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augment the given function with an auxiliary function Va obtained as a Lyapunov function associated
with the error dynamics given by an observer designed for the system with the derivative of V as an
output function.
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1. Introduction

1.1. Problem statement

Let O be an open neighborhood of the origin in Rn. We
consider a system the dynamics of which on O are:

ẋ = f (x) , (1)

with x in O and f : O → Rn a sufficiently many times
differentiable function which is zero at the origin. We assume
the knowledge of a C1 positive definite1 function V : O → R≥0
and we denote Lf V (x) its Lie derivative, evaluated at x, along the
vector field f . When Lf V is a negative definite function, V is called
a strict Lyapunov function, it is a weak Lyapunov function if Lf V
is only non negative. It follows from LaSalle invariance theorem
or Barbashin-Krasovskii theorem that the origin is asymptotically
stable when V is a weak Lyapunov function and, for any strictly
positive real number v, the largest invariant set contained in:

Zv = {x ∈ O : Lf V (x) = 0 , V (x) = v} , (2)

is empty. In this case a strict Lyapunov function exists thanks to
the Converse Lyapunov Theorem. We propose here a procedure
which, starting from the knowledge of a weak Lyapunov func-
tion, builds a modification transforming it into a strict Lyapunov
function with an as explicit as possible expression.

1.2. Our approach and related results

The problem of ‘‘strictifying’’ a Lyapunov function has re-
ceived a lot of attention, the results of which are partly reported
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1 Assumption which can be relaxed.

in the monograph [1]. We address it by continuing with the
idea, introduced in [2] and summarized in [1, §5.6], of exploiting
output-to-state stability. More specifically, inspired by [3], given
the function V as above, we are interested in finding functions
h : O → Rp, Va : O → R≥0 and Wa : O → R≥0, a class K
function α and a class K∞ function γ satisfying:

Lf V (x) ≤ −α(|h(x|)) , (3)

Lf Va(x) ≤ −Wa(x) + γ (|h(x)|) (4)

and such that the function x ↦→ Wa(x)+|h(x)| is positive definite.
The motivation is that, in this case,

Vs(x) = µ(V (x)) + µa(Va(x)) , (5)

where µ and µa are appropriately chosen C1 class K∞ functions,
is a good candidate for being a strict (global) Lyapunov function.
Very advanced and sophisticated techniques for designing the
functions µ and µa are available. We refer to [1,4,5] and many
others for this and do not address this point in the paper besides
what is in the Appendix, extracted from these references, and
formatted for our application.

In this context, Va is called an auxiliary function. As noticed in
[1, §5.6], the challenge is to find an expression for it. Below we
propose a procedure to obtain it via the design of an observer.

According to [6, Section II], an observer is a dynamical system,
with the given system output h(x) as input, and the output of
which estimates a function τ of the given system state x. Hence
the idea of choosing Va in (4) as a Lyapunov function quantifying
the estimation error and the dynamic of which describes the
observer convergence. This idea is not new. It has been exploited
already for instance in [7, §V].

In Section 2 we present our construction technique in the sim-
plest possible way, concentrating on the idea of getting, via the
introduction of an observer, an auxiliary function Va. In Section 3,
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we demonstrate, by means of examples, the possible interest and
the many flexibilities of the technique.

In the longer version [8] of this paper, we give more advanced
results on Examples 2 and 4.

Notation: In all what follows ω denotes a real number strictly
larger than 1.

2. The observer design approach

2.1. The procedure

The starting point of the procedure is the function V with Lf V
non positive. We look for a function h : O → Rp, called output
function in our context, satisfying:

− Lf V (x) ≥ α(|h(x)|) , (6)

where α is a class K function, and such that the system:

ẋ = f (x) , y = h(x)

is observable in such a way that we can design an observer.
What we mean by we can design an observer is that there exist
continuous functions τ : O → Rm and ϕ : h(O)×Rm

→ Rm such
that:

1. the function x ↦→ (h(x), τ (x)) is injective on O.
2. We have:

Lf τ (x) = ϕ(h(x), τ (x)) , τ (0) = 0 . (7)

