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EXPRESSING AN OBSERVER IN PREFERRED COORDINATES BY
TRANSFORMING AN INJECTIVE IMMERSION INTO A

SURJECTIVE DIFFEOMORPHISM∗
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Abstract. When designing observers for nonlinear systems, the dynamics of the given system
and of the designed observer are usually not expressed in the same coordinates or even have states
evolving in different spaces. In general, the function, denoted τ (or its inverse, denoted τ∗) giving
one state in terms of the other is not explicitly known and this creates implementation issues. We
propose to get around this problem by expressing the observer dynamics in the the same coordinates
as the given system. But this may force us to add extra coordinates, a problem that we call aug-
mentation. This may also force us to modify the domain or the range of the “augmented” τ or τ∗,
a problem that we call extension. We show that the augmentation problem can be solved partly by
a continuous completion of a free family of vectors and that the extension problem can be solved by
a function extension making the image of the extended function the whole space. We also show how
augmentation and extension can be done without modifying the observer dynamics and, therefore,
with maintaining convergence. Several examples illustrate our results.
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1. Introduction.

1.1. Context. In many applications, estimating the state of a dynamical system
is crucial either to build a controller or simply to obtain real time information on the
system. Satisfactory solutions are known for systems the dynamics of which are
linear in the preferred coordinates. But when they are nonlinear, we are aware of
only two “general purpose” observer design methodologies guaranteeing “nonlocal”
convergence under merely some basic observability properties: the high gain observers
[16, 24, 12, 13, 17, 7] and the nonlinear Luenberger observers [23, 15, 2]. For both, the
observer state is living in a space different from the system state one and the system
state estimate is obtained typically by solving a nonlinear equation online.

As an illustration, consider a harmonic oscillator with unknown frequency with
dynamics

(1.1) ẋ1 = x2 , ẋ2 = −x1x3 , ẋ3 = 0 , y = x1

with state x = (x1, x2, x3) in
(
R2 \ {(0, 0)}

)
× R>0 and measurement y. We are

interested in estimating the state x from the only knowledge of y and the fact that x
evolves in some known set A. By following in a very orthodox way (see [1] for details)
the high gain observer design we get a “raw” observer with dynamics

(1.2)
˙̂
ξ = ϕ(ξ̂, x̂, y) =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ξ̂ +


0
0
0

sat(x̂1x̂
2
3)

+


`k1
`2k2
`3k3
`4k4

 [y − ξ̂1]
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with state ξ̂ in R4, where sat is a saturation function (see (1.12)), and from which

the system state estimate x̂ is given as x̂ = τ(ξ̂), where τ is any continuous function
which satisfies

(1.3) τ(x1, x2,−x1x3,−x2x3) = (x1, x2, x3) ∀x = (x1, x2, x3) ∈ A .

The construction of the mapping τ relies on the inversion to the mapping τ∗(x) =
(x1, x2,−x1x3,−x2x3) which, in general, has no explicit solution and is not uniquely
defined outside of τ∗(A). The commonly used implicit solution is given as the solution
to an optimization problem which may be

x̂ = τ(ξ̂) = Argmin
x̂

∣∣∣ξ̂ − τ∗(x̂)
∣∣∣2 .

Note however that some other forms are possible. For instance in [22], the authors
propose to build another implicit solution based on an optimization procedure which
yields a global Lipschitz function τ . The drawback of all these optimization based
approaches being that they may be costly to solve in practice. Another path is to
rely on the rank theorem, as in [19] and take advantage of the local existence of
diffeomorphisms φx and φξ such that

φξ ◦ τ∗ ◦ φx = (x, 0, . . . , 0) .

In this case, one can pick x̂ = φ−1x (π(φξ(ξ̂)), where π is the projection on the set of
the first n components. In our example, φx could be the identity and

φξ(ξ) =

(
ξ1, ξ2,−

ξ1ξ3 + ξ2ξ4
ξ21 + ξ22

, (ξ1ξ4 − ξ2ξ3)

)
.

But, besides the local nature of this technique, finding expressions for φ−1x and φξ
may be a very difficult task in practice (see [18] for instance). And unfortunately x̂ is
needed to evaluate the term sat(x̂1x̂

2
3) in (1.2) since the observer dynamics depend

on τ .
Instead of a high gain observer design as above, we may use a Luenberger nonlinear

observer design (see [23, 15, 2]). It leads to

(1.4)
˙̂
ξ = ϕ(ξ̂, y) = A ξ̂ + B y

with ξ̂ in R4, A a Hurwitz matrix, and (A,B) a controllable pair. The state estimate

x̂ is again given as x̂ = τ(ξ̂), where τ is any continuous function which satisfies
τ(τ∗(x)) = x for all x in A, where, this time,

(1.5) τ∗(x) = −(A2 + x3I)−1[ABx1 +Bx2] .

A difference with the high gain observer is that x̂ is not involved in (1.4), i.e., the
observer dynamics do not depend on τ .

In the following, instead of constructing the (implicit) function τ by a minimiza-
tion of a criterion introduced as a design tool, we explicitly construct a diffeomorphism
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NONLINEAR OBSERVER PREFERRED COORDINATES 2329

τe allowing us to express the dynamics of the observer in the x-coordinates.1 This has
been suggested by several researchers [9, 20, 3] in the case where the observer state ξ̂
and the state estimate x̂ are related by a diffeomorphism. We remove this restriction
and complete the preliminary results presented in [1].

In the example above, pulling the observer dynamics in the ξ-coordinates back
into the x-coordinates is seemingly impossible since x has dimension 3 whereas ξ̂ has
dimension 4. To overcome this difficulty, one could think of again using some kind
of projection/restriction. Our proposition is actually of a completely different kind.

Instead of considering ξ̂ as the estimation of the image by an immersion τ∗ of the state
x, we see it as the estimation of the image by a diffeomorphism τ∗e of an augmented
state (x,w). Fortunately with such a diffeomorphism τ∗e , we can use all of what has
been proposed for expressing the observer dynamics in the preferred coordinates in
that case. So with this augmentation of x into (x,w), the design of the commonly used
projection/restriction is replaced by the construction of the diffeomorphism τ∗e . We
show in section 2 that τ∗e can be obtained by “augmenting” the function x 7→ τ∗(x)
given in (1.3) or (1.5). For this, it turns out that it is sufficient to complement a full
column rank Jacobian into an invertible matrix.

The drawback of this approach however is that, because it is linked to particular
coordinate systems, the obtained diffeomorphism may not be defined everywhere.
Also, its image could be only a subset of the observer accessibility set (for ξ̂), namely,

the trajectories of ξ̂ may leave the image of the diffeomorphism or, equivalently, the
trajectories of (x̂, ŵ) may leave the domain of definition of the diffeomorphism. We
show in section 3 how this new problem can be overcome via an extension of the image
of the diffeomorphism. The key point here is that the given observer dynamics (1.2)
remain unchanged. Hence we deal with constraints on the observer state without
any kind of projection/restriction as commonly proposed (see [20, 3] for example). A
benefit of this is that, to preserve the convergence property, we do not require extra
assumptions such as convexity.

To illustrate our results, we continue the example of the harmonic oscillator with
unknown frequency and add one based on the bioreactor presented in [12]. We use a
high gain observer as starting point. But, as shown in [5], the same tools can be used
with a nonlinear Luenberger observer.

Our contribution relies on, or is inspired by, ideas of some known analysis results
such as continuously completing an independent set of vectors to a basis [25, 11],
diffeotopies [14], or h-cobordism [21]. We rephrase part of them when it is constructive
and therefore useful for observer design. Similarly, the constructive parts of our
proofs are in the main body of our text, those which are not constructive and never
used/commented on in remarks or examples are in the appendix or omitted to save
space.

1.2. Problem statement. We consider the given system with dynamics,

(1.6) ẋ = f(x) , y = h(x)

with x in Rn and y in Rq. Its solution at time t, with initial condition x0 at time 0
is denoted X(x0, t) and the corresponding output yx0(t). The observation problem is
to construct a dynamical system with input y and output x̂, which is supposed to be
an estimate of the system state x as long as the latter is in a specific set of interest

1We will refer to the x-coordinates as the “preferred coordinates” or “given coordinates” because
they are chosen by the user to describe the model dynamics.
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2330 P. BERNARD, V. ANDRIEU, AND L. PRALY

denoted A ⊆ Rn. As starting point, we assume this problem is (formally) already
solved but with maybe some implementation issues such as finding an expression of
τ . More precisely, we have the following assumption.

Assumption A (converging observer). There exist an open subset O of Rn con-
taining A, a C1 injective immersion τ∗ : O → Rm, and a set2 ϕT of pairs (ϕ, τ) of
locally Lipschitz functions such that we have

(1.7) τ(τ∗(x)) = x ∀x ∈ A

and, for any solution X(x0, t) of (1.6) which is defined and remains in A for t in

[0,+∞), the solution (X(x0, t), Ξ̂(ξ̂0, t; yx0
)) of the cascade system

(1.8) ẋ = f(x) , y = h(x) ,
˙̂
ξ = ϕ(ξ̂, x̂, y) , x̂ = τ(ξ̂)

with initial condition (x0, ξ̂0) in A × Rm at time 0, is also defined on [0,+∞) and
satisfies

(1.9) lim
t→+∞

∣∣∣Ξ̂(ξ̂0, t; yx0
)− τ∗(X(x0, t))

∣∣∣ = 0 .

Remark 1.

1. The convergence property given by (1.9) is in the observer state space only. Prop-
erty (1.7) is a necessary condition for this convergence to be transferred from the
observer state space to the system state space.

