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a b s t r a c t

We address the problem of designing an observer for triangular non locally Lipschitz dynamical systems.
We show the convergence with an arbitrary small error of the classical high gain observer in presence of
nonlinearities verifying some Hölder-like condition. Also, for the case when this Hölder condition is not
verified, we propose a novel cascaded high gain observer. Under slightly more restrictive assumptions,
we prove the convergence of a homogeneous observer and of its cascaded version with the help of an
explicit Lyapunov function.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

A preliminary step is often required in the construction of
observers for controlled nonlinear systems. It consists in finding
a reversible coordinate transformation, allowing us to rewrite the
systemdynamics in a target formmore favorable forwriting and/or
analyzing the observer. For example, the dynamics of a control-
affine single output system of dimension n which is uniformly
observable (see Gauthier & Kupka, 2001, Definition I.2.1.2) and
whose drift system is differentially observable of order m (see
Gauthier & Kupka, 2001, Definition I.2.4.2) with m = n can
be written with appropriate coordinates in a Lipschitz triangular
form appropriate for the design of a high gain observer (Gauthier
& Bornard, 1981; Gauthier, Hammouri, & Othman, 1992). Such
a property is no more true when the order m is strictly larger
than the dimension n. Indeed in this case, we may still get
the usual triangular form but with functions that may not be
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Sanfelice under the direction of Editor Daniel Liberzon.
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Lipschitz (Bernard, Praly, & Andrieu, submitted for publication).
A particular case of this is when there is only one nonlinear
function (in the last line). This is the so-called phase-variable
form. It has been known for a long time, in particular in the
context of dirty-derivatives and output differentiation, that a
high gain observer can provide an arbitrary small error as long
as the nonlinearity is bounded (Tornambe, 1989 among many
others). We also know since Levant (2001) that a sliding mode
observer can achieve finite-time convergence under the same
assumption. In this paper, we want to build observers for the more
general triangular canonical form where non-Lipschitz triangular
nonlinearities can appear on any line. As far as we know, this
form has not received much attention apart from its well-known
Lipschitz version and the convergence results holding for the
phase-variable form do not extend trivially.

This paper follows and completes (Bernard, Praly, & Andrieu,
2016). We show here that the classical high gain observer may
still be used when the nonlinearities verify some Hölder-type
condition. Nevertheless, the asymptotic convergence is lost and
only a convergence with an arbitrary small error remains. When
the nonlinearities do not verify the required Hölder regularity, it
is also possible to use a cascade of high gain observers, but once
again, the convergence is only with an arbitrary small error.

Fortunately, moving to a generalization of high gain observer
exploiting homogeneity makes it possible to achieve convergence.
It is at the beginning of the century that researchers started
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to consider homogeneous observers with various motivations:
exact differentiators (Levant, 2001, 2003, 2005), domination as a
tool for designing stabilizing output feedback (Andrieu, Praly, &
Astolfi, 2009; Qian, 2005; Qian & Lin, 2006; Yang & Lin, 2004 and
references therein (in particular Andrieu, Praly, & Astolfi, 2006)),
etc. The advantage of this type of observers is their ability to face
Hölder nonlinearities.

With the tools introduced in Andrieu, Praly, and Astolfi
(2008), we have at our disposal a Lyapunov design to obtain
a homogeneous observer with degree in ] − 1, 0[ for the
triangular form mentioned above. By construction, convergence
is guaranteed if the nonlinearities verify a Hölder-type condition.
We show here that the same Lyapunov design can be extended
to the case where the degree of homogeneity is −1. This is
interesting since the constraints on the nonlinearities become
less and less restrictive when the degree gets closer to −1. It
turns out that, in the absence of nonlinearities, the observer we
obtain is actually the exact differentiator presented in Levant
(2001) and which is defined by a homogeneous differential
inclusion. But as opposed to Levant (2001) where convergence is
established via a solution-based analysis, in our case, convergence
is again guaranteed by construction since the design gives also
a homogeneous strict Lyapunov function. Moreover this function
enables us to quantify the effect of the observer parameters on
the behavior in presence of Hölder nonlinearities and disturbances.
Of course, knowing the convergence of the exact differentiator
from Levant (2001), we could have deduced the existence of such
a Lyapunov function via a converse theorem as in Nakamura,
Yamashita, and Nishitani (2004). But with only existence, effect
quantifications as mentioned above is nearly impossible. Actually
many efforts have been made to get expressions for Lyapunov
functions but, as opposed to Lyapunov design, Lyapunov analysis is
muchharder. As far asweknow, expressions of Lyapunov functions
have been obtained this way only for m ≤ 3. See Ortiz-Ricardez,
Sanchez, and Moreno (2015).

Finally, to face the unfortunate situation where the nonlineari-
ties verify none of the abovementionedHölder type conditions, we
propose a novel observer made of a cascade of homogeneous ob-
servers whose maximal total dimension is m(m+1)

2 . We prove that
it converges without requiring anything on the nonlinearities (ex-
cept continuity) in the case where the system trajectories and the
input are bounded.

All along our paper, we sometimes use stronger assumptions
than necessary in order to simplify the presentation of our results.
We signal them to the reader with a ( ) symbol as in ‘‘the
trajectories are complete ( )’’. We discuss how they can be relaxed
later in Section 7, in particular when we restrict our attention to
compact sets.

Notations

(1) We define the signed power function as

⌊a⌉b = sign(a) |a|b,

where b is a nonnegative real number. In the particular case
where b = 0, ⌊a⌉0 is actually any number in the set

S(a) =


{1} if a > 0,
[−1, 1] if a = 0,
{−1} if a < 0.

(1)

Namely, writing c = ⌊a⌉0 means c ∈ S(a). Note that the
set valued map a → S(a) is upper semi-continuous with
nonempty, compact and convex values.

(2) For (z1, . . . , zi) and (ẑ1, . . . , ẑi) (resp. (ẑi1, . . . , ẑii)) in Ri, we
denote

zi = (z1, . . . , zi)
ẑi = (ẑ1, . . . , ẑi) (resp. ẑi = (ẑi1, . . . , ẑii))

eij = ẑij − zj, ej = ẑj − zj, ei = ẑi − zi.
2. Continuous triangular form

Consider a nonlinear system of the form

ż1 = z2 + Φ1(u, z1)+ w1
...

żi = zi+1 + Φi(u, z1, . . . , zi)+ wi
...

żm = Φm(u, z)+ wm
y = z1 + v,

(2)

where z is the state in Rm, y is a measured output in R, Φ is a
continuous function which is not assumed to be locally Lipschitz.
w can model either a known or an unknown disturbance on the
dynamics and v is an unknown disturbance on the measurement.
Given locally bounded measurable time functions t → u(t) and
t → w(t), we denote Z(z, t; u, w) a solution of (2) going through
z at time 0 which, to simplify the presentation, is assumed to be
defined for all t ≥ 0 (i.e. the trajectories are complete ( )). We
are interested in estimating Z(z, t; u, w) knowing y and u.

As mentioned in the introduction, this kind of triangular
continuous form, aswe call (2), appearswhenwe consider systems
which are uniformly observable and differentially observable but
with an order larger than the system’s dimension. An example is
given in Section 8.

The only existing observer we are aware of able to cope with
Φ no more than continuous is the one presented in Barbot,
Boukhobza, and Djemai (1996). Its dynamics are described by a
differential inclusion (see Appendix A):

˙̂z ∈ F(ẑ, y, u)

where (ẑ, y, u) → F(ẑ, y, u) is a set valuedmap. In the disturbance
free context (i.e. v = wi = 0), it can be shown that any
absolutely continuous solution gives in finite time an estimate of
z under the only assumption of boundedness of the input and
of the state trajectory. But the set valued map F above does not
satisfy the usual basic assumptions (upper semi-continuous with
compact and convex values) (see Filippov, 1988; Smirnov, 2001).
It follows that we are not guaranteed of the existence of absolutely
continuous solutions nor of possible sequential compactness of
such solutions and therefore of possibilities of approximations of
F . That is why, in this paper, we look for other candidate observers
for the triangular form (2).