3. For the augmented system:

ẋ = f (x) , ż = ϕ(h(x), z) , (8)

we know a C1 function V : O × Rm
→ R≥0 satisfying:

V(x, τ (x)) = 0

and, for all (x, z) such that z ̸= τ (x),

V(x, z) > 0 ,
∂V
∂x

(x, z)f (x) +
∂V
∂z

(x, z)ϕ(h(x), z) = −W(x, z) < 0 . (9)

This does give an observer since, on one hand, when z is in the
image τ (O), and the value h(x) is known, there is a unique x
satisfying:

z = τ (x) ,

and, on the other hand, the solution (X(x, t), Z((x, z), t)) of (8),
issued from (x, z) at time 0, is such that Z((x, z), t) converges to
τ (X(x, t)) as t goes to infinity. See [9, Theorem 1] to find a more
precise result.

By evaluating at (0, τ (x)) the functions involved in (9), we
obtain:
∂V
∂z

(0, τ (x))ϕ(0, τ (x)) = −W(0, τ (x)) < 0
∀x ∈ O : τ (x) ̸= 0 .

(10)

This motivates us to define the auxiliary function Va as:

Va(x) = V(0, τ (x)) .

In view of (7), we have the decomposition:

Lf Va(x) = −W(0, τ (x))

+
∂V
∂z

(0, τ (x)) [ϕ(h(x), τ (x)) − ϕ(0, τ (x))] .

Here, h(x) plays the role of a disturbance. For this to be useful
in our context, we assume we are in an ISS-like context, i.e. there

exist a class K∞ function γ and a continuous positive definite
function αa : τ (O) → R≥0 satisfying:

∂V
∂z

(0, τ (x))ϕ(h(x), τ (x))

≤ −ω αa(Va(x)) + γ (|h(x)|) . (11)

In this case, (4) holds and, with the help of Lemma 1 in
Appendix, (5) gives an expression of a strict Lyapunov function.
Fortunately, (11) holds always when |τ (x)| and |h(x)| are small
enough, since the function z ↦→ W(0, z) is positive definite, and
we have (10) and continuity.

At the end, we keep only the functions τ and V from the
procedure and we need explicit expressions for them. The other
points are useful only to make sure that these functions do have
the required properties.

In nonlinear system theory there are different approaches for
observer design, hence as many variants for the construction of
τ and V . In the next Section, we shall restrict our attention to
high gain observers and nonlinear Luenberger observers. For the
former, an expression of τ is given by successive differentiations
of the output function and V is a quadratic form known up to a
scalar constant gain ℓ. In the latter, V is a known quadratic form,
but an expression has to be found for τ solving (7).

For the time being, to help the reader in getting a better grip
on the procedure, we propose the following example.

Example 1 ([1, Section 5.5.1]). Consider the system:

ẋ1 = −(x1 + x2)(x1 + a) , ẋ2 = bx1(x2 + c) ,

where a, b and c are strictly positive real numbers and (x1, x2)
lives in the open rectangle:

O = (−a,+∞)× (−c,+∞) .

Let V be the function defined as:

V (x) = b
[
x1 − a ln

(
x1 + a

a

)]
+ x2 − c ln

(
x2 + c

c

)
.

It is positive definite, proper and C1 on O and satisfies:
˙ 

V (x) = −
x1

(x2 + c)
ẋ2 = −b x21 .

This is (3), with:

h(x) = x1 , α(s) = bs2 .

It follows that the origin is stable and that x1 converges to 0 along
any solution. So, if by ‘‘measuring’’ (=knowing) that x1 goes to 0,
we can ‘‘estimate’’ (=deduce) that x2 goes also to 0, we are done.
For this ‘‘measure-estimate’’ process, we look for an observer for
the system:

ẋ1 = −(x1 + x2)(x1 + a) , ẋ2 = bx1(x2 + c) , y = x1 .

We propose:

ż = −ab z − bx1 (x1 − c + (1 − b)a) .