2. The need for pairing ϕ and τ comes from the dependence on x̂ = τ(ξ̂) of ϕ in (1.8).
This may imply a change to ϕ whenever we change τ . In the high gain approach, as
in (1.2), when A is bounded, thanks to the gain ` which can be chosen arbitrarily
large, ϕ can be paired with any locally Lipschitz function τ provided its values are
saturated whenever they are used as arguments of ϕ. On the other hand, if, as in
(1.4), ϕ does not depend on x̂, then it can be paired with any τ .

Example 1. For system (1.1), for any solution with initial condition x1 = x2 = 0,
we have no information on x3 from the only knowledge of (1.1) and the function
t 7→ y(t) = X1(x, t). This explains the restriction of our attention to the set

(1.10) A =

{
x ∈ R3 : x21 + x22 ∈

]
1

r
, r

[
, x3 ∈]0, r[

}
,

where r is some arbitrary strictly positive real number. This set is invariant by (1.1),
and the function (1.3) being an injective immersion on

(
R2 \ {(0, 0)}

)
× R>0, the

system is strongly differentially observable3 of order 4 on this set. Let O be any open
subset such that cl(A) ⊂ O ⊆

(
R2 × R>0

)
\ ({(0, 0)} × R>0), with cl denoting the

set closure. Then, cl(A) being a compact set, a set ϕT satisfying Assumption A is
made of pairs of a locally Lipschitz function τ satisfying (see [17] for example)

(1.11) x = τ(x1, x2,−x1x3,−x2x3) ∀x ∈ A

and the function ϕ defined in (1.2), where

(1.12) sat(s) = min
{
r3,max

{
s,−r3

}}
with the gain ` in (1.2) adapted to the properties of τ .

2The symbol ϕT is pronounced phitau.
3The system is said to be strongly differentially observable of order m if the function x 7→

(h(x), Lfh(x), . . . , Lm−1
f h(x)) is an injective immersion.
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Although the problem of observer design seems already solved under Assumption
A, it can be difficult to find a left- inverse τ of τ∗. In the following, we consider that
the function τ∗ and the set ϕT are given and we aim at avoiding the left inversion of
τ∗ by expressing the observer for x in the, maybe augmented, x-coordinates. More
precisely we aim at solving the following problem.

Our problem (observer in the x-coordinates). Assume that Assumption A is sat-
isfied; we wish to find an open set Oa ⊆ Rm and two mappings k and ` such that the
system defined in Rm

(1.13) ˙̂x = k(x̂, ŵ, y) , ˙̂w = `(x̂, ŵ, y) ,

defines an observer in A. In other words, for any initial condition x0 in A such that
the solution X(x0, t) of (1.6) is defined and remains in A for t in [0,+∞), the solution
(X(x0, t), X̂(x̂0, ŵ0, t; yx0

), Ŵ (x̂0, ŵ0, t; yx0
)), with initial condition (x̂0, ŵ0) in Oa, of

the cascade of system (1.6) with the observer (1.13) is also defined on [0,+∞) and
satisfies

(1.14) lim
t→+∞

∣∣∣X(x0, t)− X̂(x̂0, ŵ0, t; yx0
)
∣∣∣ = 0 .

1.3. A sufficient condition allowing us to express the observer in the
given x-coordinates. For the simpler case where the raw observer state ξ̂ has the
same dimension as the system state x, i.e., m = n, τ∗, in Assumption A is a diffeo-
morphism on O and we can express the observer in the given x-coordinates as

(1.15) ˙̂x =

(
∂τ∗

∂x
(x̂)

)−1
ϕ(τ∗(x̂), x̂, y)

which requires a Jacobian inversion only. However, although, by assumption, the
system trajectories remain in O where the Jacobian is invertible, we have no guarantee
the ones of the observer do. Therefore, to obtain convergence and completeness of
solutions, we must find means to ensure the estimate x̂ does not leave the set O or,
equivalently, that τ∗(x̂) remains in the image set τ∗(O). We address this point by
modifying τ∗ “marginally” in order to get τ∗(O) = Rm.

In the more complex situation where m > n, τ∗ is only an injective immersion.
In [1], it is proposed to augment the given x-coordinates in Rn with extra ones, say
w, in Rm−n and correspondingly to augment the given injective immersion τ∗ into a
diffeomorphism τ∗e : Oa → Rm, where Oa is an open subset of Rm, considered as an
augmentation of O, i.e., its Cartesian projection on Rn is contained in O and contains
cl(A).

To help us find such an appropriate augmentation, we have the following sufficient
condition.

Proposition 1.1. Assume Assumption A holds and A is bounded. Assume also
the existence of an open subset Oa of Rm containing cl(A×{0}) and of a diffeomor-
phism τ∗e : Oa → Rm satisfying

(1.16) τ∗e (x, 0) = τ∗(x) ∀x ∈ A

and

(1.17) τ∗e (Oa) = Rm ,
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and such that, with letting τex denote the x-component of the inverse of τ∗e , there
exists a function ϕ such that the pair (ϕ, τex) is in the set ϕT given by Assumption
A. Under these conditions, for any initial condition x0 in A such that the solu-
tion X(x0, t) of (1.6) is defined and remains in A for t in [0,+∞), the solution
(X(x0, t), X̂(x̂0, ŵ0, t; yx0), Ŵ (x̂0, ŵ0, t; yx0)), with initial condition (x̂0, ŵ0) in Oa, of
the cascade of system (1.6) with the observer

(1.18)

˙︷ ︷[
x̂
ŵ

]
=

(
∂τ∗e

∂(x̂, ŵ)
(x̂, ŵ)

)−1
ϕ(τ∗e (x̂, ŵ), x̂, y)

is also defined on [0,+∞) and satisfies

(1.19) lim
t→+∞

∣∣∣Ŵ (x̂0, ŵ0, t; yx0)
∣∣∣+
∣∣∣X(x0, t)− X̂(x̂0, ŵ0, t; yx0)

∣∣∣ = 0 .

The key point in the observer (1.18) is that, instead of left inverting the function
τ∗ via τ as in (1.7), we invert only a matrix.

Proof. See Appendix A for the proof.

With Proposition 1.1, we are left with finding a diffeomorphism τ∗e satisfying the
conditions listed in the statement:

• Equation (1.16) is about the fact that τ∗e is an augmentation, with addition
of coordinates, of the given injective immersion τ∗. It motivates the following
problem.

Problem 1 (immersion augmentation into a diffeomorphism). Given a set
A, an open subset O of Rn containing cl(A), and an injective immersion
τ∗ : O → τ∗(O) ⊂ Rm, the pair (τ∗a ,Oa) is said to solve the problem of
immersion augmentation into a diffeomorphism if Oa is an open subset of
Rm containing cl(A×{0}) and τ∗a : Oa → τ∗a (Oa) ⊂ Rm is a diffeomorphism
satisfying

τ∗a (x, 0) = τ∗(x) ∀x ∈ A .

We will present in section 2 conditions under which Problem 1 can be solved
via complementing a full column rank Jacobian of τ∗ into an invertible matrix,
i.e., via what we call Jacobian complementation.
• The condition expressed in (1.17), is about the fact that τ∗e is surjective onto

Rm. This motivates us to introduce the surjective diffeomorphism extension
problem.

Problem 2 (surjective diffeomorphism extension). Given an open subset Oa
of Rm, a compact subset K of Oa, and a diffeomorphism τ∗a : Oa → Rm, the
diffeomorphism τ∗e : Oa → Rm is said to solve the surjective diffeomorphism
extension problem if it satisfies

τ∗e (Oa) = Rm , τ∗e (z) = τ∗a (z) ∀z ∈ K .

Problem 2 will be addressed in section 3.
When Assumption A holds and A is bounded, by successively solvings Problems 1

and 2 with cl(A×{0}) ⊂ K ⊂ Oa, we get a diffeomorphism τ∗e guaranteed to satisfy
all the conditions of Proposition 1.1 except maybe the fact that the pair (ϕ, τex) is in
ϕT. How this last condition can be satisfied will be discussed in section 4 mainly via
a list of remarks.
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Throughout sections 2–3, we will show how, step by step, we can express a high
gain observer in the x-coordinates for the harmonic oscillator with unknown frequency.
We will also show that our approach enables to ensure completeness of solutions of
the observer presented in [12] for the bioreactor. The various difficulties we shall
encounter on this road will be discussed in section 5. In particular, we shall see how
they can be overcome thanks to a better choice of τ∗ and of the pair (ϕ, τ) given by
Assumption A.

2. About Problem 1: Augmentation of an immersion into a diffeomor-
phism. In [1], we find the following sufficient condition for the augmentation of an
immersion into a diffeomorphism.

Lemma 2.1 (see [1]). Let A be a bounded set, O be an open subset of Rn con-
taining cl(A), and τ∗ : O → τ∗(O) ⊂ Rm be an injective immersion. If there
exists a bounded open set Õ satisfying cl(A) ⊂ Õ ⊂ cl(Õ) ⊂ O and a C1 function
γ : O → Rm×(m−n) the values of which are m× (m− n) matrices satisfying

(2.1) det

(
∂τ∗

∂x
(x) γ(x)

)
6= 0 ∀x ∈ cl(Õ) ,

then there exists a strictly positive real number ε such that the following pair4 (τ∗a ,Oa)
solves Problem 1:

(2.2) τ∗a (x,w) = τ∗(x) + γ(x)w , Oa = Õ × Bε(0) .

In other words, an injective immersion τ∗ can be augmented into a diffeomorphism
τ∗a if we are able to find m− n columns γ which are C1 in x and which complement
the full column rank Jacobian ∂τ∗

∂x (x) into an invertible matrix.