In doing so,wemight have to restrict the possible nonlinearities
allowed to obtain the existence of an observer. The restriction we
will impose can be described as follows. For a positive real number
a, and a vector α in [0, 1]

m(m+1)
2 , we will say that the function Φ

verifies the property P (α, a) if:

Property P (α, a) ( ): For all i in {1, . . . ,m}, for all zia and zib in
Ri and u in U, we have1:

|Φi(u, zia)− Φi(u, zib)| ≤ a
i

j=1
|zja − zjb|αij . (3)

This property capturesmanypossible contexts. In the case inwhich
αij > 0, it implies that the function Φ is Hölder with power αij.
When theαij = 0, it simply implies that the functionΦ is bounded.
In the following, our aim is to design an observer depending on the
values of α.

1 ActuallyΦi can depend also on zi+1 to zm as long as (3) holds. It can also depend
on time requiring some uniform property (see Section 7).
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Table 1
Hölder restrictions onΦ for arbitrarily small errors with a high gain observer.

It is possible to employ the degree of freedom given in (2) by
the time functionsw to deal with the case in which the given func-
tionΦ(u, z)does not satisfyP (a, α). In this case, an approximation
procedure can be carried out to get a function Φ̂ satisfying P (a, α)

and selectingw = Φ(u, z)− Φ̂(u, z)which is an unknown distur-
bance. The quality of the estimates obtained from the observer will
then depend on the quality of the approximation (i.e. the norm of
w). This is what is done for example in Moreno and Vargas (2000)
when dealing with locally Lipschitz approximations. We will fur-
ther discuss in Section 7 how to relax assumption P (a, α).

In Section 3, we start by showing the convergence with an
arbitrary small error of the classical high gain observer when the
nonlinearityΦ verifies the property P for certain values of αij. We
deduce in Section 4 the convergence with an arbitrary small error
for a cascaded high gain observer when the input and the state
trajectories are bounded. On an other hand, in Section 5, we show
that replacing the high gain structure by a homogeneous structure
enables to obtain convergence under a slightly more restrictive
Hölder restriction. Then, a cascaded homogeneous observer is
presented in Section 6, which ensures asymptotic convergence
when the input and the state trajectories are bounded. As already
mentioned, in Section 7, we indicate how the assumptions,marked
with ( ) in the text, can be relaxed. Finally, we illustrate our
observers with an example in Section 8.

3. High gain observer

We consider in this section a classical high gain observer:

˙̂z1 = ẑ2 + Φ1(u, ẑ1)+ ŵ1 − L k1 (ẑ1 − y)
˙̂z2 = ẑ3 + Φ2(u, ẑ1, ẑ2)+ ŵ2 − L2 k2 (ẑ1 − y)
...

˙̂zm = Φm(u, ẑ)+ ŵm − Lm km (ẑ1 − y)

(4)

where L and the ki’s are gains to be tuned, y is the measurement.
The ŵi are approximations of the wi. In particular, when wi
represents unknown disturbances, the corresponding ŵi is simply
taken equal to 0. In the following, we denote
1w = ŵ − w.

When Φ satisfies the property P (α, a) with αij = 1 for all
1 ≤ j ≤ i ≤ m, we recognize the usual triangular Lipschitz
property for which the nominal high-gain observer gives an input
to state stability (ISS) property with respect to the measurement
disturbance v and dynamics disturbance w. It is well known that
the ISS gain between the disturbance and the estimation error
depends on the high-gain parameter L. Specifically, we have the
following well known result. See for instance Khalil and Praly
(2013) for a proof.

Proposition 1 (Nominal High-Gain). There exist real numbers
k1, . . . , km, L∗, λ, β and γ such that,
(a) for all functions Φ satisfying( ) for all i and for all zia and zib in
Ri

|Φi(u, zia)− Φi(u, zib)| ≤ a
i

j=1
|zja − zjb| + bi (5)

(b) for all L ≥ max{aL∗, 1},
(c) for all locally bounded time function (u, v, w, ŵ), all (z, ẑ) in

Rm
× Rm,

any solution Ẑ(ẑ, z, t; u, v, w, ŵ) of (4) verifies, for all t0 and t such
that t ≥ t0 ≥ 0, and for all i in {1, . . . ,m},

Ẑi(t)− Zi(t)
 ≤ max

Li−1β
Ẑi(t0)− Zi(t0)

 e−λL(t−t0),

γ sup
1≤j≤m
s∈[t0,t]

®
Li−1

|v(s)|,
|1wj(s)| + bj

Lj−i+1

´ (6)

where we have used the abbreviation Z(t) = Z(z, t; u, w) and
Ẑ(t) = Ẑ(z, ẑ, t; u, v, w, ŵ).

Since the nominal high-gain observer gives asymptotic conver-
gence for Lipschitz nonlinearities, we may wonder what type of
property is preserved when the nonlinearities are only Hölder. In
the following proposition, we show that the usual high-gain ob-
server can provide an arbitrary small error on the estimate provid-
ing the Hölder orders αij satisfy the restrictions given in Table 1 or
Eq. (7).

Proposition 2. Assume the function Φ verifies P (α, a) for some
(α, a) in [0, 1]

m(m+1)
2 × R+ satisfying, for 1 ≤ j ≤ i

m − i − 1
m − i

< αij ≤ 1 for i = 1 . . . ,m − 1,

0 ≤ αmj ≤ 1.
(7)

Then, there exist real numbers k1, . . . , km, such that, for all ϵ > 0
we can find positive real numbers λ, β , γ , and L∗ such that, for all
L ≥ L∗, for all locally bounded time function (u, v, w, ŵ) and all (z, ẑ)
in Rm

× Rm, any solution Ẑ(ẑ, z, t; u, v, w, ŵ) of (4) verifies, for all
t0 and t such that t ≥ t0 ≥ 0, and for all i in {1, . . . ,m},

Ẑi(t)− Zi(t)
 ≤ max

ϵ, Li−1β
Ẑi(t0)− Zi(t0)

 e−λL(t−t0),

γ sup
1≤j≤m
s∈[t0,t]

®
Li−1

|v(s)|,
|1wj(s)|
Lj−i+1

´
where we have used the abbreviation Z(t) = Z(z, t; u, w) and
Ẑ(t) = Ẑ(z, ẑ, t; u, v, w, ŵ).

Comparing this inequality with (6), we have now the arbitrarily
small non zero ε in the right hand side but this is obtained under
the Hölder condition instead of the Lipschitz one.
Proof. With Young’s inequality, we obtain from (3) that, for all σij
in R+ and all ẑ and z in Rm

Φi(u, ẑi)− Φi(u, zi)
 ≤ i

j=1
aij|ẑj − zj| + bij, (8)

with aij and bij defined as

aij = 0, bij = a, if αij = 0

aij = a
1
αij αijσ

1
αij
ij , bij =

1 − αij

σ

1
1−αij
ij

if 0 < αij < 1

aij = a, bij = 0 if αij = 1.

(9)



304 P. Bernard et al. / Automatica 82 (2017) 301–313
With (8), the assumptions of Proposition 1 are satisfied with
bi =

i
j=1 bij. It gives k1, . . . , km, L∗, λ, β and γ and, if L >

maxi≥j

aijL∗, 1


, the solution satisfies the ISS inequality (6). The

result will follow if there exist L and σij such that

L > max
i≥j


aijL∗, 1


, max

i,j

j
ℓ=1
γ bjℓLi−j−1

≤ ϵ. (10)

At this point, we have to work with the expressions of aij and bjℓ
given in (9). From (7), αij can be zero only if i = m. And, when
αmℓ = 0, we get

γ bmℓLi−m−1
= γ aLi−m−1

≤
γ a

L
.

Say that we pick σmℓ = 1 in this case. For all the other cases, we
choose

σjℓ =

Ç
2jγ
ϵ
(1 − αjℓ)L(m−j−1)

å1−αjℓ
,

to obtain from (9)

γ bjℓLi−j−1
≤ ϵ

1
j

1
2Lm−i

.

So, with this selection of the σjℓ, the right inequality in (10) is
satisfied for L sufficiently large. Then, according to (9), the aij are

independent of L or proportional to L
(m−i−1)

1−αij
αij . But with (7) we

have

0 < (m − i − 1)
1 − αij

αij
< 1.

This implies that aij
L tends to 0 as L tends to +∞. We conclude that

(10) holds if we pick L sufficiently large.