We note that:

τ (x) = x2 + bx1

is a solution of (7) which reads here as:

−
∂τ

∂x1
(x1, x2)(x1 + x2)(x1 + a)

+
∂τ

∂x2
(x1, x2)bx1(x2 + c)

= −ab τ (x) − bx1 (x1 − c + (1 − b)a) .
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We define the function V as:

V(x, z) =
(τ (x) − z)2

2
=

(x2 + bx1 − z)2

2
.

It satisfies:
˙ 

V(x, z) = −ab (x2 + bx1 − z)2 = −abV(x, z) .

Hence we have a convergent observer providing an estimate of
τ (x). Since the data of h(x) = x1 and τ (x) = x2 + bx1 defines
x = (x1, x2) uniquely, we have actually an estimate of x.

From all this, we propose:

Va(x) = V(0, τ (x)) =
(x2 + bx1)2

2
as an auxiliary function. It satisfies:

˙ 
Va(x) = −ab (x2 + bx1)2

− bx1 (x2 + bx1) (x1 − c + (1 − b)a) ,

≤ −
ab
2
(x2 + bx1)2 +

b
2a

x21 (x1 − c + (1 − b)a)2 .

This is (11) with:

γ (s) =
b
2a

s2 |s + |(1 − b) − c||2 .

So, from Lemma 1 in Appendix, with:

αa(s) =
abs
2ω

, κ(s) = a[1 + ln(3)]max

{
s
ab
,

√
s
ab

}
,

we can get an expression of a strict Lyapunov function. More
directly, since there exists2 a continuous non decreasing function
κ : R → R>0 satisfying:

κ

(
x1 − a ln

(
x1 + a

a

))
≥ 1 +

1
a
(x1 − c + (1 − b)a)2 ,

for all x1 in the open interval (−a,+∞), the following function
is a strict Lyapunov function:

Vs(x) =

∫ V (x)

0
κ(s)ds + Va(x) .

2.2. Solution with a high gain observer

To ease the presentation in this paragraph, we restrict our
attention to the case where the dimension p of h(x) is 1 and (6)
reads:

− Lf V (x) ≥ |h(x)|2 ∀x ∈ O . (12)

Assume the system (1) with h as an output function is strongly
differentially observable of order m. This means that there exists
an integer m such that the function τ defined as:

τ (x) =

⎛⎜⎜⎜⎝
h(x)
Lf h(x)
...

Lm−1
f h(x)

⎞⎟⎟⎟⎠ (13)

is an injective immersion on O. In this case there exists a C1

function ϕm which is zero at the origin and satisfies:

ϕm(τ (x)) = Lmf h(x) ∀x ∈ O

and such that the components zi of z = τ (x) satisfy:

ż1 = z2 , . . . , żm−1 = zm , żm = ϕm(z) .

2 E.g. κ(s) = 1 + supx>−a: x1−a ln(x1+a)≤s
2
a (x1 − c + (1 − b)a)2 .

We rewrite these equations more compactly as:

ż = A z + Bϕm(z) , z1 = C z .

We choose a compact subset C of O which is forward invariant for
(1), e.g. a bounded sublevel set of V contained in O. We consider
the Kalman observer-like for τ (x):

ż = A z + Bϕm(sat(z)) + K (h(x) − Cz) ,

where sat is a bounded function satisfying:

sat(τ (x)) = τ (x) ∀x ∈ C ,

and the vector K is chosen such that there exist positive definite
matrices P and Q satisfying:

P (A − KC) + (A − KC)⊤P ≤ −2Q ,

2
⏐⏐τ (x)⊤PBϕm(τ (x))⏐⏐ ≤ τ (x)⊤Q τ (x) ∀x ∈ C .

Since ϕm(0) = 0, by invoking the high gain observer paradigm
(see [10] for example), we are guaranteed that P and Q exist
when K is in the form:

K =

⎛⎜⎝ ℓk1
...

ℓmkm

⎞⎟⎠ ,

where the gain ℓ is to be chosen large enough depending on the
Lipschitz constant:

Lip = sup
x∈C

⏐⏐⏐⏐∂ϕm∂z (τ (x))
⏐⏐⏐⏐ .

