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1. Introduction

1.1. Context

A lot of attention has been dedicated to the construction of
nonlinear observers. Although a general theory has been obtained
for linear systems, very few general approaches exist for nonlinear
systems. In particular, the theory of high gain ( Khalil & Praly, 2013
and references therein) and Luenberger (Andrieu, 2014; Andrieu
& Praly, 2006) observers have been developed for autonomous
nonlinear systems but their extension to controlled systems is not
straightforward.

For designing an observer for a system, a preliminary step is of-
ten required. It consists in finding a reversible coordinate transfor-
mation, allowing us to rewrite the system dynamics in a targeted
form more favorable for writing and/or analyzing the observer. In
presence of input, two tracks are possible depending on whether
we consider the input as a simple time function,making the system
time dependent or as a more involved infinite dimensional param-
eter, making the system a family of dynamical systems, indexed by
the input. In the former case, the transformation mentioned above
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is considered time dependent, and thusmay need to be redesigned
for each input. In the latter case, the transformation can be input-
dependent. Specifically :

- in Jouan and Gauthier (1996) (see also Gauthier & Kupka,
2001), the transformation depends on the inputs and its
derivatives. When the ACP(N) condition is verified (see
Lemma (Gauthier & Kupka, 2001, Definition 5.2.1, Lemma
5.2.2)), it leads to the so called phase-variable representa-
tion as targeted form (see Gauthier & Kupka, 2001, Defini-
tion 2.3.1), for which a high gain observer can be built.

- in Besançon (1999), the transformation does not depend on
the input, and leads to a block triangular formwhen the sys-
tem verifies the observability rank condition (see Hermann
and Krener, 1977). However, afterwards, an extra condition
on the input is needed for the observer design.

- in Gauthier and Bornard (1981) and Gauthier, Hammouri,
and Othman (1992), the transformation does not depend on
the input, and leads to a triangular form when the system is
(a) uniformly observable (see Gauthier & Kupka, 2001, Def-
inition I.2.1.2 or Definition 2), and (b) strongly differentially
observable of order equal to the system state dimension
(see Definition 1). This so-called observable canonical form
allows the design of a high gain observer.

In this paper, we complete and detail the results announced
in Bernard, Praly, and Andrieu (2016). We work within the third
context (of the second track), but going beyond (Gauthier & Kupka,
2001) with allowing the strong differential observability order to
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be larger than the system state dimension. We shall see that, in
this case, the system dynamics may still be described by a (partial)
triangular canonical form (see (3)) but with functions which may
be non locally Lipschitz.

1.2. Definitions and problem statement

We consider a controlled system of the form :

ẋ = f (x) + g(x)u , y = h(x) (1)

where x is the state in Rdx , u is an input in Rdu , y is a measured
output inR and the functions f , g and h are sufficientlymany times
differentiable, f being a column dx-dimensional vector field and g
a (dx × du)-dimensional matrix field. In the following, for a scalar
function α, Lf α denotes its Lie derivative in the direction of f . It has
scalar values. We denote

Hi(x) = (h(x), Lf h(x), . . . , Li−1
f h(x)) ∈ Ri . (2)

It is a column i-dimensional vector. Similarly Lgα denotes the
Lie derivative along each of the du columns of g . It has row du-
dimensional vector values.

Given an input time function t ↦→ u(t) taking values in a
compact subset U of Rdu , we denote Xu(x, t) a solution of (1) going
through x at time 0. We are interested in solving :

Problem P: Given a compact subset C of Rdx , under which con-
dition do there exist integers T and dz , a continuous injective function
Ψ : C → Rdz , and continuous functions ϕdz : Rdz → R and
gi : Ri(or Rdz ) → Rdu such that, when x is in C and satisfies (1) and u
is in U , z = Ψ (x) satisfies

ż1 = z2 + g1(z1) u
...

żT = zT+1 + gT(z1, . . . , zT) u
żT+1 = zT+2 + gT+1(z) u

...

żdz = ϕdz (z) + gdz (z) u

, y = x1 (3)

Because gi depends only on z1 to zi, for i ≤ T, but potentially
on all the components of z for i > T, we call this particular
form up-to-T-triangular canonical form and T is called the order
of triangularity. When dz = T + 1, we say full triangular canonical
form. When the functions ϕdz and gj are locally Lipschitz we say
Lipschitz up-to-T-triangular canonical form.

We are interested in addressing the Problem P because, when
the functions are Lipschitz and dz = T + 1, we get the nominal
form for which high gain observers can be designed and therefore
Xu(x, t) can be estimated knowing y and u as long as (Xu(x, t), u(t))
is in the given compact set C × U .

We will use the following two notions of observability:

Definition 1 (Differential Observability1). System (1) is weakly
differentially observable of order O on an open subset S of Rdx if
the functionHO (see (2)) is injective on S. If it is also an immersion,
the system is called strongly differentially observable of order O.

Definition 2 (Uniform Observability). (See Gauthier & Kupka, 2001,
Definition I.2.1.2.) System (1) is uniformly observable on an open
subset S of Rdx if, for any pair (xa, xb) in S2 with xa ̸= xb, any
strictly positive number T , and any C1 function u defined on [0, T ),
there exists a time t < T such that h(Xu(xa, t)) ̸= h(Xu(xb, t)) and
(Xu(xa, s), Xu(xb, s)) ∈ S2 for all s ≤ t .

