xp, ep, ζp) ∈ C 2

T ([0, T ];Rn ×R×R
2no+1) satisfying, for all

t ∈ [0, T ], the following inequalities

|xp(t)| ≤min
{

xp,
rx
σ

}

, (47a)

|ep(t)| ≤min
{

ep,
re
σ

}

, (47b)
√

ζp(t)	Nzζp(t) ≤ζζζ p. (47c)

Proof Here we exploit the ability of expressing system (28) as in (29) and (30). With
the notations

δ f (t, x, e) := f (t, x, e) − F(t)x, F(t) := ∂ f

∂x
(t, 0, 0), (48)

system (28) reads as follows when (x+, e+) = (x−, e−)

ẋ+ = F(t)x+ + δ f (t, x−, e−) (49)

ė+ = −σe+ + [

q(t, x−, e−) + η
]

, (50)

where

ζ̇ = (Φ − μMM	Nz)ζ − Mq(t, x−, e−), η = μM	Nzζ (51)

Written this way, we see that we have a mapping from the input functions (x−, e−) to
the functions (x+, e+), solution of (49), (50), with the intermediate function ζ solution
of (51).

Each subsystem above can be compactly written as:

χ̇ = F(t)χ + g(t) (52)

where F is T -periodic. We have the following very standard result. See, e.g., [21,
Lemma 5.1] or [40, Chapter 8.2].

Lemma 4 Consider system (52) with g is in C 0
T (R

n). If the matrix [I − φF (t, t − T )]
is invertible with φF (t, s) denoting the state transition matrix of F, system (52) admits
a unique periodic solution χp, which can be expressed as

χp(t) = Ψ (F(t), g(t)) := [I − φF (t, t − T )]−1
∫ t

t−T
φF (t, s)g(s)ds. (53)
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Furthermore, if there exists a T -periodic function Pχ satisfying

0 < Pχ I ≤ Pχ (t) ≤ Pχ I , (54)

Ṗχ (t)+ Pχ (t)F(t)+ F	(t)Pχ (t) ≤ −2αPχ , (55)

then we have

sup
t∈[0,T ]

|Ψ (F(t), g(t))| ≤ Kα

α
sup

t∈[0,T ]
|g(t)| (56)

sup
t∈[0,T ]

|Ψ (F(t), g(t))| ≤ Kα,2√
α

sup
t∈[0,T ]

√
∫ T

0
g(t)2dt (57)

where

Kα =
√

Pχ

Pχ

(

exp(αT )− 1 +
√

Pχ

Pχ

)

exp(−αT ), (58)

Kα,2 = Kα

√

T (1 + exp(−αT ))

2(1 − exp(−αT ))
. (59)

Being interested in periodic solutions for (49), (50) and (51), this leads to the
consideration of the following operators

O[x−, e−]x (t) = Ψ
(

F(t) , δ f (t, x−(t), e−(t))
)

, (60)

O[x−, e−]e(t) = Ψ
(−σ , q(t, x−(t), e−(t))+ η[x−, e−](t)) , (61)

where

η[x−, e−](t) = μM	NzΨ
(

Φ − μMM	Nz,−Mq(t, x−(t), e−(t)
)

. (62)

When (x−, e−) is T -periodic, (O[x−, e−]x ,O[x−, e−]e) is the unique T -periodic
solution of (49), (50). So to establish our result it is sufficient to show that there exists
a T -periodic function (x−, e−) satisfying

(O[x−, e−]x ,O[x−, e−]e) = (x−, e−).

Our next step is, omitting the superscript − to lighten the notations, to show that
the operator (x, e) �→ (O[x, e]x ,O[x, e]e) is a contraction on the set of T -periodic
functions satisfying

sup
t∈[0,T ]

|x(t)| ≤ xp, sup
t∈[0,T ]

|e(t)| ≤ ep, (63)

when the bounds xp, ep are chosen small enough, and σ is chosen large enough, this
independently of no.
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To this end, by recalling the definitions given in Sect. 1, we list inequalities for the
functions q and f , obtained as consequences of the following fact For any C1 function
ϕ : R × R

n × R → R
m we have

|ϕ(t, xa, e) − ϕ(t, xb, e)| =
∣
∣
∣
∣

(∫ 1

0

∂ϕ

∂x
(t, xb + s(xa − xb), e))ds

)

(xa − xb)

∣
∣
∣
∣

≤ sup
(t,x,e)∈ST (x,e)

∣
∣
∣
∣

∂ϕ

∂x
(t, x, e)

∣
∣
∣
∣
|xa − xb| (64)

for all xa, xb ∈ Sx (x), e ∈ Se(e), and all t ∈ [0, T ].
First, we have

|q(t, x, e)| ≤ q(x, e) (65)

|q(t, xa, ea) − q(t, xb, eb)| ≤ qe(x, e) |ea − eb| + qx (x, e) |xa − xb| (66)

| f (t, x, ea) − f (t, x, eb)| ≤ fe(x, e) |ea − eb| (67)

for all x ∈ Sx (x), e ∈ Se(e), (xa, ea) and (xb, eb) in S (x, e), and all t ∈ [0, T ].
Furthermore, by using the definitions of F and δ f given in (48), we obtain

| f (t, x, 0) − F(t)x | =
∣
∣
∣
∣
∣

∫ 1

0

[(
∂ f

∂x
(t, sx, 0) − ∂ f

∂x
(t, 0, 0))

)

ds

]

x

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ 1

0

[
∫ s

0

[

∂2 f

∂x∂x
(t, r x, 0)dr

]

xds

]

x

∣
∣
∣
∣
∣

≤ 1

2
fxx (x, 0) |x |2.

By combining the previous bound with (67) in which ea = e, eb = 0, we get for δ f
defined in (48),

|δ f (t, x, e)| ≤ fe(x, e) |e| + 1

2
fxx (x, 0) |x |2 (68)

for all (x, e) ∈ S (x, e) and all t ∈ [0, T ]. With similar computations, we also obtain

|δ f (t, xa, ea) − δ f (t, xb, eb)| ≤ fe(x, e) |ea − eb| + 1

2
fxx (x, 0)|xa − xb|2

+ [fex (x, e)e + fxx (x, 0)x] |xa − xb| (69)

for all (xa, ea), (xb, eb) ∈ S (x, e) and all t ∈ [0, T ].
Now, by using the definition of O[x, e]x in (60), and assumptions (4) and (5),

inequality (56) gives

sup
t∈[0,T ]

|O[x, e]x (t)| ≤ Kα

α
sup

t∈[0,T ]
|δ f (t, x(t), e(t))|

≤ Kα

α

[

fe(xp, ep)ep + 1

2
fxx (xp, 0)x2p

]

, (70)
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in which we used (63) and (68) to derive the second inequality. Then, note that by
definition of (60) and by exploiting the linearity of the function Ψ defined in (53), we
have

O[xa , ea ]x (t) − O[xb, eb]x (t) = Ψ
(

F, δ f (t, xa(t), ea(t))
) − Ψ

(

F, δ f (t, xb(t), eb(t))
)

= Ψ
(

F, δ f (t, xa(t), ea(t)) − δ f (t, xb(t), eb(t))
)

,

and therefore, by using (56), (69), and sups∈[0,T ] |xa(s) − xb(s)| ≤ 2xp, we obtain:

|O[xa, ea]x (t) − O[xb, eb]x (t)|
≤ Kα

α

[

fex (xp, ep)ep + 2fxx (xp, 0)xp
]

sup
s∈[0,T ]

|xa(s)− xb(s)| + Kφ

α
fe(xp, ep) sup

s∈[0,T ]
|ea(s) − eb(s)|.

(71)

Similarly for O[x, e]e in (61), with

O[x, e]e(t) = Ψ
( − σ, q(t, x, e)

) + Ψ
( − σ, η[x, e](t))

and (57) where

Pχ = Pχ = 1, α = σ, Kα = 1, Kα,2 =
√

T (1 + exp(−σT ))

2(1 − exp(−σT ))
,

we obtain

sup
t∈[0,T ]

|O[x, e]e(t)| ≤ Kα,2√
σ

⎡

⎣

√
∫ T

0
|q(t, x(t), e(t))|2dt +

√
∫ T

0
|η[x, e](t)|2dt

⎤

⎦ .

Then, (40) gives

sup
t∈[0,T ]

|O[x, e]e(t)| ≤ 2Kα,2√
σ

√
∫ T

0
|q(t, x(t), e(t))|2dt .