It is interesting to remark the weakness of the assumptions
imposed on the last two components of the function Φ . Indeed,
(7) only imposes that Φm−1 be Hölder without any restriction on
the order, and thatΦm be bounded ( ).

4. Cascaded high gain observer

According to Proposition 2, the classical high gain observer
can provide an arbitrary small error when the last nonlinearity
is only bounded and when there is no disturbance. We exploit
here this observation by proposing the following cascaded high
gain observer to deal with the case where the functions Φi do not
satisfy (7):

˙̂z11 = ŵ1 − L1 k11 (ẑ11 − z1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
˙̂z21 = ẑ22 + Φ1(u, ẑ11)+ ŵ1 − L2 k21 (ẑ21 − z1)
˙̂z22 = ŵ2 − L22 k22 (ẑ21 − z1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
˙̂zm1 = ẑm2 + Φ1(u, ẑ(m−1)1)+ ŵ1 − Lm km1 (ẑm1 − z1)
˙̂zm2 = ẑm3 + Φ2(u, ẑ(m−1)1, ẑ(m−1)2)

+ŵ2 − L2m km2 (ẑm1 − z1)
...

˙̂zmm = ŵm − Lmm kmm (ẑm1 − z1)

(11)

with the gain kij chosen as in a classical high gain observer of
dimension i, ŵi are estimations of wi and Li are the high gains
parameters to be chosen.

Assuming the input function and the system solution are
bounded, it is shown in the following that estimation with an
arbitrary small error can be achieved by the cascaded high-gain
observer.

Proposition 3. Assume Φ is continuous. For any positive real num-
bers z and u, for any strictly positive real number ϵ, there exist a choice
of (L1, . . . , Lm), a class KL function β and two class K∞ functions
γ1 and γ2 such that, for all locally bounded time function (u, v, w, ŵ),
for all (z, ẑ) in Rm

× Rm and for all t such that |Z(z, s; u, w)| ≤ z
and |u(s)| ≤ u for all0 ≤ s ≤ t, any solution


Ẑ1(ẑ, z, t; u, v, w, ŵ),

. . . , Ẑm(ẑ, z, t; u, v, w, ŵ)

of (11) verifies, for all i in {1, . . . ,m},

|Ẑi(t)− Zi(t)| ≤ max

ε, β
Ñ

i
j=1

|ẑj − zj|, t

é
,

sup
s∈[0,t]


γ1(|v(s)|), γ2(|1w(s)|)


where Ẑi is the state of the ith block (see Notation 2) and we have
used the abbreviation Ẑi(t) = Ẑi(ẑ, z, t; u, v, w, ŵ) and Zi(t) =

Zi(z, t; u, w).

Proof. This result is nothing but a straightforward consequence of
the fact that a cascade of ISS systems is ISS.

Specifically the error system attached to the high gain observer
in block i has state ei (see Notation 2) and input v and δij defined as

δij =

Φj(u, ẑ(i−1))− Φj(u, z(i−1))


+

ŵj − wj


δii = −zi+1 − Φi(u, zi)+ ŵi − wi

with zm+1 = 0. With Proposition 1, we have the existence of
ki1, . . . , kii, λi, βi and γi such that we have, for all Li ≥ 1, all
t ≥ ti ≥ 0, all j in {1, . . . , i} and with eij(t) denoting the jth error
in the ith block evaluated along the solution at time t ,

eij(t) ≤ max

Lj−1
i βi |ei(ti)| e−λiLi(t−ti),

γi sup
1≤ℓ≤j
s∈[ti,t]


Lj−1
i |v(s)|,

|δiℓ(s)|

Lℓ−j+1
i

 .
But the continuity of theΦj implies the existence of a function2 ρ of
class K such that, for all j in {1, . . . ,m} and for all (z(i−1), ẑ(i−1), u)
in Ri−1

× Ri−1
× U satisfying |z(i−1)| ≤ z and |u| ≤ u,

|Φj(u, ẑ(i−1))− Φj(u, z(i−1))| ≤ ρ

|e(i−1)|


.

This implies

|δiℓ(s)| ≤ ρ(|ei−1(s)|)+ |1wℓ(s)|, ℓ = 1, . . . , j − 1,
|δii(s)| ≤ zi+1 + Φi + |1wi(s)|,

whereΦi = max|u|≤u,|zi|≤z |Φi(u, zi)|. Hence, we have the existence
of ci independent of Li such that

|ei(t)| ≤ ci max

Li−1
i |ei(ti)| e−λiLi(t−ti), sup

s∈[ti,t]
Li−1
i |v(s)|,

sup
s∈[ti,t]

ρ(|ei−1(s)|)
L2−i
i

, sup
1≤ℓ≤i
s∈[ti,t]

|1wℓ(s)|
Lℓ−i+1
i

,
zi+1 + Φi

Li

 .
This makes precise what we wrote above that we have a cascade
of ISS systems. Hence (see Sontag, 1989, Prop. 7.2), for each i

2 Simply take ρ(s) = max|u|≤u,|zj |≤z,|e|≤s |Φj(u, zj + e)− Φj(u, zj)|.
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in {1, . . . ,m}, there exist a class KL function β̄i and class K
functions γvi and γwi, each depending on L1 to Li and such that we
have, for all t ≥ 0,

|ei(t)| ≤ max
®
β̄i

Ç
max

j∈{1,...,i}
{|ej(0)|}, t

å
,

ϖi, sup
s∈[0,t]

{γvi(|v(s)|), γwi(|1w(s)|)}
´

whereϖi is a positive real number defined by the sequences

ϖ1 = c1
z2 + Φ1

L1
, ϖi = ci max

®
zi+1 + Φi

Li
,
ρ(ϖi−1)

L2−i
i

´
.

Then by picking Li ≥ L∗
i where L∗

i is defined recursively as:

ϵm = ϵ, ϵi = min

ϵ, ρ−1


ϵi+1

ci+1Li−2
i+1
ϵi+1



L∗

m =
cmΦm

εm
, L∗

i =
ci[zi+1 + Φi]

εi

we obtainϖi ≤ ϵ for all i, hence the result.

This observer has the advantage of working without any
assumption on the nonlinearities besides their continuity. Note
however that it requires the knowledge of a bound on the system
solution and on the input. Also wemay not need to buildm blocks,
since according to Proposition 2, we need to create a new block
only for the indexes i where Φi does not verify Property P (α, a)
for any a ≥ 0 andwith α satisfying (7). Unfortunately, as it appears
from the proof of Proposition 3, the choice of (L1, . . . , Lm) can be
complicated. Besides, only a convergence with an arbitrary small
error is obtained. It may thus be necessary to take very high gains
which is problematic in terms of peaking and most importantly in
presence of noise (see Section 8). In the following two sections, we
move our attention to homogeneous observers, and show that they
enable to obtain convergence.

5. Homogeneous observer

Homogeneous observers are extensions of high gain observers
able to cope with some non Lipschitz functions. As mentioned in
the introduction, they already have an old history (see Andrieu
et al., 2006, 2008, 2009; Levant, 2001, 2003, 2005; Qian, 2005; Qian
& Lin, 2006; Yang & Lin, 2004). In our context they take the form:

˙̂z1 = ẑ2 + Φ1(u, ẑ1)+ ŵ1 − L k1

ẑ1 − y

 r2
r1

˙̂z2 = ẑ3 + Φ2(u, ẑ1, ẑ2)+ ŵ2 − L2 k2

ẑ1 − y

 r3
r1

...

˙̂zm = Φm(u, ẑ)+ ŵm − Lm km

ẑ1 − y

 rm+1
r1

(12)

where r is a vector in Rm+1, called weight vector, the components
of which, called weights, are defined by

ri = 1 − d0(m − i), (13)

and where L and the ki’s are gains to be tuned, d0 is a parameter to
be chosen in [−1, 0]. We refer to Notation 1 for the case d0 = −1,
for which the dynamics (12) must be understood as a differential
inclusion. When d0 = 0, we recover the high-gain observer
studied in Section 3. Asmentioned in Proposition 2, the usual high-
gain observer can provide an estimation with an arbitrary small
error provided the nonlinearity satisfies the property P (α, a)
with the αij verifying (7). In the following proposition we claim
that asymptotic estimation may be obtained with homogeneous
Table 2
Hölder restrictions onΦ for a homogeneous observer with d0 = −1.

correction terms and when considering nonlinearities which
satisfies P (α, a)with the αij verifying

αij =
1 − d0(m − i − 1)
1 − d0(m − j)

=
ri+1

rj
, 1 ≤ j ≤ i ≤ m. (14)

Those conditions in the extreme case where d0 = −1 are summed
up in Table 2. On top of that, finite time estimation may be
obtained.