Proof. See Appendix B for the proof.

Remark 2. Complementing an m × n full-rank matrix into an invertible one is
equivalent to finding m−n independent vectors orthogonal to that matrix. Precisely,
the existence of γ satisfying (2.1) is equivalent to the existence of a C1 function
γ̃ : cl(Õ)→ Rm×(m−n) the values of which are full-rank matrices satisfying

(2.3) γ̃(x)>
∂τ∗

∂x
(x) = 0 ∀x ∈ cl(Õ) .

Indeed, γ̃ satisfying (2.3) satisfies also (2.1) since the following matrices are invertible:(
∂τ∗

∂x (x)>

γ̃(x)>

)(
∂τ∗

∂x
(x) γ̃(x)

)
=

(
∂τ∗

∂x (x)> ∂τ
∗

∂x (x) 0
0 γ̃(x)>γ̃(x)

)
.

Conversely, given γ satisfying (2.1), γ̃ defined by the identity below satisfies (2.3) and
has full column rank:(
∂τ∗

∂x
(x) γ̃(x)

)
=

(
∂τ∗

∂x
(x) γ(x)

)(
I −

[
∂τ∗

∂x (x)> ∂τ
∗

∂x (x)
]−1

∂τ∗

∂x (x)>γ(x)

0 I

)
.

4For a positive real number ε and z0 in Rp, Bε(z0) is the open ball centered at z0 and with radius
ε.

D
ow

nl
oa

de
d 

09
/2

0/
18

 to
 9

3.
29

.2
10

.6
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2334 P. BERNARD, V. ANDRIEU, AND L. PRALY

2.1. Submersion case.

Proposition 2.2 (completion when τ∗(cl(Õ)) is a level set of a submersion).
Let A be a bounded set, Õ be a bounded open set, and O be an open set satisfying

cl(A) ⊂ Õ ⊂ cl(Õ) ⊂ O .

Let also τ∗ : O → τ∗(O) ⊂ Rm be an injective immersion. Assuming there exists a
C2 function F : Rm → Rm−n which is a submersion, at least on a neighborhood of
τ∗(Õ), satisfying

(2.4) F (τ∗(x)) = 0 ∀x ∈ Õ ,

then, with the C1 function x 7→ γ(x) = ∂F
∂ξ

T
(τ∗(x)), the matrix in (2.1) is invertible

for all x in Õ and the pair (τ∗a ,Oa) defined in (2.2) solves Problem 1.

Proof. For all x in cl(Õ), ∂τ
∗

∂x (x) is right invertible and we have ∂F
∂ξ (τ∗(x))∂τ

∗

∂x (x) =

0. Thus, the rows of ∂F∂ξ (τ∗(x)) are orthogonal to the column vectors of ∂τ
∗

∂x (x) and are
independent since F is a submersion. The Jacobian of τ∗ can therefore be completed

with ∂F
∂ξ

T
(τ∗(x)). The proof is completed with Lemma 2.1.

Remark 3. Since ∂τ∗

∂x is of constant rank n on O, the existence of such a function
F is guaranteed, at least locally, by the constant rank theorem.

Example 2 (continuation of Example 1). Elimination of the x̂i in the 4 equations
given by the injective immersion τ∗ defined in (1.3) leads to the function F (ξ) =
ξ2ξ3 − ξ1ξ4 satisfying (2.4). It follows that a candidate for complementing

(2.5)
∂τ∗

∂x
(x) =


1 0 0
0 1 0
−x3 0 −x1

0 −x3 −x2


is γ(x) =

∂F

∂ξ
(τ∗(x))T = (x2x3,−x1x3, x2,−x1)T .

This vector is nothing but the column of the minors of the matrix (2.5). It gives as
determinant (x2x3)2 + (x1x3)2 + x22 + x21 which is never zero on O.

Then, it follows from Lemma 2.1, that, for any bounded open set Õ such that
A ⊂ cl(Õ) ⊂ O the following function is a diffeomorphism on Õ × Bε(0) for ε
sufficiently small:

τ∗a (x,w) = (x1 + x2x3w, x2 − x1x3w,−x1x3 + x2w,−x2x3 − x1w) .

Picking τ∗e = τ∗a , (1.18) gives us the following observer written in the given x-
coordinates augmented with w :

˙︷ ︷
x̂1
x̂3
x̂2
ŵ

=


1 x̂3ŵ x̂2ŵ x̂2x̂3

−x̂3ŵ 1 −x̂1ŵ −x̂1x̂3
−x̂3 ŵ −x̂1 x̂2
−ŵ −x̂3 −x̂2 −x̂1


−1 


x̂2 − x̂1x̂3ŵ
−x̂1x̂3 + x̂2ŵ
−x̂2x̂3 − x̂1ŵ
sat(x̂1x̂

2
3)

+


`k1
`2k2
`3k3
`4k4

 [y − x̂1]

 .
Unfortunately the matrix to be inverted is nonsingular for (x̂, ŵ) in Õ × Bε(0) only
and we have no guarantee that the trajectories of this observer remain in this set.
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This shows that a further modification transforming τ∗a into τ∗e is needed to make

sure that τ∗e
−1(ξ̂) belongs to this set whatever ξ̂ in R4. This is Problem 2.

The drawback of this Jacobian complementation method is that it asks for knowl-
edge of the function F . It would be better to simply have a universal formula relating
the entries of the columns to be added to those of ∂τ∗

∂x .

2.2. The P̃ (m,n) problem. Finding a universal formula for the Jacobian com-
plementation problem amounts to solving the following problem.

Definition 2.3. (P̃ [m,n] problem) For a pair of integers (m,n) such that 0 <
n < m, a C1 matrix function γ̃ : Rm×n → Rm×(m−n) solves the P̃ [m,n] problem
if for any m × n matrix T = (Tij) of rank n, the matrix

(
T γ̃(T)

)
is invertible or,

equivalently, the matrix γ̃(T) has rank m− n and satisfies γ̃(T)>T = 0 .

As a consequence of a theorem due to Eckmann [11, section 1.7, p. 126] and
Lemma 2.1, we have the following.

Theorem 2.4. The P̃ [m,n] problem is solvable by a C1 function γ̃ if and only if
the pair (m,n) is one of the following 3 pairs:

(2.6) (> 2,m− 1) or (4, 1) or (8, 1) .

Moreover, for each of these pairs and for any bounded set A, bounded open set Õ, and
open set O satisfying

cl(A) ⊂ Õ ⊂ cl(Õ) ⊂ O ,

and any injective immersion τ∗ : O → τ∗(O) ⊂ Rm, the pair (τ∗a ,Oa) defined in (2.2)

with γ(x) = γ̃(
∂τ∗a
∂x (x)) solves Problem 1.

Proof of only if. This is a direct consequence of Remark 2, of the facts that if
P̃ [m,n] has a solution, P̃ [m−1, n−1] must have one, and that the only parallelizable
spheres are S1, S3, and S7 (see [8]) and of the following.

Theorem 2.5 (see [11, section 1.7, p. 126]). For m > n, there exists a continuous
function T ∈ Rm×n 7→ γ̃1(T) ∈ Rm with nonzero values and satisfying

γ̃1(T)TT = 0 ∀T ∈ Rm×n : Rank(T) = n

if and only if (m,n) is in one of the following 4 pairs:

(≥ 2,m− 1) or (even, 1) or (7, 2) or (8, 3).

A detailed version of the proof can be found in [6].

Proof of if. For (m,n) equal to (4, 1) or (8, 1), respectively, possible solutions are

γ̃(T) =


−T2 T3 T4

T1 −T4 T3

−T4 −T1 −T2

T3 T2 −T1

 , γ̃(T) =



T2 T3 T4 T5 T6 T7 T8

−T1 T4 −T3 T6 −T5 −T8 T7

−T4 −T1 T2 T7 T8 −T5 −T6

T3 −T2 −T1 T8 −T7 T6 −T5

−T6 −T7 −T8 −T1 T2 T3 T4

T5 −T8 T7 −T2 −T1 −T4 T3

T8 T5 −T6 −T3 T4 −T1 −T2

−T7 T6 T5 −T4 −T3 T2 −T1


,
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where Tj is the jth component of the vector T. For n = m− 1, we have the identity

det (T γ̃(T)) =
m∑
j=1

γ̃j(Tij)Mj,m(Tij) ,

where γ̃j is the jth component of the vector-valued function γ̃ and the Mj,m, be-
ing the cofactors of (T γ̃(T)) computed along the last column, are polynomials in
the given components Tij . At least one of the Mj,m is nonzero (because they are
minors of dimension n of T which is full-rank). So it is sufficient to take γ̃j(Tij) =
Mj,m(Tij).

In the following example we show how by exploiting some structure we can reduce
the problem to one of these 3 pairs.

Example 3 (continuation of Example 2). In Example 2, we have complemented
the Jacobian (2.5) with the gradient of a submersion and observed that the compo-
nents of this gradient are actually cofactors. We now know that this is consistent with
the case n = m−1. But we can also take advantage from the upper triangularity of the
Jacobian (2.5) and complement only the vector (−x1,−x2) by, for instance, (x2,−x1).
The corresponding vector γ is γ(x) = (0, 0, x2,−x1). Here again, with Lemma 2.1,
we know that, for any bounded open set Õ such that cl(A) ⊂ Õ ⊂ cl(Õ) ⊂ O the
function

τ∗a (x,w) = (x1 , x2 , −x1x3 + x2w , −x2x3 − x1w)

is a diffeomorphism on Õ × Bε(0). In fact, in this particular case ε can be arbitrary,
no need for it to be small. However, the singularity at x̂1 = x̂2 = 0 remains and (1.17)
is still not satisfied.