1 This notion is weaker than the usual differential observability defined for
instance in Gauthier and Kupka (2001, Definition I.2.4.2) for controlled systems,
because it is a differential observability of the drift systemonly, namelywhen u ≡ 0.

Note that this notion is a matter of instantaneous observability
since T can be arbitrarily small. In the case where Hdx is a diffeo-
morphism, we have

Proposition 1 (See Gauthier & Bornard, 1981; Gauthier et al., 1992).
If System (1) is uniformly observable and strongly differentially ob-
servable of order O = dx on an open set S containing the given com-
pact set C, it can be transformed on C into a full Lipschitz triangular
canonical form of dimension dz = dx.

In general, it is possible for the system not to be strongly
differentially observable of order dx everywhere. This motivates
our interest in the case where the system is strongly differentially
observable of order O > dx, i.e. HO is an injective immersion
and not a diffeomorphism. As we shall see in Section 2, in this
case, we may still have an at least up-to-(dx + 1)-triangular form,
but the Lipschitzness of its nonlinearities can be lost. Since this
property is crucial for the implementation of high gain observers
(see Ciccarella, Mora, & Germani, 1993), we give in Section 3 some
sufficient conditions under which the Lipschitzness is preserved.

2. Immersion case (O > dx)

The specificity of the triangular canonical form (3) is not so
much in its structure but more in the dependence of its functions
gi and ϕdz . Indeed, by choosing Ψ = Hdz , we obtain:

˙ 
Hdz (x) =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1
0 . . . . . . . . . 0

⎞⎟⎟⎟⎟⎟⎠Hdz (x) +

⎛⎜⎜⎜⎜⎜⎜⎝

0
...
...

0
Ldzf h(x)

⎞⎟⎟⎟⎟⎟⎟⎠
+ LgHdz (x)u

To get (3), we need further the existence of a functionϕdz satisfying

Ldzf h(x) = ϕdz (Hdz (x)) ∀x ∈ C (4)

and, for i ≤ T, of functions gi satisfying

LgLi−1
f h(x) = gi(h(x), . . . , Li−1

f h(x)) ∀x ∈ C. (5)

Let us illustrate via the following elementary example what can
occur.

Example 1. Consider the system defined as

ẋ1 = x2 , ẋ2 = x33 , ẋ3 = 1 + u , y = x1.

We get

H3(x) = (h(x), Lf h(x), L2f h(x)) = (x1, x2, x33)

H5(x) = (H3(x), L3f h(x), L
4
f h(x)) = (H3(x), 3x23, 6x3).

Hence H3 is a bijection and H5 is an injective immersion on R3.
So this system is weakly differentially observable of order 3 on
R3 and strongly differentially observable of order 5 on R3. Also
the function (x1, x2, x3) ↦→ (y, ẏ, ÿ) being injective for all u, it is
uniformly observable onR3. From thiswe could be tempted to pick
dz = 3 or 5 and the compact set C arbitrary in R3. Unfortunately, if
we choose dz = 3, we have

L3f h(x) = 3x23 = 3(L2f h(x))
2/3

and there is no locally Lipschitz function ϕ3 satisfying (4) if the
given compact set C contains a point satisfying x3 = 0. If we choose
dz = 5, we have

LgL2f h(x) = 3x23 = L3f h(x) = 3(L2f h(x))
2/3

and there is no locally Lipschitz function g3 satisfying (5) if the
given compact set C contains a point satisfying x3 = 0.
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Leaving aside the Lipschitzness requirement for the time being,
we focus on the existence of continuous functions ϕdz and gi
verifying (4) and (5) respectively.

2.1. Existence of ϕdz satisfying (4)

Proposition 2. Suppose System (1) is weakly differentially observable
of order O on an open set S containing the given compact set C. For any
dz ≥ O, there exists a continuous function ϕdz : Rdz → R satisfying
(4). If System (1) is strongly differentially observable of order O on S ,
the function ϕdz can be chosen Lipschitz on Rdz .

Proof. There is nothing really new in this result. It is a direct conse-
quence of the fact that a continuous injective function defined on a
compact set admits a continuous left inverse defined on the image
(see Bartle, 1964, §16.9) and that this left inverse can be extended
to the full space (e.g. Tietze extension theorem). In the case where
Hdz is also an immersion, according to Andrieu (2014, Lemma 3.2),
there exists a real number LH > 0 such that

|xa − xb| ≤ LH
⏐⏐Hdz (xa) − Hdz (xb)

⏐⏐ ∀(xa, xb) ∈ C2 .

Therefore, the previouslymentioned continuous left-inverse ofHdz
defined on Hdz (C) is Lipschitz on Hdz (C). According to McShane
(1934, Theorem 1), it admits a Lipschitz extension defined on
Rdz . ■

2.2. Existence of gi satisfying (5)

Concerning the functions gi, we will prove the following result:

Proposition 3. Suppose System (1) is uniformly observable on an
open set S containing the given compact set C.

- There exists a continuous function g1 : R → Rdu satisfying (5).
- If, for some i in {2, . . . , dx}, H2, . . . ,Hi defined in (2) are open

maps, then, for all j ≤ i, there exists a continuous function
gj : Rj

→ Rdu satisfying (5).

