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Integral Action in Output Feedback for Multi-Input
Multi-Output Nonlinear Systems

Daniele Astolfi and Laurent Praly

Abstract—We address a particular problem of output
regulation for multi-input multi-output nonlinear systems.
Specifically, we are interested in making the stability of an
equilibrium point and the regulation to zero of an output ro-
bust to (small) unmodelled discrepancies between design
model and actual system in particular those introducing an
offset. We propose a novel procedure which is intended to
be relevant to realistic scenarios, as illustrated by a (non
academic) example.

Index Terms—Forwarding, high-gain observer, integral
action, nonlinear control, non-minimum phase systems, ob-
servability, output feedback, robust regulation, semi-global
stabilization, uncertain dynamic system.

I. INTRODUCTION

FOR a controlled dynamical system, it is of prime impor-
tance in real world applications to be able to design an

output feedback control law which achieves asymptotic regu-
lation of a given output while keeping the solutions in some
prescribed set, in presence of (constant) uncertainties. We re-
fer to this as the problem of robust output regulation by output
feedback.

The problem has been completely solved in the linear frame-
work by Francis and Wonham in the 1970s (see [12]). Important
efforts have been done in order to extend this result to the nonlin-
ear case (see, for instance [9], [21]) and many different solutions
have been proposed (see among others [10], [14], [23], [35], [4,
Ch. 7.2], [1], [18], [25], [38]). Nevertheless, we are still far from
having a complete solution to the problem of output regulation
in the nonlinear multi-input-multi-output framework similar to
what we have in the linear case. Indeed most of the works re-
quire a good knowledge of the effects of the disturbances on the
system, or they rely on “structural properties” as, for example,
normal forms, minimum phase assumption, matched uncertain-
ties or relative degree uniform in the disturbances. In particular,
for single-input single-output minimum-phase nonlinear sys-
tems which possess a well defined relative degree preserved
under the effect of disturbances, a complete solution has been
given in [25], further improved to the output feedback case in
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[37]. Under the same assumptions, this approach has been suc-
cessfully extended in [38] to square multi-input multi-output
systems for which the notion of relative degree indices and ob-
servability indices coincides. Furthermore, with the technique of
the auxiliary system introduced in [20], the minimum-phase as-
sumption has been removed in [29] allowing the zero-dynamics
to be unstable. However, as far as we know, a general solu-
tion is still unknown when these structural properties do not
hold.

The approach to nonlinear output regulation followed in this
paper is motivated by the linear context developed in its full
generality in the milestone paper [12] that we find useful to
briefly recall here. Consider the linear system

ẋ = A0x+B0u,
y = C0x,

y =
(
yr

ye

)
=
(
C0,r

C0,e

)
x

where the state x is in Rn , the control u is in Rm and the
measured output y is in Rp . The output y is decomposed as
y = (yr, ye) where yr , in Rr , with r ≤ m, is the output to be
regulated to zero (without loss of generality). When the system
above is supposed to be only an approximation of a process
given by

ẋ = Ax+Bu+ Pw,

y = Cx+Qw,

y =
(
yr

ye

)
=
(
Cr

Ce

)
x+

(
Qr

Qe

)
w

where w is an unknown constant signal to be either rejected or
tracked, the well posed regulator problem with internal stability
(addressed by Wonham for linear systems as shown for instance
in [46, Ch. 8]) is that of finding an output feedback law based on
the model such that, for all triplets {A,B,C} close enough to
{A0 , B0 , C0}, and for all matrices pairs {P,Q}, the regulation-
stabilization problem is solved, i.e. the system admits a stable
equilibrium point on which the output to be regulated is equal to
zero. According to [9, Proposition 1.6], this problem is solvable
if and only if the following three conditions are satisfied:

(A1) the pair (A0 , C0) is detectable;
(A2) the pair (A0 , B0) is stabilizable;

(A3) the matrix

(
A0 B0
C0,r 0

)
is right invertible.

Precisely, under the 3 conditions above, it is always possible
to design an output feedback law of the form

ż = yr
ẋc = Fxc + Ly
u = Kxc +Mz +Ny
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which solves the regulation problem provided F, L, K, M , and
N are chosen such that the following matrix:

⎛
⎝
A+BNC BK BM

LC F 0
Cr 0 0

⎞
⎠

is Hurwitz for all triplets {A,B,C} close enough to
{A0 , B0 , C0}, and for all matrices pairs {P,Q}, Note that in
this linear framework no structural properties are needed.

Merging the tools available in literature, we try to recover the
same result as in the linear case, asking for possibly minimal
assumptions but at the same time paying particular attention
to proposing a design truly manageable in applications. For
example, minimality implies not to ask for any specific structural
properties whereas applicability forbids nonlinear changes of
coordinates when no expression is known for their inverse. Our
answer to the problem uses “bricks” which can be found in other
publications (as [40], [34], [5]) that we merge together. But for
making this merging process efficient we have to address some
(new) specific problems.

As in the linear framework, we extend the system with an
integral action. Then, as in [34], we rely on forwarding to design
a stabilizing state feedback for the extended system. Next, for
transforming this state feedback into an output feedback, it is
sufficient to apply the techniques which have been proposed for
asymptotic stabilization by output feedback. A lot of effort has
been devoted to this question and many results have accumulated
(see for instance the survey [2]). In particular the transformation
is done by replacing the actual state by a state estimate provided
by a tunable observer (i.e., an observer whose dynamics can be
made arbitrarily fast). Stability of the overall closed-loop system
is established via the common separation principle [40], [7], and
output regulation follows from the integral action embedded in
the control law.

The tunable observer we propose is, as in [5] (previously
inspired by [11] and [30]), a high-gain observer written in the
original coordinates and appropriate for our multi-input multi-
output (possibly non-square) case. We propose a new set of
sufficient conditions which guarantees the existence of such an
observer. In contrast with what we have found in the literature
(see for instance [8], [17], [15]), our conditions can be verified
in the original coordinates thus not requiring the explicit knowl-
edge of the inverse of nonlinear change of coordinates (which
may be very hard to find). Also, looking for minimal assump-
tions, we do not ask for global observability or global uniformity
with respect to the inputs. The latter impacts the state feedback
design and we show how to address this point (in [34] only a
global solution is proposed).

Finally, we show that the proposed solution guarantees ro-
bust regulation. Robustness is here with respect to unmodelled
effects, not in the system state dimension, but in the approxi-
mations of the functions which define its dynamics and mea-
surements. This has been done already in [34] but for the state
feedback case and with an assumption on the closed-loop sys-
tem. Here, we show that if the open-loop model is close enough
(in aC1 sense) to the process, then output regulation is achieved
by our output feedback design. However, as opposed to the lin-
ear case, where the result is global with respect to the magnitude
of the disturbances, an unfortunate consequence of being in our
less restrictive context is that we need the perturbations to be
small enough.

In this work, for the sake of simplicity, we restrict our attention
to systems affine in the input. The extension to the non affine
case is possible by considering the system controls as state and
their derivatives as virtual controls. See [5] for example.

The paper is organized as follows. Section II is devoted
to show the main assumptions and results of this work. In
Section III and IV, we present respectively the state feedback
design and the observer design. The proofs of the main proposi-
tions are given in Section V. Finally, in Section VI, we illustrate
the proposed design with a non-academic example inspired from
a concrete case study in aeronautics (the regulation of the flight
path angle of a simplified longitudinal model of a plane). Two
technical lemmas about total stability results are given in the
Appendix.

I. Notations

For a set S,
◦
S denotes its interior, ∂S denotes its boundary,

and d(x, S) denote the distance function of a point x to the
set S. When S is a subset of A× B whose points are denoted
(a, b), (S)a denotes the set {a ∈ A : ∃b ∈ B : (a, b) ∈ S}. For
a function h and a vector field f, Lf denotes the Lie deriva-

tive of h along f , given coordinates x, Lf h(x) =
∂h

∂x
(x)f(x).

To any strictly positive real number v, we associate a “satura-
tion” function satv defined as a C1 function bounded by v and
satisfying

satv (s) = s if |s| ≤ v

1 + ς
(1)

where ς is a (small) strictly positive real number.

II. ROBUST REGULATION BY OUTPUT FEEDBACK

A. Problem Statement and Assumptions

For a process, we have available the following dynamical
model

ẋ = f(x) + g(x)u, y = h(x) = (hr (x), he(x)) (2)

where the state x is in Rn , the control u is in Rm , the measured
output y is in Rp the functions f : Rn → Rn , g : Rn → Rnm

and h : Rn → Rp are smooth enough and f and h are zero at
the origin. We investigate the problem of regulating at zero the
part yr of the output y decomposed as y = (yr, ye) with yr ∈ Rr

and r ≤ m and this while stabilizing an equilibrium for x. Being
aware that the triplet (f, g, h) gives only an approximation of the
dynamics of the process, we would like the above regulation-
stabilization property to hold not only for this particular triplet
but also for any other one in a neighborhood.