Then, since we have:
˙ 
τ (x) = (A − KC) τ (x) + Bϕm(τ (x)) + K h(x) ,

we obtain, for all x in C,
˙ 

τ (x)⊤P τ (x) ≤ −τ (x)⊤Q τ (x) + 2 τ (x)⊤PKh(x) ,

≤ −

(
1 −

ρk2p2

λmin(Q )

)
τ (x)⊤Q τ (x) +

1
ρ

|h(x)|2,

where k and p are norms of K and P , and ρ is a strictly positive
real number. With this, Lemma 1 gives us again a strict Lyapunov
function on C. A simpler expression is:

Vs(x) = V (x) + µa τ (x)⊤P τ (x)

where µa is a real number to be chosen. We get:
˙ 

Vs(x) ≤

−

[
1 −

µa

ρ

]
|h(x)|2 − µa

(
1 −

ρk2p2

λmin(Q )

)
τ (x)⊤Q τ (x) .

Since τ is injective on O and zero at the origin, the right hand
side is negative definite when µa and ρ satisfy :

µa < ρ <
λmin(Q )
k2p2

.

Remark 1. Our construction uses the function τ which comes
directly from the successive Lie derivatives of a square root of
−Lf V . This is related, though simpler, to what is done in [11]
for a Jurdjevic–Quinn control design with the introduction of an
auxiliary scalar field and used also in [1, Sections 4.4 and 5.2].

Our construction gives also a tool simpler than the one pro-
posed in [1, Section 5.4] although with some resemblance. But, of
course, here, we have the stronger assumption of strong differen-
tial observability.
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Example 2. Consider the system:

ẋ1 = σ (1 − x2)x1 , ẋ2 =

(
1 −

x2
x1

)
x2 ,

with (x1, x2) in:

O = (R>0)2

and σ a constant strictly positive real number. This is the sys-
tem [12, (6)] with:

M1 = M2 = 1 , D∗
=

1
σ
, u = y − x ,

x1 = exp(x) , x2 = exp(y) .

In [12] the authors exhibit a strict Lyapunov function allowing
them to prove that (1, 1) is an asymptotically stable equilibrium
with O as domain of attraction. By following the approach de-
scribed above we can get another expression of a strict Lyapunov
function valid, at least, on any compact subset of O.

Our starting point is to observe that:

(x1 − 1) x2 dx1 − σ (1 − x2)x21 dx2 = 0

is an exact differential equation with:

V (x) = ln(x1) +
1
x1

− σ ln(x2) + σ x2

as potential. This function is defined, C1 and proper on O with a
unique stationary point (global minimum) at (1, 1). Moreover it
satisfies:

˙ 
V (x) = −σ

1
x1

(1 − x2)2 . (14)

Hence V is a weak global Lyapunov function on O showing the
stability of the point (1, 1). Let the compact set:

Cv = {x ∈ O : V (x) ≤ v}

where v is any strictly positive real number. Let also the output
function h : O → R be defined from (14) as:

h(x1, x2) = x2 − 1 .

There exists a real number α satisfying:

−
˙ 

V (x) ≥ α h(x)2 ∀x ∈ Cv .

According to (13), we define:

τ (x) =

(
h(x)
Lf h(x)

)
=

(
x2 − 1(

1 −
x2
x1

)
x2

)
.

The corresponding function is a diffeomorphism on O. Then, by
letting z = τ (x), we obtain:

ż1 = z2 , ż2 = ϕ2(x) ,

where:

ϕ2(x) =

(
1 − 2

x2
x1

)(
1 −

x2
x1

)
x2 + σ

x22
x1

(1 − x2) .

It follows from what has been done above for the general case
that, for each strictly positive real number v, for all µa sufficiently
small and ℓ sufficiently large,3 the function:[
ln(x1) +

1
x1

− σ ln(x2) + σx2

]
3 The observer gains are k1 = ℓ and k2 = ℓ2 where ℓ is to be tuned depending

on the Lipschitz constant on Cv of ϕ2 with respect to z.

+ µa

[
[x2 − 1]2 −

1
ℓ
[x2 − 1]

[(
1 −

x2
x1

)
x2

]

+
1
ℓ2

[(
1 −

x2
x1

)
x2

]2]
is a strict Lyapunov function on Cv . Hence, we are left with tuning
the two real numbers ℓ and µa to get a strict Lyapunov function,
whereas in [12], it is a function which has to be tuned. However
in the latter the obtained Lyapunov function is strict on O and
not only on the compact subset Cv as in our case.