The rest of this section is dedicated to the proof of this result
through a series of lemmas, the proof of which can be found in
appendix.

A first important thing to notice is that the following property
must be satisfied for the identity (5) to be satisfied (on S).

Property A(i):

LgLi−1
f h(xa) = LgLi−1

f h(xb)

∀(xa, xb) ∈ S2
: Hi(xa) = Hi(xb).

Actually the converse is true and is a direct consequence from
Lemma 7 proved in Appendix B :

Lemma 1. If Property A(i) is satisfied with S containing the given
compact set C, then there exists a continuous function gi : Ri

→ Rdu

satisfying (5).

Property A(i) being sufficient to obtain the existence of a func-
tion gi satisfying (5),we studynowunderwhich conditions it holds.
Clearly A(i) is satisfied for all i ≥ O if HO is injective. If we do
not have this injectivity property the situation is more complex.
To overcome the difficulty we introduce the following assumption
for 2 ≤ i ≤ dx + 1.

Property B(i) : (6)

For any (xa, xb) in S2 such that xa ̸= xb, verifying Hi(xa) = Hi(xb),
there exists a sequence (xa,k, xb,k) of points in S2 converging to (xa, xb)
such that for all k, Hi(xa,k) = Hi(xb,k) and

∂Hi−1
∂x is full-rank at xa,k or

xb,k.

As in this property, let xa ̸= xb be such that Hi(xa) = Hi(xb).
If ∂Hi−1

∂x is full-rank at either xa or xb, then we can take (xa,k, xb,k)
constant equal to (xa, xb). Thus, it is sufficient to check B(i) around
points where neither ∂Hi−1

∂x (xa) nor ∂Hi−1
∂x (xb) is full-rank. But ac-

cording to (Gauthier & Kupka 2001, Theorem 4.1) the set of points
where ∂Hdx

∂x is not full-rank is of codimension at least one for a
uniformly observable system. Thus, it is always possible to find
points xa,k as close to xa aswewant such that ∂Hi−1

∂x (xa,k) is full-rank.
The difficulty of B(i) thus rather lies in ensuring that we have also
Hi(xa,k) = Hi(xb,k).

In Appendix A, we prove

Lemma 2. Suppose System (1) is uniformly observable on a set S .

- Property A(1) is satisfied.
- If, for some i in {2, . . . , dx+1}, PropertyB(i) holds and Property

A(j) is satisfied for all j in {1, . . . , i−1}, then PropertyA(i)holds.

Thus, the first point in Proposition 3 is proved. Besides, a direct
consequence of Lemmas 1 and 2 is that a sufficient condition to
have the existence of the functions gi for i in {2, . . . , dx + 1} is to
have B(j) for j in {2, . . . , i}. The following lemma finishes the proof
of Proposition 3 by showing that B(j) is in fact satisfied when Hj is
an open map.

Lemma 3. Suppose that for some j in {2, . . . , dx}, Hj is an open map
on S . Then, B(j) is satisfied.

Proof. Take (xa, xb) in S2 such that xa ̸= xb and Hj(xa) =

Hj(xb) = y0. Let Π be the set of points of S such that ∂Hj
∂x is not

full-rank. According to Sard’s theorem, Hj(Π ) is of measure zero
in Rj. Now, take p > 0 and consider Bp(xa) and Bp(xb) the open
balls of radius 1

p centered at xa and xb respectively. Since Hj is
open, Hj(Bp(xa)) and Hj(Bp(xb)) are open sets, both containing y0.
Thus,Hj(Bp(xa))∩Hj(Bp(xb)) is a non-empty open set. It follows that
(Hj(Bp(xa))∩Hj(Bp(xb))) \Hj(Π ) is non-empty and contains a point
yp. We conclude that there exist (xa,p, xb,p) in Bp(xa) × Bp(xb) such
that Hj(xa,p) = Hj(xb,p) = yp and ∂Hj

∂x (and thus ∂Hj−1
∂x ) is full-rank

at xa,p and xb,p. Besides (xa,p, xb,p) converges to (xa, xb), and B(j) is
satisfied. ■

Note that the assumption thatHj is an openmap is stronger that
B(j) since it leads to the full rank of ∂Hj

∂x , while, in B(j), we only need
the full-rank for ∂Hj−1

∂x . We show in the following example that the
openness of Hj is not necessary.

Example 2. Consider the system defined as

ẋ1 = x2, ẋ2 = x33x1, ẋ3 = 1 + u, y = x1. (7)

On S =
{
x ∈ R3

: x21 + x22 ̸= 0
}
, and whatever u is, the knowledge

of the function t ↦→ y(t) = X1(x, t) and therefore of its three first
derivatives

ẏ = x2, ÿ = x33x1,
...
y = 3x23x1(1 + u) + x33x2

gives us x1, x2 and x3. Thus, the system is uniformly observable on
S. Besides, the function

H4(x) =
(
x1, x2, x33x1, 3x

2
3x1 + x33x2

)
is injective on S and the system is weakly differentially observable
of order 4 on S. Now, although H2 is trivially an open map on S ,
H3 is not. Indeed, consider for instance the open ball B in R3 with
radius 1

2 and centered at (0, x2, 0) for some x2 such that |x2| > 1
2 .