Proposition 4. Assume that there exist d0 in [−1, 0] and a in R+

such that Φ satisfies P (α, a) with α verifying (14) ( ). There
exist (k1, . . . , km), such that for all w̄m > 0 there exist L∗

≥ 1
and a positive constant γ such that, for all L ≥ L∗ there exists a
class KL function β such that for all locally bounded time function
(u, v, w, ŵ), and all (z, ẑ) in Rm

×Rm system (12) admits absolutely
continuous solutions Ẑ(ẑ, z, t; u, v, w, ŵ) defined on R+ and for any
such solution the following implications hold for all t0 and t such that
t ≥ t0 ≥ 0, and for all i in {1, . . . ,m}:
If d0 > −1:

|Ẑi(t)− Zi(t)| ≤ max

β(|Ẑ(t0)− Z(t0)|, t − t0),

γ sup
1≤j≤i
s∈[t0,t]

Li−1
|v(s)|

ri
r1 ,

|1wj(s)|
ri

rj+1

Lµij


 (15)

where µij = (j − i + 1) r1
rj+1

, and we have used the abbreviation

Z(t) = Z(z, t; u, w) and Ẑ(t) = Ẑ(z, ẑ, t; u, v, w, ŵ).
Moreover, when d0 < 0 and v(t) = wj(t) = 0 for all t and

j = 1, . . . ,m, there exists T such that Ẑ(ẑ, z, t) = Z(z, t) for all
t ≥ T .
If d0 = −1 and |1wm(t)| ≤ w̄m:

|Ẑi(t)− Zi(t)| ≤ max

β(|Ẑ(t0)− Z(t0)|, t − t0),

γ sup
1≤j≤i−1
s∈[t0,t]

Li−1
|v(s)|

ri
r1 ,

|1wj(s)|
ri

rj+1

Lµij


 (16)

where µij, Z(t) and Ẑ(t) are defined above.
Moreover, when v(t) = wj(t) = 0 for all t and j = 1, . . . ,m,

there exists T such that Ẑ(t) = Z(t) for all t ≥ T .

Note that j is in {1, . . . , i} in (15) whereas it is in {1, . . . , i − 1}
in (16).
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The proof of Proposition 4 for the case d0 ∈] − 1, 0] and
without disturbances is given for example in Andrieu et al. (2008).
Actually Andrieu et al. (2008) give a Lyapunov design of the
observer (12) with a recursive construction of both Lyapunov
function and observer. Here we are concerned with the case d0 =

−1. In this limit case, the observer (12) is a differential inclusion
corresponding to the exact differentiator studied in Levant (2001),
where convergence is established in the particular case in which
Φi = 0 for j = 1, . . . ,m − 1 and Φm is bounded. We prove in
Proposition 6 that the Lyapunov design of Andrieu et al. (2008) can
be extended to this case. This allows us to show that the observer
(12) still converges if, for each i, Φi is Hölder with order αij equal
to the values given in Table 2, where i is the index ofΦi and j is the
index of ej. We also recover the same bound in presence of a noise
v as the one given in Levant (2001).

Actually some effort has been devoted to Lyapunov analysis for
establishing the convergence of the observer proposed in Levant
(2001). But, as far as we are aware of, this more difficult route has
been successful form ≤ 3 only. See Ortiz-Ricardez et al. (2015).

Finally, it is interesting to remark that in the case d0 = −1
the ISS property between the disturbance wm and the estimation
error is with restrictions as defined in Teel (1996, Definition 3.1). If
|1wm(t)| ≤ w̄m and L is chosen sufficiently large, then asymptotic
convergence is obtained. However, nothing can be said when
|1wm| > w̄m. Moreover, it may be possible for a bounded large
disturbance to induce a norm of the estimation error which goes to
infinity. We believe that this problem could be solved employing
homogeneous in the bi-limit observer as in Andrieu et al. (2008). It
is shown to be doable in dimension 2 in Cruz-Zavala, Moreno, and
Fridman (2011).

Proof. The set-valued function e1 → ⌊e1⌉0 defined inNotation 1 is
upper semi-continuous and has convex and compact values. Thus,
according to Filippov (1988), there exist absolutely continuous
solutions to (12).

Let L = diag(1, L, . . . , Lm−1). The error e = ẑ − z produced by
the observer (12) satisfies

ė ∈ LSme + δ + LLK(e1 + v) (17)

where Sm is the shifting matrix of orderm,

δ = Φ(u, ẑ)+ ŵ − Φ(u, z)− w,

and K is the homogeneous correction term the components of
which are defined as

(K(e1))i = −ki⌊e1⌉
ri+1
r1

where (k1, . . . , km) are positive real number and ri is defined
in (13).

Let also ē be a vector in Rm with components ēi and V : Rm
→

R+ be the function defined as

V (ē) =

m−1
i=1

 ℓi ēi

⌊ēi+1⌉

ri
ri+1

ñ
⌊x⌉

dV −ri
ri − ⌊ēi+1⌉

dV −ri
ri+1

ô
dx +

|ēm|
dV

dV
, (18)

where dV and ℓi are positive real numbers such that dV > 2m −

1. Note that V is a homogeneous function with weight vector
r . It is nothing but the one proposed in Andrieu et al. (2008,
Theorem 3.1) for designing an observer homogeneous in the bi-
limit with d0 in ] − 1, 0]. There it is shown that, by appropriately
selecting theparameters ℓi and ki,V is a strictC1 Lyapunov function
homogeneous of degree dV for the L-independent auxiliary system
with state ē:

˙̄e ∈ Smē + K(ē1). (19)

With this result in hand a robustness analysis can be carried out
on a system of the form (17). In fact, the same approach can be
followed for the case d0 = −1 and the following technical result is
proved in Appendix B.

Lemma 1. For all d0 in [−1, 0], the function V defined in (18) is
positive definite and there exist positive real numbers k1, . . . km,
ℓ1, . . . ℓm, λ, cδ and cv such that for all ē in Rm, δ̄ in Rm and v̄ in R the
following implication holds:

if |δ̄i| ≤ cδV (ē)
ri+1
dV , ∀i, and |v̄| ≤ cvV (ē)

r1
dV then3

max
®
∂V
∂ ē
(ē)(Smē + δ̄ + K(ē1 + v̄))

´
≤ −λV (ē)

dV +d0
dV .

This lemma says V is a ISS Lyapunov function for the auxiliary
system (19). See Sontag andWang (1995, Proof of Lemma 2.14) for
instance. Consider now the scaled error coordinates ε = L−1(ẑ −

z). Straightforward computations from (17) give the error system

1
L
ε̇ ∈ Smε + DL + K(ε1 + v)

withDL = L−1δ. SinceΦ satisfiesP (α, a), with (14) and ri+1
rj

≤ 1,
we obtain, for all L ≥ 1

|DL,i| ≤
a

L

i
j=1

L
(j−1)

ri+1
rj

−i+1
|εj|

ri+1
rj +

|1wi|

Li
,

≤
a

L

i
j=1

|εj|
ri+1
rj +

|1wi|

Li
,

≤
c
L
V (ε)

ri+1
dV +

|1wi|

Li
,

where c is a positive real number obtained from Lemma 3 in
Appendix D. With Lemma 1, where δ̄i plays the role of DL,i, v̄ the
role of v and ē the role of ε, we obtain that, by picking L∗ sufficiently
large such that c

L∗ ≤
cδ
2 , we have, for all L > L∗,

if


|1wi|

Li
≤

cδ
4
V (ε)

ri+1
dV , ∀i

|v| ≤ cvV (ε)
r1
dV

⇒
1
L

max
®
∂V
∂e
(ε)ε̇

´
≤ −λV (ε)

dV +d0
dV . (20)

Now, when evaluated along a solution, ε gives rise to an absolutely
continuous function t → ε(t). Similarly the function defined by
t → ν(t) = V (ε(t)) is absolutely continuous. It follows that its
time derivative is defined for almost all t and, according to Smirnov
(2001, p174), (20) implies, for almost all t ,

if


|1wi|

Li
≤

cδ
4
ν(t)

ri+1
dV , ∀i

|v| ≤ cvν(t)
r1
dV

⇒
1
L
ν̇(t) ≤ −λν(t)

dV +d0
dV . (21)

Here two cases have to be distinguished.