2.3. Solution with a nonlinear Luenberger observer

Again to simplify the presentation, we assume (12), instead
of (6), and we choose a compact subset C of O which is for-
ward invariant for (1). Following [6,9,13], a nonlinear Luenberger
observer takes the form:

ż = F z + G h(x) ,

where z is in Rm, and F is a Hurwitz matrix. Consider the partial
differential equation:

Lf τ ∗(x) = F τ (x) + G h(x) . (15)

According to [9, Theorem 2], a solution exists on C provided the
real part of the eigen values of F are negative enough. It is C1 and
injective if:

• the system has no (backward) indistinguishable pair of
states,

• the dimension of z is large enough ( m ≥ 2(n + 1) )
• and the eigen values of F are outside a zero Lebesgue mea-

sure set. See [9, Theorem 3].

Let P be a positive definite symmetric matrix satisfying:

P F + F⊤P = −Q < 0 .

We get:
˙ 

V (x) + µa τ (x)⊤P τ (x)

≤ −|h(x)|2 + 2µa τ (x)⊤P Lf τ (x) ,
≤ −|h(x)|2 − µa τ (x)⊤Q τ (x) + 2µa τ (x)⊤P G h(x) ,

≤ −
1
2

|h(x)|2 − µa

[
1 −

4µap2g2

λmin(Q )

]
τ (x)⊤Q τ (x) .

Hence, by choosing µa in the open interval
(
0, λmin(Q )

4p2g2

)
, the

following is a strict Lyapunov function:

Vs(x) = V (x) + µa τ (x)⊤P τ (x) .

The interest of this approach is that distinguishability only
is sufficient instead of strong differential observability for the
high gain approach. But the drawback is the problem of finding
an expression for a solution to the partial differential equation
(15). Fortunately approximations are allowed as claimed in [9,
Theorem 5].

Example 3. Consider the system:

ẋ1 = x2 , ẋ2 = −x1 − x2 exp
(

−
1
x22

)
, (16)

already studied in [14, Example 1] and [15, Example 3.4]. We
have:

˙ 
V (x) =

˙ 
x21 + x22 = −2 x22 exp

(
−

1
x22

)
.
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We define the output function h as:

y = h(x) = x2 exp
(

−
1
2x22

)
.

With such a function the system (16) is observable but not
differentially observable. So we cannot proceed with a high gain
observer. Unfortunately, we do not know either how to go with a
nonlinear Luenberger observer since we have no expression for a
solution to the partial differential equation corresponding to (15).

But, instead of the output y we can use as well a function of
y, as long as we do not lose observability. Here we note that the
function:

x2 ↦→ y = x2 exp
(

−
1
2x22

)
is strictly increasing and therefore invertible. Let h−1 denote its
inverse. So, instead of y, we use x2 as an output and actually
even a function g of x2. In this case a Luenberger observer is for
instance:

ż = −z + g(x2) .

The partial differential equation corresponding to (15) is:

∂τ

∂x1
(x1, x2) x2 −

∂τ

∂x2
(x1, x2)

[
x1 + x2 exp

(
−

1
x22

)]
= −τ (x1, x2) + g(x2) .

We find that by selecting g as:

g(x2) = 2x2 − x2 exp
(

−
1
x22

)
=

2h−1(y)2 − y2

h−1(y)
,

an expression of a solution τ is simply:

τ ∗(x1, x2) = x1 + x2 .

Since the function (x1, x2) ↦→ (h(x), τ (x)) = (x1, x1 + x2) is injec-
tive, the above observer is appropriate. It gives us the auxiliary
function:

Va(x) = [x1 + x2]2 .

It satisfies:
˙ 

Va(x) = −2
[
[x1 + x2]2 − [x1 + x2]g(x2)

]
,

≤ −Va(x) + γ (|y|) ,

where γ is a class K∞ function satisfying:⏐⏐⏐⏐2h−1(y)2 − y2

h−1(y)

⏐⏐⏐⏐2 ≤ 4h−1(|y|)2 = γ (|y|) ≤ 4V (x) .