Given the very small number of cases where a universal formula exists, we now
look for a more general solution to the Jacobian complementation problem.

2.3. Wazewski theorem. Historically, the Jacobian complementation problem
was first addressed by Wazewski (see [25]). His formulation was the following: Given
mn continuous functions Tij : O ⊂ Rn → R, look for m(m− n) continuous functions
γkl : O → R such that the following matrix is invertible for all x in O:

(2.7) P (x) =
(
T(x) γ(x)

)
.

The difference from the previous section, is that here, we look for continuous functions
γ of x in Rn instead of continuous functions γ of T in Rm×n.

Wazewski established that this other version of the problem admits a far more
general solution.

Theorem 2.6 ([25, Theorems 1 and 3] and [11, p. 127]). If O, equipped with
the subspace topology of Rn, is a contractible space, then there exists a C∞ function
γ making the matrix P (x) in (2.7) invertible for all x in O.

The reader is referred to [11, p. 127] or [10, pp. 406–407] and to [25, Theorems
1 and 3] for the complete proof of existence of a continuous function γ. We give the
main constructive points of this proof below. But before this, let us give the following
corollary obtained as a consequence of Lemma 2.1.

Corollary 2.7. Let A be a bounded set, O be an open subset of Rn containing
cl(A) and which, equipped with the subspace topology of Rn, is a contractible space.
Let also τ∗ : O → τ∗(O) ⊂ Rm be an injective immersion. There exists a C1 function
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γ such that, for any bounded open set Õ satisfying

cl(A) ⊂ Õ ⊂ cl(Õ) ⊂ O

we can find a strictly positive real number ε such that the pair (τ∗a ,Oa) defined in (2.2)
solves Problem 1.

About the construction of γ: The proof of Theorem 2.6 given by Wazewski is
based on Remark 2, noting that, if we have the decomposition

T(x) =

(
A(x)
B(x)

)
with A(x) invertible on some given subset < of O, then

γ(x) =

(
C(x)
D(x)

)
satisfies (2.3) on < if and only if D(x) is invertible on < and we have

(2.8) C(x) = −(AT (x))−1B(x)TD(x) ∀x ∈ < .

Thus, C is imposed by the choice of D and choosing D invertible is enough to build
γ on <.

Also, if we already have a candidate

P (x) =

(
A(x) C0(x)
B(x) D0(x)

)
on a boundary ∂< of <, then, necessarily, if A(x) is invertible for all x in ∂<, then
D0(x) is invertible and C0(x) = −(AT (x))−1B(x)TD0(x) for all x in ∂<. Thus, to
extend the construction of a continuous function γ inside < from its knowledge on the
boundary ∂<, it suffices to pick D as any invertible matrix satisfying D = D0 on ∂<.
Because we can propagate continuously γ from one boundary to the other, Wazewski
deduces from these two observations that, it is sufficient to partition the set O into
adjacent sets <i where a given n×n minor Ai is invertible. This is possible since T is
full-rank on O. When O is a parallelepiped, he shows that there exists an ordering of
the <i such that the continuity of each Di can be successively ensured. We illustrate
this construction in Example 4 below.

Example 4. Consider the function

T(x) =


1 0 0
0 1 0
−x3 0 −x1

0 −x3 −x2
∂℘
∂x1

x3
∂℘
∂x2

x3 ℘

 , ℘(x1, x2) = max

{
0,

1

r2
− (x21 + x22)

}4

.

T(x) has full rank 3 for any x in R3, since ℘(x1, x2) 6= 0 when x1 = x2 = 0. To
follow Wazewski’s construction, let δ be a strictly positive real number and consider
the following 5 regions of R3 (see Figure 1):

<1 = ]−∞,−δ]× R2 , <2 = [−δ, δ]× [δ,+∞]× R ,
<3 = [−δ, δ]2 × R , <4 = [−δ, δ]× [−∞,−δ]× R , <5 = [δ,+∞[×R2 .

We select δ sufficiently small in such a way that ℘ is not 0 in <3.
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−δ

−δ

δ

δ

<3

<5

<2

<4

<1

x1

x2

Fig. 1. Projections of the regions <i on R2.

We start Wazewski’s algorithm in <3. Here, the invertible minor A is given by
rows 1, 2, and 5 of T (full-rank lines of T) and B by rows 3 and 4. With picking D as
the identity, C is (AT )−1B according to (2.8). D gives rows 3 and 4 of γ and C gives
rows 1, 2, and 5 of γ.

Then we move to the region <2. There the matrix A is given by rows 1, 2, and
4 of T, B by rows 3 and 5. Also D, along the boundary between <3 and <2, is given
by rows 3 and 5 of γ obtained in the previous step. We extrapolate this inside <2 by
keeping D constant in planes x1 = constant. An expression for C and therefore for γ
follows.

We do exactly the same thing for <4.
Then we move to the region <1. There the matrix A is given by rows 1, 2, and 3

of T, B by rows 4 and 5. Also D, along the boundary between <1 and <2, between
<1 and <3, and between <1 and <4, is given by rows 4 and 5 of γ obtained in the
previous steps. We extrapolate this inside <1 by keeping D constant in planes x2 =
constant. An expression for C and therefore for γ follows.

We do exactly the same thing for <5.
Note that this construction produces a continuous γ, but we could have extrapo-

lated D in a smoother way to obtain γ as smooth as necessary.

Although Wazewski’s method provides a more general answer to the problem
of Jacobian complementation than the few solvable P̃ [m,n] problems, the explicit
expressions of γ given in section 2.2 are preferred in practice (when the couple (m,n)
is appropriate) to Wazewski’s costly computations.

3. About Problem 2: Image extension of a diffeomorphism. We study
now how a diffeomorphism can be augmented to make its image be the whole set Rm,
i.e., to make it surjective.

3.1. A sufficient condition. There is a rich literature reporting very advanced
results on the diffeomorphism extension problem. In the following some of the tech-
niques are inspired from [14, Chapter 8] and [21, pp. 2, 7 to 14, and 16 to 18] (among
others). Here we are interested in the particular aspect of this topic which is the
diffeomorphism image extension as described by Problem 2. A very first necessary
condition for this problem is in the following remark.

Remark 4. Since τ∗e , obtained solving Problem 2, makes the set Oa diffeomorphic
to Rm, Oa must be contractible.

One of the key technical property which will allow us to solve Problem 2 can be
phrased as follows.
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Definition 3.1 (condition B). An open subset E of Rm is said to verify condi-
tion B if there exist a C1 function κ : Rm → R, a bounded5 C1 vector field χ, and a
closed set K0 contained in E such that

1. E = {z ∈ Rn, κ(z) < 0},
2. K0 is globally attractive for χ,
3. we have the following transversality property:

∂κ

∂z
(z)χ(z) < 0 ∀z ∈ Rm : κ(z) = 0.

The two main ingredients of this condition are the function κ and the vector field
χ which, both, have to satisfy the transversality property B.3. In the case where only
the function κ is given satisfying B.1 and with no critical point on the boundary of
E, its gradient could play the role of χ. But then for K0 to be globally attractive
we need at least to remove all the possible critical points that κ could have outside
K0. This task is performed, for example, on Morse functions in the proof of the
h-cobordism theorem [21]. We are in a much simpler situation when χ is given and
makes E forward invariant.

Lemma 3.2. Let E be a bounded open subset of Rm, χ be a bounded C1 vector
field, and K0 be a compact set contained in E such that

1. K0 is globally asymptotically stable for χ,
2. E is forward invariant for χ.

For any strictly positive real number d, there exists a bounded set E such that

cl(E) ⊂ E ⊂ {z ∈ Rm, inf
zE∈E

|z − zE | ≤ d}

and E verifies condition B.

This lemma roughly says that if E does not satisfy conditions B.1 or B.3 but is
forward invariant for χ, then condition B is satisfied by an arbitrarily close superset
of E. Its proof is given in Appendix E.

Our main result on the diffeomorphism image extension problem is the following.

Theorem 3.3 (image extension). Let Oa be an open subset of Rm and τ∗a :
Oa → Rm be a diffeomorphism. If

(a) either τ∗a (Oa) verifies condition B,
(b) or Oa is C2-diffeomorphic to Rm and τ∗a is C2,

then for any compact set K in Oa, there exists a diffeomorphism τ∗e : Oa → Rm
solving Problem 2.

The proof of case (a) of this theorem is given in section 3.2. It provides an explicit
construction of τ∗e . The proof of case (b) can be found in Appendix D. For the time
being, we observe that a direct consequence is the following.

Corollary 3.4. Let A be a bounded subset of Rn, Oa be an open subset of Rm
containing cl(A× {0}), and τ∗a : Oa → τ∗a (Oa) be a diffeomorphism such that

(a) either τ∗a (Oa) verifies condition B,
(b) or Oa is C2-diffeomorphic to Rm and τ∗a is C2.

Then, there exists a diffeomorphism τ∗e : Oa → Rm, such that

τ∗e (Oa) = Rm , τ∗e (x, 0) = τ∗a (x, 0) ∀x ∈ A .

5If not, replace χ by χ√
1+|χ|2

.
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Thus, if on top of that, the pair (τ∗a ,Oa) solves Problem 1, then (τ∗e ,Oa) solves Prob-
lems 1 and 2.

3.2. Proof of part (a) of Theorem 3.3. We have the following technical
lemma, a constructive proof of which is given in Appendix C.

Lemma 3.5. Let E be an open strict subset of Rm verifying condition B. For any
closed subset K of E, lying at a strictly positive distance from the boundary of E,
there exists a diffeomorphism φ: Rm → E, such that φ is the identity function on K.