B is contained in S. Suppose its image by H3 is an open set of
R3. It contains H3(0, x2, 0) = (0, x2, 0) and thus (ε, x2, ε) for any
sufficiently small ε. This means that there exist x in B such that
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(ε, x2, ε) = H3(x), i.e. necessarily x1 = ε and x3 = 1. But this point
is not in B, and we have a contradiction. Therefore, H3 is not open.
However, B(3) trivially holds because H2 is full-rank everywhere.

2.3. A solution to Problem P

With Propositions 2 and 3, we have the following solution to
Problem P .

Theorem 1. Suppose System (1) is weakly differentially observable
of order O and uniformly observable on an open set S containing the
given compact set C. With selecting Ψ = HO and dz = O, we have a
solution to Problem P if we pick either T = 1, or T = i when Hj is an
open map for any j in {2, . . . , i} with i ≤ dx.

Proof. In each case, the functionϕdz is obtained fromProposition 2.
Functions gi for i ≤ T are obtained from Proposition 3. Finally, it is
possible to construct the functions gi, for i > T, in the same way as
ϕdz in Proposition 2.

Three remarks :

- As seen in Example 2, the openness of the functions Hj is
sufficient but not necessary. We may ask only for B(j) for
any j in {2, . . . , i} with i ≤ dx + 1. Besides, this weaker
assumption allows to obtain the existence of gi up to the
order dx + 1.

- Consider the case where B(j) is satisfied for all j ≤ dx + 1
and O = dx + 2. Then we have T = dx + 1 and it is
possible to obtain a full triangular form of dimension dz =

T + 1 = O = dx + 2. Actually, we still have a full triangular
form if we choose dz > O. Indeed, HO being injective,
A(i) is satisfied for all i larger than O, thus there also exist
continuous functions gi : Ri

→ Rdu satisfying (5) for all
i ≥ O. It follows that T can be taken larger than dx + 1 and
dz = T + 1 larger than O.

- If P is solved with dz = T + 1, we have a full triangular
canonical form of dimension dz . But, at this point we know
nothing about the regularity of the functions gi, besides con-
tinuity. As we saw in Example 1, even the usual assumption
of strong differential observability is not sufficient to make
it Lipschitz everywhere. This may impede (see for instance
Ciccarella et al., 1993) the convergence of the high gain
observer proposed in Gauthier et al. (1992). That is why,
in the next section, we look for conditions under which the
Lipschitzness is ensured.

- As mentioned in the introduction, another way of solving
Problem P is to allow the transformation Ψ to depend on
the control u and its derivatives. In particular, if dz > T+1, a
full triangular formmay still be obtained withΨ = (HT, Ψ̃ )
where the components Ψ̃i of Ψ̃ are defined recursively as

Ψ̃1 = LTf h, Ψ̃i+1 = Lf+guΨ̃i +

i−2∑
j=0

∂Ψ̃i

∂u(j) u
(j+1)

until (if possible) the map x ↦→ Ψ (x, u, u̇, . . .) becomes
injective for all (u, u̇, . . .).

Example 3. Coming back to Example 2, we have seen that H2 is
open and that H3 is not but B(3) is satisfied. Besides, the system is
weakly differentially observable of order 4. We deduce that there
exists a full-triangular form of order 4. Indeed, we have Lgh(x) =

LgLf h(x) = 0 and

LgL2f h(x) = 3x23x1 = 3(L2f h(x))
2
3 (h(x))

1
3

so that we can take

g1 = g2 = 0 , g3(z1, z2, z3) = 3z
2
3
3 z

1
3
1 .

As for ϕ4 and g4, they are obtained via inversion of H4 i.e. for
instance on R4

\ {(0, 0, z3), z3 ∈ R}

H−1
4 (z) =

⎛⎜⎝z1, z2,

⎛⎝ (z4 − 3z
2
3
3 z

1
3
1 )2 + z23

z21 + z22

⎞⎠ 1
6
⎞⎟⎠ .

3. Lipschitzness of the triangular form

3.1. A sufficient condition

We sawwith Examples 1 and 2 that uniform observability is not
sufficient for the functions gi to be Lipschitz. Nevertheless, we are
going to see in this section that it is sufficient exceptmaybe around
the image of points where ∂Hi

∂x is not full-rank (x1 = 0 or x3 = 0 in
Example 2).

Consider the set Ri of points in S where ∂Hi
∂x has full rank. Note

that according to Leborgne (1982, Corollaire p68-69), if Hi is an
open map, Ri is an open dense set. Assume Rdx ∩ C is non empty.
Then there exists ε0 > 0 such that, for all ε in (0, ε0], the set

Ki,ε =
{
x ∈ Ri ∩ C , d(x , Rdx \Ri) ≥ ε

}
is non-empty and compact, and such that its points are (ε)-away
fromsingular points. Thenext proposition shows that the functions
gi can be taken Lipschitz on the image ofKi,ε , i.e. everywhere except
arbitrary close to the image of pointswhere the rank of the Jacobian
of Hi drops.

Proposition4. Assume System (1) is uniformly observable on an open
set S containing the compact set C. For all i in {1, . . . , dx} and for any
ε in (0, ε0], there exists a Lipschitz function gi : Ri

→ Rdu satisfying
(5) for all x in Ki,ε .