The real process is described by equations of the form

ẋ = ξ(x, u), y = ζ(x, u) (3)

where the functions ξ : Rn × Rm → Rn and ζ : Rn × Rm →
Rp are assumed continuously differentiable (C1). These func-
tions are unknown but we assume that they are close enough to
f + gu and h, respectively, in the sense that the discrepancies

|ξ(x, u) − f(x) − g(x)u| + |ζ(x, u) − h(x)|
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and ∣∣∣∣∣∣
⎛
⎝

∂ξ
∂x (x, u) − ∂f

∂x (x) − ∂g
∂x (x)u ∂ξ

∂u (x, u) − g(x)

∂ζ
∂x (x, u) − ∂h

∂x (x) ∂ζ
∂u (x, u)

⎞
⎠
∣∣∣∣∣∣

are small enough as made precise later on.
Mimicking the 3 necessary and sufficient conditions for the

linear case given in the introduction, we consider the follow-
ing (sufficient) assumptions that we discuss after their formal
statement.

Assumption 1: There exist an open set O of Rn containing
the origin and an open star-shaped subset U of Rm , with the
origin as star-center, such that, for any strictly positive real
number ū and for any compact subset C of O, there exist an
integer d, a compact subset Ĉ of O, a real number U and a class-
K∞ function α such that, for each each integer κ, we can find
C1 functions ϑκ : Rm × Rp ×O → O, Uκ : O ×O → R≥0 , a
continuous function Lϑκ : O → R≥0 and a strictly positive real
number σκ , such that:

1) for any function t→ u(t) with values in U(ū) defined as

U(ū) = {u ∈ U : |u| ≤ ū} (4)

and any bounded function t→ y(t), the set Ĉ is forward invari-
ant by the flow generated by the following observer

˙̂xκ = ϑκ(y, x̂κ , u); (5)

2) ∀(x, x̂) ∈ O ×O, Uκ(x, x̂) = 0 ⇐⇒ x = x̂;

3) σ−d
κ α(|x− x̂|) ≤ Uκ (x, x̂) ≤ σdκ U ∀x ∈ C, ∀x̂ ∈ Ĉ;

(6)

4) lim
κ→∞σκ = +∞ (7)

5)
∂Uκ
∂x

(x, x̂κ)[f(x)+g(x)u]

+
∂Uκ
∂x̂κ

(x, x̂κ)ϑκ(h(x), x̂κ , u) ≤ −σκ Uκ (x, x̂κ)

∀u ∈ U(ū), ∀ (x, x̂κ) ∈ C × Ĉ .
(8)

6. For all (ya , yb , x̂κ , u) in R2p ×O × U(ū),

|ϑκ(ya , x̂κ , u) − ϑκ(yb , x̂κ , u)| ≤ Lϑκ (x̂κ) |ya − yb | (9)

Assumption 2: There exist an open subset S of Rn and a
continuous function β : S → U which is zero at the origin and
such that the origin of (2) with u = β(x), is an asymptotically
and locally exponentially stable equilibrium point with S as
domain of attraction.

Assumption 3: The matrix⎛
⎝

∂f
∂x (0) g(0)

∂hr
∂x (0) 0

⎞
⎠ (10)

is right invertible.
Assumption 1 aims to be a counter-part of the detectability

condition (A1). But we have to face problems specific to this
nonlinear framework.

1) In our construction, we shall rely on the so called sepa-
ration principle. For nonlinear systems (see [40] for ex-
ample), it asks for an observer with a tunability property,
i.e., an observer the speed of convergence of which can be
made arbitrary fast (see [27]). This property is provided
here by the family of observers (5) satisfying (6)–(8).

2) Observability may depend on the input. This explains
why we impose the control to belong to the set U .

3) The tuning of observers for non linear systems may de-
pend on the local Lipschitz constant of the non linearities.
This explains why the family of observers depends on the
bound ū of the input.

On the other hand, to reduce the restrictiveness,
Assumption 1 is imposed only for system states belong-
ing to an open subset O of Rn . In Section IV we shall see how
the family of observers in this assumption can be designed by
following standard high-gain techniques.

Assumption 2 is the counter-part of the stabilizability con-
dition (A2) and claims the existence of a state feedback law
which asymptotically stabilizes the system (2). Actually it as-
sumes that a preliminary design step can be done. For it any
tool—Lyapunov design, feedback (partial) linearization, pas-
sivity, use of structure of uncertainties in combination with gain
assignment techniques, etc.—can be exploited. However, be-
cause Assumption 1 imposes the control to be in U , we propa-
gate this restriction here, asking the stabilizing control β to take
values in that set. On the other hand, we can cope with having
an arbitrary domain of attraction S, without asking it to be the
full space or any arbitrarily large compact set.

Finally, Assumption 3 corresponds to the non-resonance con-
dition (A3) and states that the first order approximation at the
origin of the system (2) does not have any zero at 0.

B. Adding an Integral Action

To solve the problem of regulating yr to 0 we follow the very
classical idea of adding an integral action, namely we consider
the extended system

ẋ = f(x) + g(x)u, ż = k(x, hr (x)) (11)

where k : Rn × Rr → Rr is a C1 function satisfying,1 for all
x in Rn and all (yar , y

b
r ) in Rr × Rr

k(x, yr ) = 0 ⇔ yr = 0 , (12)

|k(x, yar ) − k(x, yar )| ≤ Lk (x) |yar − ybr | (13)

where Lk : Rn → R≥0 is a continuous function. Of course the
function k can be simply hr . But, in its choice, we can take
advantage of the properties of the physical system under con-
sideration and it can simplify the feedback design or its imple-
mentation. An example is given in Section VI. Further details
about the design of k will be given in Section III.

As shown in the forthcoming section, the z-dynamics, repre-
senting the so-called internal model unit in the Francis-Wonham
terminology, assures the output yr to be regulated to zero in pres-
ence of uncertainties if the trajectories of the closed-loop system
are bounded.

1When Lg L
i
f hr (x) = 0, for i in {0, . . . , ρ}, (12) can be relaxed in{

k(x, hr (x)) = 0, Lf hr (x) = . . . = Lρ−1
f

hr (x) = 0
}

⇒ hr (x) = 0.
See [38] for example.
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C. Main Results

Assumptions 1 to 3 are sufficient to guarantee the existence
of an output feedback law solving the regulation-stabilization
problem for the model (2).

Proposition 1: Suppose Assumptions 1, 2 and 3 hold. There
exists an open subset SO of (S ∩ O) × Rr such that, for any of
its compact set Cxz , there exist an integer κ, a compact subset
Cx̂ of O, a real number μ, a C1 function2 k : Rn × Rr → Rr

satisfying (12), (13), and a C1 ψsat : Rn × Rr → U(μ), such
that the origin of the model (2), in closed-loop with the dynamic
output feedback

ż = k(x̂, hr (x)), ˙̂x = ϑκ(y, x̂, u) , u = ψsat(x̂, z) (14)

with κ ≥ κ, is asymptotically stable and locally exponentially

stable with a domain of attractionA containing the set
◦
Cx̂ × Cxz .

Proof: This proof follows the same lines as in [5], inspired
by [19, Ch. 12.3]. We omit it to save space. It can be found
in [6]. �

In the case where S and O are the full space Rn , this result
would be a semi-global regulation-stability result. It claims the
existence of a dynamic output feedback which asymptotically
stabilizes the origin of the model (2). Such a result is not new
per se. It is in line with many results related to the separation
principle as those in [40], [7] or [19, Ch. 12.3]. However, as
written in the introduction, we do not state only “existence”
but instead we propose an explicit and workable design. For
example, we refer the reader to Section III for the definition3 of
the set SO, the real number μ and the functions k.

In the following propositions, under the Assumptions 1, 2 and
3 and knowing the result of Proposition 1 holds, we study the
process (3) in closed-loop with the control law (14) designed
for the model (2).

Proposition 2: Let C be an arbitrary compact subset of the
domain of attraction A, given by Proposition 1, which admits
the equilibrium as an interior point and is forward invariant for
the closed-loop system (2), (14). For any open neighborhood
N∂C of the boundary set ∂C, contained in A, there exists a
strictly positive real number δ such that, for any pair (ξ, ζ) of
C1 functions which satisfies

|ξ(x, u) − [f(x) + g(x)u]| + |ζ(x, u) − h(x)| ≤ δ

∀ (x, u) ∈ (N∂C

)
x
× U(μ) (15)

the closed-loop system (3), (14) has equilibria and at any such
point the output yr is zero.

Proof: See Section V-A. �
If the domain of attraction were the full space, this result

would follow from [39, Section 12]. It says that, when the eval-
uation, on a “spherical shell”-like set, of the model and process
functions are close enough, equilibria where output regulation
occurs do exist. If this closeness is everywhere in the domain
of attraction, then we have even a solution to the well-posed
regulator problem with internal stability.