(1) If d0 is in ]−1, 0], with Lemma5 in Appendix D (see also Sontag
&Wang, 1995), we get the existence of a class KL function βV

3 Here the max is with respect to sin⌊(ē1 + v̄)⌉0 appearing in the mth compo-
nent Km(ē1 + v̄) of K(ē1 + v̄).
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such that4

V (ε(t)) ≤ max
i∈[1,m]

βV (V (ε(0)), λLt),

sup
s∈[0,t]


Ç
4|1wi(s)|

Licδ

å dV
ri+1

,
|v(s)|

dV
r1

cv


 .

The result holds since with Lemma 3 there exist a positive real
number c1 such that ei
Li−1

 ≤ c1V (ϵ)
ri
dV .

Moreover, when v(t) = 1wj(t) = bj = 0 for j = 1, . . . ,m,
(21) implies finite time convergence in the case in which d0 <
0.

(2) If d0 = −1, then rm+1 = 0. We choose L∗ sufficiently large to
satisfy
w̄m

(L∗)m
≤

cδ
4
.

We obtain that the first condition in (21) is satisfied for i = m
when L ≥ L∗. With Lemma 5 in Appendix D (see also Sontag
& Wang, 1995), the implication (21) implies the existence of a
class KL function βV such that see footnote 4

V (ε(t)) ≤ max
i∈[1,m−1]

βV (V (ε(0)), λLt),

sup
s∈[0,t]


Ç
4|1wi(s)|

Licδ

å dV
ri+1

,
|v(s)|

dV
r1

cv


 .

And the result holds as in the previous case.

6. Cascade of homogeneous observers

When we cannot find d0 in [−1, 0] and a such that the
nonlinearities satisfy P (α, a), with α defined in (14), we may lose
the convergence of observer (12), or the possibility of making the
final error arbitrarily small. In such a bad case, we can still take
advantage of the fact that, for α verifying (14) with d0 = −1,
P (α, a) does not impose any restriction besides boundedness of
the last functionsΦm (see Table 2).

From the remark that observer (12)
(1) can be used for the system

ż1 = z2 + ψ1(t)
...

żk−1 = zk + ψk−1(t)
żk = ϕk(t)

provided the functions ψi are known and the function ϕk is
unknown but bounded, with known bound.

(2) gives estimates of the zi’s in finite time,

we see that it can be used as a preliminary step to deal with the
system
ż1 = z2 + ψ1(t)

...
żk−1 = zk + ψk−1(t)

żk = zk+1 + Φk(u, z1, . . . , zk)
żk+1 = ϕk+1(u, z1, . . . , zk+1).

4 According to Lemma 5, βV (s, t) = max{0, s
−d0
dV − t}

dV
−d0 .
Indeed, thanks to the above observer we know in finite time the
values of z1, . . . , zk, so that the functionΦk(u, z1, . . . , zk) becomes
a known signal ψk(t).

From this, we can propose the following observer made of a
cascade of homogeneous observers:

˙̂z11 ∈ ŵ1 − L1 k11 S(ẑ11 − y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
˙̂z21 = ẑ22 + Φ1(u, ẑ11)+ ŵ1 − L2 k21


ẑ21 − y

 1
2

˙̂z22 ∈ ŵ2 − L22 k22 S(ẑ21 − y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

˙̂zm1 = ẑm2 + Φ1(u, ẑ11)

+ŵ1 − Lm km1

ẑm1 − y

m−1
m

...
˙̂zm(m−1) = ẑmm + Φm−1(u, ẑ(m−1)1, . . . , ẑ(m−1)(m−1))

+ŵm−1 − Lm−1
m km(m−1)


ẑm1 − y

 1
m

˙̂zmm ∈ ŵm − Lmm kmm S(ẑm1 − y)

(22)

where the kij and Li are positive real numbers to be tuned.
As a direct consequence of Proposition 4 and following the same

steps as in the proof of Proposition 3, we have

Proposition 5. Assume Φ is continuous. For any positive real num-
bers z, u w, we can find positive real numbers kij and Li, two class
K functions γ1 and γ2 and a class KL function β such that,
for all locally bounded time function (u, v, w, ŵ), and all (z, ẑ) in
Rm

× Rm, the observer (22) admits absolutely continuous solutions
Ẑ1(ẑ, z, t; u, v, w, ŵ), . . . , Ẑm(ẑ, z, t; u, v, w, ŵ)


which are de-

fined on R+ and for any such solution we have for all i in {1, . . . ,m}

and for all t such that |Z(z, s; u, w)| ≤ z, |u(s)| ≤ u and |1w(s)| ≤

w for all 0 ≤ s ≤ t:

|Ẑi(t)− Zi(t)| ≤ max

β(|z − ẑ|, t),

sup
1≤j≤i−1
s∈[t0,t]


γ1(|v(s)|), γ2(|1wj(s)|)



where Ẑi is the state of the ith block (see Notation 2) and we have
used the abbreviation Ẑi(t) = Ẑi(ẑ, z, t; u, v, w, ŵ) and Zi(t) =

Zi(z, t; u, w).
Moreover, when v(t) = 1wj = 0, there exists T such that

Ẑi(ẑ, z, t) = Zi(z, t) for all t ≥ T .

This observer is an extension of the cascaded high gain observer
(11) presented in Section 4. The use of homogeneity enables
here to obtain convergence without demanding anything but the
knowledge of a bound on the input and on the system solution.
A drawback of a cascade of observers is that it gives an observer
with dimension m(m+1)

2 in general. However, as seen in Section 4,
it may be possible to reduce this dimension since, for each new
block, one may increase the dimension by more than one, when
the corresponding added functions Φi satisfy P (α, a) m for some
α verifying (14) with d0 = −1 and for some a.

Finally, note that the result of Proposition 5 does not mean
that the observer is ISS with respect to 1w. Indeed, 1w must be
bounded to obtain this ISS-like inequality: the system is ISS with
restrictions. Again, we believe that this problem could be solved
employing homogeneous in the bi-limit observer as in Andrieu
et al. (2008).

7. Relaxing the assumptions marked with ( )

First, if System (2) is not complete, every ISS inequalities still
holds for any solution Z(z, t; u, w)but only on [0, T (z)[where T (z)
is its maximal time of existence.
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The global aspect of boundedness, Hölder, P (α, a), . . . , can be
relaxed as follows. Let U be bounded and let M be a given compact
set. We define Φ̂ , to be used instead ofΦ in the observers, as

Φ̂i(u, z1, . . . , zi) = sat(Φi(u, z1, . . . , zi), Φ̄i) (23)

where Φ̄i = maxu∈U,z∈M(Φi(u, z1, . . . , zi)) and the saturation
function is defined on R by

sat(x,M) = max(min(x,M),−M).

It can be shown that, for any compact set M̃ strictly contained in
M, there exists ã such that (3) holds for Φ̂ for all (za, zb) inRm

×M̃.
Then, since Φ̂ = Φ on M̃, we can modify the assumptions

– in Proposition 1, so that (5) holds only on the compact set M;
– in Propositions 2 and 4, so that Φ verifies P (α, a) only on the

compact set M;
– Propositions 3 and 5 remain unchanged.

In this case, the results hold for the particular system solutions
Z(z, t; u, w) which are in the compact set M̃ for t in [0, T (z)[.
Precisely, for these solutions, the bounds on Ẑi(t) − Zi(t) given in
these propositions hold for all t in [0, T (z)[.

Note also that if P (α, a) holds on a compact set, then for any α̃
such that α̃ij ≤ αij for all (i, j), there exists ã such that P (α̃, ã) also
holds on this compact set. It follows that the constraints given by
(14) or Table 2 in Proposition 4 can be relaxed to αij ≥

1−d0(m−i−1)
1−d0(m−j) ,

and the less restrictive conditions one may ask for are obtained for
d0 = −1.