Proof. As noticed after the statement of PropertyB(i), since ∂Hi
∂x has

full rank in the open set Ri, Property B(i) holds on Ri (i.e. with Ri
replacing S in its statement). It follows from Lemma 2 that A(i) is
satisfied on Ri. Besides, according to Lemma 8, Hi(Ri) is open and
there exists a C1 function gi defined on Hi(Ri) such that for all x in
Ri, gi(Hi(x)) = LgLi−1

f h(x). Now, Ki,ε being a compact set contained
in Ri, and Hi being continuous, Hi(Ki,ε) is a compact set contained
in Hi(Ri). Thus, gi is Lipschitz on Hi(Ki,ε). According to McShane
(1934), there exists a Lipschitz extension of gi toRi coincidingwith
gi on Hi(Ki,ε), and thus verifying (5) for all x in Ki,ε . ■

For a strongly differentially observable system of order O = dx
on S , the Jacobian of Hi for any i in {1, . . . , dx} has full rank on S.
Thus, taking dz = T + 1 = O = dx a full Lipschitz triangular form
of dimension dx exists, i.e. we recover the result of Proposition 1.

Example 4. In Example 2, H3 is full rank on S \ {x ∈ R3
| x1 =

0 or x3 = 0}. Thus, according to Proposition 4, the only points
where g3 may not be Lipschitz, are the image of points where
x1 = 0 or x3 = 0. Let us study more precisely what happens
around those points. Take xa = (x1,a, x2,a, 0) in S. If there existed
a locally Lipschitz function g3 verifying (5) around xa, there would
exist L > 0 such that for any xb = (x1,b, x2,a, x3,b) sufficiently close
to xa with x1,b ̸= 0, |3x23,b| ≤ L|x33,b|, which we know is impossible.
Therefore, there does not exist a function g3 which is Lipschitz
around the image of points where x3 = 0. Let us now study what
happens elsewhere, namely on S̃ = S \ {x ∈ R3

|x3 = 0}. It turns
out that on any compact set C of S̃ , there exists2 L such that we
have for all (xa, xb) in C2,

|x23,ax1,a − x23,bx1,b| ≤ L(|x1,a − x1,b| + |x33,ax1,a − x33,bx1,b|).

2 If x1,a and x1,b are both zero, the inequality is trivial. Suppose |x1,a| > |x1,b| and
denote ρ =

x1,b
x1,a

. If ρ < 0, we have directly |x23,a − ρ x23,b| ≤ max{x23,a, x
2
3,b}|1 − ρ|.
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Therefore, the continuous function g3 found earlier in Example 3
such that g3(H3(x)) = LgL2f (x) = 3x23x1 on S (and thus on C) verifies
in fact

|g3(za) − g3(zb)| ≤ L|za − zb|

onH3(C) and can be extended to a Lipschitz function onR3 accord-
ing to McShane (1934, Theorem 1). We conclude that although H3
does not have a full-rank Jacobian everywhere on C (singularities
at x1 = 0), it is possible to find a Lipschitz function g3 solution to
our problem on this set.

3.2. A necessary condition

We have just seen that the condition in Proposition 4 that the
Jacobian of Hi be full-rank, is sufficient but not necessary. In order
to have locally Lipschitz functions gi satisfying (5), theremust exist
for all x a strictly positive number L such that for all (xa, xb) in a
neighborhood of x,

|LgLi−1
f h(xa) − LgLi−1

f h(xb)| ≤ L |Hi(xa) − Hi(xb)|. (8)

We have the following necessary condition :

Lemma 4. Consider x in S such that (8) is satisfied in a neighborhood
of x. Then, for any non zero vector v in Rdx , and any k in {1, . . . , du},
we have :

∂Hi

∂x
(x) v = 0 ⇒

∂LgkL
i−1
f h

∂x
(x) v = 0 . (9)

Proof. Assume there exists a non-zero vector v in Rdx such that
∂Hi
∂x (x) v = 0 . Choose r > 0 such that Inequality (8) holds on Br (x),
the ball centered at x and of radius r . Consider for any integer p the
vector xp in Br (x) defined by xp = x −

1
p

r
|v|
v. This gives a sequence

converging to x when p tends to infinity. We have

0 ≤
|LgkL

i−1
f h(xp) − LgkL

i−1
f h(x)|

|x − xp|
≤ L

|Hi(xp) − Hi(x)|
|x − xp|

. (10)

The sequence x−xp
|x−xp|

tends to v, and thus, Hi(xp)−Hi(x)
|x−xp|

tends to
∂Hi
∂x (x) v which by assumption is 0 . Similarly 1

|x−xp|
(LgkL

i−1
f h(x) −

LgkL
i−1
f h(xp)) tends to

∂Lgk L
i−1
f h

∂x (x) v which is also 0 according to
(10). ■

We conclude that whenHi does not have a full-rank Jacobian, it
must satisfy condition (9) to allow the existence of locally Lipschitz
triangular functions gi. This condition is in fact about uniform
infinitesimal observability.