Proposition 3: For any compact sets C and C, the latter being
forward invariant for the closed-loop system (2), (14), which

2See the modification given later in (30).
3See respectively (25) and (46) for SO, (28) for μ, (23) and (30) for k and

(29) for ψsa t .

satisfy

{0} � C � C � A

and for any open neighborhood NC of C, contained in A, there
exists a strictly positive real number δ such that, to any pair
(ξ, ζ) of C1 functions which satisfies

|ξ(x, u) − [f(x) + g(x)u]| + |ζ(x, u) − h(x)| ≤ δ

∀ (x, u) ∈ Cx × U(μ) (16)

and∣∣∣∣∣∣
⎛
⎝

∂ξ
∂x (x, u) ∂ξ

∂u (x, u)

∂ζ
∂x (x, u) ∂ζ

∂u (x, u)

⎞
⎠−

⎛
⎝

∂f
∂x (x) + ∂g

∂x (x)u g(x)

∂h
∂x (x) 0

⎞
⎠
∣∣∣∣∣∣

≤ δ ∀(x, u) ∈ Cx × U(μ) (17)

we can associate a point X e = (xe, ze , x̂e) which is an ex-
ponentially stable equilibrium point of (3), (14) whose basin
of attraction B contains C. Moreover, any solution (X(X , t),
Z(X , t), X̂(X , t)) of (3), (14) with initial condition X in B
satisfies

lim
t→+∞ ζr

(
X(X , t), ψsat

(
X̂(X , t), Z(X , t)

))
= 0 .

Proof: See Section V-B. �
This statement is in the same spirit of those claiming that

under the action of (small) perturbations, asymptotic stability
is transformed into semiglobal practical stability. However the
result stated in Proposition 3 is more general since it claims
the existence of a single equilibrium for which the regulated
output is zero and it does not require any specific structure of
the unmodelled effects.

III. STATE FEEDBACK DESIGN

A. Design of the State Feedback via Forwarding

In this section we consider the extended system (11) with k
any C1 satisfying (12), (13). Thanks to Assumption 2, we are
left with modifying the given state feedback β to obtain a state
feedback stabilizing asymptotically the origin for the extended
system (11). It is worth noticing that system (11) possesses the
so-called feedforward form: this particular structure has been
extensively studied in the 90’s, in particular by means of the
forwarding techniques based on saturations as in [42], [24], or
on Lyapunov design with coordinate change as in [31] or cou-
pling term as in [22]. We recall briefly these techniques. They
differ on the available knowledge they require. Specifically,
Assumption 2 has two consequences:

1. With the converse Lyapunov theorem of [28], we know
there exists aC1 function V : S → R≥0 which is positive
definite and proper on S and such that the function x �→
∂V
∂x (x)

(
f(x) + g(x)β(x)

)
is negative definite on S and

upperbounded by a negative definite quadratic form of x
in a neighborhood of the origin.

2. Since the origin of the system (2) in closed-loop with
β(x) is locally exponentially stable, there exists (see [31,
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Lemma IV.2]) a C1 function H : S → Rr satisfying

∂H

∂x
(x) (f(x) + g(x)β(x)) = k(x, hr (x)) , H(0) = 0.

(18)

Depending on whether or not we know the function V and/or
the functionH or only its first-order approximation at the origin
leads to different designs.

a) Forwarding with V and H known
When both V and H are known, a stabilizer ψ for the
system (11), is

ψ(x, z)

= β(x) − J(x, [LgV (x) − (z −H(x))�LgH(x)]�)

with H defined by (18), and with J : Rn × Rm → Rm

any continuous function satisfying, for all x ∈ Rn ,

v�J(x, v) > 0 ∀ v �= 0 , det
(
∂J

∂v
(x, 0)

)
�= 0.

(19)

Following [31], this can be established under
Assumptions 2 and 3 with the function Ve : S × Rr →
R≥0 defined as

Ve(x, z) = V (x) +
1
2
(z −H(x))�(z −H(x)). (20)

Remark 1: If V is known from the design of β, it may not
be proper on S. To make it proper we first define vS as

vS = inf
x �∈S

V (x)

and we replace V (x) by V (x)
vS−V (x) . See [41]. Unfortunately, with

this modification, the domain of definition of this new function
V may be a strict subset of S. In the following, we still call S
this domain on which V is proper.

b) Forwarding with V unknown but H known
When V is unknown, but H is known, there exists a
function γ : S → R≥0 with strictly positive values such
that a state feedback for the system (11) is

ψ(x, z) = β(x) + γ(x)LgH(x)�J(x, z −H(x)) (21)

withH defined by (18), and J : Rn × Rr → Rr bounded
and satisfying (19). This can be established with the Lya-
punov function (20).

c) Forwarding with V unknown and H approximated
Instead of solving the partial differential equation (18) for
H , and using (21), we pick

ψ(x, z) = β(x) + γ(x)g(x)�H0
�J(x, z −H0x)

where H0 is obtained as

H0 =
∂k

∂yr
(0, 0)

∂hr
∂x

(0)
[
∂f

∂x
(0) + g(0)

∂β

∂x
(0)
]−1

.

(22)

The corresponding Lyapunov function is

Ve(x, z) = d(V (x))

+
√

1 + 1
2 (z −H0x)�(z −H0x) − 1

where d : R≥0 → R≥0 is a C1 function with strictly pos-
itive derivative, to be chosen large enough (see [31]). In
the case where the system

ẋ = f(x) + g(x)(β(x) + v)

with v as input is input to state stable with restriction, i.e.,
provided |v| is bounded by some given strictly positive
real number Δ, then following [42], the state feedback
can be chosen as

ψ(x, z) = β(x) + εJ

(
x,
g(0)�H�

0 (z −H0x)
ε

)

with J : Rx × Rm → Rm bounded and satisfying (19)
and ε is a small enough strictly positive real number.

Whatever design route a), b) or c) we follow, we obtain the
following lemma.

Lemma 1: Under Assumptions 2 and 3, the function Ve is
positive definite and proper on S × Rr . Its derivative along the
extended system (11) in closed-loop with u = ψ(x, z) is nega-
tive definite on S × Rr and upperbounded by a negative definite
quadratic form of (x, z) in a neighborhood of the origin. Con-
sequently, for the corresponding closed-loop system, the origin
is asymptotically stable with S × Rr as domain of attraction4

and locally exponentially stable.
Proof: Since V is positive definite and proper on S, Ve is

positive definite and proper on S × Rr . Also the derivative of
Ve along the solutions of the closed oop system is negative
definite in (x, ψ(x, z)) and upperbounded by a negative definite
quadratic form of (x, ψ(x, z)) in a neighborhood of the origin
(see [31], [42] for example). With this, to complete the proof, it
is sufficient to show the existence of a real number c > 0 such
that

|z| ≤ c |ψ(0, z)| .
Since we have

ψ(0, z) = J(0, LgH(0)z) , respectively = J(0,H0g(0)z)

where the function J satisfies (19), the above inequality holds
if LgH(0), respectively, H0g(0), is right invertible. Note that
smoothness of k and (12) implies

∂k

∂x
(x, 0) = 0 ∀x ∈ Rn .

As a consequence by differentiating (18) which holds at least in
a neighborhood of the origin, using (22), and since f and β are
zero at the origin, we have

∂H

∂x
(0) = H0 .

Assume the matrix H0g(0) is not right invertible, i.e. the exists
a vector v in Rr such that

v�H0g(0) = 0 .

4Recall Remark 1.
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Then we have
(
v�H0 −v� ∂k

∂yr
(0, 0)

)( ∂f
∂x (0) g(0)
∂hr
∂x (0) 0

)
= 0

which contradicts Assumption 3.
Remark 2:
1) Because the set U in Assumption 1 is star-shaped, while

satisfying (19), the function J can always be chosen such
that the function ψ above defined takes values in U .

2) A drawback of the integral action is the possible wind-up.
To prevent this phenomenon, in all the above, ż can be
modified in

ż = k(x, yr ) + c [satz̄ (z +H(x)) − (z +H(x))]
(23)

with H(x) replaced by H0x when needed and where the
saturation function is defined in (1), c > 0 is a constant
real number and z̄ > 0 should be chosen large enough to
allow the z-dynamics to converge to the right equilibrium
point. This modification does not change anything to the
asymptotic stability which can be established with the
same Lyapunov functions.

B. Adding Saturations for Output Feedback Design

If we were to design a state feedback, we could stop here.
But the output feedback we design is based on the previous
state feedback and augmented with an observer. Since during
the transient the estimated state may differ consistently form
the real state, we need a mechanism to prevent any bad closed-
loop effects during these periods. As proposed in [26], we use
saturation.

First we define the set SO where we would like the state to
be confined. For this, let S be given by Assumption 2, maybe
modified as explained in Remark 1 above. Similarly, let O be
given by Assumption 1 (maybe modified later as in (44)). Let
also the function Ve , positive definite and proper on S × Rr , be
given by the above design of the state feedback or a converse
Lyapunov theorem [28] satisfying

V̇e(x, z)

=
∂Ve
∂x

(x, z)[f(x) + g(x)ψ(x, z)] +
∂Ve
∂z

(x, z)k(x, hr (x))

= −We(x, z) (24)

where the function We defined here is positive definite on S ×
Rr . Then, if S is not a subset of O, we let v∞ be the real number
defined as

v∞ = inf
(x,z )∈(S×Rr )\(O×Rr )

Ve(x, z) .

If not, formally let v∞ be infinity. We define the open set5

SO = {(x, z) ∈ S × Rr : Ve(x, z) < v∞} . (25)

This set in non empty since it contains the origin.
In the same way, to each real number v in [ 0, v∞) we associate

the set

Ωv = {(x, z) ∈ S × Rr : Ve(x, z) ≤ v} . (26)

5See the further modification (46).

