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a b s t r a c t

We propose a peaking-free low-power high-gain observer that preserves the main feature of standard
high-gain observers in terms of arbitrarily fast convergence to zero of the estimation error, while
overtaking their main drawbacks, namely the ‘‘peaking phenomenon’’ during the transient and the
numerical implementation issue deriving from the high-gain parameter that is powered up to the order
of the system. Moreover, the new observer is proved to have superior features in terms of sensitivity
of the estimation error to high-frequency measurement noise when compared with standard high-gain
observers. The proposed observer structure has a high-gain parameter that is powered just up to two
regardless the dimension of the observed system and adopts saturations to prevent the peaking of the
estimates during the transient. As for the classical solution, the new observer is robust with respect to
uncertainties in the observed system dynamics in the sense that practical estimation in the high-gain
parameter can be proved.

© 2018 Published by Elsevier Ltd.

1. Introduction

High-gain observers appeared in the literature at the end of the
1980’s and since then have attracted a lot of research attention
due to their simplicity and good performance in noise-free settings
(see the survey Khalil & Praly, 2014 and references therein). See
also their use in the separation principles (Atassi & Khalil, 2000),
output feedback stabilization (Teel & Praly, 1994), output regula-
tion (Byrnes & Isidori, 2004) or fault detection (Martinez-Guerra &
Mata-Machuca, 2013).

In the design of a ‘‘standard’’ high-gain observer, the high-gain
parameter, denoted as ℓ throughout this paper, is usually powered
up to n, with n denoting the dimension of the observed state.
This fact raises numerical issues in the implementation when the
state dimension is high or when the high-gain parameter has to
be chosen large to achieve fast estimation. Furthermore, high-
gain observers exhibit, during the transient, the so-called peak-
ing phenomenon, namely the state of the observer shows large
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peaks of a magnitude that are proportional to ℓn−1. Last but not
least, high-gain observers are known for having high-sensitivity to
high-frequency measurement noise, which makes state estimates
practically unusable especially when the dimension n is very large.
In order to address the peaking phenomenon, different schemes
have been proposed in Astolfi and Praly (2017) and Maggiore and
Passino (2003). In Astolfi and Praly (2017), the authors modify the
observer dynamics under a convexity assumption in order to con-
strain the state of the observer in some prescribed convex closed
set. This technique can be applied to multi-input multi-output
nonlinear systems. In Maggiore and Passino (2003), the authors
deal with peaking by means of a projection approach. In order to
improve the sensitivity to measurement noise, the majority of re-
searchers focused on schemeswith time-varying gains, eitherwith
switched approaches, Ahrens and Khalil (2009), or with adaptive
design, Boizot, Busvelle, and Gauthier (2010) and Sanfelice and
Praly (2011). Recently, in Khalil and Priess (2016), a low-pass filter
has been proposed in order to reduce the effect of measurement
noise in output feedback stabilization problems.

A new high-gain observer able to overtake some of the draw-
backs of classical structures has been recently proposed in Astolfi
andMarconi (2015). In that paper, it is shownhow to design a high-
gain observer of dimension 2n−2 for observable nonlinear systems
with dimension n, which implements only gains proportional to
ℓ and ℓ2 while preserving the same behaviours of a standard
high-gain observer. The new construction relies on an intercon-
nected cascade of n − 1 high-gain observers of dimension two.

https://doi.org/10.1016/j.automatica.2018.09.009
0005-1098/© 2018 Published by Elsevier Ltd.
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This observer practically solves the aforementioned challenging
problem of numerical implementation present in standard high-
gain observers. Moreover, it has been shown that the new observer
structure substantially improves the sensitivity to high-frequency
measurement noise. The proof of this fact has been presented
in Astolfi and Marconi (2015) only for linear systems, and shown
by numerical simulation in the nonlinear case. The new low-
power high-gain observer has been also shown to be effective for a
much wider class of nonlinear systems, such as system possessing
a non-strict feedback form, see Wang, Astolfi, Marconi, and Su
(2017). It turns out that the new observer structure is effective
in all those frameworks where standard high-gain observers are
typically used, such as output feedback stabilization by nonlinear
separation principle and output regulation, Astolfi, Isidori, and
Marconi (2017). Although the new observer structure solves the
problem of numerical implementation, the peaking phenomenon
is still present. This has been partially solved in Astolfi, Marconi,
and Teel (2016), by adding saturations at various levels in the
observer structure. With the proposed technique, it is possible to
remove the peaking from the first n − 1 state estimates. Along
this route, two similar schemes, which follow the seminal idea
presented in Astolfi and Marconi (2015), have been recently pro-
posed, in Teel (2016) and Khalil (2017), to address the implemen-
tation issues and the peaking phenomenon. In Teel (2016), the
author showshow to build a high-gain observer by interconnecting
a cascade of reduced order high-gain observer of dimension 1.
A simpler scheme, without feedback interconnection terms, that
cannot ensure asymptotic estimate, is presented in Khalil (2017).
It is worth stressing, however, that even if the dimension of the
observers is n, neither scheme improves the sensitivity properties
with respect to standard high-gain observers.

The objective of this work is twofold. On the one hand, we
combine the recent ideas of Astolfi and Marconi (2015) and As-
tolfi et al. (2016) to propose an observer of dimension 2n − 1
which is still ‘‘low power’’ (namely it uses only gains proportional
to ℓ and ℓ2) and yet eliminates the peaking phenomenon. This
is achieved by appropriately adding saturation functions in the
observer dynamics. In particular, the n estimates provided by the
proposed observer are peaking-free while the additional n − 1
auxiliary variables may reach values proportional to ℓ (and not
to ℓn−1 as in standard high-gain observers) during the transient.
The resulting gain choices and transient behaviours address the
numerical challenge. On the other hand, we fully characterize the
sensitivity to high-frequency measurement noise for nonlinear
systems by showing the improvement with respect to standard
high-gain observers. This is done by extending the analysis tool
recently introduced in Astolfi, Marconi, Praly, and Teel (2016) in
which the sensitivity tomeasurement noise has been characterized
for standard high-gain observers. In this work, for the sake of
simplicity, we focus on the same class of nonlinear systems in
canonical observability form considered in Astolfi and Marconi
(2015), but similar results hold for the wider class of systems in
feedback form (Wang et al., 2017).

The paper is organized as follows. We present the framework
and we recall the high-gain observer technique in Section 2. Then,
we provide the main results in Section 3. A simulation example is
given in Section 4. The proofs of the main results are detailed in
Section 5. Conclusions are discussed in Section 6. Some technical
lemmas are given in Appendix.

Notation. R denotes the field of real numbers and, for x ∈ Rn, |x|
denotes the Euclidean norm of x. With s : R≥0 → Rm a bounded
signal, we define ∥s∥b

a := supt∈[a,b)|s| and ∥s∥∞ := ∥s∥∞

0 . For i > 0
we denote by Ai ∈ Ri×i, Bi ∈ Ri×1, Ci ∈ R1×i a triplet in prime form,
namely

Ai =

(
0i−1,1 Ii−1
0 01,i−1

)
, Bi =

(
0i−1,1
1

)
, CT

i =

(
1

0i−1,1

)
,

where 0i,j denotes a matrix of dimension i × j containing zeros
everywhere, and Ii denotes the identity matrix of dimension i. For
r > 0, a saturation function satr : R → R is any strictly increasing
C1 function satisfying

satr (s) := s ∀ |s| ≤ r , |satr (s)| ≤ r + 1 ∀ s ∈ R .

With C[0,1] we denote the set of continuous functions from R to
[0, 1].

2. The framework and highlights on high-gain observers

In this paper we deal with nonlinear single-input single-output
systems that canbewritten,maybe after a change of coordinates, in
the so-called phase-variable form (see Gauthier and Kupka (2001))

ẋi = xi+1, i = 1, . . . , n − 1,
ẋn = ϕ(x, d(t))
y = x1 + ν(t)

(1)

where x = (x1, . . . , xn)T ∈ Rn is the state, y is themeasured output
with ν an additive unknown measurement noise, and t ↦→ d(t) ∈

Rnd , nd > 0, is any (unknown) bounded signal that may represent
parametric uncertainties in the function ϕ(·, ·) or unknown distur-
bances. The following assumption is made throughout the paper.

Assumption 1. The compact sets D ⊂ Rnd and X ⊂ Rn and the
positive ϕ̄x > 0 are such that

• d(t) ∈ D and x(t) ∈ X for all t ≥ 0;
• |ϕ(x1, d)−ϕ(x2, d)| ≤ ϕ̄x|x1 − x2| for all x1, x2 ∈ X and for all

d ∈ D.

