Automatica 85 (2017) 293-300

Contents lists available at ScienceDirect

automatica

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

On the triangular canonical form for uniformly observable controlled
systems”

Pauline Bernard ¢, Laurent Praly ¢, Vincent Andrieu b.c Hassan Hammouri

2 Centre Automatique et Systémes, MINES ParisTech, PSL Research University, France
b Université Lyon 1, Villeurbanne, France
¢ CNRS, UMR 5007, LAGEP, France

@ CrossMark

b,c

ARTICLE INFO ABSTRACT

Article history:

Received 21 March 2016

Received in revised form 28 April 2017
Accepted 3 July 2017

We study controlled systems which are uniformly observable and differentially observable with an order
larger than the system state dimension. We establish that they may be transformed into a (partial)
triangular canonical form but with possibly non locally Lipschitz functions. We characterize the points
where this Lipschitzness may be lost and investigate the link with uniform infinitesimal observability.

Keywords:

Uniform observability

Differential observability
Canonical observable form
Uniform infinitesimal observability

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Context

A lot of attention has been dedicated to the construction of
nonlinear observers. Although a general theory has been obtained
for linear systems, very few general approaches exist for nonlinear
systems. In particular, the theory of high gain ( Khalil & Praly, 2013
and references therein) and Luenberger (Andrieu, 2014; Andrieu
& Praly, 2006) observers have been developed for autonomous
nonlinear systems but their extension to controlled systems is not
straightforward.

For designing an observer for a system, a preliminary step is of-
ten required. It consists in finding a reversible coordinate transfor-
mation, allowing us to rewrite the system dynamics in a targeted
form more favorable for writing and/or analyzing the observer. In
presence of input, two tracks are possible depending on whether
we consider the input as a simple time function, making the system
time dependent or as a more involved infinite dimensional param-
eter, making the system a family of dynamical systems, indexed by
the input. In the former case, the transformation mentioned above
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is considered time dependent, and thus may need to be redesigned
for each input. In the latter case, the transformation can be input-
dependent. Specifically :

- in Jouan and Gauthier (1996) (see also Gauthier & Kupka,
2001), the transformation depends on the inputs and its
derivatives. When the ACP(N) condition is verified (see
Lemma (Gauthier & Kupka, 2001, Definition 5.2.1, Lemma
5.2.2)), it leads to the so called phase-variable representa-
tion as targeted form (see Gauthier & Kupka, 2001, Defini-
tion 2.3.1), for which a high gain observer can be built.

- in Besancon (1999), the transformation does not depend on
the input, and leads to a block triangular form when the sys-
tem verifies the observability rank condition (see Hermann
and Krener, 1977). However, afterwards, an extra condition
on the input is needed for the observer design.

- in Gauthier and Bornard (1981) and Gauthier, Hammouri,
and Othman (1992), the transformation does not depend on
the input, and leads to a triangular form when the system is
(a) uniformly observable (see Gauthier & Kupka, 2001, Def-
inition 1.2.1.2 or Definition 2), and (b) strongly differentially
observable of order equal to the system state dimension
(see Definition 1). This so-called observable canonical form
allows the design of a high gain observer.

In this paper, we complete and detail the results announced
in Bernard, Praly, and Andrieu (2016). We work within the third
context (of the second track), but going beyond (Gauthier & Kupka,
2001) with allowing the strong differential observability order to
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be larger than the system state dimension. We shall see that, in
this case, the system dynamics may still be described by a (partial)
triangular canonical form (see (3)) but with functions which may
be non locally Lipschitz.

1.2. Definitions and problem statement
We consider a controlled system of the form :

x=f(x)+gxu , y=hx) (1)

where x is the state in R%, u is an input in R%, y is a measured
output in R and the functions f, g and h are sufficiently many times
differentiable, f being a column dy-dimensional vector field and g
a (dy x d,)-dimensional matrix field. In the following, for a scalar
function o, Ly denotes its Lie derivative in the direction of f. It has
scalar values. We denote

Hi(x) = (h(x), Lh(x), ..., L 'h(x)) € R'. )

It is a column i-dimensional vector. Similarly L;oc denotes the
Lie derivative along each of the d, columns of g. It has row d,-
dimensional vector values.