By using
∫ T
0 |q(t)|2dt ≤ T supt∈[0,T ] |q(t)|2 and bound (65), we finally obtain

sup
t∈[0,T ]

|O[x, e]e(t)| ≤ β(σ)q(xp, ep). (72)

in which β is defined as:

β(σ) :=
√

2T (1 + exp(−σT ))

σ (1 − exp(−σT ))
. (73)
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Note thatβ is a continuous strictly decreasing positive function forσ > 0. In particular,
limσ→∞ β(σ) = 0.

Finally, as done to obtain inequality (71), we can use linearity of the operator Ψ
and inequalities (72) and (66) to derive

sup
t∈[0,T ]

|O[xa , ea ]e(t) − O[xb, eb]e(t)|

≤ β(σ)

(

qe(xp, ep) sup
s∈[0,T ]

|ea(s) − eb(s)| + qx (xp, ep) sup
s∈[0,T ]

|xa(s) − xb(s)|
)

.

(74)

In conclusion, with (70) and (72), we have established that, if xp, ep and σ satisfy

Kα

α

[

fe(xp, ep) ep + 1

2
fxx (xp, 0) x2p

]

≤ xp , (75a)

β(σ)q(xp, ep) ≤ ep , (75b)

with β defined in (73), and if (x, e) are T -periodic continuous functions satisfying
(63), then (O[x, e]x ,O[x, e]e) are T -periodic continuous functions satisfying

sup
t∈[0,T ]

|O[x, e]x (t)| ≤ xp, sup
t∈[0,T ]

|O[x, e]e(t)| ≤ ep. (76)

Similarly, with (71) and (74), we have established that, if (xa, ea) and (xb, eb) are
T -periodic continuous functions satisfying (63),

( |O[xa, ea]x (t)− O[xb, eb]x (t)|
|O[xa, ea]e(t)− O[xb, eb]e(t)|

)

≤ M(xp, ep, σ )
(

sups∈[0,T ] |xa(s)− xb(s)|
sups∈[0,T ] |ea(s)− eb(s)|

)

with the notation

M(xp, ep, σ ) :=
(

Mxx (xp, ep, σ ) Mxe(xp, ep, σ )
Mex (xp, ep, σ ) Mee(xp, ep, σ )

)

(77)

where M is the following matrix with strictly positive entries

Mxx (xp, ep, σ )= Kφ
α

[

fex (xp, ep) ep + 2fxx (xp, 0) xp
]

, Mxe(xp, ep, σ )= Kφ
α fe(xp, ep)

Mex (xp, ep, σ )=β(σ)qx (xp, ep) , Mee(xp, ep, σ )=β(σ)qe(xp, ep)

It follows from Perron–Frobenius theorem that there exist strictly positive real num-
bers px (xp, ep, σ ), pe(xp, ep, σ ) and γ (xp, ep, σ ), depending on (xp, ep, σ ) and
satisfying

M	
(

px
pe

)

= γ

(

px
pe

)

. (78)
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Here, γ is a simple eigenvalue ofM and the spectral radius of this matrix. It is strictly
smaller than 1 if and only if we have

1 − [Mxx + Mee] + [MxxMee − MxeMex ] > 0,

1 − [MxxMee − MxeMex ] > 0 ,

i.e.

1 >
Kα
α

[

fex (xp, ep) ep + 2fxx (xp, 0) xp
] + β(σ)qe(xp, ep)

+ Kαβ(σ )
α

(

fe(xp, ep)qx (xp, ep) − [

fex (xp, ep) ep + 2fxx (xp, 0) xp
]

qe(xp, ep)
)

, (79a)

1 >
Kαβ(σ )

α

(

fe(xp, ep)qx (xp, ep) − [

fex (xp, ep) ep + 2fxx (xp, 0) xp
]

qe(xp, ep)
)

(79b)

With this at hand, (71), (74) and (78) give

px (xp , ep , σ ) sup
t∈[0,T ]

|O[xa , ea ]x (t) − O[xb, eb]x (t)| + pe(xp , ep , σ ) sup
t∈[0,T ]

|O[xa , ea ]e(t) − O[xb, eb]e(t)|

≤ γ (xp , ep , σ )

[

px (xp , ep , σ ) sup
t∈[0,T ]

|xa (t) − xb(t)| + pe(xp , ep , σ ) sup
t∈[0,T ]

|ea (t) − eb(t)|
]

. (80)

Now, let Bxp,ep (R
n+1) denote the closed subset of C 0

T (R
n+1) defined as

Bxp,ep (R
n+1) :=

{

(x, e) ∈ C 0
T (R

n+1) : sup
t∈[0,T ]

|x(t)| ≤ xp, sup
t∈[0,T ]

|e(t)| ≤ ep
}

.

This setBxp,ep (R
n+1) equipped with the norm:

‖(x, e)‖ := px (xp, ep, σ ) sup
t∈[0,T ]

|x(t)| + pe(xp, ep, σ ) sup
t∈[0,T ]

|e(t)|

is a complete metric space. Assuming for the time being (see below) there exists a
triple (xp, ep, σ �p) satisfying (75) and (79), we have established that, for any σ > σ�p,
we have the following properties.

1. The function (x, e) �→ (O[x, e]x ,O[x, e]e)maps a function inBxp,ep (R
n+1) into

a function inBxp,ep (R
n+1), since (75) implies (76).

2. The function (x, e) �→ (O[x, e]x ,O[x, e]e) is a contraction, the gain γ (xp, ep, σ )
in (80) being strictly smaller than 1 when (79) holds.

We conclude, from the Banach fixed point theorem, that there exists a fixed point
(xp, ep) in Bxp,ep (R

n+1), namely there exist xp and ep satisfying O[xp, ep]x = xp
and O[xp, ep]e = ep. In particular, xp, ep are C0, T -periodic, satisfy

sup
t∈[0,T ]

|xp(t)| ≤ xp, sup
t∈[0,T ]

|ep(t)| ≤ ep, (81)

and are solution of

ẋ p =F(t)xp + δ f (t, xp, ep), (82a)
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ėp = − σep + μM	Nzζp(t)+ q(t, xp, ep) (82b)

where ζp is the unique T -periodic solution of

ζ̇p = [Φ − μMM	Nz]ζp − Mq(t, xp(t), ep(t)). (82c)

as stated by Lemma 3. Also because of F , δ f and q are C1, the periodic solution
(xp, ep) is C2.

In order to determine a bound for ζζζ p, we apply Lemma 3 and inequality (41) to the
solution ζp defined in (82c). To this end, we need a bound for q̇ . It can be expressed
as

q̇(t, xp(t), ep(t)) = ∂q

∂t
(t, xp(t), ep(t))+ ∂q

∂x
(t, xp(t), ep(t)) f (t, xp(t), ep(t))

+∂q

∂e
(t, xp(t), ep(t))

[

−σep(t)+ μM	Nzζp(t)+ q(t, xp(t), ep(t))
]

.

As a consequence, the previous expression of q̇ yields, using (40), and bounds (81)
for xp, ep,

∫ T

0
|q̇ p(t)|2dt ≤ 3Tqt (xp, ep)

2 + 3Tqx (xp, ep)
2f(xp, ep)2

+9qe(xp, ep)
2
∫ T

0

[

σ 2ep(t)
2 + μ2|M	Nzζp(t)|2 + |q(t, xp(t), ep(t))|2

]

dt

≤ 3Tqt (xp, ep)
2 + 3Tqx (xp, ep)

2f(xp, ep)2

+9qe(xp, ep)
2

[

σ 2
∫ T

0
ep(t)

2dt + 2
∫ T

0
|q(t, xp(t), ep(t))|2dt

]

.

On the other hand, we obtain, by integration and using (40) again,

0 = ep(T )2 − ep(0)2

2

≤ −σ

∫ T

0
ep(t)

2dt + μ

∫ T

0
M	Nzζp(t)ep(t)dt +

∫ T

0
q(t, xp(t), ep(t))ep(t)dt

≤ −σ

2

∫ T

0
ep(t)

2dt + 1

σ
μ2

∫ T

0
|M	Nzζp(t)|2dt + 1

σ

∫ T

0
|q(t, xp(t), ep(t))|2dt

≤ −σ

2

∫ T

0
ep(t)

2dt + 2

σ

∫ T

0
|q(t, xp(t), ep(t))|2dt

and therefore

∫ T
0 |q̇ p(s)|2ds ≤ 3T

[

qt (xp , ep)
2 + qx (xp , ep)

2f(xp , ep)2
]

+ 54qe(xp , ep)
2
∫ T

0
|q(t, xp(t), ep(t))|2dt

≤ 3T
[

qt (xp , ep)
2 + qx (xp , ep)

2f(xp , ep)2
]

+ 54qe(xp , ep)
2Tq(xp , ep)2.
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By combining this inequality with (41) and (65), we finally obtain an expression for
the bound ζζζ p in inequality (47c), that is,

ζζζ 2p(μ) :=
[
T

μ
+ κ0 + 54κ1qe(xp, ep)

2
]

q(xp, ep)2 + 3κ1
[

qt (xp, ep)
2 + qx (xp, ep)

2f(xp, ep)2
]

with κ0, κ1 given by Lemma 2. It is independent of σ and of μ by noting that it is
a decreasing function of μ for μ ≥ 1, that is, select ζζζ p(1) in the statement of the
theorem.