In the case (a) of Theorem 3.3, we suppose that τ∗a (Oa) satisfies B. Now, τ∗a being
a diffeomorphism on an open set Oa, the image of any compact subset K of Oa is a
compact subset of τ∗a (Oa). According to Lemma 3.5, there exists a diffeomorphism φ
from Rm to τ∗a (Oa) which is the identity on τ∗a (K). Thus, the function τ∗e = φ−1 ◦τ∗a
solves Problem 2 and the theorem is proved.

Example 5 (continuation of Example 2). In Example 2, we have introduced the
function

F (ξ) = ξ2ξ3 − ξ1ξ4 ,
1

2
ξTMξ

as a submersion on R4\{0} satisfying

(3.1) F (τ∗(x)) = 0,

where τ∗ is the injective immersion given in (1.3). With it we have augmented τ∗ as

τ∗a (x,w) = τ∗(x) +
∂F

∂ξ

T

(τ∗(x))w = τ∗(x) +Mτ∗(x)w

which is a diffeomorphism on Oa = Õ×]− ε, ε[ for some strictly positive real number
ε.

To modify τ∗a in τ∗e satisfying τ∗e (Oa) = R4, we let K be the compact set

K = cl(τ∗a (A× {0})) ⊂ τ∗a (Oa) ⊂ R4 .

With Lemma 3.5, we know that, if τ∗a (Oa) verifies condition B, there exists a diffeo-
morphism φ defined on R4 such that φ is the identity function on the compact set K
and φ(R4) = τ∗e (Oa). In that case, as seen above, the diffeomorphism τ∗e = φ−1 ◦ τ∗a
defined on Oa is such that τ∗e = τ∗a on A × {0} and τ∗e (Oa) = R4, i.e., would be a
solution to Problems 1 and 2. Unfortunately this is impossible. Indeed, due to the
observability singularity at x1 = x2 = 0, Õ (and thus Oa) is not contractible. There-
fore, there is no diffeomorphism τ∗e such that τ∗e (Oa) = R4. We will see in section
5 how this problem can be overcome. For the time being, we show that it is still
possible to find τ∗e such that τ∗e (Oa) covers “almost all” R4. The idea is to find an
approximation E of τ∗a (Oa) verifying condition B and apply the same method on E.
Indeed, if E is close enough to τ∗a (Oa), one can expect to have τ∗e (Oa) “almost equal
to” R4.

With (3.1) and since M2 = I, we have, F (τ∗a (x,w)) = |τ∗(x)|2 w. Since Oa is
bounded, there exists δ > 0 such that the set E =

{
ξ ∈ R4 : F (ξ)2 < δ

}
contains

τ∗a (Oa) and thus the compact set K. Let us show that E verifies condition B. We
pick

κ(ξ) = F (ξ)2 − δ =

(
1

2
ξTMξ

)2

− δ
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and consider the vector field χ,

χ(ξ) = −2
∂κ

∂ξ
(ξ) = −[ξTMξ]Mξ or, more simply, χ(ξ) = −ξ .

The latter implies the transversality property B.3 is verified. Besides, the closed set
K0 = {0} is contained in E and is globally attractive for the vector field χ.

Then Lemma 3.5 gives the existence of a diffeomorphism φ : R4 → E which is the
identity on K and verifies φ(R4) = E. We obtain an expression of φ by following the
constructive proof of this lemma (see Appendix C). Let Eε be the set

Eε =

{
ξ ∈ R4 :

(
1

2
ξTMξ

)2

< e−4ε δ

}
.

It contains K. Let also ν : [−ε,+∞[→ R and t : R4 \Eε → R be the functions defined
as

(3.2) ν(t) =
(t+ ε)2

2ε+ t
, t(ξ) =

1

4
ln

(
1
2ξ
TMξ

)2
δ

.

t(ξ) is the time that a solution of ξ̇ = χ(ξ) = −ξ with initial condition ξ needs to
reach the boundary of E, i.e., e−t(ξ)ξ belongs to the boundary of E. From the proof
of Lemma 3.5, we know the function φ : R4 → E, defined as

(3.3) φ(ξ) =

{
ξ if

(
1
2ξ
TMξ

)2 ≤ e−4εδ,
e−ν(t(ξ))ξ otherwise,

is a diffeomorphism φ : R4 → E which is the identity on K and verifies φ(R4) = E.
As explained above, we use φ to replace τ∗a by the diffeomorphism τ∗e = φ−1 ◦ τ∗a

also defined on Oa. But, because τ∗a (Oa) is a strict subset of E, τ∗e (Oa) is a strict
subset of R4, i.e., (1.17) is not satisfied. Nevertheless, for any trajectory of the

observer t 7→ ξ̂(t) in R4, our estimate defined by (x̂, ŵ) = τ∗e
−1(ξ̂) will be such that

τ∗a (x̂, ŵ) remains in E, along this trajectory, i.e., |τ∗(x̂)|2 ŵ < δ. This ensures that,
far from the observability singularity where |τ∗(x̂)| = 0, ŵ remains sufficiently small
to keep the invertibility of the Jacobian of τ∗e . But we still have a problem close to
the observability singularity, i.e., when (x̂1, x̂2) is close to the origin. We shall see
in section 5 how to avoid this difficulty via a better choice of the initial injective
immersion τ∗.

3.3. Application: Bioreactor. As a more practical illustration we consider
the model of a bioreactor presented in [12]:

ẋ1 =
a1x1x2
a2x1 + x2

− ux1 , ẋ2 = − a3a1x1x2
a2x1 + x2

− ux2 + ua4 , y = x1 ,

where the ai’s are strictly positive real numbers and the control u verifies 0 <
umin < u(t) < umax < a1. This system evolves in the forward invariant set O =
{x ∈ R2 : x1 > ε1 , x2 > −a2x1}.. A high gain observer design leads us to consider
the function τ∗ : O → R2 defined as

τ∗(x1, x2) = (x1, ẋ1|u=0) =

(
x1,

a1x1x2
a2x1 + x2

)
.
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It is a diffeomorphism onto

τ∗(O) =
{
ξ ∈ R2 : ξ1 > 0 , a1ξ1 > ξ2

}
.

The image by τ∗ of the bioreactor dynamics is of the form

ξ̇1 = ξ2 + g1(ξ1)u , ξ̇2 = ϕ2(ξ1, ξ2) + g2(ξ1, ξ2)u

for which the following high gain observer can be built:

(3.4)
˙̂
ξ1 = ξ̂2 + g1(ξ̂1)u− k1`(ξ̂1 − y) ,

˙̂
ξ2 = ϕ2(ξ̂1, ξ̂2) + g2(ξ̂1, ξ̂2)u− k2`(ξ̂1 − y) ,

where k1 and k2 are strictly positive real numbers and ` sufficiently large. As in [12],
τ∗ being a diffeomorphism, the dynamics of this observer in the x-coordinates are

(3.5) ˙̂x =

 a1x̂1x̂2

a2x̂1+x̂2
− ux̂1

−a3a1x̂1x̂2

a2x̂1+x̂2
− ux̂2 + ua4

+`

 1 0

−1 (a2x̂1+x̂2)
2

a1a2x̂2
1

 k1

k2

 (ξ̂1−y) .

Unfortunately the right-hand side is singular at x̂1 = 0 and x̂2 = −a1x̂1. O being
forward invariant, the system trajectories stay away from the singularity. But nothing
guarantees the same property holds for the observer trajectories given by (3.5). In
other words, since τ∗ is already a diffeomorphism, Problem 1 is solved with m = n,
τ∗a = τ∗, and Oa = O. But (1.17) is not satisfied, i.e., Problem 2 must be solved.

To construct the extension τ∗e of τ∗a , we view the image τ∗a (Oa) as the intersection
τ∗a (Oa) = E1 ∩ E2 with

E1 =
{

(ξ1, ξ2) ∈ R2, ξ1 > ε1
}
, E2 =

{
(ξ1, ξ2) ∈ R2, a1ξ1 > ξ2

}
.

This exhibits the fact that τ∗a (Oa) does not satisfy the condition B since its boundary
is not C1. We could smoothen this boundary to remove its “corner.” But we prefer
to exploit its particular “shape” and proceed as follows:

1. We build a diffeomorphism φ1 : R2 → E1 which acts on ξ1 without changing ξ2.

2. We build a diffeomorphism φ2 : R2 → E2 which acts on ξ2 without changing ξ1.

3. Denoting φ = φ2 ◦ φ1 : R2 → E1 ∩ E2, we take τ∗e = φ−1 ◦ τ∗a : Oa → R2.

To build φ1 and φ2, we follow the procedure given in the proof of Lemma 3.5 since
E1 and E2 satisfy condition B with

κ1(ξ) = ε1−ξ1 , κ2(ξ) = ξ2−a1ξ1 , χ1(ξ) =

(
−(ξ1 − 1)

0

)
, χ2(ξ) =

(
0

−(ξ2 + 1)

)
.

By following the same steps as in Example 5, with ε an arbitrary small strictly positive
real number and ν defined in (3.2), we obtain
(3.6)∣∣∣∣∣∣∣∣∣∣
t1(ξ) = ln 1−ξ1

1−ε ,

Eε,1 =
{

(ξ1, ξ2) ∈ R2, ξ1 > 1− 1−ε
eε

}
,

φ1(ξ) =

{
ξ if ξ ∈ Eε,1
ξ1−1

eν(t1(ξ)) + 1 otherwise,

∣∣∣∣∣∣∣∣∣∣
t2(ξ) = ln ξ2+1

a1ξ1+1 ,

Eε,2 =
{

(ξ1, ξ2) ∈ R2, ξ2 ≤ a1ξ1+1
eε − 1

}
,

φ2(ξ) =

{
ξ if ξ ∈ Eε,2 ,
ξ2+1

eν(t2(ξ)) − 1 otherwise.