Given an input time function t +— u(t) taking values in a
compact subset ¢/ of R%, we denote X,(x, t) a solution of (1) going
through x at time 0. We are interested in solving :

Problem P: Given a compact subset C of R%, under which con-
dition do there exist integers T and d,, a continuous injective function
¥ : ¢ — R%, and continuous functions ¢4, : R%Z — R and
gi : Ri(or R%) — R% such that, when x is in C and satisfies (1) and u
isinu, z = WY(x) satisfies

21 = z+gi(z)u
Zy = Zyp+gs(z, ..., z9)u
. , =X 3
Zyp1 = Zgptgra(2u Y ! (3)
Za, = @a,(2)+ ga,(2)u

Because g; depends only on z; to z;, for i < 7, but potentially
on all the components of z for i > T, we call this particular
form up-to-T-triangular canonical form and 7 is called the order
of triangularity. When d, = 7 + 1, we say full triangular canonical
form. When the functions ¢g4, and g; are locally Lipschitz we say
Lipschitz up-to-J-triangular canonical form.

We are interested in addressing the Problem P because, when
the functions are Lipschitz and d, = T + 1, we get the nominal
form for which high gain observers can be designed and therefore
Xy (x, t) can be estimated knowing y and u as long as (X, (x, t), u(t))
is in the given compact set C x U.

We will use the following two notions of observability:

Definition 1 (Differential Observability’). System (1) is weakly
differentially observable of order © on an open subset S of R% if
the function Hy (see (2))is injective on S. If it is also an immersion,
the system is called strongly differentially observable of order O.

Definition 2 (Uniform Observability). (See Gauthier & Kupka, 2001,
Definition 1.2.1.2.) System (1) is uniformly observable on an open
subset S of R% if, for any pair (x4, Xp) in S? with x, # X3, any
strictly positive number T, and any C! function u defined on [0, T),
there exists a time t < T such that h(X,(xq, t)) Z h(Xy(xp, t)) and
(Xu(Xq, S), Xu(xp, s)) € S*>foralls < t.

1 This notion is weaker than the usual differential observability defined for
instance in Gauthier and Kupka (2001, Definition 1.2.4.2) for controlled systems,
because it is a differential observability of the drift system only, namely whenu = 0.

Note that this notion is a matter of instantaneous observability
since T can be arbitrarily small. In the case where Hy, is a diffeo-
morphism, we have

Proposition 1 (See Gauthier & Bornard, 1981; Gauthier et al., 1992).
If System (1) is uniformly observable and strongly differentially ob-
servable of order © = dy on an open set S containing the given com-
pact set C, it can be transformed on C into a full Lipschitz triangular
canonical form of dimension d, = d,.

In general, it is possible for the system not to be strongly
differentially observable of order d, everywhere. This motivates
our interest in the case where the system is strongly differentially
observable of order © > d,, i.e. Hy is an injective immersion
and not a diffeomorphism. As we shall see in Section 2, in this
case, we may still have an at least up-to-(d, + 1)-triangular form,
but the Lipschitzness of its nonlinearities can be lost. Since this
property is crucial for the implementation of high gain observers
(see Ciccarella, Mora, & Germani, 1993), we give in Section 3 some
sufficient conditions under which the Lipschitzness is preserved.

2. Immersion case (O > dy)
The specificity of the triangular canonical form (3) is not so

much in its structure but more in the dependence of its functions
g; and ¢y, . Indeed, by choosing ¥ = Hy,, we obtain:

01 0 ...0 0
mz . . . 0 Hdz(x)+ .
0 ... ... 0 1 0
0 ... ... ... 0 L{? h(x)
+ LgHg, (X)u

To get (3), we need further the existence of a function ¢g, satisfying

L{#h(x) = ¢q,(Hy,(x) Vxec 4)

and, fori < 7, of functions g; satisfying

LeL'h(x) = gi(h(x), ..., [ 'h(x)) VxecC. (5)

Let us illustrate via the following elementary example what can
occur.

Example 1. Consider the system defined as

).(]ZXZ, )'(2=X§, 5<3=1+u, y =X.

We get

H3(x) = (h(x), Lrh(x), L h(x)) = (x1, X2, X3)

Hs(x) = (Hs(x), LPh(x), LFh(x)) = (H3(x), 3x3, 6X3).