It is a compact subset of SO. Also, from Lemma 1, it is forward
invariant for the extended system (11) in closed-loop with u =
ψ(x, z). On the other hand, for any Cxz , compact subset of SO,
we can find real numbers v1 < v2 satisfying

Cxz � Ωv1 � Ωv2 � SO . (27)

Then, with μ the real number defined as

μ = (1 + ς) max
(x,z )∈Ωv 2

|ψ(x, z)| (28)

with ς a small number as in (1), we consider the subsetU(μ) ⊂ U
(see (4)). As U in Assumption 1, it is star-shaped with the origin
as a star-center. Let then the function ψsat : Rn × Rr → U(μ)
be

ψsat(x, z) = satμ(ψ(x, z)) . (29)

It is bounded and Lipschitz and, asψ, it isC1 on a neighborhood
of the origin. Similarly, we modify the function k (defined in
(12)) by saturating its argument x. Namely, we replace

k(x, h(x)) by k(satx̄(x), hr (x)) (30)

with x̄ = (1 + ς)max(x,z )∈Ωv 2
|x| .

IV. OBSERVER DESIGN

In this section we focus on the design of tunable observers of
the form (5) satisfying Assumption 1, and we refer in particular
to high-gain observers. A lot of attention has been devoted to
this type of observers and many results are available at least
for the single output case. See for example the survey [27] and
the references therein. Here, we are interested in some specific
aspects as

(a) the possibility of writing the dynamics of the observer
in the original coordinates;

(b) the multi-output case; as far as we know at the time
we write this text, the study of tunable observers in the
multi-output case is far from being conclusive. Only
some sufficient conditions are known (see, for instance
[27], [43], [17], [18], [15], [7]);

(c) the fact that observability holds only on O, a (possibly)
strict subset of the full space Rn .

To introduce them, we find useful to start with a very brief
reminder on single output high gain observers.

A. Reminder on High Gain Observers in the Single
Output Case

It is known (see [15, Theorem 3.4.1] for example) that, for a
single-input single-output system of the form

ẋ = f(x) + g(x)u, y = h(x), x ∈ Rn , u, y ∈ R (31)

which is observable uniformly with respect to the input and is
differentially observable of order no , there exists an injective
immersion Φ : Rn → Rno , obtained as

η = Φ(x) =
(
h(x) Lf h(x) · · · Lno−1

f h(x)
)�

(32)

which puts the system (31) into the so called observability (tri-
angular) normal form

η̇ = Ano η +Bno b(η) +Dno (η)u, y = Cno η (33)
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where

Ano =

(
0no−1×1 Ino−1×no−1

0 01×no−1

)
, Bno =

(
0no−1×1

1

)
,

Cno = (1 01×no−1 ),

Dno (η) = (d1(η1), . . . , di(η1 , . . . , ηi), . . . , dno (η))
� (34)

and where b(·), di(·) are locally Lipschitz function. An observer
for the system (31) is

˙̂η = Ano η̂ +Bno b(η̂) +Dno (η̂)u

+ Kno Lno (�)(y − Cno η̂), (35)

x̂ = Φ�−inv (η̂),

whereKno is such that (Ano −Kno Cno ) is Hurwitz, Lno (�) =
diag(�, . . . , �no ) and Φ�−inv is any locally Lipschitz left inverse
function of Φ satisfying

Φ�−inv (Φ(x)) = x ∀x ∈ Rn .

In the η-coordinates, it is a standard high gain observer the
dynamics of which can be made arbitrary fast by increasing the
high-gain parameter � (see for instance [8]).

B. On the Possibility of Writing the Dynamic of the
Observer in the Original Coordinates

As already observed in [30], a main issue in implementing
the observer (35) is about the function Φ�−inv for which we
have typically no analytical expression, meaning that we have
to solve on-line a minimization problem as

x̂ = argminx |η(x) − η̂| .
Luckily, as noticed in [11] and also proposed in [30], this dif-
ficulty can be rounded when Φ is a diffeomorphism. Indeed
in this case η is simply another set of coordinates for x and
the observer (35) can be simply rewritten in the original x
coordinates as

˙̂x = f(x̂) + g(x̂)u+
(
∂Φ
∂x

(x̂)
)−1

KnLn (�)(y − h(x̂)) .

As a consequence there is no need to find the inverse mapping
of the function Φ but, (infinitely) more simply, only to invert the
matrix ∂Φ

∂x (x̂). But for Φ to be a diffeomorphism, we need no to
be equal to n, i.e., to have the (full order) observer to have the
smallest possible dimension.

C. High Gain Observer in the Multi-Output Case

As shown in [43], in the multi-input multi-output case (2), a
typical expression for Φ is

Φ(x) =
(
Φ1(x) · · · Φp(x)

)�
,

Φi(x) =
(
hi(x) Lf hi(x) · · · Lpif hi(x)

)�
(36)

where hi is the i-th component of h and pi are integers called
the observability indexes and

∑p
i=1 pi ≥ n. The dynamics of

system (2) expressed in these coordinates is

η̇ = Aη +Bb̄(η) +D(η)u, y = Cη (37)

where

A = blckdiag
(
Ap1 , . . . , App

)
,

B = blckcol
(
Bp1 , . . . , Bpp

)
,

C = blckrow
(
Cp1 , . . . , Cpp

)
,

b̄(η) = col
(
b1(η), . . . , bp(η)

)
,

D(η) = blckcol
(
Dp1 (η), . . . , Dpp (η)

)
where b̄(η) and D(η) are locally Lipschitz functions. However,
even when the system is observable uniformly in the input, the
functions b̄ andD may not have the triangular structure we need
for the design of a high-gain observer. Conditions under which
we do get triangular dependence for b̄(η) and D(η) have been
studied for instance in [8] and [17]. Following the idea of writing
the observer in the original coordinates and imposing Φ to be a
diffeomorphism, an alternative condition under which we have
an appropriate structure is given by the following (technical)
assumption, for which we do not need to know the inverse of Φ.

Assumption 4: There exist
i) an open set O ⊂ Rn containing the origin and a star-

shaped set U with the origin as star-center,
ii) a C1 function Φ : O → Rn ,

iii) sequences of matrices L� ∈ Rn×n , M� ∈ Rn×n and
N� ∈ Rp×p , a matrix C ∈ Rp×n , with L� and M� in-
vertible,

iv) matrix functions u ∈ U �→ K(u) ∈ Rn×p and u ∈ U �→
A(u) ∈ Rn×n ,

v) and, for any positive real number ū, there exist a positive
definite symmetric matrixP ∈ Rn×n and strictly positive
real numbers ν and d,

such that
O1) the function Φ is a diffeomorphism on the set O and

Φ(0) = 0,
O2) C Φ(x) = h(x),
O3) the matrices A(u),K(u), P, C satisfy, for any u ∈

U(ū),

P (A(u) −K(u)C) + (A(u) −K(u)C)�P ≤ −2νP ,

A(u)L� = L� M� A(u) , N� C L� = C

O4) the matrix M� is such that M�P
−1 is symmetric and

satisfies

lim
�→+∞

λmin(M�P
−1) = +∞

O5) λmax
(
L�M�P

−1L�
�

) ≤ λmin(M�P
−1)d ,

1 ≤ λmin
(
L�M�P

−1L�
�

)
λmin(M�P

−1)d .

Moreover, for any compact set C and Ĉ satisfying

C ⊂ Ĉ ⊂ O
there exists a sequence of positive real numbers c� such that

O6) lim�→+∞c� = 0 ,
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O7) the function B : Rn×m → Rn defined as

B(Φ(x), u) = LfΦ(x) + LgΦ(x)u−A(u)Φ(x)
(38)

satisfies, for all xa ∈ C, xb ∈ Ĉ and u ∈ U(ū),∣∣∣P 1
2 M−1

� L−1
� [B(Φ(xa), u) −B(Φ(xb), u)]

∣∣∣
≤ c�

∣∣∣P 1
2 L−1

� [Φ(xa) − Φ(xb)]
∣∣∣ . (39)

Remark 3:
1) As shown in the next Lemma, the existence of a high-gain

observer for the system (2) is guaranteed if Assumption 4
holds. In particular the properties O1, O2, O3, O6, and
O7 guarantee the existence of a converging observer in
the original coordinates whereas properties O4 and O5
assure its tunability property.

2) We remark that these conditions can be checked without
need of finding formally the inverse mapping Φ−1 . In par-
ticular, given a system and a candidate diffeomorphism Φ
(property O1), one can immediately check properties O2
(linear dependence of the diffeomorphism on the output)
Then, if this properties holds, one can fix the degrees of
freedom K(u), M�, N�, L�, P which properly defines
the high-gain observer as shown later in Lemma 2 (see
(40)) and check also the Lipschitz condition (39) in 07.
Finally, property O3 guarantees the convergence of the
observer (see proof of Lemma 2).

3) The conditions of Assumption 4 are satisfied in the single-
output case considered in Section IV-A when no = n, by
choosing Φ as in (32), and picking

L� = diag(1, �, . . . , �n−1) , M� = In� , N� = 1
A(u) = An, B(Φ(x), u) = Bnb(Φ(x)) +Dn (Φ(x))u

C = Cn and c� = 1/�, where the tripletAn, Bn , Cn and
the functions b(·), D(·) are given in (34). In this case, we
set Ln (�) = L�M�N� and K(u) = Kn in the observer
(35).