We observe that all the forthcoming analysis could be extended,
with the appropriate modifications, to the case in which the func-
tion ϕ(·, ·) takes the form ϕ(x, d, t) where the dependence on t
takes into account the effect of possible known inputs. For sake of
simplicity, however, we do not consider this case.

In the previous framework, we are interested in the semi-
global high-gain observation problem, namely in the design of an
asymptotic observer with a rate of convergence that can be made
arbitrarily fast by tuning a single parameter (see Khalil and Praly
(2014) and references therein).

The standard high-gain observer for the class of systems (1) is
given by
˙̂xi = x̂i+1 + kiℓie1 , i = 1, . . . , n − 1,
˙̂xn = ϕs(x̂) + knℓn e1 ,

(2a)

inwhich x̂ = (x̂1, . . . , x̂n)T is the state, ℓ is the high-gain parameter,
e1 is the output injection term defined as

e1 := y − x̂1 , (2b)

k1, . . . , kn are design coefficients and ϕs(·) is any locally Lipschitz
bounded function that agrees with ϕ(·, 0) on a compact set X ′

⊃ X ,
namely ϕs(x) = ϕ(x, 0) for all x ∈ X ′ and for all t ≥ 0. The tuning
of the observer involves choosing the design parameters ki’s so
that, having defined the vector K := col(k1, . . . , kn), the matrix
An − KCn is Hurwitz, and taking the high-gain parameter ℓ large
enough in relation to the Lipschitz constant of ϕ(·, ·) on X × D.
In particular, under Assumption 1, it is possible to prove that, by
letting ℓ⋆ := 2 ϕ̄x |P|, in which P is the symmetric positive definite
matrix solution of the Lyapunov equation

P(An − KCn) + (An − KCn)TP = −I,

then for all ℓ ≥ ℓ⋆ the estimation errors provided by the observer
(2) satisfy the following bounds for all t ≥ 0

|x̂i(t) − xi(t)| ≤ c1 ℓi−1 exp(−c2 ℓ t)|x̂(0) − x(0)|

+
c3

ℓn+1−i
∥d∥∞ + c4ℓi−1

∥ν∥∞

(3)
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for i = 1, . . . , n, and for some positive constants ci, i = 1, . . . , 4,
independent of ℓ. This, in particular, can be easily established by
making the change of coordinates

x̂ = col(x̂1, . . . , x̂n) → χ = col(χ1, . . . , χn),
χi := (x̂i − xi)/ℓi−1,

and by using the Lyapunov function V = χ TPχ (see also Lemma 4
in Appendix or Khalil & Praly, 2014 for a detailed proof). One of
the features of (2) is that the rate of convergence of the state
estimate can be arbitrarily increased by augmenting the high-
gain parameter ℓ showing up in the exponential function. This, in
turn, implies that in nominal conditions (namely when there is no
measurement noise and the disturbance d is constantly zero), the
true value of the state variable can be practically recovered in an
arbitrarily small amount of time and exponentially convergence of
the estimate is guaranteed. The term proportional to ℓi−1 multi-
plying the exponential, on the other hand, models the so-called
peaking phenomenon governing the state estimate in the initial
time instants. By this phenomenon, the value of the estimation
errors assume large values in the initial observation time if ℓ is
taken large. Hence, the smaller is the desired exponential decay,
the larger is the peaking exhibited in the initial part of the transient.
A further important feature is that the observer (2) is input-to-
state stable (ISS) with respect to the disturbance inputs d and
ν. As for the disturbance d, in particular, the asymptotic gain on
the ith error variable is proportional to 1/ℓn+1−i and can be thus
arbitrarily decreased by increasing the high-gain parameter ℓ. As
for the measurement noise ν, on the other hand, the asymptotic
gain increases proportionally to ℓi−1. The sensitivity to the class of
bounded measurement noise signals, hence, tends to worsen with
large values of the high-gain parameter with a polynomial term
whose power increases with i. On top of everything, another limit
of the high-gain structure (2) is the presence of ℓ powered up to
the order n, which makes the numerical implementation of the
observer a hard task for high-dimensional systems.

With reference to the sensitivity to measurement noise, it is
worth noting that the bound (3) refers to the so-called L∞ gain,
namely characterizes the sensitivity to the class of bounded dis-
turbances. When considering the restricted class of high-frequency
measurement noise the previous bound can be further refined
by highlighting the low-pass filtering properties of the observer
(2). This high-frequency characterization of the asymptotic gain
has been fully characterized in Astolfi et al. (2016) whose main
result is briefly recalled hereafter. We consider, in particular, the
measurement noise as a quasi-periodic signal of the form

ν(t) =

nν∑
i=1

νci cos
(ωi

ε
t
)

+ νsi sin
(ωi

ε
t
)

(4)

where nν , νci , ν
s
i , ωi are positive numbers and where ε ∈ (0, 1) is a

small number parametrizing the frequencies of the signal ν(t). The
main result proved in Astolfi et al. (2016) is the following.

Proposition 1. Consider system (1), (2) and suppose that Assump-
tion 1 holds, d(t) ≡ 0 for all t ≥ 0, and ν is generated by (4). Let
ℓ > 1 be fixed so the bound (3) holds. Then, there exist ε⋆(ℓ) > 0 and
ĉ > 0 such that, for all positive ε ≤ ε⋆(ℓ), the following holds

lim sup
t→∞

|x̂i(t) − xi(t)| ≤ ε ĉ ℓi ∥ν∥∞ i = 1, . . ., n.

Proposition 1 shows that, once ℓ is fixed, the sensitivity of
the estimation error to measurement noise decreases as ε takes
smaller values, namely as higher frequency noise signals are con-
sidered, with an asymptotic gain proportional to ε. For linear
systems, this property immediately comes by frequency response
arguments using the fact that the relative degree between the

measurement noise ν and the estimation error xi − xi for (1)–
(2) is unitary for all i = 1, . . . , n. The extension to nonlinear
systems of the form (1) ismore involved and can be found in Astolfi
et al. (2016). It is worth noting that the analysis in Astolfi et al.
(2016) is based on the assumption that the measurement noise is
generated as in (4),while, in practice,measurement noise is usually
white or coloured random noise. However, simulations confirm
that the result of Proposition 1 provides a good indication of the
true performance of the observer in presence of coloured noise.
This will be discussed further in Section 4.

3. Main results

3.1. Low-power high-gain observer

Westart by presenting a high-gain observer of dimension 2n−1
whose main feature is to have the high-gain parameter ℓ that is
powered just up to the order 2 regardless the value of n, thus
overtaking one of the problems of the structure of (2). The ob-
server structure strongly relies on the one presented in Astolfi and
Marconi (2015) that has dimension 2n − 2. The motivation for
extending the state of the observer by one with respect to the
solution provided in Astolfi and Marconi (2015) is to pave the way
for the ‘‘peaking-free’’ solution presented in Section 3.3.

The structure of the proposed observer is composed of n blocks,
where each of the first n − 1 blocks has dimension 2 and the last
one has dimension 1. The two state components of the ith block for
i = 1, . . . , n − 1 are supposed to provide an estimate of (xi, xi+1),
namely of the (i − 1)th and ith time derivative of y, while the
last block is meant to estimate the (n − 1)th time derivative of
the output. The structure of the observer (see the next (5)) can be
motivated as follows. If the ith and (i + 2)th time derivative of y,
i.e. xi and xi+2, were known, then the ith block (i = 1, . . . , n − 1)
could be implemented as a ‘‘nominal’’ high-gain observer for xi and
xi+1, namely
˙̂xi = ηi + ℓαi(xi − x̂i)
η̇i = xi+2 + ℓ2βi(xi − x̂i)

where (x̂i, ηi) are estimates of (xi, xi+1), ℓ is the high gain parameter
and (αi, βi) are the observer parameters, with the entry xi+2 in the
(n− 1)th block replaced by ϕs(x). Similarly, the last 1-dimensional
block could be implemented as
˙̂xn = ϕs(x) + ℓαn(xn − x̂n)

in which αn is a further design parameter and x̂n is meant to
estimate xn. Since xi and xi+2 are not known, in fact, in the proposed
observer their value is respectively replaced by ηi−1 and x̂i+1,
namely by the second and first component of the (i − 1)th and
(i + 1)th block. By interconnecting the block observers in this way
(see Fig. 1), we obtain the proposed observer

˙̂xi = ηi + αi ℓ ei , i = 1, . . . , n − 1,
˙̂xn = ϕs(x̂) + αn ℓ en
η̇i = ηi+1 + βi ℓ