Hence H; is a bijection and Hs is an injective immersion on R3,
So this system is weakly differentially observable of order 3 on
R? and strongly differentially observable of order 5 on R3. Also
the function (x1, x5, x3) — (y,y,¥) being injective for all u, it is
uniformly observable on R3. From this we could be tempted to pick

d, = 3 or 5 and the compact set C arbitrary in R3. Unfortunately, if
we choose d, = 3, we have

LPh(x) = 3x5 = 3(Lth(x))*/?

and there is no locally Lipschitz function ¢3 satisfying (4) if the
given compact set C contains a point satisfying x; = 0. If we choose
d, =5, we have

LgL7h(x) = 3x5 = LPh(x) = 3(L}h(x))*?

and there is no locally Lipschitz function g3 satisfying (5) if the
given compact set C contains a point satisfying x3 = 0.
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Leaving aside the Lipschitzness requirement for the time being,
we focus on the existence of continuous functions ¢g, and g;
verifying (4) and (5) respectively.

2.1. Existence of ¢y, satisfying (4)

Proposition 2. Suppose System (1) is weakly differentially observable
of order O onan open set S containing the given compact set C. For any
d, > 0, there exists a continuous function ¢g, : R% — R satisfying
(4). If System (1) is strongly differentially observable of order © on S,
the function ¢4, can be chosen Lipschitz on R%.

Proof. There is nothing really new in this result. It is a direct conse-
quence of the fact that a continuous injective function defined on a
compact set admits a continuous left inverse defined on the image
(see Bartle, 1964, §16.9) and that this left inverse can be extended
to the full space (e.g. Tietze extension theorem). In the case where
Hy, is also an immersion, according to Andrieu (2014, Lemma 3.2),
there exists a real number Ly > 0 such that

Xa — Xp| < Ly [Ha,(Xa) — Ha, (Xp)|  ¥(Xa, Xp) € C* .

Therefore, the previously mentioned continuous left-inverse of Hy,
defined on Hg,(C) is Lipschitz on Hg,(C). According to McShane
(1934, Theorem 1), it admits a Lipschitz extension defined on
R%, ®m

2.2. Existence of g; satisfying (5)
Concerning the functions g;, we will prove the following result:

Proposition 3. Suppose System (1) is uniformly observable on an
open set S containing the given compact set C.

- There exists a continuous function g, : R — R% satisfying (5).

- If, forsomeiin {2, ..., dy}, Ha, ..., H; defined in (2) are open
maps, then, for all j < i, there exists a continuous function
g : B — R% satisfying (5)

The rest of this section is dedicated to the proof of this result
through a series of lemmas, the proof of which can be found in
appendix.

A first important thing to notice is that the following property
must be satisfied for the identity (5) to be satisfied (on S).

Property A(i):

LeLi 'h(xa) = LgL{'h(xp)

¥(Xq, Xp) € S* : Hi(Xq) = Hi(xp).

Actually the converse is true and is a direct consequence from
Lemma 7 proved in Appendix B :

Lemma 1. If Property A(i) is satisfied with S containing the given
compact set C, then there exists a continuous function g; : R — R%
satisfying (5).

Property .A(i) being sufficient to obtain the existence of a func-
tion g; satisfying (5), we study now under which conditions it holds.
Clearly .A(i) is satisfied for all i > 0O if Hy is injective. If we do
not have this injectivity property the situation is more complex.
To overcome the difficulty we introduce the following assumption
for2 <i<dy+1.

Property B(i) : (6)
For any (xq, Xp) in 8% such that x, # Xy, verifying Hi(x,) = Hi(xy),
there exists a sequence (X, k, Xp k) Of points in 82 converging to (xq, Xp)
such that for all k, Hi(Xq 1) = Hi(Xp.x)
Xb,k'

As in this property, let x, # X, be such that Hi(x;) = Hi(x).
If “;";1 is full-rank at either x, or x;, then we can take (X, k, Xp.)
constant equal to (X4, Xp). Thus, it is sufficient to check B(i) around
points where neither a';’;l (Xq) =1(xp) is full-rank. But ac-
cording to (Gauthier & Kupka 2001, Theorem 4.1) the set of points

oHg, . . . .

where —* is not full-rank is of codimension at least one for a
uniformly observable system. Thus, it is always possible to find
points x, x as close to x, as we want such that 2 ’ 1 -~ (Xq,1) s full-rank.
The difficulty of B(i) thus rather lies in ensurlng that we have also
Hi(Xq,k) = Hi(xp.)-

In Appendix A, we prove

Lemma 2. Suppose System (1) is uniformly observable on a set S.

- Property A(1) is satisfied.
- If, forsomeiin {2, ..., dy+ 1}, Property B(i) holds and Property
A(j)issatisfied foralljin {1, ..., i—1}, then Property A(i) holds.