4) In this assumption,A is allowed to be input-dependent to
allow a broader class of nonlinear systems. For instance
it can be verified that the system

ẋ1 = x2 , ẋ2 = u, y = −x1 + x2 + x2
2

cannot be transformed in the form (33) but it satisfies
Assumption 4.

5) In some cases, the nonlinear terms (38) can be disregarded
in the high gain observer design (usually also called dirty
derivative observer). This is possible, for example, when
the notions of observability indexes and relative degree
indexes coincide (see [38] among others). In this case,
these nonlinear terms act through their bound and not
their Lipschitzness. Unfortunately a very specific struc-
ture is required because otherwise the gain between these
nonlinear terms and some estimation error is increasing
with the observer gain. Here, we intend to consider a
broader class of systems and thus we do need to have
these terms present in the observer.

Lemma 2: Under Assumption 4, for any compact set C and
Ĉ satisfying C ⊂ Ĉ ⊂ O, the family of systems

˙̂x� = f(x̂�)

+ g(x̂�)u+
(
∂Φ
∂x

(x̂�)
)−1

L�M�K(u)N�

[
y − h(x̂�)

]
(40)

indexed by � in R>0 satisfies points 2 to 6 of Assumption 1.
Proof: We let

η = Φ(x), η̂� = Φ(x̂�), η̃� = η − η̂� . (41)

With (38) and (40), systems (2) and (40) are transformed in

η̇ = A(u)η +B(η, u)

˙̂η� = A(u)η̂� +B(η̂� , u) + L�M�K(u)N�C(η − η̂�)

With Assumption 4 and the notations (41), we define the Lya-
punov Function

U�(x, x̂) =
1
2
(η − η̂�)�[L�M�P

−1L�
� ]−1(η − η̂�) .

As Φ, it is defined on O ×O and it takes values in R≥0 . Also,
because the matrix L�M�P

−1L�
� is positive definite, we have

∀(x, x̂�) ∈ O ×O, U�(x, x̂�) = 0 ⇐⇒ x = x̂� .

So point 2 of Assumption 1 holds. Also, we get

U̇�(x, x̂) = (η − η̂�)�
[
L−�
� PM−1

� L−1
�

]
× [(A(u) − L�M�K(u)N�C)(η − η̂�) +B(η, u) −B(η̂� , u)]

(42)

which, with using O3 and (39), gives, for all (x, x̂) in C × Ĉ and
for all u ∈ U(ū),

U̇� ≤ −ν|P 1
2 L−1

� η̃� |2 + c� |P 1
2 L−1

� η̃� |2 .
Then, with O6, there exists a � such that, for any � ≥ �

U̇�(x, x̂) ≤ −ν
2
η̃�� L

−�
� PL−1

� η̃� ∀(x, x̂) ∈ C × Ĉ . (43)

Since we have P ≥ λmin(P )λmin(M�P
−1)PM−1

� , we obtain,
for all (x, x̂) in C × Ĉ,

U̇�(x, x̂) ≤ − ν λmin(P )λmin(M�P
−1)

2
U�(x, x̂) .

So, with O4, points 4 and 5 of Assumption 1 hold when we
choose the integer κ as the integer part of the ratio �/� and with

σκ =
ν λmin(P )λmin(M�P

−1)
2

.

Next, we have

U�(x, x̂)λmin(L�M�P
−1L�

� ) =
η̃�� (L�M�P

−1L�
� )−1 η̃�

λmax((L�M�P−1L�
� )−1)

≤ |η − η̂� |2

× |η − η̂� |2 ≤ η̃�� (L�M�P
−1L�

� )−1 η̃�
λmin((L�M�P−1L�

� )−1)

≤ U�(x, x̂) λmax(L�M�P
−1L�

� ).
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So, with O5, we get

U�(x, x̂)λmin(M�P
−1)−d

≤ |Φ(x) − Φ(x̂�)|2 ≤ U�(x, x̂)λmin(M�P
−1)d .

Since Φ is a diffeomorphism defined on O, for any compact
subsets C and Ĉ of O, there exist real numbers Φ and LΦ−1 ,
independent of �, such that, for all x in C and x̂� in Ĉ, we have

|x− x̂� | = |Φ−1(Φ(x)) − Φ−1(Φ(x̂�))|
≤ LΦ−1 |Φ(x) − Φ(x̂�)| ≤ Φ .

This gives

|x− x̂� |2 1
L2

Φ−1

λmin(M�P
−1)−d ≤ U�(x, x̂)

≤ Φ
2
λmin(M�P

−1)d .

So, with O4, point 3 of Assumption 1 holds.
Finally, point 6 of Assumption 1 holds too. Indeed, by defini-

tion of the set U(ū), the matricesK(u),M�,N�, L� and the dif-
feomorphism Φ, there exists a positive definite functionLϑ� (x̂�)
such that ∣∣∣∣∣

(
∂Φ
∂x

(x̂�)
)−1

L�M�K(u)N�

∣∣∣∣∣ ≤ Lϑ� (x̂�)

for any � > 0, u ∈ U(ū) and x̂� ∈ Ĉ. �

D. Taking Care of Observability Restricted to O by an
Observer Modification

In the above (2), we are missing point 1 of Assumption 1,
namely Ĉ may not be forward invariant. The problem is that the
observer (47) does not guarantee that x̂� remains in O and there-
fore that ∂Φ

∂x (x̂�) is invertible. To overcome this problem, as in
[30], we modify this observer, here not by projection, but by con-
sidering a dummy measured output (extending the results in [5]).
To make our point clear, we introduce the following assumption.

Assumption 5: Given the set O and the diffeomorphism Φ
of Assumption 4, for any compact subset C of O, we know of a
C1 function h2 : O → R≥0 such that:

H1. the set {x ∈ Rn : h2(x) < 1} is a subset of O;
H2. the function x �→ h2 (x)

| ∂ h 2
∂ x (x)| is continuous on O;

H3. for any real number s in [0, 1], and any x1 and x2 in O
satisfying

h2(x1) ≤ s , h2(x2) ≤ s

we have h2(x) ≤ s for all x which satisfies for some λ

in [0, 1]

Φ(x) = λΦ(x1) + (1 − λ)Φ(x2) .

This means nothing but the fact that, for any s in [0, 1],
the image by Φ of the set {x ∈ Rn : h2(x) ≤ s} is
convex;

H4. the set Omod defined as

Omod = {x ∈ Rn : h2(x) ≤ 0} (44)

contains C and has a non empty interior which contains
the origin;

H5. the set Ĉ =
{
x ∈ Rn : |h2(x)| ≤ 1

2

}
is compact.

Remark 4:
1) There is a systematic way to define this function h2 when,

given the compact set C, we know a positive definite
symmetric matrix Q and a real number R satisfying

Φ(C) ⊂ {η ∈ Rn : η�Qη ≤ R} ⊂ Φ(O) .

Indeed, in this case we let � be the number defined as

� = sup
R :{η :η�Qη≤R}⊂Φ(O)

R .

Since O is a neighborhood of the origin, � is strictly
positive. Then we select a real number ε in (0, 1) and let

h2(x) = max
{

Φ(x)�QΦ(x)
�(1 + ε)

− ε , 0
}2

. (45)

With this choice and since Φ is a diffeomorphism, we can
check that Properties H1 to H5 are satisfied.

2) We may dislike the convexity property mentioned in H3
of Assumption 5. Unfortunately, it is in some sense nec-
essary. Indeed, our objective with the modification E is
to preserve the high-gain paradigm. This means in par-
ticular that we choose to keep an Euclidean distance in
the image by Φ as a Lyapunov function for studying the
error dynamics. Also we need an infinite gain margin, as
defined in Definition 2.8 in [36], since the correction term
must dominate all the other ones in the expression of ˙̂x
when h2 becomes too large. Then, as proved in Lemma
2.7 [36], with such constraints, the convexity assumption
is necessary. This implies that, if we want to remove the
convexity assumption, we have to find another class of
observers.

We are interested in the function h2 because it satisfies the
property

h2(x) = 0 ∀x ∈ Omod .

This leads us to introduce a dummy measured output

y2 = h2(x) .

Indeed y2 is zero when x is in Omod . But Omod being a strict
subset of O, we have here a stronger constraint. To deal with
this restriction, we need to “reduce” the set SO by modifying
its definition given in (25) into

v∞ = inf
(x,z )∈(S×Rr )\(Om o d×Rr )

V (x, z)

SO =
{
(x, z) ∈ (S × Rr ) : V (x, z) < v∞

}
.

(46)

With Assumption 5, point 1 of Assumption 1 can be established
via a modification of the observer.