2 ei , i = 1, . . . , n − 2,
η̇n−1 = ϕs(x̂) + βn−1 ℓ

2 en−1

(5a)

where x̂ = col(x̂1, . . . , x̂n) ∈ Rn, η = col(η1, . . . , ηn−1) ∈

Rn−1 is the state, α := col (α1 , . . . , αn) ∈ Rn and β :=

col (β1 , . . . , βn−1) ∈ Rn−1 are design parameters and ℓ the high-
gain parameter, and the variables ei, i = 1, . . . , n are defined as

e1 := y − x̂1
ei := ηi−1 − x̂i, i = 2, . . . , n . (5b)

The tuning of the design parameters α and β , relies on a procedure
that is different with respect to the one followed for the standard
high-gain observers. In particular, having defined Ki := col(αi, βi)
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Fig. 1. Block diagram representation of the low-power high-gain observer (5).

and Ei := A2 − KiC2, i = 1, . . . , n − 1, let the matrices Mi ∈ R2i×2i,
i = 1, . . . , n− 1, andMn ∈ R(2n−1)×(2n−1) be recursively defined as
M1 := E1,

Mi :=

(
Mi−1 B2(i−1)BT

2
KiBT

2(i−1) Ei

)
, i = 2, . . . , n − 1,

Mn :=

(
Mn−1 0

αnBT
2(n−1) −αn

)
.

With this notation in hand, the design parameters α and β must be
tuned in order to fulfil a ‘‘low-power stability requirement’’ that is
formally defined in the following.

Definition 1 (Low-power Stability Requirement). We say that α
and β fulfil the ‘‘low-power stability requirement’’ if the resulting
matrix Mn is Hurwitz, namely if there exists a P = PT > 0 such
that

PMn + MT
n P = −I . (6)

It turns out that the eigenvalues of the matrix Mn can be arbi-
trary assigned by an appropriate choice of the design parameters;
namely, the previous requirement can be always fulfilled (see Sec-
tion 3.4).With thematrixMn Hurwitz and the high-gain parameter
ℓ taken sufficiently large, the estimation error x̂ − x provided by
the observer (5) can be shown to fulfil the same bound (3) yielded
by the standard high-gain observer (2). This is detailed in the next
theorem in which we define x ∈ R2n−1 and x̂ ∈ R2n−1 as

x := col((x1, . . . , xn), (x2, . . . , xn)) , x̂ := col(x̂, η) .

Theorem 1. Consider system (1) under Assumption 1. Consider the
observer (5) and let the coefficientsα ∈ Rn andβ ∈ Rn−1 be chosen in
order to fulfil the ‘‘low-power stability requirement’’, with (6) fulfilled
for some P = PT > 0. Furthermore, let ℓ⋆ := 2 ϕ̄x |P|. Then there exist
µi > 0, i = 1, . . . , 4, such that for any ℓ > ℓ⋆ the following bounds
hold

|x̂i(t) − xi(t)| ≤ ℓi−1µ1 exp(−ℓµ2t) |x̂(0) − x(0)| +

µ3

ℓn+1−i ∥d∥∞ + µ4 ℓ
i−1

∥ν∥∞

(7)

for i = 1, . . . , n, and

|ηi(t) − xi+1(t)| ≤ ℓiµ1 exp(−ℓµ2t) |x̂(0) − x(0)| +

µ3

ℓn−i ∥d∥∞ + µ4 ℓ
i
∥ν∥∞

(8)

for i = 1, . . . , n−1, for any initial condition (x̂(0), η(0)) ∈ Rn
×Rn−1

and for all t ≥ 0.

The proof of this theorem is deferred to Section 5.1. Note that
the redundancy of the observer can be employed to obtain a double
estimate of the state variables (x2, . . . , xn), respectively given by
(x̂2, . . . , x̂n) and (η1, . . . , ηn−1). Furthermore, we observe that the
lower bound ℓ⋆ of the high-gain parameter is formally equal to

the one of the standard observer, namely it is proportional to the
Lipschitz constant of ϕ̄x and to the norm of P . Regarding the latter,
however, we observe that the fact that P is the solution of the
Lyapunov equation associated to the matrix (An − KCn) ∈ Rn×n

for the standard observer, and to Mn ∈ R(2n−1)×(2n−1) for the new
observer, the resulting value of ℓ⋆ might be different. As clear from
the bounds (7)–(8), the new observer preserves the same positive
features of the standard observer in terms of an arbitrarily fast
exponential decay rate of the estimation error and of an arbitrarily
low asymptotic gain as far as the disturbance d in concerned, by
overtaking the problem of (2) of having the high-gain parameter
powered at n. On the other hand it does not eliminate the peaking
phenomenon and it still has a sensitivity to the class of bounded
measurement noise that depends on ℓ polynomially in i.

3.2. Sensitivity to high-frequency noise

As at the end of Section 2, we now consider the measurement
noise as generated by (4) and we characterize the asymptotic gain
between ν and the estimation error in terms of the parameter ε.
The main objective is to show the benefit of the new observer
in comparison with properties of the standard one as presented
in Proposition 1. In this respect, the main feature of the observer
(5) is that the relative degree between the ‘‘input’’ ν and the ith
estimation error x̂i − xi is one for i = 1 (as for (2)), and then
increases for higher values of i. More precisely, by definingm as

m :=

⌈
n + 1
2

⌉
(9)

and considering a general case in which the function ϕ(x) is af-
fected by x1, the relative degree in question is i for i = 1, . . . ,m
and n − i + 2 for i = m + 1, . . . , n. This property is at the basis of
the next proposition whose proof is presented in Section 5.2.

Proposition 2. Consider system (1), (5) and suppose that Assump-
tion 1 holds, d(t) ≡ 0 for all t ≥ 0, and ν is generated by (4). Let
α ∈ Rn and β ∈ Rn−1 and ℓ > 1 be fixed according to the statement
of Theorem 1. Then, there exist ε⋆(ℓ) > 0 and ĉ > 0 such that, for all
positive ε ≤ ε⋆(ℓ), the following holds

lim sup
t→∞

|x̂i(t) − xi(t)| ≤ εi ĉ ℓ2i−1
∥ν∥∞

for i = 1, . . . ,m, and

lim sup
t→∞

|x̂i(t) − xi(t)| ≤ εn−i+2 ĉ ℓ ∥ν∥∞

for i = m + 1, . . . , n.

Proposition 2 shows that observer (5) behaves as ‘‘low-pass’’
filter, namely

lim
ε→0

lim
t→∞

sup|x̂i(t) − xi(t)| = 0.

In addition, the remarkable feature of observer (5) is to have
an asymptotic gain between the measurement noise and the ith
error component that is proportional to ε powered at a value that
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Fig. 2. Block diagram representation of the peaking free low-power high-gain observer (11). We denote ηsi = sati+1(ηi) for the sake of compactness.

increases as long as ‘‘higher’’ components of the errors are con-
sidered, as opposed to the standard case in which the asymptotic
gain depends on ε regardless the value of i (see Proposition 1).
This fact, which is strongly related to the relative degree properties
mentioned above, clearly shows that the new observer behaves
better than the standard one as far as ε tends to zero, namely as
far as high-frequency noise is concerned. The numerical analysis in
Section 4 will provide further insights on the benefits of the new
observer over the standard one.

3.3. Peaking-free low-power observer

In this section we show how the observer (5) can be modified
in order to overtake also the problem of peaking while preserving
the main features of the low-power observer presented before.

By bearing in mind the definition of the saturation function
given in the Notation and by defining ri > 0 as

ri := max
x∈X

|xi| i = 1, . . ., n , (10)

the low-power peaking-free observer (see Fig. 2) takes the form
(compare with (5))

˙̂xi = ηi + αi ℓ ei , i = 1, . . . , n − 1,
˙̂xn = ϕs(x̂) + αn ℓ en ,
η̇i = satri+2 (ηi+1) + βi ℓ

2 ei , i = 1, . . . , n − 2,
η̇n−1 = ϕs(x̂) + βn−1 ℓ

2 en−1 ,

(11a)

with
e1 := y − x̂1
ei := satri (ηi−1) − x̂i, i = 2, . . . , n , (11b)

where x̂ = col(x̂1, . . . , x̂n) ∈ Rn, η = col(η1, . . . , ηn−1) ∈

Rn−1 is the state, α := col (α1 , . . . , αn) ∈ Rn and β :=

col (β1 , . . . , βn−1) ∈ Rn−1 are positive coefficients to be properly
chosen, and ℓ is the high-gain parameter.