Thus, the first point in Proposition 3 is proved. Besides, a direct
consequence of Lemmas 1 and 2 is that a sufficient condition to
have the existence of the functions g; foriin {2, ...,d, + 1} is to
have B(j) forjin {2, ..., i}. The following lemma finishes the proof
of Proposition 3 by showing that B(j) is in fact satisfied when H; is
an open map.

Lemma 3. Suppose that for somejin {2, ...,
on S. Then, B(j) is satisfied.

dy}, H; is an open map

Proof. Take (x,,x,) in S% such that x, # x, and Hj(xu =

Hj(xy) = yo. Let IT be the set of points of S such that T is not
full-rank. According to Sard’s theorem, H;(17) is of measure zero
in R). Now, take p > 0 and consider B,(x,) and B,(x;) the open
balls of radius 1 centered at x, and x, respectively. Since H; is
open, H;(Bp(x,)) and H;(B,(x5)) are open sets, both containing yo.
Thus, H;(Bp(x,))NH;(B,(x5)) is a non-empty open set. It follows that
(H;(Bp(x4)) NH;(By(Xp))) \ H;(T) is non-empty and contains a point

¥p. We conclude that there exist (xa P Xpp)in B (xa) x Bp(xp) such
that Hi(xq,p) = Hij(xpp) = ¥p and ™ 1Y is full-rank
at xq p and x;, p. Besides (Xq,p, Xp.p) converges to (Xq, Xp), and B(j) is
satisfied. W

Note that the assumption that Hj is an open map is stronger that
B(j) since it leads to the full rank of , whlle in B(j), we only need

openness of Hj is not necessary
Example 2. Consider the system defined as

. . 3 .
X1 =Xy, Xp=Xx3X1, X3=14u, y=x. (7)

OnS = {x € R?: x2 +x3 # 0}, and whatever u is, the knowledge
of the function t — y(t) = Xi(x, t) and therefore of its three first
derivatives

V=%, J=xx, V=3x3x(14+u)+xx

gives us X1, X, and x3. Thus, the system is uniformly observable on
S. Besides, the function

Hy(x) = (x1, X2, X3X1, 3X3X1 + X3%2)

is injective on S and the system is weakly differentially observable
of order 4 on S. Now, although Hj; is trivially an open map on S,
H; is not. Indeed, consider for instance the open ball B in R? with
radius % and centered at (0, x,, 0) for some x; such that |x;| > %
B is contained in S. Suppose its image by Hs is an open set of
R3. It contains H3(0, x,, 0) = (0, x, 0) and thus (e, x», €) for any
sufficiently small ¢. This means that there exist x in B such that
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(&, X2, €) = H3(x), i.e. necessarily x; = ¢ and x3 = 1. But this point
is not in B, and we have a contradiction. Therefore, Hs is not open.
However, B(3) trivially holds because Hj is full-rank everywhere.

2.3. Asolution to Problem P

With Propositions 2 and 3, we have the following solution to
Problem P.

Theorem 1. Suppose System (1) is weakly differentially observable
of order O and uniformly observable on an open set S containing the
given compact set C. With selecting ¥ = Hy and d, = O, we have a
solution to Problem P if we pick either T = 1, or T = i when H; is an
open map foranyjin {2, ..., i} withi < d,.

Proof. In each case, the function ¢, is obtained from Proposition 2.
Functions g; for i < 7 are obtained from Proposition 3. Finally, it is
possible to construct the functions g;, for i > 7, in the same way as
@4, in Proposition 2.

Three remarks :

- As seen in Example 2, the openness of the functions H; is
sufficient but not necessary. We may ask only for B(j) for

any jin {2,...,i} withi < dy, + 1. Besides, this weaker
assumption allows to obtain the existence of g; up to the
order dy + 1.

- Consider the case where B(j) is satisfied for allj < dy + 1
and O = dy + 2. Then we have T = d, + 1 and it is
possible to obtain a full triangular form of dimension d, =
T+ 1= 0 = dy + 2. Actually, we still have a full triangular
form if we choose d, > 0. Indeed, Hy, being injective,
A(i) is satisfied for all i larger than O, thus there also exist
continuous functions g; : R' — R% satisfying (5) for all
i > 0. It follows that T can be taken larger than dy + 1 and
d, = 7+ 1larger than 0.