Now, inequalities (81) are parts of the inequalities (47a) and (47b). On the other
hand, with (56) and (68), we obtain

sup
t∈[0,T ]

|xp(t)| ≤ Kα

α

[

fe(xp, ep) sup
t∈[0,T ]

|ep(t)| + 1

2
fxx (xp, 0)xp sup

t∈[0,T ]
|xp(t)|

]

which gives

sup
t∈[0,T ]

|xp(t)| ≤ Kαfe(xp, ep)

α − 1
2Kαfxx (xp, 0)xp

sup
t∈[0,T ]

|ep(t)|, (83)

where the denominator of the right-hand side is strictly positive according to (75a).
Now recall that by definition of (7a) and of thematricesM, Nz , we have

√

M	NzM ≤
Nz . As a consequence, inequalities (56) and (47c) give

sup
t∈[0,T ]

|ep(t)| ≤ 1

σ

[

sup
t∈[0,T ]

q(t, xp(t), ep(t))+ sup
t∈[0,T ]

M	Nzζp(t)

]

≤ 1

σ

[

q(xp, ep) +
√

M	NzM sup
t∈[0,T ]

√

ζp(t)	Nzζp(t)

]

≤ 1

σ

(

q(xp, ep) + Nzζζζ p
)

This yields the remaining parts of the inequalities (47a) and (47b) with

re := q(xp, ep)+ Nzζζζ p , rx := Kαfe(xp, ep)

α − 1
2Kαfxx (xp, 0)xp

re.

Finally, to complete the proof, we need to show that it does exist a triple of positive
real numbers (xp, ep, σ �p) satisfying (75) and (79), i.e.

xp ≥ Kα

α

[

fe(xp, ep) ep + 1

2
fxx (xp, 0) x2p

]

, (84)

ep ≥ β(σ)q(xp, ep) , (85)

1 >
Kα

α

[

fex (xp, ep) ep + 2fxx (xp, 0) xp
] + β(σ)qe(xp, ep)
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+ Kαβ(σ )

α

(

fe(xp, ep)qx (xp, ep) − [

fex (xp, ep) ep + 2fxx (xp, 0) xp
]

qe(xp, ep)
)

, (86)

1 >
Kαβ(σ )

α

(

fe(xp, ep)qx (xp, ep) − [

fex (xp, ep) ep + 2fxx (xp, 0) xp
]

qe(xp, ep)
)

. (87)

Since the function β is continuous, strictly decreasing and tends to 0 as σ tends to
infinity, it is sufficient to find xp and ep satisfying :

xp >
Kα

α

[

fe(xp, ep) ep + 1

2
fxx (xp, 0) x2p

]

,

1 >
Kα

α

[

fex (xp, ep) ep + 2fxx (xp, 0) xp
]

.

Since the bounding functions f• are increasing in each of their arguments, we choose

xp < xp∗, ep ≤ ep∗(xp),

where xp∗ is a strictly positive real number satisfying

xp∗fxx (xp∗, 0) <
α

2Kα

and ep∗(xp) is a strictly positive real number satisfying

ep∗(xp) fe(xp, ep∗(xp)) ≤ α

Kα

xp − 1

2
fxx (xp, 0) x2p,

ep∗(xp)fex (xp, ep∗(xp)) <
α

Kα

− 2xpfxx (xp, 0).

In this way, (84) holds and it remains to find σ�p large enough to satisfy the following
3 inequalities

β(σ�p) ≤ ep
q(xp, ep)

β(σ�p) <
1− Kα

α

[

fex (xp ,ep) ep+2fxx (xp ,0) xp
]

qe(xp ,ep)+ Kα
α

(

fe(xp ,ep)qx (xp ,ep)−
[

fex (xp ,ep) ep+2fxx (xp ,0) xp
]

qe(xp ,ep)
)

β(σ�p) <
α

Kα

(

fe(xp, ep)qx (xp, ep) − [

fex (xp, ep) ep + 2fxx (xp, 0) xp
]

qe(xp, ep)
) .

(88)

Note no plays no role in this process, implying that the triple (xp, ep, σ �p) does not
depend on no. �


Remark 2 We stress the fact that xp can be chosen arbitrarily in ]0, xp∗[. Then xp
being fixed, ep can be chosen arbitrarily in ]0, ep∗(xp)]. And finally, xp and ep being
fixed, σ�p is chosen to satisfy the 3 inequalities in (88)
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A.4 Exponential stability of the periodic solution

Proposition 2 For any triplet (Px , Px , α), there exist strictly positive real numbers
xa, ea > 0 (independent of no) and, for any ζζζ a > 0 and μ ≥ 1, there exists σ�a > 0
(independent of no) such that, if system (28), with σ > σ�a , f ∈ F (xa, ea, Px , Px , α)

and q ∈ Q(xa, ea), admits a T -periodic solution (xp, ep, z p) satisfying

sup
t∈[0,T ]

|xp(t)| ≤ xa, sup
t∈[0,T ]

|ep(t)| ≤ ea, sup
t∈[0,T ]

√

ζp(0)	Nzζp(0) ≤ ζζζ a, (89)

then such periodic solution is exponentially stable with a domain of attraction con-
taining the set

N ζ (xa , ea , ζζζ a) =
{

(x, e, ζ ) : |x − xp(0)| ≤ 3xa , |e − ep(0)| ≤ 3ea ,
√

(ζ − ζp(0))	Nz(ζ − ζp(0)) ≤ 3ζζζ a
}

.

(90)

Proof The assumed existence of a periodic solution (xp, ep, ζp) satisfying (89) for
system (28) allows us to consider the following change of coordinates

(x, e, ζ ) �→ (x̃, ẽ, ζ̃ ) := (x − xp(t), e − ep(t), ζ − ζp(t))

System (28) is transformed into

˙̃x = Fp(t)x̃ + δ f̃ (t, x̃, ẽ)
˙̃e = q̃(t, x̃, ẽ) − σ ẽ + μM	Nz ζ̃

ζ̇ = (Φ − μMM	Nz)ζ̃ − Mq̃(t, x̃, ẽ),
(91)

with the definitions

Fp(t) :=∂ f

∂x
(t, xp(t), ep(t)) , (92)

δ f̃ (t, x̃, ẽ) := f̃ (t, x̃, ẽ) − Fp(t)x̃ , (93)

f̃ (t, x̃, ẽ) := f (t, x, e) − f (t, xp(t), ep(t)) , (94)

q̃(t, x̃, ẽ) :=q(t, x, e) − q(t, xp(t), ep(t)). (95)

Exponential stability of the origin for system (91) can be established from the first-
order approximation. But we want to establish not only exponential stability but also
that the domain of attraction contains Nζ (xa, ea, ζζζ a) defined in (90). So instead we
go with a Lyapunov analysis.

First, we define xa, ea and σ�a via a set of inequality. To this end, to any pair (xa, ea)
we associate a pair (xb, eb) as follows:

xb :=
⎛

⎝3
√
2

√

Px

Px
+ 2

⎞

⎠ xa, eb := 6ea . (96)
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and the real number

ρ0(xa, ea) := Px

2Px

[

fxx (xa, ea)xa + fex (xa, ea)ea + Px fxx (xb, ea)(xb + xa)
]

.

(97)

By definition, the function ρ0 is a non-decreasing function satisfying ρ0(0, 0) = 0.
With the above definitions, let xa, ea > 0 be any pair of positive numbers satisfying
the following two inequalities

9Pxx2a + 9e2a ≤ 1

2
min

{

Px (xb − xa)2, (eb − ea)2
}

, (98a)

ρ0(xa, ea) ≤ 1

3
αPx , (98b)

that depends only on the triplet of numbers (Px , Px , α). Such xa, ea > 0 always
exists in view of the above definition of xb, eb in (96) and the properties of ρ0. Then,
with xa, ea and μ ≥ 1 being fixed, for any given ζζζ a > 0, let h > 0 a small positive
number satisfying the following inequality

h ≤ 1

3
min

{
1

(3ζζζ a)2
min

{

Px (xb − xa)2, (eb − ea)2
}

, μ
αPx

qx (xb, eb)2

}

(99)

Finally, with xa, ea, xb, eb, μ and h fixed, we select σ�a as

σ�a :=
[

Px fe(xb, eb) + qx (xb, eb)
]2

2
[

αPx − ρ0(xa , ea) − h
μqx (xb, eb)

2
] + μ

2h
+ qe(xb, eb) + h

μqe(xb, eb)
2. (100)

Again, no plays no role in the above inequalities. This implies the triple (xa, ea, σ �1 )
does not depend on no.