Hence we can get a strict Lyapunov function from Lemma 1 in
Appendix with:

α(s) = 2s2 , αa(v) =
v

ω
, γ−1(s) = h

(√
s

2

)
, κ(v) = 4v .

3. Extensions via examples

The procedure described in Section 2 is only under its very
elementary form. Many variations are possible. The following
examples illustrate some degrees of freedom.

Example 4 ([16, Theorem 2.3]). Consider the linear time-varying
system:

ẋ1 = A x1 + Bψ(t)⊤x2 , ẋ2 = −ψ(t) B⊤x1, (17)

with A an n1 × n1 matrix, B a vector in Rn1 , x1 in Rn1 , x2 in Rn2 .

In [16, Theorem 2.3 ii)], it is established that the origin is
uniformly asymptotically stable if the function ψ : R → Rn2 is
bounded, locally integrable and there exist strictly positive real
numbers θ , β and T satisfying:

A + A⊤
≤ −β2 I

and4:∫ t+T

t

(∫ s

t
ψ(r)dr

)(∫ s

t
ψ(r)dr

)⊤

ds ≥ θ2 I . (18)

This result can be re-established as follows. The Lyapunov
function:

V (x) = |x1|2 + |x2|2

satisfies:
˙ 

V (x) ≤ −β2
|x1|2 .

So the origin is uniformly stable. Let:

h(x) = β x1 .

To make sure there exists a convergent observer, we check
observability. The trick here is to consider the system:

ẋ1 = Bψ(t)⊤x2 + Au , ẋ2 = −ψ(t)B⊤u , y = x1 , (19)

with u = x1 as (known) input. In [16, pages 46-48], it is proved
that, under (18), this system (19) is uniformly completely observ-
able. So, according to [17, Lemma 5 and Theorem 2], there exist
strictly positive real numbers p and p and a solution t ↦→ P(t) to
the following Riccati equation:

Ṗ(t)

= 2Sym
((

0 Bψ(t)⊤
0 0

)
P(t)

)
− P(t)

(
I 0
0 0

)
P(t) + I

satisfying:

p ≤ P(t) ≤ p ∀t ≥ 0 .

With this, we have a Kalman filter for the system (19). There is no
need to write it. It is sufficient to know that the error system can
be analyzed with the quadratic form given by P(t)−1. This leads
to:

Vs(x, t) = |x1|2 + |x2|2 + µa
(
x⊤

1 x⊤

2

)
P(t)−1

(
x1
x2

)
as a candidate strict Lyapunov function. It satisfies:

˙ 
Vs(x, t)

≤ −[β2
− µa]|x1|2 − µa

⏐⏐⏐⏐P(t)−1

(
x1
x2

)⏐⏐⏐⏐2
+2µa

(
x⊤

1 x⊤

2

)
P(t)−1

(
A

−ψ(t)B⊤

)
x1 ,

≤ −

[
β2

− µa −
2µa[a2 + ψ

2
b2]

p

]
|x1|2 −

µa

2

⏐⏐⏐⏐P(t)−1
(
x1
x2

)⏐⏐⏐⏐2,
where a is a norm of A, b a norm for B and ψ a bound for |ψ |.
So, for µa strictly smaller than

β2p

p+2[a2+ψ
2b2]

, Vs is a strict Lyapunov

function.
The same steps as the ones followed here for a linear adaptive

system can be followed for a nonlinear one, as the system studied
in [18].

4 If the derivative ψ̇ exists almost everywhere and satisfies
∫ t+T
t |ψ̇s|2ds ≤

Ψ then
∫ t+T
t ψ(s)ψ(s)⊤ds ≥ θ̄2 I implies (18).
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Example 5 (Forwarding). In this example we construct a strict
Lyapunov function for a system the feedback of which is designed
by forwarding. We remain at the simplest level and refer to [19]
for more elaborate techniques and to [20] for even more details.