The addition of saturation functions in (11) has the noteworthy
effect of eliminating the peaking as clarified in the next proposi-
tion, but it imposes some restrictions on the choice of the design
parameters α and β with respect to the low-power stability re-
quirement detailed inDefinition 1. In particular, by bearing inmind
the definitions ofMi, Ki, and Ei, introduced in the previous section,
let Λi : [0, 1] → R2i×2i, i = 1, . . . , n − 1, Λn ∈ R2n−1×2n−1 be
continuous matrices defined asΛ1 := M1,

Λi(s) :=

(
Mi−1 s B2(i−1) BT

2

Ki BT
2(i−1) Ei

)
i = 2, . . . , n − 1 (12)

where s ∈ [0, 1], and Λn := Mn. With this notations in mind, the
design parameters α and β must be tuned in order to fulfil a ‘‘low-
power strong stability requirement’’ that is formally defined in the
following.

Definition 2 (Low-power Strong Stability Requirement). We say that
α and β fulfil the ‘‘low-power strong stability requirement’’ if the
following holds:

• αi, i = 1, . . . , n and βi, i = 1, . . . , n − 1, are all positive;
• for all i = 1, . . . , n, there exist Pi = PT

i > 0 and µi > 0 such
that for all s ∈ [0, 1] the resultingΛi(s) fulfils

PiΛi(s) +Λi(s)TPi ≤ −µiI . (13)

It turns out that the previous requirement can be always ful-
filled by an appropriate choice of α and β . In particular, given a set
of α and β satisfying the ‘‘Low-power stability requirement’’ (see
Definition 1), one may always check if the ‘‘Low-power strong sta-
bility requirement’’ is fulfilled by applying Lemma 2 in Section 3.4.
Alternatively, onemay design the coefficients α and β by following
the constructive procedure presented at the end of Section 3.4.

Proposition 3. Consider system (1) under Assumption 1. Consider
the observer (11) with the design coefficients α ∈ Rn and β ∈

Rn−1 chosen so that the ‘‘low-power strong stability requirement’’ is
fulfilled. Let (x̂(0), η(0)) ∈ X̂ × E with X̂ × E an arbitrary compact set
of Rn

× Rn−1. Then, the following holds:

(a) there exist p̄i > 0, i = 2, . . . , n, and, for each ν̄ > 0, there
exists p̄1 > 0 such that

|x̂i(t) − xi(t)| ≤ p̄i , i = . . . , n
|ηi(t) − xi+1(t)| ≤ ℓ p̄i , i = 1, . . . , n − 1 (14)

for all t ≥ 0, for all ℓ ≥ 1 and for all ν(t) such that ∥ν∥∞ ≤ ν̄;
(b) there exist ν̄ and ℓ⋆ ≥ 1 such that for each ℓ ≥ ℓ⋆ there exists

T > 0 such that

∥ν∥∞ ≤
ν̄

ℓi
⇒ satri+1 (ηi(t)) = ηi(t)

for all t ≥ T , i = 1, . . . , n − 1.

The proof of the previous proposition is deferred to Section 5.3.
Proposition 3 has two main consequences. First of all, the first
inequality of (14), clearly shows that the estimates x̂i, i = 1, . . . , n,
given by the observer (11), do not peak with ℓ. In particular the
ultimate bound

x̂i∞
depends on the compact sets X , X̂ and E but

it is independent of ℓ. In other words, the observer (11) provides
a peaking-free estimate x̂(t) of the state x(t) of (1). On the other
hand, the second inequality of (14) shows that the variables ηi
may grow with ℓ during the transients, namely the value ∥ηi∥∞

is proportional to the high-gain parameter ℓ. Nevertheless, it is
worth noting that, from a computational point of view, this should
not worry since the implementation of values proportional to ℓ is
needed in order to design the gains of the observer. In other words,
the maximum values that the auxiliary variables ηi may reach are
of the same order ofmagnitude of the gains of the observers, allow-
ing to implement numbers which are in general well-conditioned.
This interesting feature is in general not guaranteed with other
constructions, such as see Teel (2016).

The second consequence of Proposition 3 is that the variables ηi,
i = 1 . . . , n− 1, exit from saturation (item (b)) if the amplitude of
the sensor noise is sufficiently small in relation to ℓi. In particular,
if ∥ν∥∞ ≤ ν̄/ℓn−1, the observer (11) boils down, in finite time, to
the low-power observer (5) by thus recovering all the asymptotic
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properties detailed in Theorem 1 and Proposition 2. In some sit-
uations, though, the bounds in item (b) may be conservative (for
instance when high-frequency measurement noise is considered).
Finally, note that, to have item (b) fulfilled, the saturation levels
need to be chosen large enough according to (10).

3.4. Design of the coefficients fulfilling the ‘‘low-power (strong) sta-
bility requirement’’

The tuning of the coefficients (α, β) ∈ Rn
× Rn−1 satisfying the

‘‘low-power stability requirement’’ (see Definition 1) can be done
bymeans of a procedure that assigns the eigenvalues of the matrix
Mn. This is presented in the next lemma that links to a constructive
design procedure presented in Astolfi and Marconi (2015). The
MATLAB code for the design of the coefficients can be also found
in Astolfi (2016).

Lemma 1. Let P(λ) = λ2n−1
+ m1λ

2n−2
+ · · · + m2n−2λ +

m2n−1 be an arbitrary Hurwitz polynomial. There exists a choice of
design coefficients (α, β) ∈ Rn

× Rn−1 such that the characteristic
polynomial of Mn coincides with P(λ).

Proof. The triangular structure of the matrix Mn implies that
P(λ) = Pn−1(λ)(λ−αn) withPn−1(λ) the characteristic polynomial
of Mn−1. Using the constructive procedure in Lemma 1 of Astolfi
andMarconi (2015), it turns out that the coefficients (α1, . . . , αn−1)
and (β1, . . . , βn−1) can be designed to assign an arbitrary polyno-
mial Pn−1(λ). From this the result immediately follows. □

Given a set of coefficients α and β one may check if also the
‘‘low-power strong stability requirement’’ inDefinition 2 is fulfilled
by direct application of the following Lemma.

Lemma 2. Let Si−1 = STi−1 > 0, Si = STi > 0 and γi−1, γi > 0, be
such that⎛⎜⎝Si−1Mi−1 + MT

i−1Si−1 Si−1B2(i−1) B2(i−1)

BT
2(i−1)Si−1 −γi−1I 0
BT
2(i−1) 0 −γi−1I

⎞⎟⎠ < 0, (15)

⎛⎜⎝SiEi + ET
i Si SiKi B2

K T
i Si −γiI 0
BT
2 0 −γiI

⎞⎟⎠ < 0 . (16)

If γi−1γi < 1, then there exists Pi = PT
i > 0 and µi > 0 such that

(13) holds.

Proof. Consider the matrix Λi(s) defined in (12) and regard it as
the state matrix of a system resulting from the feedback intercon-
nection of a first Hurwitz system

ẋi−1 = Mi−1xi−1 + B2(i−1)vi−1

yi−1 = BT
2(i−1)xi−1

(17)

with state xi ∈ R2i, input vi−1 ∈ R and output yi−1 ∈ R, and a
second subsystem

ẋi = Eixi + Kivi
yi = BT

2xi
(18)

with state xi ∈ R2, input vi ∈ R and output yi ∈ R, under
the feedback vi−1 = s yi and vi = yi−1. If Mi is Hurwitz, then,
by applying the bounded real lemma see Lancaster and Rodman
(1995), there exists Si−1 and γi−1 such that inequality (15) holds
and moreover the Lyapunov function Vi−1 = γi−1xTi−1Si−1xi−1
satisfies

V̇i−1 ≤ −ϵi−1|xi−1|
2
+ γ 2

i−1|vi−1|
2
− |yi−1|

2

for some ϵi−1 > 0. Similarly, in view of (16), the Lyapunov function
Vi = γixTi Sixi satisfies

V̇i ≤ −ϵi|xi|2 + γ 2
i |vi|

2
− |yi|2

for some ϵi > 0. Now consider the composite Lyapunov function
Wi = Vi−1 + aVi where a > 0 is a real number to be selected. By
using the previous inequalities and the definitions of vi−1, vi, we
obtain

Ẇi ≤ −ϵi−1|xi−1|
2
+ γ 2

i−1|vi−1|
2
− |yi−1|

2

−aϵi|xi|2 + aγ 2
i |vi|

2
− a|yi|2

≤ −ϵi−1|xi−1|
2
− aϵi|xi|2

+
(
yTi−1 yTi

) ((−1 + aγ 2
i )I 0

(s2γ 2
i−1 − a)I

)(
yi−1
yi

)
.