We remind the reader that, in the ξ̂-coordinates, the observer dynamics are not
modified. The difference between using τ∗ or τ∗e is seen in the x̂-coordinates only.
And, by construction, it has no effect on the system trajectories since we have

τ∗(x) = τ∗e (x) ∀x ∈ O “− ε” .
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∂τ∗

∂x non invertible

∂τ∗

∂x invertible

Fig. 2. Bioreactor and observers solutions in the ξ̂-coordinates

As a consequence the difference between τ∗ and τ∗e is significant only during the
transient, making sure, for the latter, that x̂ never reaches a singularity of the Jacobian
of τ∗e .

We present in Figure 2 the results in the ξ̂ coordinates (to allow us to see the
effects of both τ∗ and τ∗e ) of a simulation with (similar to [12])

a1 = a2 = a3 = 1 , a4 = 0.1 ,
u(t) = 0.08 for t ≤ 10 , = 0.02 for 10 ≤ t ≤ 20 , = 0.08 for t ≥ 20 ,

x(0) = (0.04, 0.07), x̂(0) = (0.03, 0.09), ` = 5.

The solid black curves are the singularity locus. The red (= solid dark) curve
represents the bioreactor solution. The magenta (= light grey dash-dot) curve repre-
sents the solution of the observer built with τ∗e . It evolves freely in R2 according to
the dynamics (3.4), not worried by any constraints. The blue (= dark dashed) curve
represents its image by φ which brings it back inside the constrained domain where
τ∗−1 can then be used. This means these two curves represent the same object but
are viewed in different coordinates.

The solution of the observer built with τ∗ would coincide with the magenta (=
light grey dash-dot) curve up to the point it reaches one solid black curve of a sin-
gularity locus. At that point it leaves τ∗(O) and consequently stops existing in the
x-coordinates.

As proposed in [20, 3], instead of keeping the raw dynamics (3.4) untouched as

above, another solution would be to modify them to force ξ̂ to remain in the set τ∗(O).
For instance, taking advantage of the convexity of this set, the modification proposed
in [3] consists in adding to (3.4) the term

(3.7) M(ξ̂) = −g S∞
∂h

∂ξ̂
(ξ̂)T h(ξ̂) , h(ξ̂) =

(
max{κ1(ξ̂) + ε, 0}2
max{κ2(ξ̂) + ε, 0}2

)
with S∞ a symmetric positive definite matrix depending on (k1, k2, `), ε an arbitrary
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small real number, and g a sufficiently large real number. The solution corresponding
to this modified observer dynamics is shown in Figure 2 with the dotted black curve.
As expected, it stays away from the the singularities locus in a very efficient way.
But, for this method to apply, we have the restriction that τ∗(O) should be convex,

instead of satisfying the less restrictive condition B. Moreover, to guarantee that ξ̂ is
in τ∗(O), g has to be large enough and even larger when the measurement noise is
larger. On the contrary, when the observer is built with τ∗e , there is no need to tune
properly any parameter to obtain convergence, at least theoretically. Nevertheless
there may be some numerical problems when ξ̂ becomes too large or equivalently φ(ξ̂)
is too close to the boundary of τ∗(O). To overcome this difficulty we can select the
“thickness” of the layer (parameter ε in (3.6)) sufficiently large. Actually instead of
“opposing” the two methods, we suggest combining them. The modification (3.7)

makes sure ξ̂ does not go too far outside the domain, and τ∗e makes sure that x̂ does
not cross the singularity locus.

4. About the requirement that (τex, ϕ) is in ϕT in Proposition 1.1.
Throughout sections 2 and 3, we have given conditions under which it is possible to
solve Problems 1 and 2 when Assumption A holds and A is bounded.

However, to apply Proposition 1.1 we need τex, the x-component of the inverse
τe of τ∗e , solution of Problem 2, to be associated with a function ϕ such that the pair
(ϕ, τex) is in the set ϕT given by Assumption A.

Fortunately pairing a function ϕ with a function τex obtained from a left-inverse
of τ∗e is not as difficult as it seems, at least for general purpose observer designs such
as high gain observers or nonlinear Luenberger observers.

Indeed, we have already observed in point 2 of Remark 1 that if, as for Luenberger
observers, there is a pair, in the set ϕT, the component ϕ of which does not depend
on τ , then we can associate this ϕ with any τex.

Also, for high gain observers, we need only that τex, used as an argument of ϕ,
be globally Lipschitz. This is obtained by modifying, if needed, this function outside
a compact set, as the saturation function does in (1.2).

5. Modifying τ∗ and ϕT given by Assumption A. The sufficient conditions,
given in sections 2 and 3, to solve Problems 1 and 2 in order to fulfill the requirements
of Proposition 1.1, impose conditions on the dimensions or on the domain of injectivity
O which are not always satisfied: contractibility for Jacobian complementation and
diffeomorphism extension, limited number of pairs (m,n) for the P̃ [m,n] problem,
etc. Expressed in terms of our initial problem, these conditions are limitations on
the data f , h, and τ∗ that we considered. In the following, we show by means of
examples that, in some cases, these data can be modified in such a way that our
various tools apply and give a satisfactory solution. Such modifications are possible
since we restrict our attention to system solutions which remain in A. Therefore we
can modify arbitrarily the data f , h, and τ∗ outside this set. For example we can add
arbitrary “fictitious” components to the measured output y as long as their value is
known on A.

5.1. For contractibility. It may happen that the set O attached to τ∗ is not
contractible, for example, due to an observability singularity. We have seen that Ja-
cobian complementation and image extension may be prevented by this (see Theorem
2.6 and Remark 4). A possible approach to overcome this difficulty when we know
the system trajectories stay away from the singularities is to add fictitious output
expressing this information.
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Example 6 (continuation of Example 3). The observer we have obtained at
the end of Example 3 for the harmonic oscillator with unknown frequency is not
satisfactory, in particular, because of the singularity at x̂1 = x̂2 = 0. To overcome
this difficulty we add, to the given measurement y = x1, the following

y2 = h2(x) = ℘(x1, x2)x3
with

℘(x1, x2) = max

{
0,

1

r2
− (x21 + x22)

}4

.

By construction this function is zero on A and y2 can thus be considered as an
extra measurement. The interest of y2 is to give access to x3 even at the singularity
x1 = x2 = 0. Indeed, consider the new function τ∗ defined as

(5.1) τ∗(x) = (x1 , x2 , −x1x3 , −x2x3 , ℘(x1, x2)x3) .

τ∗ is C1 on R3 and its Jacobian is

(5.2)
∂τ∗

∂x
(x) =


1 0 0
0 1 0
−x3 0 −x1

0 −x3 −x2
∂℘
∂x1

x3
∂℘
∂x2

x3 ℘

 ,

which has full-rank 3 on R3, since ℘(x1, x2) 6= 0 when x1 = x2 = 0. It follows that the
singularity has disappeared and this new τ∗ is an injective immersion on the entire
R3 which is contractible.

We have shown in Example 4 how Wazewski’s algorithm allows us to get, in this
case, a C2 function γ : R3 → R4 satisfying

det

(
∂τ∗

∂x
(x) γ(x)

)
6= 0 ∀x ∈ R3 .

This gives us τ∗a (x,w) = τ∗(x) + γ(x)w which is a C2-diffeomorphism on R3×Bε(0)
with ε sufficiently small.

Furthermore, Oa = R3 × Bε(0) being now diffeomorphic to R5, Corollary 3.4
applies and provides an extension τ∗e of τ∗a satisfying Problems 1 and 2.

5.2. For a solvable P̃ (m,n) problem. If we are in a case that cannot be
reduced to a solvable P̃ [m,n] problem, we may try to modify m by adding arbitrary
rows to ∂τ∗

∂x . We illustrate this technique with the following example.

Example 7 (continuation of Example 6). In Example 6, by adding the fictitious
measured output y2 = h2(x), we have obtained another function τ∗ for the harmonic
oscillator with unknown frequency which is an injective immersion on R3. In this case,
we have n = 3 and m = 5 which gives a pair not in (2.6). But, as already exploited in
Example 3, the first 2 rows of the Jacobian ∂τ∗

∂x in (5.2) are independent for all x in
R3. It follows that our Jacobian complementation problem reduces to complementing
the vector (−x1,−x2, ℘(x1, x2)). This is a problem with pair (3, 1) which is not in
(2.6) either. Instead, the pair (4, 1) is, meaning that the following vector can be
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complemented via a universal formula (−x1,−x2, ℘(x1, x2), 0) . We have added a zero
component, without changing the full rank property. Actually this vector is extracted
from the Jacobian of

(5.3) τ∗(x) = (x1 , x2 , −x1x3 , −x2x3 , ℘(x1, x2)x3 , 0) .

In the high gain observer paradigm, this zero we add can come from another (fictitious)
measured output y3 = 0 . A complement of (−x1,−x2, ℘(x1, x2), 0) is

x2 −℘ 0
−x1 0 −℘

0 −x1 −x2
℘ x2 −x1

 .