- If P is solved with d, = 7 + 1, we have a full triangular
canonical form of dimension d,. But, at this point we know
nothing about the regularity of the functions g;, besides con-
tinuity. As we saw in Example 1, even the usual assumption
of strong differential observability is not sufficient to make
it Lipschitz everywhere. This may impede (see for instance
Ciccarella et al., 1993) the convergence of the high gain
observer proposed in Gauthier et al. (1992). That is why,
in the next section, we look for conditions under which the
Lipschitzness is ensured.

- As mentioned in the introduction, another way of solving
Problem P is to allow the transformation ¥ to depend on
the control u and its derivatives. In particular, ifd, > T+1,a
full triangular form may still be obtained with ¥ = (Hy, &)
where the components ¥; of ¥ are defined recursively as
~ _ _ i—2 Bli/ )

U =17h, Wi =LgaWi+ Y Wo'l)”(m)

j=0
until (if possible) the map x +— W(x,u,u,...) becomes
injective for all (u, 1, .. .).

Example 3. Coming back to Example 2, we have seen that Hj is
open and that Hs is not but B(3) is satisfied. Besides, the system is
weakly differentially observable of order 4. We deduce that there
exists a full-triangular form of order 4. Indeed, we have L;h(x) =
LgLeh(x) = 0 and

LeL2h(x) = 3x8x; = 3(L2h(x))3 (h(x))3

so that we can take
2 1

g1 =0=0 ., gz21.2,23)=32z2}.

As for ¢4 and g4, they are obtained via inversion of Hy i.e. for
instance on R* \ {(0, 0, z3), z3 € R}
1

2 1
3,332 2
(z4 — 3232} > + 23

2 2
zZi + 23

-1
H, @)= |21, 2,

3. Lipschitzness of the triangular form
3.1. Asufficient condition

We saw with Examples 1 and 2 that uniform observability is not
sufficient for the functions g; to be Lipschitz. Nevertheless, we are
going to see in this section that it is sufficient except maybe around
the image of points where % is not full-rank (x; = 0 orx3 = 0 in
Example 2).

Consider the set R; of points in S where % has full rank. Note
that according to Leborgne (1982, Corollaire p68-69), if H; is an
open map, R; is an open dense set. Assume Rg4, N C is non empty.
Then there exists &g > 0 such that, for all ¢ in (0, &g], the set

Ki. = {XGRfﬁC, d(x, Rdx\'Ri)ZE}

is non-empty and compact, and such that its points are (&)-away
from singular points. The next proposition shows that the functions
g; can be taken Lipschitz on the image of K; , i.e. everywhere except
arbitrary close to the image of points where the rank of the Jacobian
of H; drops.

Proposition 4. Assume System (1) is uniformly observable on an open
set S containing the compact set C. Foralliin {1, ..., d} and for any
€ in (0, o], there exists a Lipschitz function g; : R — R% satisfying
(5)forall xin K; ¢.

Proof. As noticed after the statement of Property 5(i), since % has
full rank in the open set R;, Property 5(i) holds on R; (i.e. with R;
replacing S in its statement). It follows from Lemma 2 that A(i) is
satisfied on R;. Besides, according to Lemma 8, H;(R;) is open and
there exists a C! function g; defined on H;(R;) such that for all x in
Ri, gi(Hi(x)) = LgL]'flh(x). Now, K; . being a compact set contained
in R;, and H; being continuous, H;(K; . ) is a compact set contained
in H;(R;). Thus, g; is Lipschitz on H;(K; ). According to McShane
(1934), there exists a Lipschitz extension of g; to R coinciding with
g; on Hi(K; ), and thus verifying (5) forallx in K;,. ®

For a strongly differentially observable system of order © = d,
on S, the Jacobian of H; for any iin {1, ..., dy} has full rank on S.
Thus, taking d, = T4+ 1 = 0 = d, a full Lipschitz triangular form
of dimension dy exists, i.e. we recover the result of Proposition 1.