Finally, in Propositions 1, 2 and 4, it is possible to consider the
case where Φ depends also on time as long as any assumption
made onΦ is satisfied uniformly with respect to time.

8. Example

Consider the system

ẋ1 = x2, ẋ2 = −x1 + x53x1, ẋ3 = −x1x2 + u,
y = x1

(24)

withu as input. Itwould leadus too far from themain subject of this
article to study here the solutions behavior of this system.We note
however that, when u is zero, they evolve in the 2-dimensional
surface {x ∈ R3

: 3x21 + 3x22 + x63 = c6} which is diffeomorphic5to
the sphere S2. Thanks to Poincaré-Bendixon theory, we know the
solutions are periodic and circling the unstable equilibria (x1 =

x2 = 0, x3 = ±c). So we hope for the existence of solutions
remaining in the compact set

Cr,ϵ =
¶
x ∈ R3

: x21 + x22 ≥ ϵ, 3x21 + 3x22 + x63 ≤ r
©

for instancewhen u is a small periodic time function, exceptmaybe
for pairs of input u and initial condition (x1, x2, x3) for which
resonance could occur. Moreover, due to their periodic behavior,
such solutions are likely to have their x3 component recurrently
crossing zero.

8.1. Uniform and differential observability

On S =
¶
x ∈ R3

: x21 + x22 ≠ 0
©
, and whatever u is, the

knowledge of the function t → y(t) = X1(x, t) and therefore of

5 A diffeomorphism from the unit sphere to the set is x → xρ(x) where ρ is the
unique positive solution (hint: x3 ≤ 1) of ρ6x63 + 3ρ2(1 − x23)− 1 = 0.
its three first derivatives

ẏ = x2
ÿ = −x1 + x53x1
...
y = −x2 − 5x43x

2
1x2 + x53x2 + 5x43x1u

gives us x1, x2 and x3. Thus, System (24) is uniformly observable on
S. Besides, the function

H4(x) =

á
x1
x2

−x1 + x53x1
−x2 − 5x43x

2
1x2 + x53x2

ë
is injective on S and admits the following left inverse, defined on¶
z ∈ R4

: z21 + z22 ≠ 0
©
:

H−1
4 (z) =



z1
z2Ü

(z3 + z1)z1 +

ï
(z4 + z2)+ 3|(z3 + z1)⌊z1⌉

3
2 |

4
5 z2
ò
z2

z21 + z22

ê 1
5


.

However, H4 is not an immersion because of a singularity of its
Jacobian at x3 = 0. So the system is differentially observable
of order 4 on S but not strongly. According to Bernard et al.
(submitted for publication), it admits a triangular canonical form
of dimension 4 but with functionsΦ maybe non Lipschitz.

8.2. Triangular form and property P (α, a)

The triangular canonical form of dimension 4 mentioned above
is

ż1 = z2
ż2 = z3
ż3 = z4 + Φ3(u, z1, z2, z3)
ż4 = Φ4(u, z)
y = z1.

(25)

where Φ3(u, z1, z2, z3) = 5u|z3 + z1|
4
5 ⌊z1⌉

1
5 and Φ4 is a

continuous non-Lipschitz function the expressions of which is
complex, fortunately with no interest here. The function Φ3 is not
Lipschitz at the points on the hyperplanes z3 = −z1 and z1 = 0
(image by H3 of points where x3 = 0 or x1 = 0) known to be
visited possibly recurrently along solutions. This example thus falls
precisely into the scope of the paper.

The function Φ4 is continuous and therefore bounded on any
compact set including H4(C̄r,ϵ). Besides, for ẑ3 and z3 in a compact
set including H3(C̄r,ϵ), there exist c1 and c3 such that

|Φ3(u, ẑ1, ẑ2, ẑ3)− Φ3(u, z1, z2, z3)|

≤ c1u|ẑ1 − z1|
1
5 + c3u|ẑ3 − z3|

4
5 .

This implies thatΦ3 is Hölder with order 1
5 .

Hence the nonlinearities Φ3 and Φ4 verify the conditions of
Table 1. This implies that for L sufficiently large, convergence
with an arbitrary small error can be achieved with the high gain
observer (4). However,Φ3 does not verify the conditions of Table 2.
Thus, there is no theoretical guarantee that the homogeneous
observer (12) with d0 = −1 will provide exact convergence.

8.3. An observer of dimension 4?

We consider the solution to system (24) with initial condition
x = (1, 1, 0) and u = 5 sin(10 t). This solution is periodic and
regularly crosses the Lipschitzness singularities x3 = 0 or x1 = 0,
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Fig. 1. Trajectory of system (24), with the noised measurement y.

Table 3
Decrease of the final error in the z-coordinates (ez,i = ẑi − zi) with the gain L, with
a high gain observer and in the absence of noise.

L ez,1 ez,2 ez,3 ez,4 Peaking

2 0.15 4 60 200 300
5 6 · 10−4 0.04 1.5 30 4000
8 5 · 10−5 4 · 10−3 0.25 7 1.5·104

10 8 · 10−6 1 · 10−3 0.1 4 3.5·104

15 1.5 · 10−6 3 · 10−4 0.03 2 1.2·105

Table 4
Final errors in the z-coordinates given by a homogeneous observer of degree −1 in
presence of noise.

L ez,1 ez,2 ez,3 ez,4

2.5 0.15 3.5 30 18
3 0.15 3 35 25
4 0.1 2 25 50
5 0.1 2 30 80
6 0.1 2 35 120

as illustrated in Fig. 1. In the following, we use the same noised
measurement y, shown in Fig. 1, in every simulation with noise. It
is a filtered gaussian noise with standard deviation σ = 0.03 and
1st order filtering parameter a = 50.

We first implement a high gain observer of dimension 4, in the
absence of noise, initialized at x̂ = (0.1, 0.1, 0), and with the gains
k1 = 14, k2 = 99, k3 = 408, k4 = 833. As an illustration
of Proposition 2, the convergence with an arbitrary small error is
achieved and is illustrated in Table 3. However, we observe that the
decrease of the errors, especially for ez,4, is very slow compared
to the increase of the peaking and a very high gain is needed to
obtain ‘‘acceptable’’ final errors. In presence of noise, the tradeoff
between final error and noise amplification becomes very difficult:
with the noised measurement of Fig. 1, the smallest final error ez,4
is 200, achieved for L = 2. Of course, there might exist a choice of
the gains ki giving better results. But overall a high gain observer
may not be a systematic solution in practice for non-Lipschitz
triangular systems, especially when the solution regularly crosses
the Lipschitz-singularities.

Let us now implement a homogeneous observer of dimension
4 with an explicit Euler method with fixed measurement and
integration steps equaling 10−5, andwith theMatlab sign function.
The degree is d0 = −1, and the gains are chosen according to
Levant (2005), i.e. k1 = 5, k2 = 8.77, k3 = 4.44, k4 = 1.1. For
a gain L = 3, the convergence is achieved with a final error of
8 . 10−4 on z4, even though the Hölder restriction of Proposition 4
is a priori not satisfied around z1 = 0. Unfortunately, the final
errors are heavily impacted in presence of noise, as illustrated in
Table 4. This may also come from a lack of ISS property. Notice
that the amplification of the noise by the gain L is not as rapid as
expected from the bound in Proposition 4. The final errors remain
nonetheless too large, although, once again, we did not optimize
our choice of gains ki.

8.4. Cascaded observers

In the absence of noise, the cascaded observers presented in
Sections 4 and 6 give similar results to the corresponding observers
in dimension 4, i.e. arbitrary small asymptotic error and finite time
convergence respectively. However, they seem to provide better
accuracies in presence of noise.