With (89), f ∈ F (xb, eb, Px , Px , α) and q ∈ Q(xb, eb), and by using inequality
(64), we obtain

|q̃(t, x̃, ẽ)| ≤qe(xb, eb)|ẽ| + qx (xb, eb)|x̃ | (101)

|δ f̃ (t, x̃, ẽ)| ≤fe(xb, eb) |ẽ| + fxx (xb, ea) |x̃ |2 (102)

for all (x, e) ∈ S (xb, eb), t ∈ [0, T ]. Also, when Fp is sufficiently close to F(t), we
can still use the function Px defined in (4), (5) to build a candidate Lyapunov function
for the x̃-subsystem. For this, let us define the function

δF(t) := Fp(t)− F(t) = ∂ f

∂x
(t, xp(t), ep(t))− ∂ f

∂x
(t, 0, 0). (103)

It is T -periodic and satisfies

|δF(t)| ≤ |Fp(t)− F(t)| ≤ fxx (xa, ea)xa + fex (xa, ea)ea, (104)
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for all t ∈ [0, T ]. Therefore, by using (5), we compute

Ṗx (t)+ Px (t)Fp(t)+ Fp(t)	Px (t) ≤ −2αPx +
[

Px (t)δF(t)+ δF(t)	Px (t)
]

≤ −2
(

αPx − Px
Px

[fxx (xa, ea)xa + fex (xa, ea)ea]
)

I

for all (x, e) ∈ S (xb, eb), t ∈ [0, T ]. Hence, by defining Vx := x̃	Px x̃ , we obtain

V̇x = 2x̃	Px (t)(Fp(t)x̃ + δ f̃ (t, x̃, ẽ)) + x̃	 Ṗx (t)x̃

≤ −2
(

αPx − Px

Px
[fxx (xa , ea)xa + fex (xa , ea)ea ]

)

|x̃ |2

+2Px fe(xb, eb) |ẽ| |x̃ | + 2Px fxx (xb, ea) |x̃ |3
≤ −2[αPx − ρ0(xa , ea)]|x̃ |2 + 2Px fe(xb, eb) |ẽ| |x̃ |

for all (x, e) ∈ S (xb, eb), t ∈ [0, T ], where in the last step we used the inequality
|x̃ | ≤ |xp(t)| + |x | ≤ xa + xb, and ρ0 has been defined in (97). Next, the derivative
of Ve := ẽ2 satisfies

V̇e ≤ −2σ |ẽ|2 + 2μM	Nz ζ̃ ẽ + 2qe(xb, eb) |ẽ|2 + 2qx (xb, eb) |x̃ ||ẽ|,

for all (x, e) ∈ S (xb, eb), t ∈ [0, T ], in which we used (101). Finally, for the ζ̃
dynamics, define the function Vζ = ζ̃	Nz ζ̃ . By using again inequality (101), its
derivative satisfies

V̇ζ = 2ζ	Nz[(Φ − μMM	Nz)ζ̃ − Mq̃(t, x̃, ẽ)]
≤ −μ|M	Nz ζ̃ |2 + 2

μ
qe(xb, eb)

2|ẽ|2 + 2

μ
qx (xb, eb)

2|x̃ |2

for all (x, e) ∈ S (xb, eb), t ∈ [0, T ]. As a consequence, by collecting all the inequal-
ities together, we conclude that the time derivative of the function

U := Vx + Ve + hVζ , χ̃ := (|x̃ |, |ẽ|, |M	Nz ζ̃ |)	,

satisfies

U̇ ≤ −χ̃	R(xa, ea, σ, μ, h)χ̃ ,

withR defined as

R(xa , ea , σ, μ, h) :=
⎛

⎝

2(αPx − ρ11(xa , ea , μ, h)) −ρ12(xa , ea) 0
−ρ12(xa , ea) 2(σ − ρ22(xa , ea , μ, h)) −μ

0 −μ μh

⎞

⎠ , (105)
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and where the functions ρ11, ρ12 and ρ22 are non-decreasing functions defined as:

ρ11(xa, ea, μ, h) := ρ0(xa, ea) + h
μ
qx (xb, eb)

2,

ρ12(xa, ea) := Px fe(xb, eb) + qx (xb, eb),
ρ22(xa, ea, μ, h) := qe(xb, eb) + h

μ
qe(xb, eb)

2.

According to Sylvester’s criterion, the matrix R is positive definite if and only if the
leading principal minors are all strictly positive, that is, we need to satisfy

αPx − ρ11 > 0, (106)

4(αPx − ρ11)(σ − ρ22) − ρ212 > 0, (107)

2(αPx − ρ11) [2(σ − ρ22)h − μ] − hρ212 > 0, (108)

where the arguments of the functions ρi j have been omitted for compactness. These
inequalities are always satisfied for any σ > σ�a since

• (106) is implied by (98b) and (99).
• (107) is implied by (106) and (108).
• (108) is implied by (100).

As a consequence, for any σ > σ�a , there exists a positive real number ν > 0, which
depends only on (xa, ea, σ, μ, h), so that the derivative of U satisfies the following
inequality

U̇ ≤ −ν
(

|x̃ |2 + |ẽ| + |M	Nz ζ̃ |2
)

(109)

for all (x, e) ∈ S (xb, eb), t ∈ [0, T ].
Next, to make the right-hand side of (109) negative definite, consider the function

Vζ,s := ζ̃	(Nz + κPζ )ζ̃ ,

where κPζ is defined in Lemma 1 and depends on no. By using inequality (31), we
compute its derivative. It satisfies

V̇ζ,s ≤ −μ|M	Nz ζ̃ |2 − κζ̃	Nz ζ̃ − 2
[

ζ̃	NzM
]

q̃(t, x̃, ẽ) − 2κ
[

ζ̃	N1/2
z

] [

N−1/2
z PζM

]

q̃(t, x̃, ẽ)

≤ − κ

2
ζ̃	Nz ζ̃ + 1

μ
q(t, x̃, ẽ)2 + 2κ

∣
∣
∣N

−1/2
z PζM

∣
∣
∣

2
q(t, x̃, ẽ)2

≤ − κ

2
ζ̃	Nz ζ̃ + 2

[
1

μ
+ 2κ

∣
∣
∣N

−1/2
z PζM

∣
∣
∣

2
] [

qe(xb, eb)
2|ẽ|2 + qx (xb, eb)

2|x̃ |2
]

,

for all (x, e) ∈ S (xb, eb), t ∈ [0, T ]. Hence, by letting

c := ν

2

[

1
μ

+ 2κ
∣
∣
∣N

−1/2
z PζM

∣
∣
∣

2
]

max{qe(xb, eb)2,qx (xb, eb)2}
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we conclude, by using (109), that the derivative of Us := U + cVζ,s satisfies

U̇s ≤ −ν

2

(

|x̃ |2 + |ẽ|2 + |M	Nz ζ̃ |2
)

− cκ

2
ζ̃	Nz ζ̃ (110)

for all (x, e) ∈ S (xb, eb), t ∈ [0, T ]. At this point is important to note for the
exponential stability that, on the left-hand sidewe have the time derivative of a function
which, although time dependent via its Vx component, can be upperbounded by time-
independent positive-definite quadratic forms of (x̃, e, ζ̃ ) and on the right-hand side,
we have a time independent positive-definite quadratic form.

Now, as a consequence of inequalities (98a) and (99), we also have

9Pxx2a + 9e2a + 9hζζζ 2a ≤ 5

6
min

{

Px (xb − xa)2, (eb − ea)2
}

. (111)

Then, with the definitions of xb and eb given in (96), let

O := {(x̃, ẽ, ζ̃ ) : |x̃ | < xb − xa, |ẽ| < eb − ea},

=
{

(x̃, ẽ, ζ̃ ) : |x̃ | <
(

1 + 3
√
2

√

Px
Px

)

xa, |ẽ| < 5eb

}

.

Our interest in this set is coming from the following implication, given by (89),

(x̃, ẽ, ζ̃ ) ∈ O �⇒
{ |x | ≤ |x̃ | + |xp| < xb ,

|e| ≤ |ẽ| + |ep| < eb .
(112)

As a consequence, let (x̃(t), ẽ(t), ζ̃ (t)) be an arbitrary solution with [0, τ ) as right
maximal interval of definition into the set O and with initial conditions in the setNζ

defined in (90), that is,

Nζ =
{

(x, e, ζ ) : |x − xp(0)| ≤ 3xa , |e − ep(0)| ≤ 3ea ,
√

(ζ − ζp(0))	Nz (ζ − ζp(0)) ≤ 3ζζζa

}

.