Lemma 3: Under Assumption 5, let Φ : O → Rn be a dif-
feomorphism, ū be a positive real number, t→ u(t) be a contin-
uous function with values inU(ū) and t→ y(t) be a continuous
bounded function. The set Ĉ given in H5 is forward invariant
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for any system in the family, indexed by � in R>0

˙̂x� = f(x̂�) + g(x̂�)u

+
(
∂Φ
∂x

(x̂�)
)−1

L�M�K(u)N�

[
y − h(x̂�)

]
+ E(x̂� , u, y)

(47)

where the term E is defined as

E(x̂� , u, y)=−τ� (x̂� , u, y)

×
(
∂Φ
∂x

(x̂�)
)−1

L�M�P
−1L�

�

(
∂Φ
∂x

(x̂�)
)−1�

∂h2

∂x
(x̂�)�h2(x̂�)

(48)

where τ� is a C1 function to be chosen large.6 If all conditions
of Assumption 4 hold and the model state x remains in Omod ,
then all the points of Assumption 1 are satisfied.

Proof: First we observe that
∂h2

∂x
(x̂�) ˙̂x� = R(x̂� , u, y)

− τ�(x̂�)

∣∣∣∣∣(M�P
−1)

1
2 L�

�

(
∂Φ
∂x

(x̂�)
)−1�

∂h2

∂x
(x̂�)�

∣∣∣∣∣
2

h2(x̂�)

where we have let

R(x̂� , u, y) =
∂h2

∂x
(x̂�)

×
[
f(x̂�) + g(x̂�)u+

(
∂Φ
∂x

(x̂�)
)−1

L�M�K(u)N� [y − h(x̂�)]

]
.

This motivates us for choosing τ� satisfying

τ�(x̂� , u, y) ≥ 8h2(x̂�)2 R(x̂� , u, y)∣∣∣(M�P−1)
1
2 L�

�

(
∂Φ
∂x (x̂�)

)−1� ∂h2
∂x (x̂�)�

∣∣∣ 2
(49)

which can be computed on-line.
Thanks to H2, the function x �→ τ�(x) defined this way is

continuous on O. So we can use τ� as long as x̂� is in O.

It implies that
˙︷ ︸︸ ︷

h2(x̂�) is non positive when h2(x̂�) is strictly
larger than 1

2 . This implies that, for each s in [ 1
2 , 1] the set

{(x̂�) : h2(x̂�) ≤ s} is forward invariant and so is the compact
set Ĉ in particular. This says that point 1 of Assumption 1 hold.
On the other hand, the modification E augments U̇� in (42)
with

−τ�(x̂�) [Φ(x̂�) − Φ(x)]�
(
∂Φ
∂x

(x̂�)
)−1�

∂h2

∂x
(x̂�)�h2(x̂�) .

But, when h2(x) is zero which is the case when the model state
x remains in Omod and when h2(x̂�) is in [0, 1], the convexity
property of h2 in H3 gives

0 ≤ [Φ(x̂�) − Φ(x)]�
(
∂Φ
∂x

(x̂�)
)−1�

∂h2

∂x
(x̂�)�h2(x̂�) .

6see (49).

We conclude that, when all conditions of Assumption 4 hold,
(43) holds even with the modification E. Hence, from the proof
of Lemma 2, points 2 to 5 of Assumption 1 hold. Finally, with
(48) and (49), the function defined by the right hand side of (47)
satisfies also the point 6 of the Assumption 1. �

Remark 5: An important feature is that, thanks to the addi-
tional term E, no other modification (as saturation) is needed.
This modification, in fact, guarantees that the estimate state x̂�
remains in a compact subset of O which depends on the choice
of the parameters.

V. PROOFS OF PROPOSITIONS

A. Proof of Proposition 2

We denote

X = (x, z, x̂) ,

ϕm (X) =

⎛
⎜⎝
f(x) + g(x)ψsat(x̂, z)

k(x̂, hr (x))

ϑκ(h(x), x̂, ψsat(x̂, z))

⎞
⎟⎠ ,

ϕp(X) =

⎛
⎜⎝

ξ(x, ψsat(x̂, z)

k(x̂, ζr (x, ψsat(x̂, z)))

ϑκ(ζ(x, ψsat(x̂, z)), x̂, ψsat(x̂, z))

⎞
⎟⎠ . (50)

A first elementary remark is that, if X e = (xe, ze , x̂e) is an equi-
librium point of ϕp , then we have in particular

0 = ż|X=X e
= k(x̂e , hr (xe)) .

With (12) this implies hr (xe) is zero.
To prove the existence of X e , we use Lemma 4 given in the

Appendix. In particular, from points 1 and 6 of Assumption 1, we
know that, even when the observer in (14) is fed with y = ζ(x, u)
and not with h(x), it admits a forward invariant compact subset
Ĉ of O. So with

L = sup
X∈Ĉ

{Lϑκ (x̂), Lk (x̂)}

with Lϑκ given by (9) and Lk (x̂) given by (13), we have, for all
(x, z, x̂, u) in Rn × Rr × Ĉ × U ,

|ϕp(X) − ϕm (X)|
≤ |ξ(x, u) − [f(x) + g(x)u]| + 2L |ζ(x, u) − h(x)| .

Hence (56) holds when (15) is satisfied with

δ =
1

1 + 2L
infX∈C V(X)

2 supX∈C
∣∣ ∂V
∂X (X)

∣∣ .
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B. Proof of Proposition 3

Firstly, note that smoothness of k and (12) implies the
existence7 of a continuous function π : R≥0 → R≥0 satisfying
π(0) = 0 and

|yr | ≤ [1 + |x| + |yr |2 ]π(|k(x, yr )|) ∀(x, yr ) ∈ Rn × Rp .

As a consequence, in view of the Lemma 5 given in the Ap-
pendix, Proposition 3 holds if (16) and (17) imply (57) and (58).
In the Proof of Proposition 2 we have seen that (16) implies (57).
So we are left with proving that (16) and (17) imply (58). By
using again the notations (50) and by dropping the arguments
we see that

∣∣∣∣∂ϕp∂X
(X) − ∂ϕm

∂X
(X)
∣∣∣∣

≤ |Δkϑ (Δp − Δm )Δu | + |(Δ2 + Δ2ϑΔu )| |Δy |

where

Δkϑ =

⎛
⎝ I 0 0

0 ∂k
∂yr

∂ϑκ
∂y

⎞
⎠
�

, Δu =

(
I 0 0

0 ∂ψs a t

∂ z
∂ψs a t

∂ x̂

)
,

Δp =

⎛
⎝

∂ξ
∂x

∂ξ
∂u

∂ζ
∂x

∂ζ
∂u

⎞
⎠, Δm =

⎛
⎝

∂f
∂x + ∂g

∂x ψsat g

∂h
∂x 0

⎞
⎠,

Δ2 =

⎛
⎜⎜⎜⎝

0 0 0

∂ 2 k
∂y 2

r

∂hr
∂x 0 ∂ 2 k

∂ x̂2

∂ 2 ϑκ
∂y 2

∂h
∂x 0 ∂ 2 ϑκ

∂ x̂2

⎞
⎟⎟⎟⎠, Δ2ϑ =

⎛
⎜⎜⎜⎝

0 0

0 0

0 ∂ 2 ϑκ
∂u2

⎞
⎟⎟⎟⎠,

Δy = ζ(x, ψsat(x̂, z)) − h(x).

Recall that by construction the functions ψsat , k and ϑ are C1 .
Hence, by letting (where the arguments are dropped for the sake
of compactness)

Lkϑ = sup
(x,z ,x̂)∈C

{∣∣∣∣ ∂k∂yr
∣∣∣∣ ,
∣∣∣∣∂ϑκ∂y

∣∣∣∣
}
,

Lh = sup
x∈(C)x

{∣∣∣∣∂h∂x
∣∣∣∣
}
,

Lu = sup
(z ,x̂)∈(C)z , x̂

{∣∣∣∣∂ψsat∂z

∣∣∣∣ ,
∣∣∣∣∂ψsat∂x̂

∣∣∣∣
}
,

7The function π is a smoothened version of

s → sup
(x,y r ):|k (x,y r ) |≤s

|yr |
1 + |x| + |yr |2

L2k = sup
(x,z ,x̂)∈C

{∣∣∣∣∂
2k

∂y2
r

∣∣∣∣ ,
∣∣∣∣∂

2k

∂x̂2

∣∣∣∣
}
,

L2ϑ = sup
(x,z ,x̂)∈C

{∣∣∣∣∂
2ϑκ
∂y2

r

∣∣∣∣ ,
∣∣∣∣∂

2ϑκ
∂u2

∣∣∣∣ ,
∣∣∣∣∂

2ϑκ
∂x̂2

∣∣∣∣
}

and L2 = max{L2k , L2ϑ}, we have, for all (x, z, x̂) in C

∣∣∣∣∂ϕp∂X
(X) − ∂ϕm

∂X
(X)
∣∣∣∣

≤ 4LuLkϑ |Δp − Δm | + 2L2(1 + Lu + Lh) |Δy | .
The proof can be completed by using (16) and (17) in place of
Δy and (Δp − Δm ) and by properly defining δ.

VI. ILLUSTRATION OF THE PROPOSED DESIGN VIA THE

LONGITUDINAL MODEL OF A PLANE

As an illustration we consider a non academic but still very
simplified model of the longitudinal dynamics of a fixed-wing
vehicle flying at high speed, given (see [33], [34]) by

v̇ = e− g sin(γ)

γ̇ = £ v sin(θ − γ) − g cos(γ)
v

θ̇ = q (51)

where v is the modulus of the speed, γ is the path angle, θ is
the pitch angle, q is the pitch rate, g is the standard gravitational
acceleration and £ is an aerodynamic lift coefficient. This model
makes sense for v strictly positive only.