(19)

If γiγi−1 < 1, then there exists a > 0 satisfying

γ 2
i−1 ≤ a ≤

1
γ 2
i

and therefore, for any s ∈ [0, 1], the inequality (19) reduces to
Ẇi ≤ −µi(|xi−1|

2
+ |xi|2) where µi = min{ϵi−1, aϵi}. The

matrix satisfying (13) is therefore Pi := diag
(
γi−1Si−1, aγiSi

)
with

a satisfying the previous condition. This concludes the proof. □

By recalling standard results on bounded real lemmas and
equivalences between L2 and H∞ gains, one may verify the con-
dition γi−1γi < 1 by computing γi−1, γi as the H∞ gains of the
transfer functions of systems (17) and (18) instead of solving con-
ditions (15) and (16). Moreover, by bearing in mind the definitions
of Ei and Ki, we can compute the H∞ gain of the transfer function
of system (16) between input vi and output yi, which is βi/αi.
As a consequence, the result of Lemma 2 can be directly applied
to obtain a design procedure satisfying the ‘‘low-power strong
stability requirement’’ as follows:

step (1) take (α1, β1) as any pair of positive numbers;
step (i) for all i = 2, . . . , n − 1, compute recursively αi and βi as

any positive numbers such that βi
αi

≥
1
γi−1

with γi−1 the L2 gain
of system (17);

step (n) take αn as any positive number.

4. A numerical example

For illustration purposes we consider a system of the form (1)
with n = 5 with the nonlinear function ϕ chosen as

ϕ(x) = 0.2(x21 − 1) − x2 − x3 − 4x4 − x5 . (20)

As shown in Sprott (2010), system (1), (20) is a crackle system
exhibiting chaotic behaviours, when the initial conditions are close
enough to the origin, and possibly unstable otherwise. In the sim-
ulations we selected x(0) = (−0.8, 0, 0, 0, 0)T . Numerical inspec-
tion shows that, with this initial conditions, |x1(t)| < 2.5, |x2(t)| <
1, |xi(t)| < 0.5, i = 3, 4, 5, and |ϕ(t)| ≤ 0.5 for all t ≥ 0. The
observer (11) of dimension 9, has been implemented by following
the prescriptions of Section 3. In particular, the coefficientsα andβ
have been chosen by following the recursive procedure of Astolfi
and Marconi (2015)1 obtaining αi = 3 for i = 1, . . . , 4, α5 = 2,
β1 = 8.5714, β2 = 3.2122, β3 = 1.4267, β4 = 0.5347. In
this way the poles of the matrix Mn are real and placed in the
range [−2,−1]. It is also possible to verify by direct application
of Lemma 2 that, with this choice, the coefficients satisfy the low-
power strong stability requirement of Definition 2. The saturation
levels have been fixed to ri = 3, i = 1, . . . , 5. The function

1 In particular we used the MATLAB code that can be found in Astolfi (2016).
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Table 1
Converge time and peaking phenomenon of the low-power peaking-free high-gain
observer (11) when ν(t) = 0. Worst case for initial conditions in xi(0) = {3,−3}
for i = 1, . . . , 5 and ηi(0) = {3,−3} for i = 1, . . . , 4. T0.01 is computed such that
|x(t) − x̂(t)| < 0.01 for all t ≥ T0.01 .

ℓ = 7 ℓ = 30 ℓ = 70

T0.01 4.881 0.995 0.471
∥x̂1∥∞ 3 3 3
∥x̂2∥∞ 4.10 4.04 4.03
∥x̂3∥∞ 3.69 3.61 3.59
∥x̂4∥∞ 3.37 3.90 3.29
∥x̂5∥∞ 3.20 3.05 3.02
∥η1∥∞ 43.89 181.81 421.98
∥η2∥∞ 33.36 135.15 312.22
∥η3∥∞ 18.43 69.93 159.90
∥η4∥∞ 9.19 30.80 68.35

Table 2
Converge time and peaking phenomenon of the high-gain observer (2) when
ν(t) = 0. Worst case for initial conditions in xi(0) = {3,−3} for i = 1, . . . , 5. T0.01
is computed such that |x(t) − x̂(t)| < 0.01 for all t ≥ T0.01 .

ℓ = 4.17 ℓ = 20 ℓ = 41.7

T0.01 4.901 1.136 0.604
∥x̂1∥∞ 3 3 3
∥x̂2∥∞ 41.84 194.15 403.42
∥x̂3∥∞ 222.59 4.92 ·103 2.13 ·104

∥x̂4∥∞ 613.59 6.56 ·104 5.91 ·105

∥x̂5∥∞ 690.71 3.55 ·105 6.69 ·106

Table 3
Effect of the measurement noise in the steady-state behaviour of the low-power
peaking-free high-gain observer (11) with ℓ = 7. In the table x̃i := x̂i − xi . (a):
coloured random noise with band-pass filter. (b): sinusoidal noise with ω = 100.
(c): coloured random noise with high-pass filter. (d): sinusoidal noise with ω =

5000.

(a) (b) (c) (d)

∥ν∥∞

T0.01
0.298 0.298 4.4894 4.4894

∥x̃1∥∞

T0.01
0.059 0.065 0.017 0.0189

∥x̃2∥∞

T0.01
0.280 0.263 0.004 0.0016

∥x̃3∥∞

T0.01
0.660 0.404 0.0008 0.0004

∥x̃4∥∞

T0.01
0.752 0.278 0.002 0.0020

∥x̃5∥∞

T0.01
0.201 0.042 0.004 0.0038

ϕs(·) has been implemented by saturating the function ϕ such that
|ϕs(x)| ≤ 3 for any x ∈ R5. Fig. 3 shows the behaviour of the
peaking-free low-power high-gain observer (11) when ℓ = 7 with
initial conditions chosen as |x̂i(0)| = 1, i = 1, . . . , 5, |ηi(0)| = 0,
i = 1, . . . , 4, without measurement noise, namely ν(t) = 0. Then,
we compared the observer (11)with a standard high-gain observer
(2) of dimension 5. The parameters ki are chosen as k1 = 7.5,
k2 = 22.1875, k3 = 32.3438, k4 = 23.2188, k5 = 6.5625, so
that the roots of the matrix (A5 − K5C5), with K5 = (k1, . . . , k5)T ,
are real and equidistant in the range [−2,−1]. The function ϕs(·)
in (2) is the same we used to implement observer (11).

In order to characterize the peaking phenomenon, we run
numerous simulations with random initial conditions in the set
{(x, η) ∈ R9

: |xi| ≤ 3, i = 1, . . . , 5, |ηi| ≤ 3, i = 1, . . . , 4}.
Table 1 shows, for different values of ℓ, the maximum peaking
values of the state (x̂, η) of the low-power peaking free high-
gain observer (11) and the time needed to converge to an error
sufficiently small (i.e. the time Tϵ such that |x(t) − x̂(t)| < ϵ

for all t ≥ Tϵ) among all the simulations that we run. Table 2
shows, for different values of ℓ, the maximum peaking values of
the state x̂ of the high-gain observer (2) and the time Tϵ . While
the peaking on the estimates x̂i provided by (2) is proportional to

Table 4
Effect of the measurement noise in the steady-state behaviour of the high-gain
observer (2) with ℓ = 4.17. In the table x̃i := x̂i − xi . (a): coloured random noise
with band-pass filter. (b): sinusoidal noise with ω = 100. (c): coloured random
noise with high-pass filter. (d): sinusoidal noise with ω = 5000.