Example 4. In Example 2, Hz is full tank on S \ {x € R? | x; =
Oorxs = 0}. Thus, according to Proposition 4, the only points
where g3 may not be Lipschitz, are the image of points where
X1 = 0orx3 = 0. Let us study more precisely what happens
around those points. Take x, = (1,4, X2,4, 0) in S. If there existed
a locally Lipschitz function g3 verifying (5) around x,, there would
exist L > 0 such that for any x, = (X1, X2,4, X3 ) sufficiently close
to x, With X1 5 # 0, [3x3 ,| < L|x3 |, which we know is impossible.
Therefore, there does not exist a function g3 which is Lipschitz
around the image of points where x; = 0. Let us now study what
happens elsewhere, namely on S = S \ {x € R? |x3 = 0}. It turns
out that on any compact set C of S, there exists’ L such that we
have for all (x,, x) in C2,

2 2
|x3,ux1,a - X3qul,b| < L(Ix1,0 — X1,6] + |X§,axl,a - X;bxl,bl)-

2 If x1 4 and x;  are both zero, the inequality is trivial. Suppose |x1 4| > |x; 5| and
denote p = z:—” If p < 0, we have directly [x3 , — px3,| < max{x3 ,,x2,}|1 - pl.
.a > ’ ’ >
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Therefore, the continuous function g3 found earlier in Example 3
such that g3(Hs(x)) = LL}(x) = 3x3x; on S (and thus on C) verifies
in fact

l93(za) — 93(2p)| < L|zq — 2|

on H3(C) and can be extended to a Lipschitz function on R? accord-
ing to McShane (1934, Theorem 1). We conclude that although H3
does not have a full-rank Jacobian everywhere on C (singularities
at x; = 0), it is possible to find a Lipschitz function g3 solution to
our problem on this set.

3.2. A necessary condition

We have just seen that the condition in Proposition 4 that the
Jacobian of H; be full-rank, is sufficient but not necessary. In order
to have locally Lipschitz functions g; satisfying (5), there must exist
for all x a strictly positive number L such that for all (x4, xp) in a
neighborhood of x,

Hi(xp)l. (8)

We have the following necessary condition :

|LgL{ " h(xa) — LgLi"h(xp)] < L [Hi(Xq) —

Lemma 4. Consider x in S such that (8) is satisfied in a neighborhood

of x. Then, for any non zero vector vin R%, and any kin {1, ..., dy},

we have :

SH: oL, L 1h

Tv=0 = 2T xuv=0. (9)
ax ax

Proof. Assume there exists a non-zero vector v in R% such that
%(x) v = 0. Choose r > 0 such that Inequality (8) holds on B;(x),
the ball centered at x and of radius r. Consider for any integer p the
vector x,, in B(x) defined by x, = x — %ﬁv. This gives a sequence
converging to x when p tends to infinity. We have

1 1
ILg L' h(x%p) — Lg L h(X)|_ [Hi(x,) — Hi(x) (10)

N X — xpl - X — Xpl
The sequence Ii:Z\ tends to v, and thus, %;g,(x) tends to

%(x) v which by assumption is 0 . Similarly ﬁ(LgkL}_]h(X) -
. oL 1 lh

Ly, L 'h(x,)) tends to %1

(10). m

(x)v which is also 0 according to

We conclude that when H; does not have a full-rank Jacobian, it
must satisfy condition (9) to allow the existence of locally Lipschitz
triangular functions g;. This condition is in fact about uniform
infinitesimal observability.

Definition 3 (Uniform Infinitesimal Observability). (See Gauthier &
Kupka, 2001, Definition 1.2.1.3.) Consider the system lifted to the
tangent bundle (see Gauthier & Kupka, 2001, page 10)

x = f(a}+g( )8 {y = h(x)
. dgu 1 _h (11)
Vo= |:8x( X)+ BX( )] v w = a(x)v

with v in R% and w in R and the solutions of which are denoted
(Xu(x, t), Vy((x, v), t)). System (1) is uniformly infinitesimally ob-
servable on S if, for any pair (x, v) in S x R% \ {0}, any strictly

3
(3 4= 2 %3 ,)x3.0+/PX3p)

and thus |x2
x§.ﬂ+\/§x1ﬂ)<3yb+px§‘b | 3.a

2
If now p > 0, X34 —

2v2 3 2.3 ; 3 303 | = 1\3 3 3
Wm,aﬂm X3 - Besides, [x3,—p2 X3 | = X3 ;= X3 +0p(1=/p) x5 <
o,

2 _ 2
pPX3p = - pX3'b| =

|
x5, — px3 |+ f‘:j, |1 — p| which gives L on compact sets.

positive number T, and any C' function u defined on an interval
[0, T), thereexistsatimet < T such that ah(Xu(X ) Vu((x, v), t) #
0 and such that X,(x, s) € Sforalls < t.

We have the following result.