Definition 3 (Uniform Infinitesimal Observability). (See Gauthier &
Kupka, 2001, Definition I.2.1.3.) Consider the system lifted to the
tangent bundle (see Gauthier & Kupka, 2001, page 10)⎧⎨⎩

ẋ = f (x) + g(x)u

v̇ =

[
∂ f
∂x

(x) +
∂gu
∂x

(x)
]
v
,

{
y = h(x)

w =
∂h
∂x

(x)v
(11)

with v in Rdx and w in R and the solutions of which are denoted
(Xu(x, t), Vu((x, v), t)). System (1) is uniformly infinitesimally ob-
servable on S if, for any pair (x, v) in S × Rdx \ {0}, any strictly

If now ρ > 0, x23,a − ρ x23,b =
(x33,a−ρ

3
2 x33,b)(x3,a+

√
ρx3,b)

x23,a+
√
ρx3,ax3,b+ρx23,b

and thus |x23,a − ρ x23,b| ≤

2
√
2√

x23,a+ρx
2
3,a

|x33,a−ρ
2
3 x33,b|. Besides, |x

3
3,a−ρ

3
2 x33,b| = |x33,a−ρx

3
3,b+ρ(1−

√
ρ) x33,b| ≤

|x33,a − ρx33,b| +
ρ|x33,b |
1+

√
ρ
|1 − ρ| which gives L on compact sets.

positive number T , and any C1 function u defined on an interval
[0, T ), there exists a time t < T such that ∂h

∂x (Xu(x, t)) Vu((x, v), t) ̸=

0 and such that Xu(x, s) ∈ S for all s ≤ t .

We have the following result.

Proposition 5. Suppose that System (1) is strongly differentially
observable of order O (or at least that HO is an immersion on S) and
that Inequality (8) is verified at least locally around any point x in S
for any i in {1, . . . ,O}. Then the system is uniformly infinitesimally
observable on S .

Proof. According to Lemma 4, we have (9) for all x in S and all
non-zero v. Now take x in S and a non-zero vector v and suppose
that there exists T > 0 such that for all t in [0, T ), Xu(x, t) is in S
and w(t) =

∂h
∂x (Xu(x, t))Vu((x, v), t) = 0. To simplify the notations,

we denote X(t) = Xu(x, t) and V (t) = Vu((x, v), t). For all integer i,
we denote

wi(t) =
∂Li−1

f h

∂x
(X(t))V (t).

We note that for any function h : Rn
→ R, we have

˙ 
∂h
∂x

(X(t))V (t) =
∂Lf h
∂x

(X(t))V (t) +

du∑
k=1

uk
∂Lgkh
∂x

(X(t))V (t).

We deduce for all integer i and all t in [0, T )

ẇi(t) = wi+1(t) +

du∑
k=1

uk
∂LgkL

i−1
f h

∂x
(X(t))V (t).

Let us show by induction that wi(t) = 0 for all integer i and all t
in [0, T ). It is true for i = 1 by assumption. Now, take an integer
i > 1, and suppose wj(t) = 0 for all t in [0, T ) and all j ≤ i, i.e.
∂Hi
∂x (Xu(x, t))Vu((x, v), t) = 0 for all t . In particular, ẇi(t) = 0 for

all t . Besides, according to (9),
∂Lgk L

i−1
f h

∂x (Xu(x, t))Vu((x, v), t) = 0 for
all k in {1, . . . , du} and for all t . Thus, wi+1(t) = 0 for all t . We
conclude that wi is zero on [0, T [ for all i and in particular at time
0, ∂HO

∂x (x)v = (w1(0), . . . , wO(0)) = 0. But HO is an immersion on
S , thus, necessarily v = 0 and we have a contradiction. ■

Example 5. We go on with Example 2. The linearization of the
dynamics (7) yields

v̇1 = v2 , v̇2 = x33v1 + 3x23x1v3 , v̇3 = 0 , w = v1. (12)

Consider x0 = (x1, x2, 0) in S and v0 = (0, 0, v3) with v3 a nonzero
real number. The solution to (7)–(12) initialized at (x0, v0) andwith
a constant input u = −1 is such that X(x0, t) remains in S in [0, T )
for some strictly positive T andw(t) = 0 for all t in [0, T ). Since v0
is nonzero, System (7) is not uniformly infinitesimally observable
on S. But, for System (7),H7 is an immersion on S. We deduce from
Proposition 5 that Inequality (8) is not satisfied for all i, i.e. there
does not exist Lipschitz triangular functions gi for all i on S. This
is consistent with the conclusion of Example 4. However, on S̃ , i.e.
when we remove the points where x3 = 0, the system becomes
uniformly infinitesimally observable. Indeed, it can be checked that
for x in S̃ , w = ẇ = ẅ = w(3)

= 0, implies necessarily
v = 0. Unfortunately, from our results, we cannot infer from this
that the functions gi can be taken Lipschitz on S̃. Nevertheless,
the conclusion of Example 4 is that g3 can be taken Lipschitz even
around points with x1 = 0. All this suggests a possible tighter link
between uniform infinitesimal observability and Lipschitzness of
the triangular form.

We conclude from this section that uniform infinitesimal ob-
servability is required to have the Lipschitzness of the functions gi
when they exist. However, we do not know if it is sufficient yet.
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4. Conclusion

Like for strongly differentially observable systems of order dx
(the system state dimension), uniform observability of weakly
differentially observable systems of order O > dx, may still imply
the existence of an at least up-to-dx + 1-triangular canonical form
of dimension O (see (3)). But

- we have shown this under the additional assumption
that the functions Hi(x) = (h(x), Lf h(x), . . . , Li−1

f h(x)) are
open maps. Actually it is sufficient that the properties
B(2), . . . ,B(dx + 1) hold (see (6)).