(a) (b) (b) (c)

∥ν∥∞

T0.01
0.298 0.298 4.4894 4.4894

∥x̃1∥∞

T0.01
0.078 0.092 0.025 0.028

∥x̃2∥∞

T0.01
0.940 1.138 0.317 0.347

∥x̃3∥∞

T0.01
5.628 6.919 1.927 2.106

∥x̃4∥∞

T0.01
16.687 20.713 5.768 6.307

∥x̃5∥∞

T0.01
19.491 24.417 6.797 7.439

increasing powers of ℓ, as expected by the bound (3), no peaking
is present on the estimates x̂i provided by the peaking-free low-
power high-gain observer (11). The peaking on the auxiliary state
variables ηi is only proportional to ℓ, as expected by Proposition 3.
Then, in order to characterize performance of the observer (11) in
presence of measurement noise, we fixed the high-gain parameter
as ℓ1 = 7. Note that the largest coefficient we need to implement
in the observer (11) is in this case β1ℓ

2
1 = 420. Similarly, we fixed

ℓ2 = 4.17 for the high-gain observer (2) in order to practically
match convergence rates of the two observers, namely to achieve
the same Tϵ with ϵ = 0.01. In this case, note that the largest
coefficientwe need to implement is k5ℓ52 = 8.27·103. We repeated
the simulations in four different scenarios. In the scenarios (a) and
(c) we supposed that the measurement noise ν is some coloured
noise generated by filtering white noise respectively with a band-
pass filter (with band [50 − 200] Hz) and with a high-pass filter
(with band [1000 − ∞] Hz). In contrast, in the scenarios (b) and
(d) we supposed, as in Propositions 1 and 2, that the measurement
noise ν is generated by a sinusoidal signal ν(t) = A sin(ω t). In the
scenario (b) we considered ω = 100 while in the scenario (d) we
selected ω = 5000. Tables 3 and 4 show the maximum value of
the estimation errors |x̂i(t)−xi(t)|, i = 1, . . . , 5, in steady-state for
the two observers. The tables show the remarkable improvement
in terms of disturbance attenuation (especially for the components
x̂i, i > 2) of the low-power peaking free high-gain observer with
respect to standard high-gain observer technique. For the observer
(11) the measurement noise is attenuated on all components x̃i :=

x̂i − xi, i = 1, . . . , 5, while for the observer (2) the measurement
noise is amplified for i ≥ 2 when considering medium frequencies
and for i ≥ 4 at high-frequencies. Similar results are obtained
when considering measurement noise with different amplitudes,
frequencies or band-pass filters. Finally, we remark that the data
collected in Tables 3, 4 confirm that the approximation given in
Propositions 1 and 2 provides a good indicator of the steady-state
behaviour of observers (2) and (11) in presence of coloured random
measurement noise, thus supporting the validity of the proposed
nonlinear analysis.

5. Proofs

5.1. Proof of Theorem 1

The proof follows the same idea of Astolfi and Marconi (2015),
with just minor adaptations due to the different dimension of the
actual observer (2n − 1 instead of 2n − 2), and therefore it is just
sketched. Let χ̃ := col(χ̃1, . . . , χ̃n)with χ̃i ∈ R2 for i = 1, . . . , n−1
and χ̃n ∈ R, defined as

χ̃i := col
(
x̂i − xi
ℓi−1 ,

ηi − xi+1

ℓi

)
i = 1, . . . , n − 1 (21)
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Fig. 3. Behaviour of the error dynamics x̂i(t)−xi(t), i = 1, . . . , 5, of system (1), (20)
and observer (11).

and χ̃n := ℓ−(n−1)(x̂i − xi). By applying the previous change of
coordinates to (5), we obtain

˙̃χ = ℓMnχ̃ +
1
ℓn−1 B̄∆ϕ(χ̃ , x, d) + ℓ K̄1ν(t)

where the matrixMn is Hurwitz by design, B̄ = col(B2n−2, 1), K̄1 :=

col(K1, 0, . . . , 0), and the function ∆ϕ := ϕ(x, d) − ϕs(x̂) satisfies
|∆ϕ(χ̃ , x, d)| ≤ ℓn−1ϕ̄x|χ̃ | + R for all (χ, x, d) ∈ R2n−1

× Rn
× D,

for some ϕ̄x > 0 and R := 2max{x∈X,d∈D}|ϕ(x, d)|. By definition,
the following bounds ℓ−(i−1)

⏐⏐x̂i − xi
⏐⏐ ≤ |χ̃ |, ℓ−i |ηi − xi+1| ≤ |χ̃ |

and |χ̃ | ≤ |x̂ − x| hold for ℓ ≥ 1. As a consequence, bounds (7)
and (8) can be obtained by using previous bounds and by applying
Lemma 4 in the Appendix with ℓ⋆ indicated in the statement of the
theorem. □

5.2. Proof of Proposition 2

Firstly, it is worth expressing the signal (4) as an output of
an autonomous system properly initialized. In this respect, we
observe that, having defined S ∈ Rnw×nw and P ∈ R1×nw as

S := blkdiag(S1, . . . , Snν ) , Si =

(
0 ωi

−ωi 0

)
,

and P := ((0 1) (0 1) · · · (0 1)), themeasurement noise (4) can be
expressed as output of the following system

εẇ = Sw , w ∈ Rnw

ν = Pw , (22)

with initial condition w(0) dependent on νci and νsi . The initial
condition w(0), in particular, ranges in a compact set W that is
invariant for (22).

Then, the proof of the Proposition conceptually articulates in
three parts. In the first part the whole system, given by the ob-
served system (1), the observer (5) and the noise generator (22), is
transformed, by means of a coordinates change, into a cascade au-
tonomous system given by an asymptotically stable system (which
is the estimation error dynamics) driven by a systemwith bounded
trajectories (which is the parallel of the observed system and of the
noise generator). This cascade structure leads to a first conclusion
that the state of the estimation error dynamics asymptotically
converges to a steady state governed by the state of the driving
subsystem (namely x and w). Such a steady state will be clearly
affected by the parameter ε characterizing (22). The core of the
proof is then the characterization of such a steady state in terms of
ε. In this respect, in the second part of the proof an approximation
of such a steady state is presented (with an approximation that
is of order ερ with ρ properly defined). The result is contained in
the forthcoming Lemma 2, which is a technical lemma that can be
proved by following the computations in Astolfi et al. (2016). In

the final part of the proof, then, the asymptotic properties of the
cascade systemare analysed in relation to the approximated steady
state to obtain the result claimed in the proposition. The structure
of the proof follows the idea originally presented in Astolfi et al.
(2016) for classical high-gain observers (2).

Consider the change of coordinates

ξ̃i := col(x̂i − xi, ηi − xi+1) i = 1, . . . , n − 1

with ξ̃i = col(ξ̃i1, ξ̃i2) ∈ R2 for all i = 1, . . . , n−1, and ξ̃n := x̂n−xn,
that transforms the observer (5) into the form

˙̃
ξ = F ξ̃ + B̄∆ϕ(ξ̃ , x) + Gν(t) (23)

with the matrix F recursively constructed as F1 = H1,

Fi :=

(
Fi−1 N̄i

Ȳi Hi

)
i = 2, . . . , n − 1, F :=

(
Fn−1 0
ℓq̄n −ℓ αn

)
with Hi := A − D2(ℓ) Ki C , Yi := D2(ℓ) Ki BT , N̄i := B2(i−1)BT

2 , for
i = 1, . . . , n − 1, B̄ = col(B2n−2, 1), G := col

(
G1, 0, . . . , 0

)
with

G1 := D2(ℓ)K1 and

∆ϕ(ξ̃ , x) := ϕs(Γ ξ̃ + x) − ϕ(x, d) , (24)

with Γ := blkdiag (C2, . . . , C2  
(n−1) times

, 1) . By compactly writing the

system dynamics (1) as ẋ = f (x) the overall dynamics given by
the observed system (1), the observer error dynamics (23) and the
noise generator (22) read as

εẇ = Sw
ẋ = f (x)
˙̃
ξ = F ξ̃ + B∆ϕ(ξ̃ , x) + GPw .

(25)

Having taken the parameters (α, β) and ℓ according to the pre-
scription of Theorem 1, the trajectories of this system are bounded.
The system in question, thus, has a well-defined steady state that
can be characterized with the tools proposed in Isidori and Byrnes
(2008). More specifically, the triangular structure of the system
(with the x and w subsystem driving the ξ̃ subsystem) implies the
existence of a possibly set-valued function πε : X × W ⇒ R2n−1

such that the set

graph(πε) =
{
(w, x, ξ̃ ) ∈ W × X × R2n−1

: ξ̃ ∈ πε(w, x)
}

is asymptotically stable for (25). Furthermore, the properties of
the high-gain observer when the measurement noise is absent (i.e.
when w = 0) show that πε(0, x) = {0} for all x ∈ X . The following
technical lemma provides an arbitrarily accurate approximation of
a continuous selection of πε(·, ·). The lemma refers to a number of
functions that enter in definition of the approximation. In order
to keep compact the claim of the lemma, we introduce those
functions beforehand. In particular, let

υ :=

⌈n
2

⌉
,

and let ρ be an arbitrary (integer) number satisfying ρ ≥ m, withm
given by (9). Note that for anynwehavem ≥ υ . The approximation
of orderρ of the steady state is then a functionΨε : W×X → R2n−1

defined as

Ψε(w, x) := col
(
Ψ1, Λ1, Ψ2, Λ2, . . . , Ψn−1, Λn−1, Ψn

)
in which

Ψi(w, x) :=

ρ∑
j=ai

ψi,j(w, x) εj , i = 1, . . . , n

Λi(w, x) :=

ρ∑
j=bi

λi,j(w, x) εj , i = 1, . . . , n − 1
(26)
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where the ai = bi = i for i = 1, . . . , υ , ai = n− i+2, bi := n− i+1
for i = υ + 1, . . . , n, with
ψi,j : X × W → R, i = 1, . . . , n, j = ai, . . . , ρ,
λi,j : X × W → R, i = 1, . . . , n − 1, j = bi, . . . , ρ,

appropriately defined continuous functions. We have then the fol-
lowing technical result, instrumental to the proof of Proposition 2.