Note that by using the definitions of x̃ , ẽ, ζ̃ and the bounds on the periodic solution
(xp, ep, ζp) in (89),Nz is a subset of {(x̃, ẽ, ζ̃ ) : |x̃ | ≤ 4xa, |ẽ| ≤ 4ea} and therefore,
by using the definitions of xb, and eb given in (96), Nz is a subset of O .

Now, if τ is finite, we have

lim
t→τ

|x̃(t)| = xb − xa, or lim
t→τ

|ẽ(t)| = eb − ea, or lim
t→τ

ζ̃ (t)	Nz ζ̃ (t) = ∞.

But because of (112), we can use (109) and (90) to get

U (t) ≤ U (0) ≤ Px (3xa)2 + (3ea)2 + h(3ζζζ a)
2
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for all t ∈ [0, τ ), and in particular, by using the definition of U and inequality (111),

|x̃(t)| ≤
√

1
Px

U (t) < xb − xa
|ẽ(t)| ≤ eb − ea

ζ̃ (t)	Nz ζ̃ (t) ≤ 1

h
min

{

Px (xb − xa)2, (ep − ea)2
}

for all t ∈ [0, τ ). This contradicts the consequences of having τ finite. So τ is infinite
and with inequality (110) and the remark following it, we conclude the periodic solu-
tion is asymptotically stable and locally exponentially stable. Its domain of attraction
contains the set Nζ , defined in (90). This concludes the proof. �


A.5 Proof of Item 1 of Theorem 1

To establish the result of item 1 of Theorem 1, we rely on Propositions 1 and 2. We
start by defining the numbers x, e, z, and σ� of the claim. Let xa, ea be given by
Proposition 2. Then let xp, ep, rx , re, ζζζ p, σ

�
p be given by Proposition 1, which, thanks

to Remark 2, can be assumed to satisfy

xp ≤ xa, ep ≤ ea . (113)

We define

x := xp, e := ep, (114)

and

z := ζζζ p + Nze, (115)

with Nz defined in (7a). We choose μ ≥ 1 arbitrary. Then, with

ζζζ a := ζζζ p + 2Nze, (116)

Proposition 2 gives us σ�a . We select

σ� := max{σ�p, σ �a }.

With these numbers defined, we consider system (1), (9) for some given σ > σ�

and some given no. We apply the change of coordinates (27) to the closed-loop system
(1), (9) to obtain (28). Proposition 1 guarantees the existence of a periodic solution
(xp, ep, ζp) to system (28) and therefore a periodic solution (xp, ep, z p) to (1)-(9),
with

z p = ζp + Mep.

123



Mathematics of Control, Signals, and Systems

With (10) and (7a), it satisfies

sup
t∈[0,T ]

|xp(t)| ≤ min

{

xp,
rx√
σ

}

≤ x,

sup
t∈[0,T ]

|ep(t)| ≤ min

{

e,
re√
σ

}

≤ e,

sup
t∈[0,T ]

√

ζp(t)	Nzζp(t) ≤ ζζζ p,

sup
t∈[0,T ]

√

z p(t)	Nzz p(t) ≤ sup
t∈[0,T ]

√

(ζp(t)+ Mep(t))	Nz(ζp(t)+ Mep(t)

≤ sup
t∈[0,T ]

√

ζp(t)	Nzζp(t)+
√

M	NzM sup
t∈[0,T ]

|ep(t)|

≤ ζζζ p + Nzep = z (117)

This establishes inequalities (12) and (14) with ψ1 := re.
Moreover, Proposition 2 guarantees the periodic solution (xp, ep, ζp) is locally

exponentially stable with a domain of attraction that includes the set Nζ (xa, ea, ζζζ a)
defined in (90). Hence, the domain of attraction of (xp, ep, z p) contains the set:

{

(x, e, z) : |x − xp(0)| ≤ 3xa, |e − ep(0)| ≤ 3ea,
√

(z − z p(0) − M(e − ep(0))	Nz(z − z p(0) − M(e − ep(0)) ≤ 3ζζζ a
}

.

But we have the implications

{|x | ≤ 2x & |xp(0)| ≤ x
} ⇒ |x − xp(0)| ≤ |x | + |xp(0)| ≤ 3x

{|e| ≤ 2e & |ep(0)| ≤ e
} ⇒ |e − ep(0)| ≤ |e| + |ep(0)| ≤ 3e

{√

z	Nzz ≤ 2z &
√

z p(0)	Nzz p(0) ≤ z & |e| ≤ 2e & |ep(0)| ≤ e
}

⇒
√

(z − z p(0) − M(e − ep(0))	Nz(z − z p(0) − M(e − ep(0))

≤
√

(z − z p(0))	Nz(z − z p(0)) + √

M	NzM |e − ep(0)|
≤ √

z	Nzz +
√

z p(0)	Nzz p(0) + Nz3e

≤ 3(z + Nze) = 3(ζζζ p + 2Nze) ≤ 3ζζζ a

Hence the setN (x, e, z) defined in (13) is contained in the above set and therefore in
the domain of attraction of (xp, ep, z p). �
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A.6 Proof of Items 2-4 of Theorem 1

First, note that item 2 of Theorem 1 is a straightforward consequence of inequalities
(47b) and (47a) claimed in the statement of Proposition 1, that is ψ1 := re and
ψx := rx .

Then, the C2 periodic solution (xp, ep, ζp) given by Item 1) satisfies (see (28)):

ėp = −σep + μM	Nzζp + q(t, xp, ep),
ζ̇p = (Φ − μMM	Nz)ζp − Mq(t, xp, ep).

(118)

and it is the sum of its Fourier series, i.e.

ep(t) =
∑

k∈Z
epk exp(ik 2π

T t),

ζp(t) =
∑

k∈Z
ζpk exp(ik 2π

T t),

q(t, xp(t), ep(t)) =
∑

k∈Z
qpk exp(ik 2π

T t),

where the index k in {0, . . . ,∞} denotes the k-th Fourier coefficient. Because of (118),
epk, ζpk satisfy

(

ki 2πT + σ
)

epk = μM	Nzζpk + qpk ,
(

ki 2πT − Φ + μMM	Nz
)

ζpk = −Mqpk
(119)

When we are interested in expressing the ζp dynamics oscillator by oscillator, it is
appropriate to exhibit the corresponding components of ζpk as

ζpk = (ζpk0, . . . , ζpk�, . . . ζpkno),

so where the index �, or m below, in {0, . . . , no} refers to the �-th component of ζpk .
With (10), (119) becomes

(ki 2πT + σ)epk = μ

no∑

m=0

M	
m Nzmζpkm + qpk ,

⎛

⎝
ki 2πT ω�

−ω� ki 2πT

⎞

⎠ ζpk� + μM�

no∑

m=0

M	
m Nzmζpkm = −M�qpk ∀� ∈ {0, 1, . . . , no} .

(120)

Assume that for some � in {0, 1, . . . , no}, we have

ω� = K�
2π
T
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where K� is an integer. With (120), this implies in particular

K�
2π
T

(

i 1
−1 i

)

ζpK�� = −M�

[

μ

no∑

m=0

M	
m NzmζpK�m + qpK�

]

= −M�(ki
2π
T + σ)epK�

Then, with the identities

(

i −1
)
(

i 1
−1 i

)

= 0,
(

i −1
)

M� =
(

i
0

)

,

we obtain finally

0 = epK�
=

∫ T

0
cos(K�

2π
T t)ep(t)+ i

∫ T

0
sin(K�

2π
T t)ep(t).

This is (15) in Item 3)
To establish Item 4), we note that (119) gives

ζpk = −
(

ki 2πT − Φ + μMM	Nz

)−1
Mqpk = − (ki 2πT I − Φ)−1M

1 + μM	Nz(ki 2πT I − Φ)−1M
qpk ,

and therefore

epk = (qpk + μM	Nzζpk)
1

ki 2πT + σ
= 1

1 + μM	Nz(ki 2πT I −Φ)−1M

1

ki 2πT + σ
qpk .