With an appropriate choice of the coordinates5 for x2, the
system is:

ẋ1 = a(x1) + b(x1)u , ẋ2 = A x2 + c(x1)u. (20)

We assume:

A1: we know a C1 positive definite and proper function V1 and
a continuous positive definite function ᾱ satisfying:

LaV (x1) ≤ −ᾱ(|x1|) − |LbV1(x1)|2 .

A2:

A + A⊤
≤ 0 . (21)

A3: The pair (A, c(0)⊤) is detectable.

With letting:

V (x) = V1(x1) + x⊤

2 x2 ,

we obtain:

˙ 
V (x) ≤ −ᾱ(|x1|) − |LbV1(x1)|2 +

(
LbV1(x1) + 2x⊤

2 c(x1)
)
u .

This motivates us for selecting:

u = −c(x1)⊤x2 . (22)

Indeed this gives:

˙ 
V (x) ≤ −ᾱ(|x1|) −

7
4

⏐⏐x⊤

2 c(x1)
⏐⏐2 .

With Assumption A3, we can conclude that the origin is asymp-
totically stable. But V is not a strict Lyapunov function. To go on
following our procedure we pick the function h as:

h(x) =

(
x1

c(x1)⊤ x2

)
.

We note that inequality (21) gives:[
A − c(0)c(0)⊤

]
+
[
A − c(0)c(0)⊤

]⊤
≤ −2c(0)c(0)⊤ .

It follows from Assumption A3 that the matrix A − c(0)c(0)⊤
is strictly Hurwitz. So there exists a positive definite matrix P
satisfying:

P
[
A − c(0)c(0)⊤

]
+
[
A − c(0)c(0)⊤

]⊤
P = −I . (23)

With this, the observer we consider is:

ż = A z + c(x1)u + c(0)
[
c(x1)⊤ x2 − c(0)⊤z

]
,

with u known, given by (22). The problem here, created by the
second component of h, is the argument x1 instead of 0 in the
term between brackets. If we ignore it, a solution to the partial
differential equation corresponding to (15) is simply:

τ (x) = x2 .

The injectivity requirement is trivially satisfied. And, in view of
(23), the function V is to be:

V(x, z) = [z − x2]⊤P[z − x2] .

5 See [19, Section IV].

It corresponds the auxiliary function:

Va(x) = V(0, τ (x)) = x⊤

2 Px2

which satisfies:
˙ 

Va(x)

= 2x⊤

2 P
[
A − c(x1)c(x1)⊤

]
x2 ,

= 2x⊤

2 P
[
A − c(0)c(0)⊤

]
x2

−2x⊤

2 Pc(x1)c(x1)
⊤x2 + 2x⊤

2 Pc(0)c(0)
⊤x2 ,

= −|x2|2 + 2x⊤

2 P
[
c(0)c(0)⊤ − c(x1)c(x1)⊤

]
x2 .

We are in the case discussed in Remark 2 in Appendix where:

γ (x) = 2x⊤

2 P
[
c(0)c(0)⊤ − c(x1)c(x1)⊤

]
x2

does not depend only on h(x). Fortunately, the continuity of c
implies the existence of a strictly positive real number δ such that
we have the property:

|x1| ≥ δ ∀x1 :
1
ω

≤ 2Sym
(
P
[
c(0)c(0)⊤− c(x1)c(x1)⊤

])
.

On another hand, the function V being proper, there exists a class
K function κ which satisfies, for all x : |x1| ≥ δ,

2Sym
(
P
[
c(0)c(0)⊤− c(x1)c(x1)⊤

])
≤ κ(V (x))ᾱ(|x1|) P .

This implies (see (26)):

1
1 + x⊤

2 Px2
γ (x) ≤ κ(V (x))α(|x1|) ∀x : |x1| ≥ δ .

From all this and Remark 2, it follows that:

Vs(x) = ω

∫ V (x)

0
κ(s)ds +

∫ x⊤2 Px2

0

1
1 + v

dv

is a strict Lyapunov function.
This function has some similarities with the one given in [21,

Proposition 3.2] and obtained from the stabilizability of the pair
(A, c(0)).