Lemma 3. Consider system (25) and the notations introduced before.
There exist continuous functions ψi,j(·, ·) and λi,j(·, ·) such that, hav-
ing defined

Eε(w, x) :=
∂Ψε(w, x)
∂w

Sw +
∂Ψε(w, x)

∂x
f (x)

− FΨε(w, x) − GPw − B∆ϕ(Ψε(w, x), x) ,

the following holds

lim
ε→0+

Eε(w, x)
ερ−1 = 0 ∀ (w, x) ∈ W × X ,

Eε(0, x) = 0 ∀ (ε, x) ∈ [0, 1] × X .

Furthermore, there exist continuous functions ψ̄i,ai (·, ·), i = 1, . . . , n,
satisfying

ψi,ai (w, x) := ℓ2i−1 ψ̄i,ai (w, x), i = 1, . . . ,m,
ψi,ai (w, x) := ℓ ψ̄i,ai (w, x), i = m + 1, . . . , n.

(27)

Proof. Due to space constraints, we just give here a sketch of the
proof, by focusing on the main steps to derive the expression of
Eε(·, ·). By letting

Eε(·, ·) := col
(
E1, Ξ1, E2, Ξ2, . . . , En−1, Ξn−1, En

)
it can be seen that the Ei, i = 1, . . . , n, and Ξi, i = 1, . . . , n − 1,
components have the form

E1 = Ψ̇1 + ℓα1Ψ1 −Λ1 − ℓα1Pw
Ξ1 = Λ̇1 + ℓ2β1Ψ1 −Λ2 − ℓ2β1Pw
Ei = Ψ̇i + ℓαiΨi −Λi − ℓαiΛi−1

Ξi = Λ̇i + ℓ2βiΨi −Λi+1 − ℓ2βiΛi−1

i = 2, . . . , n − 2,
En−1 = Ψ̇n−1 + ℓαn−1Ψn−1 −Λn−1 − ℓαn−1Λn−2

Ξn−1 = Λ̇n−1 + ℓ2βn−1Ψn−1 −∆ϕ(Ψ ε, x)
−ℓ2βn−1Λn−2

En = Ψ̇n + ℓαnΨn −∆ϕ(Ψ ε, x) − ℓαnΛn−1

(28)

where, for the sake of compactness, we omitted the argument
(w, x) from the functions Ψi, i = 1, . . . , n, Λi, i = 1, . . . , n − 1
and Ψ ε := Γ Ψε . Note that, since w and x range in bounded sets
and the function ψi,j(·, ·) and λi,j(·, ·) are continuous, we have that

lim
ε→0+

Ψε(w, x) = 0 ∀ (w, x) ∈ W × X .

Therefore, we can expand the term ∆ϕ by a Taylor series around
Ψ ε = 0 to obtain

∆ϕ(Ψ ε, x) =

ρ∑
j=1

εjφj(w, x) + ερ+1Rε(w, x).

Themain idea of the proof is then to iteratively select the functions
ψi,j+1(·, ·), λi,j+1(·, ·) to annihilate, in the previous expressions, the
terms in ε of order j, with j = 0, . . . , ρ − 1, for i = 1, . . . , n. By
considering the term of order 0 in ε in the expression of E1 andΞ1
it is easy to see that

ψ1,1(w, x) = ℓα1PS−1w , λ1,1(w, x) = ℓ2β1PS−1w .

By proceeding iteratively one can select all the functions ψi,j and
λi,j according to the PDEs (28) to show that Ei,Ξi are terms in ερ

thus satisfying the first part of the lemma. Similarly, the second
part of the lemma follows by inspecting the choice of ψi,j and the
PDEs (28). □

With the result of Lemma 3 in hand, we are now in the position
of concluding the proof of Proposition 2. Let us consider the change
of variables

ξ̃ ↦→ ζ := ξ̃ − Ψε(w, x) ,

with Ψε(·, ·) introduced in the previous lemma with a ρ > 1 and
note that, by bearing in mind the definition of Eε(·, ·),

Ψ̇ε = FΨε + B∆ϕ(Ψε, x) + GPw + Eε(w, x).

Furthermore, note that

∆ϕ(ξ̃ , x) −∆ϕ(Ψε(w, x), x)
= ∆ϕ(ζ + Ψε(w, x), x) −∆ϕ(Ψε(w, x), x)
= ϕs(Γ (ζ + Ψε(w, x)) + x) − ϕs(Γ Ψε(w, x) + x)
= ∆ϕ(ζ ,Γ Ψε + x) ,

and that there exists ε⋆1(ℓ) ∈ (0, 1] such that2 for all positive
ε ≤ ε⋆1(ℓ)

∆ϕ(0,Γ Ψε(w, x) + x) = 0 ∀ (w, x) ∈ W × X .

As a consequence, we can compute the error dynamics in the new
coordinates as

ζ̇ = Fζ + B∆ϕ(ζ ,Γ Ψε(w, x) + x) + Eε(w, x) . (29)

Since the Lipschitz constant of∆ϕ(·, ·) is not affected by the value of
the arguments, the same values of ℓ thatmake system (23) ISSwith
respect to the input ν(t) make also system (29) ISS with respect to
the input Eε(·, ·). In particular, there exists c0 > 0 such that

lim
t→∞

sup|ζ (t)| = lim
t→∞

sup|ξ̃ (t) − Ψε(w(t), x(t))|
≤ c0 lim

t→∞
sup|Eε(w(t), x(t))|

≤ c0 ∥Eε(w, x)∥∞

Using the fact that, for any ρ ≥ m, Eε(w, x) is a term in ερ , it follows
that there exists c1 > 0 such that

lim
t→∞

sup|ζ (t)| ≤ c1ερ ∥w∥∞ .

Consider now the expressions of the components Ψi(·, ·), i =

1, . . . , n, of Ψε(·, ·) introduced in Lemma 3. It turns out that there
exist a positive ε⋆2(ℓ) ≤ ε⋆1(ℓ) and µ2 > 0 such that

|Ψi(w, x)| ≤ c2 εi ℓ2i−1
|w| i = 1, . . . ,m,

|Ψi(w, x)| ≤ c2 εn−j+2 ℓ |w| i = m + 1, . . . , n,

for all positive ε ≤ ε⋆2(ℓ) and for all (w, x) ∈ W × X . From this, for
all j = 1, . . . ,m, we have

lim sup
t→∞

|x̂i(t) − xi(t)| = lim sup
t→∞

|ζi1(t) + Ψi(w(t), x(t))|

≤ c1ερ ∥w∥∞ + c2εiℓ2i−1
∥w∥∞

and for i = m + 1, . . . , nwe have

lim sup
t→∞

|x̂i(t) − xi(t)| = lim sup
t→∞

|ζi1(t) + Ψi(w(t), x(t))|

≤ c1ερ ∥w∥∞ + c2εn−i+2ℓ ∥w∥∞ .