With definitions (10), where ω0 = 0, we have

M	Nz(ki 2πT I − Φ)−1M = nz0
ki 2πT

+
no∑

�=1

(

1 0
)

nz�

(

ki 2πT ω�

−ω� ki 2πT

)(

1
0

)

= ik 2π
T

no∑

�=0

nz�
ω2
� − k2[ 2πT ]2

and therefore,

|epk |2 = 1

1 + μ2

[

k 2π
T

no∑

�=0

nz�

ω2
�−k2[ 2πT ]2

]2

|qpk |2
k2[ 2πT ]2 + σ 2

(121)

Note that the first factor of the right-hand side comes with the presence of the internal
model. Indeed, without this model, we would get:

|epk |2 = |qpk |2
k2[ 2πT ]2 + σ 2

.
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So now, if we suppose that all ω� in (9) are selected as:

ω� = �
2π

T
, ∀ � ∈ {1, . . . , no}.

then, from (121), we obtain

|epk |2 = 0 ∀|k| ≤ no,

≤ 1

(no+1)2[ 2πT ]2+σ 2
|qpk |2 ∀|k| ≥ no + 1.

Parseval’s theorem then gives us:

1

T

∫ T

0
|ep(t)|2dt =

∑

k∈Z
|epk |2,

≤ 1

(no + 1)2[ 2πT ]2 + σ 2

∑

k:|k|≥no+1

|qpk |2

≤ 1

(no + 1)2[ 2πT ]2 + σ 2

1

T

∫ T

0
|q(t, xp(t), ep(t))|2dt

≤ 1

(no + 1)2
q(xp, ep)2

[ 2πT ]2

This is (16), with ψ2 := [ T
2π ]2q(xp, ep)2. �


B Proof of Theorem 2

B.1 Preliminaries

A key feature of the infinite-dimensional dynamical regulator (9) is that, when e = 0,
it can reproduce any desiredC1 T -periodic function, as stated by the following lemma.

Lemma 5 For any c ∈ C 1
T (R) and any μ ≥ 1, there exists z p ∈ L 2

Nz
such that the

solution to

ż = Φz, z(0) = z p (122a)

is in C 1
T (L

2
Nz
) and satisfies

μM	Nzz(t) = c(t) ∀ t ≥ 0 (122b)

with Φ,M, Nz defined in (17).
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Proof Since c isC1 and T -periodic, it can be expressed as the sum of its Fourier series
as:

c(t) = c0 +
∞
∑

k=1

cck cos(kωt) + csk sin(kωt), ω = 2π

T
.

Then, let the k-th component z pk of the vector z p be selected as

z p0 = c0
μ
, z pk = 1

μnzk
ck, ck =

(

cck
csk

)

∀ k = 1, . . . ,∞.

To verify that z p is in the set L 2
Nz

as defined in definition (19), we compute

∞
∑

k=1

nzk |z pk |2 = 1

μ2

∞
∑

k=1

1

nzk
|ck |2 ≤ 1

μ2 sup
k∈N>0

1

k2nzk

∞
∑

k=1

k2|ck |2. (123)

Now, supk∈N>0

1

k2nzk
is finite by assumption (7d) as well as k|ck | is square summable

since c, being C1, dc
dt is square integrable.

To verify (122b) holds, we remind that, component-wise, the elements of z are
given by the solution of the differential equations

ż0 = 0, z0(0) = z p0

żk = Φk zk, zk(0) = z pk ∀ k = 1, . . . ,∞,

with Φk defined in (17). Hence

z0 = z p0,

zk(t) =
(

cos(kωt) sin(kωt)
− sin(kωt) cos(kωt)

)

z pk ∀ k = 1, . . . ,∞.

This implies z ∈ C 1
T (L

2
Nz
). Then, by using the definition of M, Nz in (10), we obtain

μM	Nzz(t) = μz0(t)+ μ

∞
∑

k=1

nzkM
	
k exp(Φk t)z pk

= μz p0(t)+ μ

∞
∑

k=1

nzk[cos(kωt)zcpk + sin(kωt)zspk]

= c0 +
∞
∑

k=1

cck cos(kωt)+ csk sin(kωt) = c(t)

for all t ≥ 0. This concludes the proof. �
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Now, let us define

c(t) := −q(t, 0, 0). (124)

By construction c ∈ C 1
T ([0, T ];R). Hence, let z p be given with such c by Lemma 5

and consider the following change of coordinates

z �→ ζ := z − z p(t) − Me (125)

which transforms the closed-loop system (1), (9) into

ẋ = F(t)x + δ f (t, x, e)
ė = Δ(t, x, e) − σe + μM	Nzζ

ζ̇ = (Φ − μMM	Nz)ζ − MΔ(t, x, e),
(126)

where F, δ f are defined as in (48), namely

δ f (t, x, e) := f (t, x, e) − F(t)x, F(t) := ∂ f

∂x
(t, 0, 0),

and Δ is a C1 T -periodic function defined as

Δ(t, x, e) := q(t, x, e) − q(t, 0, 0).

and satisfying

|Δ(t, x, e)| ≤ qe(x, e)|e| + qx (x, e)|x | (127)

for any (x, e) ∈ ST (x, e).
The metric spaceL 2

Nz
being complete and all functions being locally Lipschitz, we

are guaranteed about existence of solutions to (126), as stated by the following known
result on existence of solutions for differential equations in Banach spaces proved for
Example in [15, §1.1], [13, Theorem 1.8.3] or [38, Proposition VI.1.2 & Theorem
VI.3.1].

Proposition 3 Let D be an arbitrary open bounded subset ofRn×R××L 2
Nz
, then for

any (x(t0), e(t0), ζ(t0)) in D and any t0, system (126) has a unique solution (x(t), e(t),
ζ(t)) with values in D, defined either on [t0,+∞[ or only on an interval [t0, t0 + τ̄ [
which is maximal in the sense that

lim
t→τ̄

d((x(t), e(t), ζ(t)) , ∂D) = 0, (128)

where d is the distance on R
n × R × L 2

Nz
and ∂D is the boundary of D.
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B.2 Stability analysis

We have the following proposition.

Proposition 4 Given any triplet (Px , Px , α) there exist strictly positive real numbers
x∞, e∞ > 0 and, for any ζζζ∞ > 0 and μ ≥ 1, there exists σ�∞ > 0 such that the
following holds.

(i) Solutions of (126) starting from the set

Ωinit =
{

(x, e, ζ ) ∈ R
n × R × L 2

Nz
: |x | ≤ 3xa, |e| ≤ 3ea, ‖ζ‖Nz ≤ 3ζζζ a

}

(129)

are complete and bounded in positive times and ζ(t) ∈ L 2
Nz

for all t ≥ 0.
(ii) The origin of (126) is Lyapunov stable with domain of attraction containingΩinit.
(iii) Solutions starting from Ωinit satisfies

lim
t→∞ x(t) = 0, lim

t→∞ e(t) = 0.

Proof We follow similar steps of the proof of Proposition 2. First, let us define the
non-decreasing function ρ∞

0 as

ρ∞
0 (x) := Px

2
fxx (x, 0)x s ≥ 0. (130)

Let xb, eb be parameterised as follows

xb :=
⎛

⎝3
√
2

√

Px

Px
+ 2

⎞

⎠ xa, eb := 6ea . (131)

and let xa, ea be any pair of positive real numbers satisfying

9x2∞Px + 9e2∞ ≤ 1

2
min

{

Pxx
2
b, e2b

}

,

ρ∞
0 (xb) ≤ 1

3αPx

(132)

Now, given any ζζζ a > 0, let h > 0 be selected such that

h ≤ 1

3
min

{
1

(3ζζζ a)2
min

{

Pxx
2
b, e2b

}

, μ
αPx

qx (xb, eb)2

}

. (133)

Finally, let σ�∞ > 0 be chosen as

σ�∞ :=
[

Px fe(xb, eb) + qx (xb, eb)
]2

2
[

αPx − ρ0(xb) − h
μqx (xb, eb)

2
] + μ

2h
+ qe(xb, eb) + h

μ
qe(xb, eb)

2.

(134)
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Then, by following the same steps, consider the functions

Vx := x	Px (t)x, Ve := e2, Vζ := ζ	Nzζ.

By using (5) and (68), their derivatives satisfy, for all (x, e) inS (xb, eb), t ∈ [0, T ],

V̇x ≤ − 2αx	Px (t)x + 2x	Px (t)δ f (t, x, e)

≤ − 2αPx |x |2 + 2|x |Px fe(xb, eb) |e| + Px fxx (xb, 0) |x |3
≤ − 2[αPx − ρ∞

0 (xb)]|x |2 + 2Px fe(xb, eb) |e| |x |

with ρ∞
0 defined as in (130), and

V̇e ≤ − 2σ |e|2 + 2μM	Nζ ζe + 2qe(xb, eb)|e|2 + 2qx (xb, eb)|x | |e|,

V̇ζ ≤ − μ|M	Nζ ζ |2 + 2

μ
qe(xb, eb)

2|e|2 + qx (xb, eb)
2|x |2.