In the case of a high gain cascade observer, the errors, although
smaller than in the high gain observer of dimension 4, remain
too large to consider it a viable solution. On the other hand, the
homogeneous cascade observer:

˙̂z11 = ẑ12 − L1 k11

ẑ11 − y

 2
3

˙̂z12 = ẑ13 − L21 k12

ẑ11 − y

 1
3

˙̂z13 ∈ −L31 k13 S(ẑ11 − y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
˙̂z21 = ẑ22 − L2 k21


ẑ21 − y

 3
4

˙̂z22 = ẑ23 − L22 k22

ẑ21 − y

 1
2

˙̂z23 = ẑ24 + sat(g3(ẑ11, ẑ12, ẑ13))u − L32 k23

ẑ21 − y

 1
4

˙̂z24 ∈ −L42 k24 S(ẑ21 − y)

with the coefficients k1j chosen, according to Levant (2005), as
k11 = 3, k12 = 2.6, k13 = 1.1, and k2j as above, and with the
gains L1 = 2.5 and L2 = 3, gives the following final errors:

ez,11 = 0.05, ez,12 = 0.4, ez,13 = 2.5, ez,24 = 12.

Comparing to Table 4, we see that implementing an intermediate
homogeneous observer of dimension 3 enables to obtain much
better estimates of the first three states zi, which are then used in
the nonlinearity of the second block, thus giving a better estimate
of z4.

Unfortunately, the presented results are still unsatisfactory in
presence of noise, which leaves the question of the construction of
robust observers for such systems unanswered.

9. Conclusion

To summarize themost important ideas, we provide in Table 5 a
synthetic comparison of the four observers studied in this paper, in
the usual case where the system state and the input are bounded.

We have shown the convergence with an arbitrary small error
of the classical high gain observer in presence of nonlinearities
verifying some Hölder-like condition. The same result could
probably be obtained for the high gain-like observer presented in
Besançon (1999). Also, for the case when this Hölder condition is
not verified, we proposed a novel cascaded high gain observer.
Under slightly more restrictive assumptions, we proved the
convergence of a homogeneous observer and of its cascaded
version with the help of an explicit Lyapunov function.

Our numerical experience indicates however that to improve
the performances in presence of measurement noise, it is very
difficult to tune the gains of both high gain and homogeneous
observers, although it is slightly simpler for the latter since smaller
gains are sufficient to ensure convergence. Simulations on our
example suggest that the situation may be more favorable with
the cascaded homogeneous observer. Our ISS bounds in this paper
being far too conservative, it is necessary to carry out a finer study
if we want to optimally tune the gains of the observers. It may
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Table 5
Comparison between observers when the system state and the input are bounded.

High gain (4) High gain cascade (11) Homogeneous (12) Homogeneous cascade (22)

Assumption on gi Hölder with order greater than in
Table 1

Continuous Hölder with order greater than in
(14) or Table 2 for d0 = −1

Continuous

Convergence Arbitrary small error Arbitrary small error Asymptotic convergence Asymptotic convergence

Advantages Easy choice of gains No constraint on gi Not necessarily large gains
because convergence

No constraint on gi ,
convergence, apparently better
in terms of noise

Drawbacks Large gains necessary to obtain
small error ⇒ numerical
problems (peaking) and
sensitivity to noise

Same as for high gain, but also
gains difficult to choose and
large dimension

Implementation of the sign
function if d0 = −1 (chatter etc.)

Large dimension and a lot of
gains to choose
also be appropriate to use on-line gain adaptation techniques since
large gains should be necessary only around the points where the
nonlinearities are not Lipschitz. About these two aspects, we refer
the reader to the survey in Khalil and Praly (2013, Sections 3.2.2
and 3.2.3) and the references therein.

Appendix A. Barbot et al.’s observer

The set valued map proposed in Barbot et al. (1996) to obtain
an observer for a triangular canonical form where the functions
are only locally bounded is defined as follows. Given (ẑ, y, u),
(v1, . . . , vm) is in F(ẑ, y, u) if there exists (z̃2, . . . , z̃m) inRm−1 such
that:

v1 = z̃2 + g1(y) u

z̃2 ∈ sat(ẑ2)− k1 S(y − ẑ1)
...

vi = z̃i+1 + gi(y, z̃2, . . . , z̃i) u

z̃i+1 ∈ sat(ẑi+1)− ki S(ẑi − z̃i)
...

vm ∈ ϕm(y, z̃2, . . . , z̃m)

+ gm(y, z̃2, . . . , z̃m) u − km S(ẑm − z̃m)

where sat is some saturation function.

Appendix B. Proof of Lemma 1

The proof is based on the following proposition the proof of
which is given in the following section for the case d0 = −1
and can be found for d0 in ] − 1, 0] in Andrieu et al. (2008). This
proposition establishes that for a chain of integrator it is possible
to construct homogeneous correction terms which provide an
observer and that it is possible to construct a smooth strict
homogeneous Lyapunov function.

Proposition 6. For all d0 in [−1, 0], the function V defined in (18) is
positive definite and there exist positive real numbers k1, . . . km,
ℓ1, . . . ℓm, λ̃ such that for all e in Rm, the following holds:

max
®
∂V
∂ ē
(ē) (Sm(ē)+ K(ē1))

´
≤ −λ̃V (ē)

dV +d0
dV . (B.1)

Let K̃(ē1, s) be the function defined asÄ
K̃(ē1, s)

ä
i
= (K(ē1))i , i ∈ [1,m − 1],

and,Ä
K̃(ē1, s)

ä
m

=

®
kms, when d0 = −1
(K(ē1))m , when d0 > −1.
Note that K̃ is a continuous (single) real-valued function which
satisfies for all ē1 in R

K(ē1) = {K̃(ē1, s), s ∈ S(ē1)}.

Consider also the functions

η̃(ē, δ̄, v̄, s) =
∂V
∂ ē
(ē)(Sm(ē)+ δ̄ + K̃(ē1 + v̄, s))+

λ̃

2
V (ē)

dV +d0
dV ,

and

γ (δ̄, v) =

m
i=1

|δ̄i|
dV +d0
ri+1 + |v̄|

dV +d0
r1 .

With (B.1), we invoke Lemma 3 to get the existence of a positive
real number c1 satisfying:

∂V
∂ ē
(ē)(Sm(ē)+∆+ K̃(ē1 + v̄, s))

≤ −
λ̃

2
V (ē)

dV +d0
dV + c1

m
i=1
δ̄

dV +d0
ri+1

i + c1|v̄|
dV +d0

r1 .

This can be rewritten,

∂V
∂ ē
(ē)(Sm(ē)+ δ̄ + K̃(ē1 + v, s)) ≤ −

λ̃

2(m + 2)
V (ē)

dV +d0
dV

+

m
i=1


c1|δ̄i|

dV +d0
ri+1 −

λ̃

2(m + 2)
V (ē)

dV +d0
dV



+ c1|v̄|
dV +d0

r1 −
λ̃

2(m + 2)
V (ē)

dV +d0
dV .

Consequently, the result holds with λ =
λ̃

2(m+2) , cδ = cv =
α
c1

 r1
dV +d0 .

Appendix C. Proof of Proposition 6 when d0 = −1

In this section, we denote Ei = (ei, . . . , em). Let dV be an integer
such that dV > 2m−1 and the functions Ki recursively defined by:

Km(em) = −⌊em⌉
0, Ki(ei) =

Ö
−⌊ℓiei⌉

ri+1
ri

Ki+1

Å
⌊ℓiei⌉

ri+1
ri

ãè .

Let Vm(em) =
|em|

dV
dV

and for all i in {1, . . . ,m − 1}, let also V̄i :

R2
→ R and Vi : Rn−i+1

→ R be the functions defined by

V̄i(ν, ei+1) =

 ν

⌊ei+1⌉

ri
ri+1

⌊x⌉
dV −ri

ri − ⌊ei+1⌉
dV −ri
ri+1 dx,

Vi(Ei) =

i
j=m−1

V̄j(ℓjej, ej+1)+ Vm(em).
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With these definitions, the Lyapunov function V defined in (18) is
simply V (e) = V1(e) and the homogeneous vector field K(e1) =

K1(e1)with

ki = ℓ
ri+1
ri

i ℓ

ri+1
ri−1
i−1 . . . ℓ

ri+1
r2

2 ℓ

ri+1
r1

1 .

Note that the jth component ofKi is homogeneous of degree rj+1 =

m − j and, for any ei in R, the set Ki(ei) can be expressed as

Ki(ei) = {K̃i(ei, s), s ∈ S(ei)},

where K̃i : R × [−1, 1] → R is a continuous (single valued)
function.