It gives the function

τ∗a (x,w) =
(
x1 , x2 , [−x1x3 + x2w1 − ℘(x1, x2)w2] , [−x2x3 − x1w1 − ℘(x1, x2)w3] ,

[℘(x1, x2)x3 − x1w2 − x2w3] , [℘(x1, x2)w1 + x2w2 − x1w3)]
)
,

the Jacobian determinant of which is (x21 + x22 + ℘(x1, x2)2)2 which is nowhere 0 on
R6. Hence τ∗a is locally invertible. Actually it is diffeomorphism from R6 onto R6

since we can express ξ̂ = τ∗a (x,w) as

(
x1
x2

)
=

(
ξ̂1
ξ̂2

)
,


−ξ̂1 ξ̂2 −℘(ξ̂1, ξ̂2) 0

−ξ̂2 −ξ̂1 0 −℘(ξ̂1, ξ̂2)

℘(ξ̂1, ξ̂2) 0 −ξ̂1 −ξ̂2
0 ℘(ξ̂1, ξ̂2) ξ̂2 −ξ̂1



x3
w1

w2

w3

 =


ξ̂3
ξ̂4
ξ̂5
ξ̂6

 ,

where the matrix on the left is invertible by construction. Since τ∗a (R6) = R6, there
is no need of an image extension and we simply take τ∗e = τ∗a . To have all the
assumptions of Proposition 1.1 satisfied, it remains to find a function ϕ such that
(τex, ϕ) is in the set ϕT, the function τex being the x-component of the inverse of τ∗e .
Exploiting the fact that, for x in A, we have

ẏ2 =
˙︷ ︷

℘(x1, x2)x3 = 0 , ẏ3 = 0 ,

the high gain observer paradigm gives the function

ϕ(ξ̂, x̂, y) =



ξ̂2 + `k1(y − x̂1)

ξ̂3 + `2k2(y − x̂1)

ξ̂4 + `3k3(y − x̂1)
sat(x̂1x̂

2
3) + `4k4(y − x̂1)

−a ξ̂5
−b ξ̂6


,

where the function sat is defined in (1.12) and a and b are arbitrary strictly positive
real numbers. With picking ` large enough, it can be paired with any function τ :
R6 → R6 which is locally Lipschitz, and thus, in particular, with τex. Therefore,
Proposition 1.1 applies and gives the following observer for the harmonic oscillator
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with unknown frequency:

˙̂x1
˙̂x2
˙̂x3
˙̂w1

˙̂w2

˙̂w3


=



1 0 0 0 0 0
0 1 0 0 0 0

−x̂3 − ∂℘
∂x̂1

ŵ2 ŵ1 − ∂℘
∂x2

ŵ2 −x̂1 x̂2 −℘ 0

−ŵ1 − ∂℘
∂x̂1

ŵ3 −x̂3 − ∂℘
∂x2

ŵ3 −x̂2 −x̂1 0 −℘
∂℘
∂x1

x̂3 − ŵ2
∂℘
∂x2

x̂3 − ŵ3 ℘ 0 −x̂1 −x̂2
∂℘
∂x1

ŵ1 − ŵ3
∂℘
∂x2

ŵ1 + ŵ2 0 ℘ x̂2 −x̂1



−1

(5.4)

×


x̂2 + `k1(y − x̂1)

[−x̂1x̂3 + x̂2ŵ1 − ℘(x̂1, x̂2)ŵ2] + `2k2(y − x̂1)
[−x̂2x̂3 − x̂1ŵ1 − ℘(x̂1, x̂2)ŵ3] + `3k3(y − x̂1)

sat(x̂1x̂
2
3) + `4k4(y − x̂1)

−a [℘(x̂1, x̂2)x̂3 − x̂1ŵ2 − x̂2ŵ3]
−b [℘(x̂1, x̂2)ŵ1 + x̂2ŵ2 − x̂1ŵ3)]

 .

It is globally defined and globally convergent for any solution of the oscillator initial-
ized in the set A given in (1.10).

Observer (5.4) is an illustration of what can be obtained by using in a very nominal
way our tools. We do not claim any property for it. For example, by using another
design, an observer of dimension 2, globally convergent on A, can be obtained.

In this example we have made the Jacobian complementation possible by increas-
ing m by augmenting the number of coordinates of τ∗. Actually if we augment τ∗

with n zeros the possibility of a Jacobian complementation is guaranteed. Indeed pick
any C1 function B, the values of which are m ×m matrices with a positive definite
symmetric part, we can complement(

∂τ∗

∂x
0

)
which is full column rank with γ =

(
−B
∂τ∗

∂x

>

)
.

This follows from the identity (Schur complement) involving invertible matrices(
∂τ∗

∂x −B
0 ∂τ∗

∂x

>

)(
0 I

I B−1 ∂τ
∗

∂x

)
=

(
−B 0
∂τ∗

∂x

> ∂τ∗

∂x

>
B−1 ∂τ

∗

∂x

)
.

So we have here a universal method to solve our Problem 1. Its drawback is that the
dimension of the state increases by m, instead of m− n.

6. Conclusion. We have presented a method to express the dynamics of an
observer in preferred coordinates enlarging its domain of validity and possibly avoiding
the difficult left inversion of an injective immersion. It assumes the knowledge of an
injective immersion and a converging observer for the immersed system.

The idea is not to modify this observer dynamics but to map it back to the
preferred coordinates in a different way. Our construction involves two tools: The
augmentation of an injective immersion into a diffeomorphism through a Jacobian
complementation and the extension of the image of the obtained diffeomorphism to
enlarge the domain where the observer solutions can go without encountering singu-
larities.

For the Jacobian complementation we rely on results by Wazewski [25] and Eck-
mann [11]. They allow us to build a diffeomorphism by augmenting the preferred
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coordinates with new ones and to write the given observer dynamics in these aug-
mented coordinates.

For the diffeomorphism extension, we have proposed our own method inspired
from diffeotopies [14, Chapter 8] and h-cobordism [21, pp. 2, 7 to 14, and 16 to 18].

We have assumed the system is time invariant and autonomous. Adding time
variations is not a problem but dealing with exogenous inputs is more complex. This
is in part due to the fact that, as far as we know, the theory of observers, in the
presence of such inputs, relying on immersion into a space of larger dimension, as
high gain observers or nonlinear Luenberger observers, is not yet satisfactory enough.
Progress on this topic has to be made before trying to extend our results.

One very important question which remains to be addressed is about optimizing
the observer performance. In our framework it consists in an appropriate selection of
the given “raw” observer, i.e., the functions ϕ and τ∗ in (1.2), and the diffeomorphism
τe for optimizing a cost expressing the quality of the estimated quantities with respect
to what they are made for. For such a task, remaining in an ideal context with
no modeling error and no measurement disturbance, allows us only to address the
transient behavior of the state estimate. To be interesting for practice, at least as
important if not more important, is the long range dependence of the state estimates
on unmodeled effects.

Appendix A. Proof of Proposition 1.1. Let (x0, (x̂0, ŵ0)) be arbitrary
in A × Oa but such that the X(x0, t) solution of (1.6) is defined and remains
in A for t in [0,+∞). Let [0, T [ be the right maximal interval of definition of
the solution (X(x0, t), X̂(x̂0, ŵ0, t; yx0), Ŵ (x̂0, ŵ0, t; yx0)) when considered with val-
ues in A × Oa. Assume for the time being that T is finite. Then, when t goes
to T , either (X̂(x̂0, ŵ0, t; yx0

), Ŵ (x̂0, ŵ0, t; yx0
)) goes to infinity or to the boundary

of Oa. By construction t 7→ Ξ̂(t) := τ∗e (X̂(x̂0, ŵ0, t; yx0
), Ŵ (x̂0, ŵ0, t; yx0

)) is a so-
lution of (1.8) on [0, T [ with τ = τex. From Assumption A and since (ϕ, τex) is
in ϕT, it can be extended as a solution defined on [0,+∞[ when considered with
values in Rm = τ∗e (Oa). This implies that Ξ̂(T ) is well defined in Rm. Since,
with (1.17), the inverse τe of τ∗e is a diffeomorphism defined on Rm, we obtain
limt→T (X̂(x̂0, ŵ0, t; yx0

), Ŵ (x̂0, ŵ0, t; yx0
)) = τe(Ξ̂(T )), which is an interior point of

τe(Rm) = Oa. This point being neither a boundary point nor at infinity, we have a
contradiction. It follows that T is infinite.

Finally, with Assumption A, we have

lim
t→+∞

∣∣∣τ∗e (X̂(x̂0, ŵ0, t; yx0
), Ŵ ((x̂0, ŵ0, t; yx0

)
)
− τ∗(X(x0, t))

∣∣∣ = 0 .

Since X(x0, t) remains in A, τ∗(X(x0, t)) equals τ∗e (X(x0, t), 0) and remains in the
compact set τ∗(cl(A)). So there exists a compact subset C of Rm and a time tC

such that τ∗e

(
X̂(x̂0, ŵ0, t; yx0

), Ŵ (x̂0, ŵ0, t; yx0
)
)

is in C for all t > tC. Since τ∗e is a

diffeomorphism, its inverse τe is Lipschitz on the compact set C. This implies (1.19).

Appendix B. Proof of Lemma 2.1. The fact that τ∗a is a small enough
immersion for ε is established in [1]. We now prove it is injective. Let ε0 be a strictly
positive real number such that the Jacobian of τ∗a (x,w) in (2.2) is invertible for any
(x,w) in cl(Õ × Bε0(0)). Since cl(Õ × Bε0(0)) is compact, to not contradict the
implicit function theorem, there exists a strictly positive real number δ such that any
two pairs (xa, wa) and (xb, wb) in cl(Õ × Bε0(0)) which satisfy

(B.1) τ∗a (xa, wa) = τ∗a (xb, wb) , (xa, wa) 6= (xb, wb) ,
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also satisfies |xa − xb| + |wa − wb| ≥ δ. On the other hand, since τ∗ is continuous
and injective on cl(Õ) ⊂ O, it has an inverse which is uniformly continuous on the
compact set τ∗(cl(Õ)) (see [4, section 16.9]). It follows that there exists a strictly
positive real number η such that

|xa − xb| <
δ

2
∀ (τ∗(xa), τ∗(xb)) ∈ τ∗(cl(Õ))2 : |τ∗(xa)− τ∗(xb)| < η .