Therefore, collecting all the inequalities together and by defining

U := Vx + Ve + hVζ , χ := (|x |, |e|, |M	Nzζ |)	,

with h selected as in (133), the time derivative of the Lyapunov function U satisfies:

U̇ ≤ −χ	R∞(xb, eb, σ, μ, b)χ ∀(x, e, ζ ) ∈ ST (xb, eb) × L 2
Nz
,

withR∞ defined as

R∞(xb, eb, σ, μ, h) :=
⎛

⎝

2(αPx − ρ∞
11 (xb, eb, μ, h)) −ρ∞

12 (xb, eb) 0
−ρ∞

12 (xb, eb) 2(σ − ρ∞
22 (xb, eb, μ, h)) −μ

0 −μ μh

⎞

⎠ , (135)

and where the functions ρ∞
11 , ρ

∞
12 and ρ∞

22 are non-decreasing functions defined as:

ρ∞
11 (xb, eb, μ, h) := ρ∞

0 (xb) + h
μ
qx (xb, eb)

2,

ρ∞
12 (xb, eb) := Px fe(xb, eb) + qx (xb, eb),

ρ∞
22 (xb, eb, μ, h) := qe(xb, eb) + h

μ
qe(xb, eb)

2.

According to Sylvester’s criterion, the matrix R∞ is positive definite if and only if
the leading principal minors are all strictly positive, that is, we need to satisfy

αPx − ρ∞
11 > 0, (136)

4(αPx − ρ∞
11 )(σ − ρ∞

22 ) − (ρ∞
12 )

2 > 0, (137)

2(αPx − ρ∞
11 )

[

2(σ − ρ∞
22 )h − μ

] − h(ρ∞
12 )

2 > 0, (138)

where the arguments of the functions ρ∞
i j have been omitted for compactness. These

inequalities are always satisfied for any σ > σ�∞ since
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• (136) is implied by (132) and (133).
• (137) is implied by (136) and (138).
• (138) is implied by (134).

As a consequence, for any σ > σ�∞, there exists a positive real number ε > 0 such
that

U̇ ≤ −ε(|x |2 + |e|2 + |M	Nzζ |2) ∀(x, e, ζ ) ∈ S (xb, eb)× L 2
Nz
. (139)

Now, let υ be the strictly positive real number defined as:

υ := min
(x,e,ζ )/∈Ωinit

|x |2Px + |e|2 + hζ	Nzζ ≤ (3xa)2Px + (3ea)2 + h(3ζζζ a)
2

and define

Ωmax := {

(x, e, ζ ) ∈ R
n × R × L 2

Nz
: U (x, e, ζ, t) ≤ υ, t ∈ [0, T ]}.

In view of the choices of xa, xb, h in (132), (133), we have υ ≤ 5
6 min

{

Pxx
2
b, e2b

}

,
and therefore, it is straightforward to see that

Ωmax ⊂ S (xb, eb) × L 2
Nz
.

Now let D be an open bounded superset ofΩmax contained inS (xb, eb)×L 2
Nz
. Let

(x(t), e(t), ζ(t)) be the unique solution to system (126), established by Proposition 3,
with initial condition inΩinit and right maximally defined on [0, τ̄ [ on D. With (139),
we have established

U (x(t), e(t), ζ(t), t) ≤ U (x(0), e(0), ζ(0), 0) < υ ∀t ∈ [0, τ̄ [,

and therefore

(x(t), e(t), ζ(t)) ∈ Ωmax , ζ(t) ∈ L 2
Nz

∀t ∈ [0, τ̄ [.

But Ωmax being a closed subset of the open set D, we have

d(Ωmax, ∂D) > 0

and therefore a contradiction with (128) if τ̄ is finite. So the solution (x(t), e(t), ζ(t))
is defined on [0,+∞[ and takes it values in Ωmax. It follows that the function t �→
((x(t), e(t), ζ(t),M	Nzζ(t)) ∈ R

n × R × L 2
Nz

× L 2
Nz

is bounded and

|q(t, x(t), e(t))| ≤ q(x̄, ē) ∀t ∈ [0,+∞[.

This shows item (i).
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Next, consider the set of functions (x, e, ζ ) so that U is bounded, with U defined
as

U (x, e, ζ ) := |x |2Px + |e|2 + hζ	Nzζ.

We have that
√

U defines a norm. Now, for any ε > 0 small enough, let δ = ε
Px

Px
, and

consider any initial condition (x(0), e(0), ζ(0)) ∈ Ωinit satisfying

U (x(0), e(0), ζ(0)) ≤ δ.

Using (139) along solutions, we obtain

U (t) ≤ Px

Px
U (t) ≤ Px

Px
U (0) ≤ Px

Px
U (0) ≤ ε.

This shows that the origin of (126) is Lyapunov stable with a domain of attraction,
which includes the set {(x, e, ζ ) : U (0) ≤ δmax}, where δmax > 0 is the smallest δ
such that U (x∗, e∗, ζ ∗) > δ implies (x∗, e∗, ζ ∗) /∈ Ωinit . This shows item (ii) of the
theorem.

Finally, by using (139) along solutions, we obtain

lim
τ→∞

∫ τ

0
ε(|x(t)|2 + e2(t))dt ≤ U (0) .

On the left-hand side, each term in the integrand is a functionwith non-negative values,
and, since, according to (126), the function t �→ (ẋ(t), ė(t)) is bounded, the function
t �→ (x(t), e(t) is Lipschitz (and therefore uniformly continuous). Hence by applying
Barbalat’s lemma, we get

lim
t→∞ |e(t)| = 0 , lim

t→∞ |x(t)| = 0 ,

which shows item (iii) and concludes the proof. �


B.3 Proof of Theorem 2

The statement of Theorem 2 follows by combining the results of Lemma 5 and Propo-
sitions 3 and 4. To this end, let c(t) = −q(t, 0, 0) be given as in (124) and apply
Lemma 5 to obtain the initial condition z p ∈ L 2

Nz
. By further using (123) and the

properties of nz� in (7d), we also have ‖z p‖Nz ≤ z∞, with z∞ = 1

μ2nz1
qt (0, 0). Now,

let e be given by Proposition 4 and select ζζζ∞ = 2z∞ + 2Nze∞. With such choice,
we ensure that both initial conditions z(0) = 0 and z(0) = z p belong to the set Ωinit
defined in (129) and are therefore included in the domain of attraction in view of item
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(ii) of Proposition 4. Indeed, following similar computations to those used in the proof
of item 1) of Theorem 1, we can show that

{

(x, e, z) ∈ R
n × R × L 2

Nz
: |x | ≤ 2x∞, |e| ≤ 2e∞, ‖z‖Nz ≤ 2z∞

}

⊆ Ωinit.

Note that such initial conditions are of particular interest, since z(0) = 0 corresponds
to the origin of the control law (which is a quite natural choice when the steady-state
solution for z is unknown), while z(0) = z p corresponds to the origin of the closed-
loop system (126). Now, by applying Proposition 3 and 4, we are guaranteed that, for
σ > σ�∞, the solution to system (126) to be complete forward in time. Furthermore,
as ζ(t) is inL 2

Nz
for all t ≥ 0, and M is inL 2

Nz
by design, we conclude that also z(t)

is inL 2
Nz

for all t ≥ 0. Moreover, x and e converge asymptotically to zero.
Finally, the last part of the proof consists in showing that the domain of attraction

given by Theorem 1 with a finite-dimensional regulator is not reduced in terms of
(x, e)-coordinateswith the infinite-dimensional regulator.Moreover, for such a bound,
we want also σ�∞ < σ�. In turn, by entering the details of the proof of Theorem 1,
this consists in showing that for Proposition 3 we can select the bounds xa, ea and
ζζζ a given by Proposition 2 and then compare σ�a with the resulting σ�∞. To this end,
it suffices first to note that the bounds in (132) are less conservatives than (98) for
two main reasons: in the first pair of equations, the right term is less conservative
since we have xb (resp. eb) and not xb − xa (resp. eb − ea); the second condition is
less conservative in view of the definition of ρ∞

0 given in (130) compared to that of
ρ0 in (97). As a consequence, any selection of xa, ea, ζζζ a given by Proposition 2 is
a feasible choice for the statement of Proposition 4. This ensure that the domain of
attraction in terms of (x, e) coordinates for the infinite-dimensional regulator contains
the domain of attraction obtained in the finite-dimensional case and therefore that the
bounds x, e, z of Theorem 2 can be taken from Theorem 1. Hence, to complete that
statement of the theorem, it suffices to show that for a given set of values, σ�∞ < σ�a
given by Proposition 2. Again, this can be easily proved by noting that the definition
of h in (133) is less conservative than the bound (99), and therefore, for a given h, we
have σ�∞ < σ�a since ρ∞