- the functions in the triangular form are possibly non Lips-
chitz, but only close to points where the rank of the Jacobian
of Hi changes. Anyhow, uniform infinitesimal observability
is necessary to have Lipschitz functions.

- for a non Lipschitz triangular canonical form, convergence
of the regular high gain observer may be lost, but, under
certain regularity assumptions, it is still possible to design
asymptotic observers (see Bernard, Praly, & Andrieu, 2017).

Although our result only gives a partial triangular form,we have
no counter example showing that it cannot be a full triangular
form.

Appendix A. Proof of Lemma 2

Assume the system is uniformly observable on S. We first show
that property A(1) holds. Suppose there exists (x∗

a, x
∗

b) in S2 and k
in {1, . . . , du} such that x∗

a ̸= x∗

b and

h(x∗

a) = h(x∗

b) , Lgkh(x
∗

a) ̸= Lgkh(x
∗

b).

Then, the control law uwith all its components zero except its kth
one which is

uk = −
Lf h(xa) − Lf h(xb)
Lgkh(xa) − Lgkh(xb)

is defined on a neighborhood of (x∗
a, x

∗

b). The corresponding solu-
tions Xu(x∗

a, t) and Xu(x∗

b, t) are defined on some time interval [0, T )
and satisfy

h(Xu(x∗

a, t)) = h(Xu(x∗

b, t)) ∀t ∈ [0, T ).

Since x∗
a is different from x∗

b , this contradicts the uniform observ-
ability. Thus A(1) holds.

Let now i in {2, . . . , dx + 1} be such that Property B(i) holds
and A(j) is satisfied for all j in {1, . . . , i − 1}. To establish by
contradiction that A(i) holds, we assume this is not the case. This
means that there exists (x∗

a,0, x
∗

b,0) in S2 and k in {1, . . . , du} such
thatHi(x∗

a,0) = Hi(x∗

b,0) but LgkL
i−1
f (x∗

a,0) ̸= LgkL
i−1
f (x∗

b,0). This implies
x∗

a,0 ̸= x∗

b,0. By continuity of LgkL
i−1
f and according to B(i), there

exists x∗
a (resp x∗

b) in S sufficiently close to x∗

a,0 (resp x∗

b,0) satisfying
x∗
a ̸= x∗

b ,

Hi(x∗

a) = Hi(x∗

b), LgkL
i−1
f (x∗

a) ̸= LgkL
i−1
f (x∗

b),

and ∂Hi−1
∂x is full-rank at x∗

a or x∗

b . Without loss of generality, we
suppose it is full-rank at x∗

a . Thus,
∂Hj
∂x is full-rank at x∗

a for all j < i.
We deduce that there exists an open neighborhood Va of x∗

a such
that for all j < i, ∂Hj

∂x is full-rank on Va. SinceA(j) holds for all j < i,
according to Lemma 8, Hj(Va) is open for all j < i and there exist
locally Lipschitz functions gj : Hj(Va) → Rdu such that, for all xα in
Va,

gj(Hj(xα)) = LgL
j−1
f h(xα) . (A.1)

Also, Hj(x∗
a) = Hj(x∗

b) implies that Hj(x∗

b) is in the open set Hj(Va).
Continuity of each Hj implies the existence of an open neighbor-
hood Vb of x∗

b such that Hj(Vb) is contained in Hj(Va) for all j < i.

Thus, for any xβ in Vb, Hj(xβ ) is in Hj(Va), and there exists xα in
Va such that Hj(xα) = Hj(xβ ). According to A(j) this implies that
LgL

j−1
f h(xβ ) = LgL

j−1
f h(xα) and with (A.1),

LgL
j−1
f h(xβ ) = LgL

j−1
f h(xα) = gj(Hj(xα)) = gj(Hj(xβ )).

Therefore, (A.1) holds on Va and Vb.
Then, the control law u with all its components zero except its

kth one which is

uk = −
Lif h(xa) − Lif h(xb)

LgkL
i−1
f h(xa) − LgkL

i−1
f h(xb)

is defined on a neighborhood of (x∗
a, x

∗

b). The corresponding so-
lutions Xu(x∗

a, t) and Xu(x∗

b, t) are defined on some time interval
[0, T ) where they remain in Va and Vb respectively. Let Za(t) =

Hi(Xu(x∗
a, t)), Zb(t) = Hi(Xu(x∗

b, t)) and W (t) = Za(t) − Zb(t) on
[0, T ). Since, for all j < i, (A.1) holds on Va and Vb , (W , Za) is
solution to the system :

ẇ1 = w2 + (g1(za,1) − g1(za,1 − w1)) u
. . .

ẇj = wj+1

+(gj(za,1, . . . , za,j) − gj(za,1 − w1, . . . , za,j − wj)) u
. . .

ẇi = 0
ża,1 = z2 + g1(za,1) u

. . .

ża,j = zj+1 + gj(za,1, . . . , za,j) u
. . .