The problem is to regulate γ at 0, with v remaining close to a
prescribed cruise speed v0 , using the pitch rate q and the thrust
e as controls, and with γ and θ as only measurements. So here,
by using the notation introduced in Section II

x = (θ, γ, v) , u = (e, q) , y = (θ, γ) , yr = γ .

A. Choice of the Function k in the Integral Action

We select

k(x, h(x)) = v sin(γ) .

The motivation is that, then the integrator state z has the same
dynamics as the altitude of the vehicle (not taken into account
in this illustration).

B. State Feedback Design

To design the state feedback ψ and the associated Lyapunov
function Ve , we start by noting that the so called phugoid mode
is conservative (see for instance [3, Section VII.4]). Precisely,
we have that the following function remains constant along the
solutions when e = 0 and sin(θ − γ) = g

£v 2
0

I(v, γ) =
v3

3v3
0

− v

v0
cos(γ)
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This can be checked by looking the time derivative of I. Also,
the open sublevel set of I

S =
{

(v, γ) :
v3

3v3
0

− v

v0
cos(γ) < 0

}

is the largest sublevel set not containing a point of the type (0, γ).
Namely it is the largest sublevel set of I where the model (51)
is well defined. Moreover in this set the γ-component of any
point is in

(− π
2 ,

π
2

)
. Also I is positive definite in v − v0 and γ

on S. We conclude that I + 2
3 , restricted to S is a candidate for

playing the role of a Lyapunov function. Also forwarding with
the functions V andH known is possible since when e = 0, the
function

z − H(v) = z +
v2

2g

remains constant along the solutions of the following (z, v)-
subsystem

ż = v sin(γ)

v̇ = e− g sin(γ) .

Finally, we can complete the design of a state feedback by
applying backstepping from the fact that θ given as

θ = γ + arcsin
(

g

£v2
0

)

is stabilizing for the (z, v, γ)-subsystem. All this leads to the
following (weak)8 Control Lyapunov function

V (z, v, γ) =
v3

3v3
0

+
2
3

− v

v0
cos(γ)

k1

4

(
2gz + v2 − v2

0

v2
0

)2

+
k2

2

[
θ − γ − arcsin

(
g

£v2
0

)]2

with k1 > 0 and k2 > 0 arbitrary numbers, and the following
feedback law

e = −satke

(
k3

[
v2

v2
0
− cos(γ) + k1

2gz + v2 − v2
0

v2
0

v

v0

])
,

q = −
⎛
⎝ £v2

0 sin(θ − γ) − g

θ − γ − arcsin
(

g
£v 2

0

) v2

k2v3
0

sin(γ) +
g cos(γ)

v

−£v sin(θ − γ) + k4

[
θ − γ − arcsin

(
g

£v2
0

)])
,

with k3 > 0 and k4 > 0 arbitrary real numbers and ke > 0
and kq > 0 arbitrary saturation levels. With LaSalle in-
variance principle it is possible to prove that (v, γ, θ) =(
v0 , 0, arcsin

(
g

£v 2
0

))
is the only asymptotically stable equi-

librium point of the system (51). It is worth noticing that the
proposed Lyapunov function V does not give enough degrees
of freedom to improve performance and increase the domain of
attraction. More appropriate designs are possible by choosing
different Lyapunov functions (see [33]). Finally, according to

8Its derivative along the solutions may be only non positive.

Section III-B, for its use in the output feedback, the state feed-
back law q above has to be modified by adding a saturation (see
in particular the function ψsat in (29)).

C. Design of the High-Gain Observer

To obtain an observer we check that the conditions of As-
sumptions 4 are satisfied. Let γdot be defined as the following
function

γdot(θ, γ, v) = £v sin(θ − γ) − g cos(γ)
v

.

Then let (η1 , η2 , η3) = Φ((θ, γ, v)) = (θ, γ, γdot(θ, γ, v)). It is
defined on the set

O =
(
−π

2
;
π

2

)
×
(
−π

2
;
π

2

)
× (0;+∞)

and (θ, γ, v) can be recovered from its values (η1 , η2 , η3) in the
following subset9 of Φ(O)

Ξ =
{
η ∈ R3 : η1 ∈

(
−π

2
;
π

2

)
, η2 ∈

(
−π

2
;
π

2

)
,

η3 < −2
√
g£|η1 − η2 | if (η1 − η2) ≤ 0

}
.

Note also that ∂Φ/∂x is always non-singular on the set O
because ∂γdot/∂v cannot be equal to 0 when η ∈ Ξ. Hence,
the function Φ is a diffeomorphism satisfying Assumption O1.

Then, with C defined as C =
(

1 0 0
0 1 0

)
, Assumption O2

also holds.
Now let A,B(Φ(x), u), L�,M� and N� be defined as

A =

⎛
⎝

0 0 0
0 0 1
0 0 0

⎞
⎠, B(·) =

⎛
⎜⎜⎜⎜⎜⎝

u1

0
∂γd o t
∂ θ u1 + ∂γd o t

∂ v u2

+ ∂γd o t
∂γ γdot − ∂γd o t

∂ v g sin(γ)

⎞
⎟⎟⎟⎟⎟⎠

L� = diag(1, 1, �), M� = diag(�, �, �), N� = diag(1, 1). Also,
given any strictly positive number ν, let P be a symmetric
positive definite matrix defined as

P =

⎛
⎝

∗ ∗ ∗
∗ ∗ p23

∗ p23 p33

⎞
⎠

where 2p23 ≤ −νp33 . Then there exists a real number ρ such
that we have PA+A�P − ρ C�C ≤ −νP . This implies the
existence of a real number νk > 0 such that, for any νk ≥ νk ,
with K = νkP

−1C� assumptions O3 to O7 are satisfied.

D. Design of the Correction Term

Following Section IV, the function h2(x) can be defined as

h2(x) = h1
2(x) + h2

2(x) + h3
2(x) + h4

2(x)

9We use |η1 − η2 | to upper bound cos η2 sin(η1 − η2 ).



ASTOLfi AND PRALY: INTEGRAL ACTION IN OUTPUT FEEDBACK FOR MULTI-INPUT MULTI-OUTPUT NONLINEAR SYSTEMS 1571

Fig. 1. Design of the functions h1
2 , h

2
2 .

Fig. 2. Design of the functions h3
2 , h

4
2 .

with

h1
2(x)= max

{
4θ2

π2 − ε1 ; 0
}2

, h2
2(x) = max

{
4γ2

π2 − ε2 ; 0
}2

,

h3
2(x)= max

{
ε3 (θ − γ) − γdot − ε4 ; 0

}2
,

h4
2(x)= max

{
γdot

γdot max
− ε5 ; 0

}2

where ε1 , ε2 , ε3 , ε4 , ε5 and γdot max are constants to be properly
chosen. The functions h2,1 and h2,2 take care respectively of θ
and γ to stay in the set Ξ as showed in Fig. 1, whereas functions
h2,3 and h2,4 take care of f(θ, γ, v) as in Fig. 2.

The correction term E is defined as in Lemma 3. Finally
the functions Uκ and σκ can be defined as in the proof of
Lemma 2.

VII. CONCLUSIONS

Robust asymptotic output regulation by output feedback has
been investigated. Our design technique follows the very usual

approach of stabilizing the origin of the model augmented with
integrators of the output errors. To do so, we assume we have
already a stabilizing state feedback for the model but not asking
for any specific structure nor for normal form nor for minimum
phase. For the augmented model we redesign the state feed-
back by applying forwarding. The output feedback is obtained
by introducing a high-gain observer expressed in the original
coordinates. The output regulation is shown to be robust to any
small enough (in aC1 sense) unstructured discrepancy between
model and process in open loop. In establishing our main propo-
sitions we obtained new results, which may have their own inter-
est. They concern high-gain observers for multi-output systems
(Lemma 2) and persistence of equilibria under small perturba-
tions (Lemma 4).

The design we propose is illustrated by the regulation of the
flight path angle for a simplified longitudinal model of a plane.

APPENDIX

We study here how the stability properties of a given model
described by

ẋ = ϕm (x) (52)

are propagated to a process described by

ẋ = ϕp(x) (53)

when they are close enough. Lemma 4 concerns persistence of
an equilibrium under small perturbations, whereas Lemma 5
combines total stability and hyperbolicity and is a variation of
Theorem 6 in [34].

Lemma 4: Let a C1 function ϕm : Rn → Rn be given such
that the origin is an asymptotically stable equilibrium point
of (52), with A as domain of attraction. Let C be an arbitrary
compact subset of A which admits the equilibrium as an interior
point and is forward invariant for the system (52). For any open
neighborhood N∂C of the boundary set ∂C, contained in A,
there exists a strictly positive real number δ such that, for any
C1 function ϕp satisfying

|ϕm (x) − ϕp(x)| ≤ δ ∀ x ∈ N∂C

the system (53) has an equilibrium in the interior of C.
Proof: To prove the existence of an equilibrium, we use [16,

Theorem 8.2] which says that a forward invariant set which
is homeomorphic to the closed unit ball of Rn contains an
equilibrium. As a consequence of asymptotic stability, we know
the existence of a forward invariant set by using a converse
Lyapunov theorem. It may not be homeomorphic to the closed
unit ball. Therefore, our first task is to show the existence of
such set satisfying the required properties.