0 (xb) < ρ0(xa, eb), see (100) and (134). �


References

1. Afshar S, Paunonen L (2019) Adaptive robust output regulation control design. In: American control
conference, pp 3038–3043

2. Astolfi D, Marx S, van deWouwN (2021) Repetitive control design based on forwarding for nonlinear
minimum-phase systems. Automatica 129:109671

3. Astolfi D, Praly L (2017) Integral action in output feedback for multi-input multi-output nonlinear
systems. IEEE Trans Autom Control 62(4):1559–1574

4. Astolfi D, Praly L, Marconi L (2015) Approximate regulation for nonlinear systems in presence of
periodic disturbances. In: 54th IEEE annual conference on decision and control. pp 7665–7670

5. Astolfi D, Praly L, Marconi L (2019) Francis-wonham nonlinear viewpoint in output regulation of
minimum phase systems. IFAC-PapersOnLine 52(16):532–537

6. Astolfi D, Praly L, Marconi L (2021) Nonlinear robust periodic output regulation of minimum phase
systems. arXiv preprint arXiv:2109.06504

123

http://arxiv.org/abs/2109.06504


Mathematics of Control, Signals, and Systems

7. BinM, Astolfi D,Marconi L (2022) About robustness of control systems embedding an internal model.
IEEE Trans Autom Control, arXiv preprint arXiv:2010.08794

8. Bin M, Astolfi D, Marconi L, Praly L (2018) About robustness of internal model-based control for
linear and nonlinear systems. In: 57th IEEE conference on decision and control. pp 5397–5402

9. Bin M, Marconi L, Teel AR (2019) Adaptive output regulation for linear systems via discrete-time
identifiers. Automatica 105:422–432

10. Byrnes CI, Isidori A (2003) Limit sets, zero dynamics, and internal models in the problem of nonlinear
output regulation. IEEE Trans Autom Control 48(10):1712–1723

11. ByrnesCI, IsidoriA (2004)Nonlinear internalmodels for output regulation. IEEETransAutomControl
49(12):2244–2247

12. Byrnes CI, Priscoli FD, Isidori A (1997) Output regulation of uncertain nonlinear systems. Springer
Science and Business Media, Berlin

13. Cartan H (1983) Differential calculus. Hermann
14. Davison E (1976) The robust control of a servomechanism problem for linear time-invariant multivari-

able systems. IEEE Trans Autom Control 21(1):25–34
15. Deimling K (2006) Ordinary differential equations in Banach spaces, vol 596. Springer, Berlin
16. Del Vecchio D,Marino R, Tomei P (2003) Adaptive learning control for feedback linearizable systems.

Eur J Control 9(5):483–496
17. Francis BA, Wonham WM (1976) The internal model principle of control theory. Automatica

12(5):457–465
18. GaoW, Jiang ZP (2017) Learning-based adaptive optimal tracking control of strict-feedback nonlinear

systems. IEEE Trans Neural Netw Learn Syst 29(6):2614–2624
19. Gentili L, Marconi L, Paden B (2008) Disturbance rejection in the control of a maglev artificial heart.

J Dyn Syst Meas Control 130(1):011003
20. Ghosh J, Paden B (2000) Nonlinear repetitive control. IEEE Trans Autom Control 45(5):949–954
21. Hale JK (1992) Oscillations in nonlinear systems. Dover, New York
22. Han J (2009) From pid to active disturbance rejection control. IEEE Trans Industr Electron 56(3):900–

906
23. Hara S, Yamamoto Y, Omata T, Nakano M (1988) Repetitive control system: a new type servo system

for periodic exogenous signals. IEEE Trans Autom Control 33(7):659–668
24. Huang J, Lin CF (1994) On a robust nonlinear servomechanism problem. IEEE Trans Autom Control

39(7):1510–1513
25. Isidori A (1995) Nonlinear control Systems. Springer-Verlag, New York
26. Kasac J, Novakovic B, Majetic D, Brezak D (2008) Passive finite-dimensional repetitive control of

robot manipulators. IEEE Trans Control Syst Technol 16(3):570–576
27. Khalil HK (2000) On the design of robust servomechanisms for minimum phase nonlinear systems.

Int J Robust Nonlinear Control IFAC-Affil J 10(5):339–361
28. Khalil HK (2002) Nonlinear systems. Prentice Hall, New Jersey
29. Koçan O, Astolfi D, Poussot-Vassal C, Mancey A (2020) Supervised output regulation via iterative

learning control for rejecting unknown periodic disturbances. In: 21st IFAC world congress
30. Kurniawan E, Cao Z, Mahendra O, Wardoyo R (2014) A survey on robust repetitive control and

applications. In: 2014 IEEE International Conference on Control System, Computing and Engineering
(ICCSCE 2014), pp 524–529

31. Longman RW (2000) Iterative learning control and repetitive control for engineering practice. Int J
Control 73(10):930–954

32. Mahmoud NA, Khalil HK (1996) Asymptotic regulation of minimum phase nonlinear systems using
output feedback. IEEE Trans Autom Control 41(10):1402–1412

33. Marconi L, Praly L (2008) Uniform practical nonlinear output regulation. IEEE Trans Autom Control
53(5):1184–1202

34. Marconi L, Praly L, Isidori A (2007) Output stabilization via nonlinear luenberger observers. SIAM J
Control Optim 45(6):2277–2298

35. Marino R, Tomei P (2009) An iterative learning control for a class of partially feedback linearizable
systems. IEEE Trans Autom Control 54(8):1991–1996

36. Marino R, Tomei P (2015) Online frequency estimation of periodic signals. Mathematical Control
Theory I. pp 257–276. Springer, Berlin

37. Marino R, Tomei P (2016) Hybrid adaptive multi-sinusoidal disturbance cancellation. IEEE Trans
Autom Control 62(8):4023–4030

123

http://arxiv.org/abs/2010.08794


Mathematics of Control, Signals, and Systems

38. Martin, R.H.: Nonlinear operators and differential equations in Banach spaces. Krieger Publishing Co.,
Inc. (1986)

39. Mattavelli P, Marafao FP (2004) Repetitive-based control for selective harmonic compensation in
active power filters. IEEE Trans Industr Electron 51(5):1018–1024

40. Miller RK, Michel AN (1982) Ordinary differential equations. Academic Press, Cambridge
41. Nikiforov VO (1998) Adaptive non-linear tracking with complete compensation of unknown distur-

bances. Eur J Control 4(2):132–139
42. Omata T, Hara S, Nakano M (1987) Nonlinear repetitive control with application to trajectory control

of manipulators. J Robot Syst 4(5):631–652
43. Paunonen L (2017) Robust controllers for regular linear systems with infinite-dimensional exosystems.

SIAM J Control Optim 55(3):1567–1597
44. Paunonen L, Pohjolainen S (2010) Internal model theory for distributed parameter systems. SIAM J

Control Optim 48(7):4753–4775
45. Serrani A, Isidori A, Marconi L (2001) Semi-global nonlinear output regulation with adaptive internal

model. IEEE Trans Autom Control 46(8):1178–1194
46. Sontag ED (2008) Input to state stability: basic concepts and results. Nonlinear and optimal control

theory. Springer, Berlin, pp 163–220
47. Teel A, Praly L (1995) Tools for semiglobal stabilization by partial state and output feedback. SIAM

J Control Optim 33(5):1443–1488
48. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Springer, Berlin
49. Verrelli CM (2016) A larger family of nonlinear systems for the repetitive learning control. Automatica

71:38–43
50. Wang Y, Gao F, Doyle FJ III (2009) Survey on iterative learning control, repetitive control, and run-

to-run control. J Process Control 19(10):1589–1600
51. Xu D, Huang J, Jiang ZP (2013) Global adaptive output regulation for a class of nonlinear systems

with iiss inverse dynamics using output feedback. Automatica 49(7):2184–2191

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Nonlinear robust periodic output regulation of minimum phase systems
	Abstract
	1 Introduction
	2 Problem statement
	3 Main results
	3.1 Internal-model based regulator design
	3.2 Approximate regulation
	3.3 Exact regulation
	3.4 Literature review
	3.5 Higher-relative degree case via partial-state feedback

	4 Example
	4.1 Linear Bode analysis
	4.2 Numerical example

	5 Conclusions

	A Proof of Theorem 1
	A.1 Preliminaries
	A.2 Study of system (30)
	A.3 Existence of a periodic solution
	A.4 Exponential stability of the periodic solution
	A.5 Proof of Item 1 of Theorem 1
	A.6 Proof of Items 2-4 of Theorem 1

	B Proof of Theorem 2
	B.1 Preliminaries
	B.2 Stability analysis
	B.3 Proof of Theorem 2

	References