Proposition 5. Suppose that System (1) is strongly differentially
observable of order O (or at least that H is an immersion on S) and
that Inequality (8) is verified at least locally around any point x in S
foranyiin {1,..., 0}. Then the system is uniformly infinitesimally
observable on S.

Proof. According to Lemma 4, we have (9) for all x in S and all
non-zero v. Now take x in S and a non-zero vector v and suppose
that there exists T > 0 such that for all t in [0, T), X,(x, t)isin S

and w(t) = P(Xu(x, £))Vu((x, v), t) = 0. To simplify the notations,
we denote X(t) = X, (x, t) and V(t) = Vy((x, v), t). For all integer i,
we denote
L 'h
wi(t) = V().
ax

We note that for any function h : R" — R, we have

dy

JaL
(X( +Z g" b

We deduce for all integeriand all t in [0, T)
du BLgkL} 1h

)+ Dt

Let us show by 1nduct10n that w;i(t) = 0 for all integer i and all ¢
in [0, T). It is true for i = 1 by assumption. Now, take an integer
i > 1, and suppose w;(t) = Oforall tin [0, T)and allj < i, i.e.
3“’(Xu(x )Vu((x, v), t) = 0 for all t. In particular, w;(t) = 0 for

L(xu(x )WVal(x, v), £) = O for

oh _ OLsh
a(X(t))V(t) = Tox

wi(t) = wit(t X(E)V(t).

all t. Besides, according to (9),

all kin {1,...,d,} and for all ¢t. Thus wiy1(t) = O for all t. We
conclude that w; is zero on [0, T for all i and in particular at time
0, 22 (x)v = (w1(0), ..., we(0)) = 0. But Hy is an immersion on

S, thus, necessarily v = 0 and we have a contradiction. ®

Example 5. We go on with Example 2. The linearization of the
dynamics (7) yields

. . 3 2 .
V1 =Vp, U2 =X301 +3x3%1v3, 13 =0, w=v;. (12)

Consider xo = (x1, X2, 0)in S and vy = (0, 0, v3) with v3 a nonzero
real number. The solution to (7)-(12) initialized at (xq, vg) and with
a constant input u = —1 is such that X(xq, t) remains in S in [0, T)
for some strictly positive T and w(t) = O for all t in [0, T). Since vy
is nonzero, System (7) is not uniformly infinitesimally observable
on S. But, for System (7), H7 is an immersion on S. We deduce from
Proposition 5 that Inequality (8) is not satisfied for all i, i.e. there
does not exist Lipschitz triangular functions g; for all i on S. This
is consistent with the conclusion of Example 4. However, on S, i.e.
when we remove the points where x3 = 0, the system becomes
uniformly 1nf1mte51mally observable. Indeed, it can be checked that
forxinS, w = w = & = w® = 0, implies necessarily
v = 0. Unfortunately, from our results, we cannot infer from this
that the functions g; can be taken Lipschitz on S. Nevertheless,
the conclusion of Example 4 is that g5 can be taken Lipschitz even
around points with x; = 0. All this suggests a possible tighter link
between uniform infinitesimal observability and Lipschitzness of
the triangular form.

We conclude from this section that uniform infinitesimal ob-
servability is required to have the Lipschitzness of the functions g;
when they exist. However, we do not know if it is sufficient yet.
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4. Conclusion

Like for strongly differentially observable systems of order d,
(the system state dimension), uniform observability of weakly
differentially observable systems of order © > d,, may still imply
the existence of an at least up-to-d, + 1-triangular canonical form
of dimension O (see (3)). But

- we have shown this under the additional assumption
that the functions Hj(x) = (h(x), Lsh(x), ..., L}’lh(x)) are
open maps. Actually it is sufficient that the properties
B(2),...,B(dy+ 1) hold (see (6)).

- the functions in the triangular form are possibly non Lips-
chitz, but only close to points where the rank of the Jacobian
of H; changes. Anyhow, uniform infinitesimal observability
is necessary to have Lipschitz functions.

- for a non Lipschitz triangular canonical form, convergence
of the regular high gain observer may be lost, but, under
certain regularity assumptions, it is still possible to design
asymptotic observers (see Bernard, Praly, & Andrieu, 2017).

Although our result only gives a partial triangular form, we have
no counter example showing that it cannot be a full triangular
form.

Appendix A. Proof of Lemma 2

Assume the system is uniformly observable on S. We first show
that property .A(1) holds. