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a b s t r a c t

Dynamic regressor extension and mixing is a new technique for parameter estimation with guaranteed
performance improvement – with respect to classical gradient or least-squares estimators – that has
proven instrumental in the solution of several open problems in system identification and adaptive
control. In this brief note we give two interpretations of this parameter estimator in terms of the recent
extensions, to the cases of nonlinear systems and observation of linear functionals for time-varying
systems, of the classical Luenberger’s state observers.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A new procedure to design parameter estimators for linear and
nonlinear regressions, called dynamic regressor extension and
mixing (DREM), was recently proposed in Aranovskiy, Bobtsov,
Ortega, and Pyrkin (2017). For linear regressions DREM estimators
clearly outperform classical gradient or least-squares estimators
and its convergence is established without the usual, restrictive
requirement of regressor persistency of excitation (PE) (Ioannou &
Sun, 1996; Sastry & Bodson, 1989). Instead of PE a non-square in-
tegrability condition on the determinant of a designer-dependent
extended regressor matrix is imposed. As discussed in the paper,
a key feature of DREM is that it ensures the monotonicity of the
individual estimation errors. The technique has been successfully
applied in a variety of identification and adaptive control prob-
lems (Aranovskiy, Bobtsov, Ortega, & Pyrkin, 2016; Gerasimov,
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Ortega, & Nikiforov, 2018; Pyrkin, Mancilla, Ortega, Bobtsov, &
Aranovskiy, 2017).

Pursuing the work reported in Praly (2016b), in this note we
prove that the DREM parameter estimator for linear regressions
can be derived following the classical Luenberger state observer
design procedure (Luenberger, 1964) for linear time-invariant
(LTI) systems and its recent extension to linear time-varying (LTV)
systems (Rotella & Zambettakis, 2013; Shafai & Carroll, 1986;
Trumpf, 2007). See Shoshitaishvili (1992) for some early devel-
opments of this theory, Andrieu and Praly (2006), Kazantzis and
Kravaris (1998) for its extension to nonlinear systems, Astolfi,
Karagiannis, and Ortega (2008) for a related observer design based
on ideas of immersion and invariance and the recent paper (Afri,
Andrieu, Bako, & Dufour, 2017) for an elegant solution of the far
more challenging problem of simultaneous state and parameter
estimation of LTI systems using these observers.

2. Dynamic regressor extension and mixing parameter estima-
tors

In this section we briefly review the application of DREM for
linear regressions—referring the interested reader to Aranovskiy
et al. (2017) for additional details.

Consider the basic problemof on-line estimation of the constant
parameters of the q-dimensional linear regression

y(t) = φ⊤(t)θ, (1)
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where1 y ∈ R and φ ∈ Rq are known, bounded functions of time
and θ ∈ Rq is the vector of unknown parameters. The standard
gradient estimator

˙̂
θ = Γ φ(y − φ⊤θ̂ ),

with a positive definite adaptation gain Γ ∈ Rq×q yields the error
equation

˙̃
θ = −Γ φφ⊤θ̃ , (2)

where θ̃ := θ̂ − θ are the parameter estimation errors. Taking the
derivative of the function |θ̃ |

2
it is easy to show that

|θ̃ (0)| ≥ |θ̃ (t)|, ∀ t ≥ 0. (3)

That is, the norm of the parameter error is non-increasing.
It is also well-known (Ioannou & Sun, 1996; Sastry & Bodson,

1989) that the zero equilibrium of the LTV system (2) is globally
exponentially stable if and only if the regressor vector φ is PE, that
is, if∫ t+T

t
φ(s)φ⊤(s)ds ≥ δIq, (4)

for some T , δ > 0 and for all t ≥ 0, which will be denoted as
φ ∈ PE. In many practical circumstances φ ̸∈ PE. To overcome
this problem recent studies (Barabanov & Ortega, 2016; Praly,
2016a) have derived strictlyweaker conditions for global (but non-
uniform) asymptotic stability of (2) –hence for convergence of the
parameter errors to zero –which is sufficient inmany applications.
Unfortunately, these new conditions are non-robust and remain
hard to verify.