But if (B.1) holds with wa and wb in Bε(0) with ε ≤ ε0, we have

δ − 2ε ≤ |xa − xb| , |τ∗(xa)− τ∗(xb)| = |γ(xa)wa − γ(xb)wb| ≤ 2ε sup
x∈cl(Õ)

|γ(x)| .

We have a contradiction for all ε ≤ min
{

3δ
4 ,

η
2ε supx∈cl(Õ) |γ(x)|

}
. So (B.1) cannot hold

for such ε’s, i.e., τ∗a is injective on Õ × Bε(0).

Appendix C. Construction of a diffeomorphism from an open set to
Rm. We use the following notations: The complementary, closure, and boundary
of a set S are denoted Sc, cl(S), and ∂S, respectively. The Hausdorff distance dH
between two sets A and B is defined by

dH(A,B) = max

{
sup
zA∈A

inf
zB∈B

|zA − zB | , sup
z∈A

inf
zB∈B

|zA − zB |
}
.

Z(z, t) denotes the (unique) solution, at time t, to ż = χ(z) going through z at time
0 and Σε =

⋃
t∈[0,ε] Z(∂E, t).

Lemma C.1. Let E be an open strict subset of Rm verifying B, with a Cs vector
field χ and a Cs mapping κ. There exists a strictly positive (maybe infinite) real
number ε∞ such that, for any ε in [0, ε∞[, there exists a Cs-diffeomorphism φ: Rm →
E, such that

φ(z) = z ∀z ∈ Eε = E ∩ (Σε)
c
, dH(∂Eε, ∂E) ≤ ε sup

z
|χ(z)| .

Proof. We give here only a sketch. A complete proof is given in [6]. The definition
of Eε using the flow generated by χ gives dH(∂Eε, ∂E) ≤ ε supζ |χ(ζ)|. Let t(z) in
[−2ε,+∞[ be the time needed by a solution to ż = χ(z) starting from z in (E2ε)

c

(which is open) to reach ∂E, i.e., satisfying

κ (Z(z, t(z))) = 0 ⇐⇒ Z(z, t(z)) ∈ ∂E.

This gives a Cs function on (E2ε)
c

which satisfies

t(z) ∈ [−2ε,−ε] ∀z ∈ Eε \ E2ε .

We extend by continuity to Rm by letting t(z) = −2ε for all z in E2ε. Let ν : R→ R
be a function such that the function t 7→ ν(t)− t is a Cs (decreasing) diffeomorphism
from R onto ]0,+∞[ mapping [−ε,+∞[ onto ]0, ε] and being “minus” identity on
]−∞,−ε] (i.e., ν is zero on ]−∞,−ε]). Then φ defined below is a Cs diffeomorphism
which satisfies the required properties:

φ(z) =

{
Z (z, ν(t(z))) if z ∈ (Eε)

c
,

z if z ∈ Eε .
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Lemma 3.5 is a direct consequence of Lemma C.1 if we pick ε∞, maybe infinite,
satisfying

Z(z, t) 6∈ K ∀(z, t) ∈ ∂E × [0, 2ε∞[ .

ε∞ can be chosen strictly positive since d(K, ∂E) is nonzero and χ is bounded.

Appendix D. Proof of case (b) of Theorem 3.3. To complete the proof of
Theorem 3.3, we use another technical result.

Lemma D.1 (diffeomorphism extension from a ball). Consider a C2 diffeomor-
phism λ : BR(0) → λ(BR(0)) ⊂ Rm with R a strictly positive real number. For any
real number ε in ]0, 1[, there exists a diffeomorphism λe : Rm → Rm satisfying

λe(z) = λ(z) ∀z ∈ cl(B R
1+ε

(0)) .

Proof. It sufficient to prove that [14, Theorem 8.1.4] applies. We let

U = B R
1+ ε

2

(0) , A = cl(B R
1+ε

(0)) , I =
]
−ε

2
, 1 +

ε

2

[
,

and, without loss of generality, we may assume that λ(0) = 0.
Then, consider the function F : U × I → Rm defined as

F (z, t) =

(
∂λ

∂z
(0)

)−1
λ(zt)

t
∀t ∈ I \ {0} , F (z, 0) = z .

We start by showing that F is an isotopy of U .
• For any t in I, the function z 7→ Ft = F (z, t) is an embedding from U onto
Ft(U) ⊂ Rm. Indeed, for any pair (za, zb) in U2 satisfying F (za, t) = F (zb, t), we
obtain λ(zat) = λ(zbt), where (zat, zbt) is in U2. The function λ being injective
on this set, we have za = zb which establishes Ft is injective. Moreover, we have

∂Ft
∂z

(z) =

(
∂λ

∂z
(0)

)−1
∂λ

∂z
(zt) ∀t ∈ I \ {0} , ∂F0

∂z
(z) = Id.

Hence, Ft is full-rank on U and therefore an embedding.
• For all z in U , the function t 7→ F (z, t) is C1. This follows directly from the fact

that, the function λ being C2, and λ(0) = 0, we have

λ(zt)

t
=
∂λ

∂z
(0)z + z′

(
∂2λ

∂z∂z
(0)

)
z
t

2
+ ◦(t) .

In particular, we obtain ∂F
∂t (z, t) =

(
∂λ
∂z (0)

)−1
ρ(z, t), where

ρ(z, t) =
1

t2

[
∂λ

∂z
(zt)zt− λ(zt)

]
∀t ∈ I \ {0} , ρ(z, 0) =

1

2
z′
(
∂2λ

∂z∂z
(0)

)
z .

Moreover, for all t in I, the function z 7→ ∂F
∂t (z, t) is locally Lipschitz and, there-

fore, gives rise to an ordinary differential equation with unique solutions.
Also the set

⋃
(z,t)∈U×I{(F (z, t), t)} is open. This follows from Brouwer’s invari-

ance theorem since the function (z, t) 7→ (F (z, t), t) is a diffeomorphism on the open
set U×I. With [14, Theorem 8.1.4], we know there exists a diffeotopy Fe from Rm×I
onto Rm which satisfies Fe = F on A× [0, 1]. Thus, the diffeomorphism λe = Fe(., 1)
defined on Rm onto Rm verifies λe(z) = Fe(z, 1) = F (z, 1) = λ(z) for all z ∈ A.
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We now place ourselves in the case (b) of Theorem 3.3, namely, we suppose
that τ∗a is C2 and Oa is C2-diffeomorphic to Rm. Let φ1 : Oa → Rm denote the
corresponding diffeomorphism. Let R1 be a strictly positive real number such that
the open ball BR1(0) contains φ1(K). Let R2 be a real number strictly larger than
R1. With Lemma 3.5 again, and since BR2(0) verifies condition B, there exists a C2-
diffeomorphism φ2 : Rm → BR2

(0) satisfying φ2(z) = z for all z in BR1
(0). At this

point, we have obtained a C2-diffeomorphism φ = φ2 ◦ φ1 : Oa → BR2
(0). Consider

λ = τ∗a ◦ φ−1 : BR2
(0) → τ∗a (Oa) (= λ(BR2

(0))). According to Lemma D.1, we can
extend λ to λe : Rm → Rm such that λe = τ∗a ◦ φ−1 on BR1(0). Finally, consider
τ∗e = λe ◦ φ1 : Oa → Rm. Since, by construction of φ2, φ = φ1 on φ−11 (BR1(0)) which
contains K, we have τ∗e = τ∗a on K.

Appendix E. Proof of Lemma 3.2. The compact K0 being globally asymp-
totically attractive and interior to E which is forward invariant, E is globally at-
tractive. It is also stable due to the continuity of solutions with respect to initial
conditions uniformly on compact time subsets of the domain of definition. So it is
globally asymptotically stable. It follows from [26, Theorem 3.2] that there exist C∞

functions VK : Rm → R≥0 and VE : Rm → R≥0 which are proper on Rm and a class
K∞ function α satisfying

α(d(z,K0)) ≤ VK(z) , α(d(z, E)) ≤ VE(z) ∀ z ∈ Rm ,

VK(z) = 0 ∀z ∈ K0 , VE(z) = 0 ∀ z ∈ E ,

∂VK
∂z

(z)χ(z) ≤ −VK(z) ,
∂VE
∂z

(z)χ(z) ≤ −VE(z) ∀ z ∈ Rm .

With d an arbitrary strictly positive real number, the notations

vE = sup
z∈Rm: d(z,E)≤d

VK(z) , µ =
α(d)

2vE
,

and since α is of class K∞, we obtain the implications

VE(z)+µVK(z)=α(d) ⇒ α(d(z, E))≤VE(z)≤α(d)

⇒ d(z, E) ≤ d ⇒ VK(z) ≤ vE .

With our definition of µ, this also yields

α(d)− µVK(z) = VE(z) ⇒ 0 <
α(d)

2
≤ VE(z) ⇒ 0 < d(z, E) ≤ d .

On the other hand, with the compact notation V(z) = VE(z) + µVK(z), we have
∂V
∂z (z)χ(z) ≤ −V(z), for all z ∈ Rm. All this implies that the sublevel set E =

{z ∈ Rm : V(z) < α(d)} is contained in {z ∈ Rm : d(z, E) ∈ [0, d]} and that cl(E) is
contained in E . Besides, E verifies condition B with the vector field χ and the function
κ = V− α(d).
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