ża,i = ũ

with initial condition (0,Hi(x∗
a)), where ũ is the time derivative of

Za,i(t). Note that the function (0, Za) is also a solution to this system
with the same initial condition. Since the functions involved in this
system are locally Lipschitz, it admits a unique solution. Hence,
for all t in [0, T [, W (t) = 0, and thus Za(t) = Zb(t), which
implies h(X(x∗

a, t)) = h(X(x∗

b, t)). Since x∗
a is different from x∗

b , this
contradicts the uniform observability. Thus A(i) holds.

Appendix B. Technical lemmas

In this appendix, we consider two continuous functions Φ :

Rn
→ Rr and γ : Rn

→ Rq and a subset S of Rn such that

Φ(x) = Φ(y) ∀(x, y) ∈ S2
: γ (x) = γ (y) . (B.1)

Lemma 5. There exists a function φ defined on γ (S) such that

Φ(x) = φ(γ (x)) ∀x ∈ S. (B.2)

Proof. Define the map φ on γ (S) as

φ(z) =

⋃
x∈S
γ (x)=z

{Φ(x)}.

For any z in γ (S), the set φ(z) is non-empty and single-valued
because according to (B.1), if z = γ (xa) = γ (xb), then Φ(xa) =

Φ(xb). Therefore, we can consider φ as a function defined on γ (S)
and it verifies (B.2). ■

Lemma 6. Consider any compact subset C of S . There exists a class
K function ρ such that for all (xa, xb) in C2

|Φ(xa) −Φ(xb)| ≤ ρ (|γ (xa) − γ (xb)|) . (B.3)
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Proof. We denote D(xa, xb) = |γ (xa) − γ (xb)|. Let

ρ0(s) = max
(xa, xb) ∈ C2

D(xa, xb) ≤ s

|Φ(xa) −Φ(xb)|.

This defines properly a non decreasing function with non negative
values which satisfies :

|Φ(xa) −Φ(xb)| ≤ ρ0(D(xa, xb)) ∀(xa, xb) ∈ C2.

Also ρ0(0) = 0. Indeed if not there would exist (xa, xb) in C2

satisfying :

D(xa, xb) = 0 , |Φ(xa) −Φ(xb)| > 0.

But this contradicts Eq. (B.1).
Moreover, it can be shown that this function is also continuous

at s = 0. Indeed, let (sk)k∈N be a sequence converging to 0. For
each k, there exists (xa,k, xb,k) in C2 which satisfies D(xa,k, xb,k) ≤ sk
and ρ0(sk) = |Φ(xa,k) − Φ(xb,k)|. The sequence (xa,k, xb,k)k∈N being
in a compact set, it admits an accumulation point (x∗

a, x
∗

b) which,
because of the continuity of D must satisfy D(x∗

a, x
∗

b) = 0 and
therefore with (B.1) alsoΦ(x∗

a) −Φ(x∗

b) = 0 . It follows that ρ0(sk)
tends to 0 and ρ0 is continuous at 0.

Now, the function, defined by the Riemann integral

ρ(s) =

⎧⎨⎩1
s

∫ 2s

s
ρ0(s)ds + s , s > 0

0 , s = 0

is continuous and strictly increasing and we have :

|Φ(xa) −Φ(xb)| ≤ ρ(D(xa, xb)) ∀(xa, xb) ∈ C2. ■

Lemma 7. Consider any compact subset C of S . There exists a
continuous function φ defined on Rq such that

Φ(x) = φ(γ (x)) ∀x ∈ C.

Proof. Consider φ and ρ given by Lemmas 5 and 6 respectively. For
any (za, zb) in γ (C)2, there exists (xa, xb) in C2 such that za = γ (xa)
and zb = γ (xb). Applying (B.3) to (xa, xb) and using (B.2), we have

|φ(za) − φ(zb)| ≤ ρ(|za − zb|) .

Thismeans thatφ is uniformly continuous on the compact set γ (C).
Thus, φ is also bounded on γ (C). We deduce from McShane (1934,
Corollary 2) (applied to each component of φ) that φ admits a
uniformly continuous (and bounded) extension defined onRq . ■

Lemma 8. Assume that q ≤ n and consider an open subset V of S
such that ∂γ

∂x is full-rank on V , namely γ is a submersion on V . Then,
γ (V ) is open and there exists a C1 function φ defined on γ (V ) such
that

Φ(x) = φ(γ (x)) ∀x ∈ V .

Proof. γ is an openmap according to Lee (2013, Proposition 4.28),
thus γ (V ) is open. Consider the function φ given by Lemma 5 and
take any z∗ in γ (V ). There exists x∗ in V such that z∗

= γ (x∗). γ
being full-rank at x∗, according to the constant rank theorem, there
exists an open neighborhood V ∗ of x∗ and C1 diffeomorphisms

ψ1 : Rn
→ V ∗ and ψ2 : Rq

→ γ (V ∗) such that for all x̃ in Rn:

γ (ψ1(x̃)) = ψ2(x̃1, . . . , x̃q) .

It follows that for all z in γ (V ∗)

γ (ψ1(ψ−1
2 (z), 0)) = z

namely γ admits a C1 right-inverse γ ri defined on γ (V ∗) which is
an open neighborhood of z∗. Therefore, φ = Φ ◦ γ ri and φ is C1

at z∗. ■
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