To overcome the limitation imposed by the PE condition and
improve the transient performance of the estimator the DREM
procedure, introduced in Aranovskiy et al. (2017), generates q
new, one-dimensional, regression models to independently esti-
mate each of the parameters.

The first step in DREM is to introduce a linear, single-input
q-output,L∞-stable operatorH : L∞ → Lq

∞, and define the vector
Y ∈ Rq and the matrix Φ ∈ Rq×q as

Y := Hy

Φ := Hφ⊤.
(5)

Clearly, because of linearity and L∞ stability, these signals satisfy

Y = Φθ + ϵt , (6)

with ϵt a vector of exponentially decaying terms neglected, with-
out loss of generality, in the sequel—see Remark 3 in Aranovskiy
et al. (2017) where the effect of these terms is rigorously analyzed.

The elements of the operator H may be simple, exponentially
stable LTI filters of the form2

Hi(p) =
αi

p + βi
, i ∈ q̄ := {1, 2, . . . , q}

with p :=
d
dt and αi ̸= 0, βi > 0; in this case ϵt accounts for

the effect of the initial conditions of the filters. Another option of
interest are delay operators, that is [Hi(·)](t) := (·)(t − di), where
di ∈ R+. See Section 4 for the case of general LTV operators.

1 When clear from the context, in the sequel the arguments of the functions are
omitted.
2 In the sequel the clarification i ∈ q̄ is omitted for brevity.

Premultiplying (6) by the adjunct matrix of Φ , denoted adj{Φ},
we get q scalar regressors of the form

Yi(t) = ∆(t)θi, (7)

where we defined the scalar function ∆ ∈ R

∆ := det{Φ}, (8)

and the vector Y ∈ Rq

Y := adj{Φ}Y . (9)

The estimation of the parameters θi from the scalar regression form
(7) can be easily carried out via

˙̂
θ i = γi∆(Yi − ∆θ̂i), (10)

with adaptation gains γi > 0. From (7) it is clear that the latter
equations are equivalent to

˙̃
θ i = −γi∆

2θ̃i. (11)

A first important advantage of DREM is that the individual param-
eter errors satisfy

|θ̃i(0)| ≥ |θ̃i(t)|, ∀ t ≥ 0, (12)

that is strictly stronger than the monotonicity property (3). More-
over, solving the simple scalar differential equation (11) we con-
clude that

lim
t→∞

θ̃i(t) = 0 ⇐⇒ ∆(t) ̸∈ L2, (13)

that is, parameter convergence is established without the restric-
tive PE assumption. In Aranovskiy et al. (2017) the relationship
between the condition ∆ ̸∈ L2 and φ ∈ PE is thoroughly
discussed—see also Section 5.

3. DREM as a gradient descent of a Kazantzis–Kravaris–
Luenberger observer

In this section we derive DREM following the Luenberger’s
observer design procedure proposed in Luenberger (1964)—see
also the extension to nonlinear systems, originally proposed in
Kazantzis and Kravaris (1998) and refined in Andrieu and Praly
(2006). First, we select ℓ negative real (or complex with negative
real part) numbers λj and consider the system

żj = λj(zj − y)

Ṫj = λj(Tj − φ), j ∈ ℓ̄ := {1, . . . , ℓ}.
(14)

Defining

T :=
[
T1 · · · Tℓ

]
z := col(z1, . . . , zℓ)
Λ := diag{λ1, . . . , λℓ}

we have that
d
dt

(z − T⊤θ ) = −Λ(z − T⊤θ ),

from which it is clear that z(t) → T⊤(t)θ . It follows that, if the
matrix T⊤ is left-invertible, we can generate an asymptotically
convergent estimate of θ as