The proof of Proposition 6 is made iteratively from i = m
toward 1. At each step, we show that Vi is positive definite and we
look for a positive real number ℓi, such that for all Ei in Rn−i+1

max
s∈S(ei)

®
∂Vi

∂Ei
(Ei)(Sm−i+1Ei + K̃i(ei, s))

´
≤ −ciVi(Ei)

dV −1
dV , (C.1)

where ci is a positive real number. The proposition will be proved
once we have shown that the former inequality holds for i = 1.

Step i = m: At this step, Em = em. Note that we have

max
s∈S(em)

®
∂Vm

∂Em
(Em)K̃m(em, s)

´
= −|Em|

dV −1,

= −cmVm(Em)
dV −1
dV ,

with cm = d
dV −1
dV

V . Hence, Eq. (C.1) holds for i = m.
Step i = j: Assume Vj+1 is positive definite and assume there

exists (ℓj+1, . . . , ℓm) such that (C.1) holds for j = i − 1. Note that

the function x → ⌊x⌉
dV −rj

rj −⌊ei+1⌉

dV −rj
rj+1 is strictly increasing, is zero

iff x =

ej+1

 rj
rj+1 , and therefore has the same sign as x−


ej+1

 rj
rj+1 .

Thus, for any ej+1 fixed in R, the function ν → V j(ν, ej+1) is non

negative and is zero only for v =

ej+1

 rj
rj+1 . Thus, V̄j is positive and

we have

Vj(Ej) = 0 ⇔

®
Vj+1(Ej+1) = 0

V j(ℓjej, ej+1) = 0

⇔

Ej+1 = 0

ℓjej =

ej+1

 rj
rj+1 = 0

so that Vj is positive definite.
On another hand, let Ṽj(ν, Ej+1) = Vj+1(Ej+1) + V̄j(ν, ej+1) and

let T1 be the function defined

T1(ν, Ej+1) = max
s∈S(ν)

¶
T̃1(ν, Ej+1, s)

©
with T̃1 continuous and defined by

T̃1(ν, Ej+1, s) =
∂ Ṽj

∂Ej+1
(Ej+1) (Sm−i−1Ei+1

+ K̃j+1

Ç
⌊ν⌉

rj+1
rj , s

åå
+

cj+1

2
Ṽj(ν, Ej+1)

dV −1
dV .

Let also T2 be the continuous real-valued function defined by

T2(v, Ej+1) = −
∂ Ṽj

∂ν
(ν, Ei+1)

Ç
ej+1 − ⌊ν⌉

rj+1
rj

å
.

Note that T1 and T2 are homogeneous with weight rj for ν and ri
for ei and degree dV − 1. Besides, they verify the following two
properties:

– for all Ej+1 in Rm−j, ν in R

T2(ν, Ej+1) ≥ 0

(since (⌊ν⌉
rj+1
rj − ej+1) and (⌊ν⌉

dV −rj
rj −


ej+1

 dV −rj
rj+1 ) have the

same sign)
– for all (ν, Ej+1) in Rm−j+1

\ {0}, and s in S(ν), we have the
implication

T2(ν, Ej+1) = 0 ⇒ T̃1(ν, Ej+1, s) < 0

since T2 is zero only when ⌊ν⌉

rj+1
rj = ej+1 and

T̃1

Ç
ej+1

 rj+1
rj , Ej+1, s

å
=
∂Vj+1

∂Ej+1
(Ej+1)(Sn−iEj+1 + K̃j+1(ej+1, s))

+
cj+1

2
Vj+1(Ej+1)

dV −1
dV ≤ −

cj+1

2
Vj+1(Ej+1)

dV −1
dV ,

where we have employed (C.1) for i = j − 1.

Using Lemma 4 in Appendix D, there exists ℓj such that

T1(ν, Ej+1)− ℓjT2(ν, Ej+1) ≤ 0, ∀ (ν, Ej+1).

Finally, note that

max
s∈S(ei)

®
∂Vj

∂Ej
(Ej)(Sm−j+1Ej + K̃j(ej, s))

´
= T1(ℓjej)− ℓjT2(ℓjej, Ej+1)−

cj+1

2
Vj(Ej)

dV −1
dV .

Hence, (C.1) holds for i = j.

Appendix D. Technical lemmas

Lemma 2. Let η be a continuous function defined on Rn+1 and f a
continuous function defined on Rn. Let C be a compact subset of Rn.
Assume that, for all x in C and s in S(f (x)),

η(x, s) < 0.

Then, there exists α > 0 such that for all x in C and s in S(f (x))

η(x, s) < −α.

Proof. Assume that for all k > 0, there exist xk in C and sk in
S(f (xk)) ⊂ [−1, 1] such that

0 > η(xk, sk) ≥ −
1
k
.

Then, η(xk, sk) tends to 0 when k tends to infinity. Besides, there
exists a subsequence (km) such that xkm tends to x∗ in C and
skm tends to s∗ in [−1, 1]. Since η is continuous, it follows that
η(x∗, s∗) = 0 and we will have a contradiction if s∗ ∈ S(f (x∗)).
If f (x∗) is not zero, then by continuity of f , s∗ is equal to the sign of
f (x∗), and otherwise, s∗ ∈ [−1, 1] = S(f (x∗)). Thus, s∗ ∈ S(f (x∗))
in all cases.

Lemma 3. Let η be a function defined on Rn homogeneous with
degree d and weight vector r = (r1, . . . , rn), and V a positive definite
proper function defined on Rn homogeneous of degree dV with same
weight vector r. Define C = V−1({1}). If there exists α such that for
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all x in C

η(x) < α,

then for all x in Rn
\ {0}, η(x) < αV (x)

d
dV .

Proof. Let x in Rn
\ {0}. We have x̄ =

xi

V (x)
ri
dV

in C. Thus η(x̄) < α

and by homogeneity

1

V (x)
d
dV

η(x) < α

which gives the required inequality.

Lemma 4. Let η be a homogeneous function of degree d and weight
vector r defined on Rn by

η(x) = max
s∈S(f (x))

η̃(x, s)

where η̃ is a continuous function defined on Rn+1 and f a
continuous function defined on Rn. Consider a continuous function γ
homogeneous with same degree and weight vector such that, for all x
in Rn

\ {0} and s in S(f (x))

γ (x) ≥ 0,
γ (x) = 0 ⇒ η̃(x, s) < 0.

Then, there exists k0 > 0 such that, for all x in Rn
\ {0},

η(x)− k0 γ (x) < 0.

Proof. Define the homogeneous definite positive function V (x) =n
i=1 |xi|

d
ri and consider the compact set C = V−1({1}). Assume

that for all k > 0, there exist xk in C and sk in S(f (xk)) such that

η̃(xk, sk) ≥ k γ (xk) ≥ 0

η̃ is continuous, and thus bounded on the compact setC ×[−1, 1].
Therefore, γ (xk) tends to 0 when k tends to infinity. Besides,
there exists a subsequence (km) such that xkm tends to x∗ in C
and skm tends to s∗ in [−1, 1]. It follows that γ (x∗) = 0 since
γ is continuous. But with the same argument as in the proof of
Lemma 2, we have s∗ ∈ S(f (x∗)). It yields that η̃(x∗, s∗) < 0 by
assumption and we have a contradiction.

Therefore, there exists k0 such that

η̃(x, s)− k0 γ (x) < 0

for all x in C and all s in S(f (x)). Thus, with Lemma 2 there exists
α > 0 such that

η̃(x, s)− k0 γ (x) ≤ −α

so that

η(x)− k0 γ (x) < 0

for any x in C. The result follows applying Lemma 3.

Lemma 5. For a positive bounded continuous function t → c(t) and
an absolutely continuous function t → ν(t) satisfying
for almost all t such that ν(t) ≥ c(t) then ν̇(t) ≤ −ν(t)d with d in
]0, 1[. Then, for all t in [0, T [

ν(t) ≤ max
¶
0,max{ν(0)− c(0), 0}1−d

− t
©1/(1−d)

+ sup
s∈[0,t]

c(s).

Proof. This is a direct consequence of the fact that we have for
almost all t such that max{ν(t)− c, 0} is C1

˙̌�max{ν(t)− c, 0} ≤ −max{ν(t)− c, 0}d.
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