Since ν(t) = Pw(t), and by recalling that ∥w∥∞ does not depend on
the choice of ε, there exists c3 > 0 satisfying ∥w∥∞ ≤ c3 ∥ν∥∞. The
result follows by taking an appropriate ε⋆(ℓ) ≤ ε⋆2(ℓ) and ĉ > 0. □

2 Note that the value of ε⋆ depends, among other things, on the choice of the set
Xδ on which ϕs(·) coincides with ϕ(·).
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5.3. Proof of Proposition 3

The proof follows the main steps proposed in Astolfi et al.
(2016), with just minor adaptations due to the different dimension
of the actual observer (2n − 1 instead of 2n − 2) and the presence
of the measurement noise ν, and therefore it is just sketched.
Consider the change of coordinates

ζi := col(x̂i − xi, ℓ−1(ηi − xi+1)), i = 1, . . . , n − 1

and ζn := x̂n − xn, that transforms system (11) into

ζ̇i = ℓEiζi + ℓ−1B2ui + ℓKiϖi i = 1, . . . , n − 1,
ζ̇n = −ℓαnζn + un−1 + ℓαnϖn

where ϖ1 = ν and ϖi = satri (ηi−1) for i = 2, . . . , n, ui :=

satri+2 (ηi+1)−xi+2 for i = 1, . . . , n−2 and un−1 := ϕs(x̂, 0)−ϕ(x, d).
By definition of saturation function, of ϕs(·, ·) and since x(t) and
d(t) range in compact sets, there exist ūi > 0, i = 1, . . . , n − 1,
independent of ℓ, such that ∥ui∥∞ ≤ ūi. Furthermore, note that
the matrices Ei, i = 1, . . . , n − 1, are Hurwitz by design of α, β
and αn > 0. Recall also that ϖi is bounded for any i = 1, . . . , n.
Hence, by applying Lemma 4 in Appendix, it turns out that there
exist constants cij > 0, with i = 1, . . . , n and j = 1, . . . , 4, such
that

|ζi(t)| ≤ ci1 exp(−ci2ℓ t)|ζi(0)| +
ci3
ℓ2

ūi + ci4

holds for any ℓ ≥ 1 and for i = 1, . . . , n. From this, by using
the fact that 1

ℓ
|xi+1 − ηi| ≤ |ζi| and |ζi| ≤ |xi − x̂i| + |xi+1 − ηi|

hold for all ℓ ≥ 1, the bound (14) immediately follows with
p̄i := ci1 πi + ci3ūi + ci4, with ci1 proportional to ν̄ and πi :=

maxx∈X, (x̂,η)∈X̂×E
{
|xi − x̂i| + |xi+1 − ηi|

}
for i = 1, . . . , n − 1, and

πn := maxx∈X, x̂∈X̂ |xn − x̂n| .
To prove the item (b) of the proposition, we proceed by in-

duction by recursively showing that all the ηi, from i = 1 to
i = n − 1, exit from the saturation if the measurement noise is
sufficiently small. For this, consider the change of coordinates (21).
The dynamics of χ̃1 are given by
˙̃χ1 = ℓE1χ̃1 + ℓ−1B2u1 + ℓK1ν(t).

We observe that the initial condition χ̃1(0) ranges in a compact
set E1 not dependent on ℓ (for all ℓ ≥ 1). Using the fact that E1
is Hurwitz, Lemma 5 in the Appendix, applied with k = 1 and
X = E1, can be used to claim that there exist a ν̄1 > 0 and, for
any T1 > 0, a ℓ1 ≥ 1 such that for all ℓ ≥ ℓ1 and all ν(t) satisfying
∥ν∥∞ < ν̄1/ℓ, we have |ℓ χ̃1(t)| ≤ 1 for all t ≥ T1. Hence, by noting
that ℓ−1

|η1 − x2| ≤ |χ̃12| ≤ |χ̃1| and |η1| ≤ |η1 − x2| + |x2| holds
for any ℓ ≥ 1, we get |η1(t)| ≤ ℓ|χ̃1(t)|+ |x2(t)| ≤ r2 +1 for any
ℓ ≥ ℓ1 and for all t ≥ T1, namely satr2 (η1(t)) = η1(t) for all t ≥ T1.

Now we proceed by induction, namely we assume that there
exist a Ti−1 > 0, a ν̄i−1 > 0 and ℓi−1 > 0 such that for all ℓ ≥ ℓi−1
and all ν(t) satisfying ∥ν∥∞ < ν̄i−1/ℓ

i−1 then satrj+1 (ηj(t)) = ηj(t)
for all j = 1, . . . , i − 1 and t ≥ Ti−1. Let us use the notation
χ̃[k] = (χ̃1, . . . , χ̃k)T for the first kth components of χ̃ . By the
Lipschitz mean-value theorem, there exists a s(·) ∈ C[0,1] such that
satri+1 (ηi) − xi+2 = s(t) ℓiBT

2 χ̃i . As a consequence, it turns out that
for t ≥ Ti−1 the χ̃[i] dynamics can be written as

˙̃χ [i] = ℓ Λi(s(t))χ̃[i] +
1
ℓi
B2iui(t) + ℓ K̄iν(t)

where Λi(s(t)) is defined as in (12), K̄1 := (K1, 0, . . . , 0)T and
ui := satri+2 (ηi+1) − xi+2 for i = 1, . . . , n − 2. Note that the
initial condition ε[i](0) ranges in a compact set Ei not dependent
on ℓ (for all ℓ ≥ 1). By Lemma 5 in the Appendix applied with
k = i and X = Ei, it turns out that there exist a ν̄i > 0 and, for
all Ti > Ti−1, a ℓi ≥ ℓi−1 such that, for all ℓ ≥ ℓi and all ν(t)
satisfying ∥ν∥∞ < ν̄i/ℓ

i, the inequality |ℓiχ̃[i](t)| ≤ 1 holds for

all t ≥ Ti. From this, by noting that ℓ−i
|ηi − xi+1| ≤ |χ̃i2| ≤ |χ̃[i]|

holds for any ℓ ≥ 1 and |ηi| ≤ |ℓiχ̃[i]| + |xi+1| it follows that for
all ℓ ≥ ℓi and any ν(t) fulfilling ∥ν∥∞ < ν̄i/ℓ

i, the inequality
|ηi(t)| ≤ ℓi|χ̃[i]| + |xi+1| ≤ ri+1 + 1 holds for all t ≥ Ti, namely
satri+1 (ηi(t)) = ηi(t) for all t ≥ Ti. This completes the proof. □

6. Conclusion

We presented a new class of nonlinear high-gain observers.
Unlike classical high-gain observers, the proposed structure has
the nice feature of having the high-gain parameter powered up
to the order 2 regardless the dimension of the observed system,
and it eliminates the so-called peaking phenomenon. Furthermore,
superior performance in terms of sensitivity to high-frequency
measurement noise has been shown. The proposed structure can
be used in place of the standard one in several settings where
this class of observers is typically used, such as output feedback
stabilization, output regulation, fault detection, and many others,
see e.g., Astolfi et al. (2017). In this paper we considered, for
the sake of simplicity, observed systems in the so-called phase-
variable form although the same ideas can be adopted to deal with
more general observability forms. The effect of high-frequency
measurement noise has been analysed in the nonlinear context
with the approach introduced in Astolfi et al. (2016). Wemodelled
the measurement noise as a summation of sinusoidal signals and
we analysed the steady-state behaviour of the observer by comput-
ing an approximation of a partial differential equation. Numerical
simulations confirm the validity of the approach. The proposed
analysis tool is of its own interest since it can be applied to other
classes of nonlinear observers to analyse the effect ofmeasurement
noise.

Appendix

The proofs of the forthcoming lemmas follow by Lyapunov
arguments that are omitted.

Lemma 4. Let consider the system

ẋ = ℓA(s(t))x +
1
ℓk
∆(x, d) + ℓ K ν(t)

where s ∈ C[0,1], with state x ∈ Rn, bounded disturbances d and ν,
and with k and ℓ positive numbers. Suppose that:

(i) there exists P = PT > 0 such that PA(s) + A(s)TP ≤ −I holds
for all s ∈ [0, 1];

(ii) ∆(x, d) ≤ L|x| + R for some L > 0, R > 0.

Then, there exist µi > 0, i = 1, . . . , 4 and ℓ ≥ 1 such that for all
ℓ > ℓ and for all s(·) ∈ C[0,1] and t ≥ 0

|x(t)| ≤ µ1 exp(−ℓµ2 t)|x(0)| +
µ3 ∥d∥∞

ℓk+1 + µ4 ∥ν∥∞ .

Lemma 5. Consider the system

ẋ = ℓA(s(t))x +
1
ℓk

Bu(t) + ℓ K ν(t) (A.1)

where s ∈ C[0,1], with state x ∈ Rn, andwith k and ℓ positive numbers.
Assume there exists a ū > 0 such that ∥u∥∞ < ū and that A(s)
satisfies the assumption in item (i) in the previous lemma. Then, there
exists ν̄ > 0 and, for any compact set X ⊂ Rn and T > 0, there exists
ℓ ≥ 1 such that for any ℓ > ℓ and any s(·) ∈ C[0,1], trajectories
of (A.1) originating from X and subject to disturbances ν(t) fulfilling
∥ν∥∞ ≤ ν̄/ℓk, satisfy |ℓk x(t)| ≤ 1 for all t ≥ T .
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