θ̂ = (T⊤)Lz,

where (T⊤)L ∈ Rq×ℓ is the left-inverse of T⊤.
It should be underscored that the construction above is exactly

the one proposed in Luenberger (1964) for LTI systems adapted to
the particular problem when the ‘‘state’’ θ verifies θ̇ = 0 and the
output matrix is time varying, that is, φ⊤(t).
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The crucial issues of left-invertibility of T⊤ and the actual com-
putation of (T⊤)L – first discussed in Kazantzis and Kravaris (1998)
– are topics of current research extensively studied in the observers
literature. The key question here is the extension to non-stationary
systems of the sufficient conditions reported for the stationary case
in Andrieu and Praly (2006). See also Section 5 for some further
discussion.

Instead of ‘‘solving’’ for θ̂ the equation z = T⊤θ̂ an alternative
route to generate the parameter estimate is to apply a gradient
descent method to solve the optimization problem

min
θ̂ (t)

{[z(t) − T⊤(t)θ̂ (t)]⊤Q (t)[z(t) − T⊤(t)θ̂ (t)]} (15)

where the matrix Q : R+ → Rq×q is positive definite. This yields
the on-line estimator
˙̂
θ = Γ TQ (z − T⊤θ̂ ). (16)

We are in position to present the first result of the note.

Proposition 1. Consider the linear regression (1). The DREM estima-
tor (5), (8), (9), (10) exactly coincides with the Luenberger observer
(14) with the gradient descent (16) selecting

ℓ = q

Hi(p) =
−λi

p − λi

Q (t) = adj{T (t)}adj{T⊤(t)}
Γ = diag{γ1, . . . , γq}.

(17)

Proof. The proof follows directly noting that, for the choices of the
DREM parameters (17), we have that Φ = T⊤, and the fact that

Tadj{T } = ∆Iq.

4. DREM as a gradient descent of a functional observer for LTV
Systems

The problem of functional observers for LTV systems is formu-
lated as follows. Given a classical LTV system

ẋ = A(t)x + B(t)u
y = C(t)x,

(18)

where x ∈ Rq, u ∈ Rp, y ∈ Rm and a linear functional

v = M(t)x (19)

with v ∈ Rℓ we want to design an observer for the signal v.
In Trumpf (2007) the following result is established.

Proposition 2. Define a completely observable ℓ-dimensional system

ż = F (t)z + G(t)u + H(t)y
w = P(t)z,

(20)

with all the solutions of ẋ = F (t)x converging to zero. The system
(20) is a global asymptotic observer3 of the linear functional (19) for
the system (18) if and only if there exists a continuously differentiable
n × q matrix T (t) solution of the equations

G(t) = T (t)B(t)

Ṫ (t) = F (t)T (t) − T (t)A(t) + H(t)C(t)
M(t) = P(t)T (t).

(21)

3 That is, for all x(0) ∈ Rq, z(0) ∈ Rℓ and all continuous, bounded inputs u we
have limt→∞(v(t) − w(t)) = 0.

To apply this result for the estimation of the parameters of the
linear regression (1) we make the assignments

p = m = 1
x = θ, u = 0

A(t) = 0, B(t) = 0, C(t) = φ⊤(t).

The observer (20) and the conditions (21) become then

ż = F (t)z + H(t)y,
w = P(t)z

(22)

and

Ṫ (t) = F (t)T (t) + H(t)φ⊤(t)
M(t) = P(t)T (t),

(23)

respectively. Now, we select the dimension of the observer equal
to the dimension of the systems state θ , that is ℓ = q, and choose

M(t) = det{T (t)}Iq. (24)

The linear functional to be observed (19) takes a decoupled form

vi = det{T (t)}θi.

Moreover, the conditions for existence of the functional observer
(23) are satisfied with the choice

P(t) = adj{T (t)}.

Invoking Proposition 2 we have the following result.