The equilibrium of (52) being asymptotically attractive and
interior to C which is forward invariant, C is attractive. It is
also stable due to the continuity of solutions with respect to
initial conditions uniformly on compact time subsets of the
domain of definition. So it is asymptotically stable with the
same domain of attraction A as the equilibrium. It follows from
[45, Theorem 3.2] that there exist C∞ functions V : A → R≥0
and VC : A → R≥0 which are proper on A and a class K∞



1572 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 4, APRIL 2017

function α satisfying

α(|X |) ≤ V (X ), V (0) = 0,

α(d(X ,C)) ≤ VC(X ), VC(X ) = 0 ∀X ∈ C,

∂V

∂X (X )ϕm (X ) ≤ −V (X ) ∀X ∈ A,

∂VC

∂X (X )ϕm (X ) ≤ −VC(X ) ∀X ∈ A .

Since C is compact and N∂C is a neighborhood of its boundary,
there exists a strictly positive real number d such that the set
{X ∈ A : d(X ,C) ∈ (0, d]} is a subset of N∂C. Then, with the
notations

vC = sup
X∈A: d(X ,C)≤d

V (X) , � =
α(d)
2vC

and since α is of class K∞, we obtain the implications

VC(X) +�V (X)=α(d) ⇒ α(d(X ,C))≤VC(X)≤α(d) ,

⇒ d(X ,C) ≤ d ,

⇒ V (X) ≤ vC.

With our definition of �, this yields also

α(d) −�V (X) = VC(X) ⇒ 0 <
α(d)

2
≤ VC(X) ,

⇒ 0 < d(X ,C) ≤ d ,

⇒ X ∈ N∂C \ C . (54)

On the other hand, with the compact notation

V(X) = VC(X) +�V (X)

we have

∂V
∂X

(X)ϕm (X) < −V(X) ∀X ∈ A . (55)

All this implies that V is a Lyapunov Function for (52) on A
in the sense of [44, Page 324] and that the sublevel set {X ∈
A : V(X) ≤ α(d)} is contained in N∂C ∪ C. It follows from
[44, Corollary 2.3]10 that the level set {X ∈ A : V(X) = α(d)}
is homeomorphic to the unit sphere. But, with the fact that the
origin is asymptotically stable and the arguments used in the
proof of [44, Theorem 1.2], this implies that the sublevel set
{X ∈ A : V(X) ≤ α(d)} is homeomorphic to the closed unit
ball. Then, since the set C = {X ∈ N∂C : d(X ,C) ∈ [0, d]} is a
compact subset of N∂C ⊂ A, the real number

G = sup
X∈C

∣∣∣∣∂V∂X (X)
∣∣∣∣

10Thanks to the contribution of Freedman [13] and Perelman [32] the restric-
tion on the dimension is not needed.

is well defined and strictly positive. We get, for all X in C

∂V
∂X

(X)ϕp(X) =
∂V
∂X

(X)ϕm (X) +
∂V
∂X

(X)[ϕp(X) − ϕm (X)] ,

≤ −V(X) +G sup
X∈C

|ϕp(X) − ϕm (X)| .

So, if ϕp satisfies

|ϕp(X) − ϕm (X)| ≤ infX∈C V(X)
2G

∀X ∈ N∂C (56)

we have, for all X in {X ∈ A : V(X) = α(d)}
∂V
∂X

(X)ϕp(X) ≤ −1
2
V(X) .

This implies the compact sublevel set {X : V(X) ≤ α(d)} is
homeomorphic to the closed unit ball and forward invariant for
the system (53). With [16, Theorem 8.2], we conclude that this
sublevel set contains an equilibrium of this system. �

Lemma 5: Let a C1 function ϕm : Rn → Rn be given such
that the origin is an exponentially stable equilibrium point of
(52) with A as domain of attraction. For any compact sets C and
C, the latter being forward invariant for the above system, which
satisfy

{0} � C � C � A

there exists a strictly positive real number δ such that, for any
C1 function ϕp : Rn → Rn satisfying

|ϕp(X) − ϕm (X)| ≤ δ, ∀X ∈ C, (57)∣∣∣∣∂ϕp∂X
(X) − ∂ϕm

∂X
(X)
∣∣∣∣ ≤ δ, ∀X ∈ C (58)

there exists an exponentially stable equilibrium point X e of (53)
with basin of attraction containing the compact set C.

Proof: Let Π be a positive definite symmetric matrix and a
a strictly positive real number satisfying

Π
∂ϕm
∂X

(0) +
∂ϕm
∂X

(0)�Π ≤ −aΠ, λmin(Π) = 1

where λmax and λmin respectively stand for max and min eigen-
values. By continuity there exists a strictly positive real number
p0 such that we have, for all X satisfying X�ΠX ≤ p0 ,

Π
∂ϕm
∂X

(X) +
∂ϕm
∂X

(X)�Π ≤ −a
2
Π

X�Πϕm (X) ≤ −a
4
X�ΠX .

Let ϕp : Rn → Rn be any C1 function satisfying

|ϕp(X) − ϕm (X)| ≤ a

4

√
p0

12λmax(Π)
,∀X : X�ΠX =

p0

6
.

(59)
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We obtain

X�Πϕp(X) = X�Πϕm (X) + X�Π[ϕp(X) − ϕm (X)],

≤ X�Πϕm (X) +
a

8
X�ΠX

+
2
a
[ϕp(X) − ϕm (X)]�Π[ϕp(X) − ϕm (X)]

and therefore X�Πϕp(X) ≤ − a
16 X�ΠX for all X : X�ΠX = p0

6 .
In this condition, it follows from [16, Theorem 8.2] that, for each
function ϕp satisfying (59), there exits a point X e satisfying

ϕp(X e) = 0, (X e)�ΠX e ≤ p0

6
. (60)

Assume further that ϕp satisfies∣∣∣∣∂ϕp∂X
(X) − ∂ϕm

∂X
(X)
∣∣∣∣ ≤ a

8λmax(Π)
, ∀X : X�ΠX ≤ p0 .

(61)

In this case, we have, for all X satisfying X�ΠX ≤ p0

Π
∂ϕp
∂X

(X) +
∂ϕp
∂X

(X)�Π =
[
∂ϕp
∂X

(X) − ∂ϕm
∂X

(X)
]�

Π

+ Π
∂ϕm
∂X

(X) +
∂ϕm
∂X

(X)�Π + Π
[
∂ϕp
∂X

(X) − ∂ϕm
∂X

X)
]

≤ −a
4
Π.

Note also that we have

[X e + s(X − X e)]�Π[X e + s(X − X e)] ≤ p0 ,

∀(X , X e , s) : s ∈ [0, 1] , (X e)�ΠX e ≤ p0

6
, X�ΠX ≤ p0

3
.

Then, with

ϕp(X) = ϕp(X) − ϕp(X e)

=
∫ 1

0

∂ϕp
∂X

(X e + s(X − X e))ds[X − X e ]

and (60), we get, for all X satisfying X�ΠX ≤ p0
3

[X − X e ]�Πϕp(X)

=
∫ 1

0

(
[X − X e ]�Π

∂ϕp
∂X

(X e + s(X − X e))[X − X e ]
)
ds,

≤ −a
4
[X − X e ]�Π[X − X e ].

Let

δ1 = min
{
a

4

√
p0

12λmax(Π)
,

a

8λmax(Π)

}

and reduce p0 if necessary to have that X satisfying (X e)�ΠX e ≤
p0 is in C. Then (57) and (58) with δ = δ1 implies (59) and
therefore (60). We have established that the system (53) has an
exponentially stable equilibrium with basin of attraction con-
taining the compact set {X ∈ Rn : X�ΠX ≤ p0

3 }. Now, with d

and V = VC +�V as defined in the proof of Lemma 4, we let
v be a strictly positive real number such that we have

X�ΠX ≤ p0

3
∀X ∈ A : V(X) ≤ v (62)

Let also C = {X ∈ A : v ≤ V(X) , d(X ,C) ∈ [0, d]}. It is a
compact subset of NC ⊂ A. By mimicking the same steps as in
the proof of Lemma 4, we can obtain that, if ϕp satisfies

|ϕp(X) − ϕm (X)| ≤ infX∈C V(X)
2G

, ∀X ∈ C (63)

we have

∂V
∂X

(X)ϕp(X) ≤ −1
2
V(X) ∀X ∈ C.

This implies the compact set {X ∈ A : V(X) ≤ v} is asymp-
totically stable for the system (53) with basin of attraction B
containing the compact set {X ∈ A : V(X) ≤ α(d)} which con-
tains C. Since, with (62), we have

{X ∈ A : V (X) ≤ v} ⊂
{
X ∈ Rn : X�ΠX ≤ p0

3

}
.

with (59), (61), and (63) we have established our result with

δ = min

{
δ1 ,

infX∈C V (X)
2 supX∈C

∣∣ ∂V
∂X (X )

∣∣
}
.

�
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