4. Conclusion

On one hand, auxiliary functions, as proposed by [3], are
shown in [1] to be efficient for strictifying a given Lyapunov func-
tion when combined with the output-to-state stability formalism
advocated in [2].

On another hand zero-state detectability is often used com-
plementary to LaSalle invariance principle to establish asymptotic
stability.

The combination of these two facts leads to the procedure we
have proposed for the strictification of a given Lyapunov function.
Specifically, an observer is constructed based on the zero-state
detectability. This gives us a Lyapunov function describing the
convergence of the associated error system. This function is then
used to construct an auxiliary function allowing us to propose a
candidate strict Lyapunov function.
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Appendix. An existence result for µ and µa

From all the many published results concerning cascaded sys-
tems, small gain theorems, strictification of Lyapunov functions,
. . .we have extracted what follows without any novelty but for-
matted for our specific framework.

Lemma 1. Let O be an open neighborhood of the origin in Rn,
V : O → R≥0 be a C1 positive definite function, h : O → Rp be
a C0 function which is zero at the origin, Va : O → R≥0 be a C1

function, γ be a class K function, αa : R≥0 → R≥0 be a C0 positive
definite function and ω be a real number strictly larger than 1, such
that the function x ↦→ αa(Va(x)) + |h(x)| is positive definite on O
and we have, for all x in O,

Lf V (x) ≤ −α(|h(x|)) ,

Lf Va(x) ≤ −ω αa(Va(x)) + γ (|h(x)|) . (24)

Then, for any compact subset6 C in O, there exist a class K∞ function
µ and a class K function µa such that the following is a strict
Lyapunov function on C:

Vs(x) = µ(V (x)) + µa(Va(x)) .

Proof. Because V is positive definite on O, γ is a class K∞

function and h is continuous and zero at the origin, there exists
a class K function κ satisfying:

γ (|h(x)|) ≤ κ(V (x)) ∀x ∈ C .

Let:

µ(v) = ω

∫ v

0
κ(s)ds , µa(v) =

∫ v

0
κa(s)ds . (25)

with the notation:

κa(s) = α ◦ γ−1
◦ αa(s) .

The function µ is of class K∞ and the function µa is of class K.
They give:

Lf Vs(x) ≤ −ω κ(V (x)) α(|h(x)|)
− κa(Va(x)) ω αa(Va(x))

+ κa(Va(x)) γ (|h(x)|) .

If we have αa(Va(x)) ≥ γ (|h(x)|), this yields:

Lf Vs(x) ≤ −ω κ(V (x)) α(|h(x)|)
− [ω − 1] κa(Va(x)) αa(Va(x)) ∀x ∈ C .

If instead we have γ (|h(x)|) > αa(Va(x)), this yields:

Lf Vs(x) ≤ −[ω − 1] κ(V (x)) α(|h(x)|)
− ω κa(Va(x)) αa(Va(x))
− κ(V (x))

[
α(|h(x)|) − α ◦ γ−1

◦ αa(Va(x))
]
,

≤ −[ω − 1]α(|h(x)|) κ(V (x))
− ω κa(Va(x)) αa(Va(x)) ∀x ∈ C .

For the right hand side to be zero we must have V (x) or
(αa(Va(x)), h(x)) zero. But the functions V and x ↦→ αa(Va(x)) +

|h(x)| being positive definite, this implies Lf Vs is negative definite
and therefore that Vs is a strict Lyapunov function on C.

6 We can have C non compact and equal to O if V is proper on O.

Remark 2. The proof above relies only on the property:

κa(Va(x)) γ (|h(x)|) ≤ κ(V (x))α(|h(x)|) .

∀x ∈ C : αa(Va(x)) ≤ γ (x) . (26)

In the case where, to satisfy (24), we must have γ depending
on the whole x and not only on h(x), it is sufficient that, with κ a
continuous function satisfying:

κ(v) ≥ sup
x: V (x)≤v

γ (x) ,

there exists a continuous positive definite function κa satisfying:

κa(v) ≤ inf
x∈C:Va(x)=v, αa(v)≤γ (x)

κ(V (x))α(|h(x)|)
γ (x)

.

Indeed (26) follows readily and we can pick (25) again.
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