Proposition 3. Consider the linear regression (1). For any observable
pair (F (t),H(t)), with all the solutions of ẋ = F (t)x converging to
zero, the functional observer

ż = F (t)z + H(t)y

Ṫ (t) = F (t)T (t) + H(t)φ⊤

w = adj{T (t)}z
(25)

ensures

lim
t→∞

(wi(t) − det{T (t)}θi) = 0

for all T (0) ∈ Rq×q and all z(0) ∈ Rq.

If det{T (t)} ̸= 0 we can obtain an estimate of θ as

θ̂ =
1

det{T (t)}
w.

To avoid the possibility of a singularity in the calculation above we
can proceed as done in Section 3 to apply a gradient descent method
to solve the optimization problem

min
θ̂i(t)

{[wi(t) − det{T (t)}θ̂i(t)]2}. (26)

This yields the on-line estimator

˙̂
θ i = γi det{T (t)}(wi − det{T (t)}θ̂i). (27)

The derivations above established the following result.

Proposition 4. The functional observer (25) with the gradient de-
scent (27) exactly coincides with the DREM estimator of Section 2
with the LTV operator

H = [pIq − F (t)]−1H(t)

and the identities

Y = z, Φ = T , Y = w, ∆ = det{T (t)}.
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5. Concluding remarks

It has been shown that the DREM parameter estimator can
be interpreted as a Luenberger observer with a gradient descent
search in two different ways. First, as a ‘‘standard’’ full state ob-
server (14) where the gradient search is done for the quadratic
criterion (15) with the weighting matrix

Q (t) = adj{T (t)}adj{T⊤(t)}.

Second, as a functional observer for LTV systems of the form (25)
with the weighting matrix of the state functional to be observed
(19) selected as (24) and the standard quadratic criterion to be
minimized (26).

For the case when the dimension of the observer state z is
equal to the dimension of the unknown vector θ , that is, when
ℓ = q, the problem of left invertibility of the matrix T discussed
in Section 3 reduces to the full rank condition of T mentioned in
Section 4, and it is hardly verified in practice. On the other hand,
in DREM the necessary and sufficient convergence condition (13)
of the observers gradient descent search, which is related with
the previous full rank assumption, remains an essentially open
question.

One interesting possibility that has been considered in the
literature (Afri et al., 2017; Andrieu & Praly, 2006) is to take the
dimension of z larger than the one of θ , that is, ℓ > q. Propositions 3
and 4 apply verbatim selecting

Q (t) = T⊤(t)
(
adj{T (t)T⊤(t)}

)2
T (t),

in the former, and

w = adj{T⊤(t)T (t)}T⊤(t)z

P(t) = adj{T⊤(t)T (t)}T⊤(t),

in the latter. Unfortunately, the existing results for observers –
without the gradient descent step – reported in Andrieu and Praly
(2006), Kazantzis and Kravaris (1998), Rotella and Zambettakis
(2013) and Trumpf (2007) do not seemapplicable for the investiga-
tion of the non square-integrability condition (13) for convergence
of DREM. Current research is under way along this direction.

It should be pointed out that an important component of DREM
is the flexibility in the selection of the operator H. It has been
shown in several applications (Aranovskiy et al., 2016; Gerasimov
et al., 2018; Pyrkin et al., 2017) that choosing them as LTI filters
and/or delays, with different values of the coefficients αi, βi and
di, is essential to guarantee the performance improvement of the
estimator. The selection of these coefficients is done invoking con-
siderations of signals bandwidth and frequency content. Although
little is known on the effect of time-varying operators on a sig-
nals spectrum, choosing them to be time-varying –as suggested in
Proposition 4 –widens our options and opens up a new interesting
area of research. In this respect, the optimality results reported
for the Extended Instrumental Variable method (in the stochastic

framework) might prove useful also for DREM, see Gilson (2015)
for a recent survey of this method.
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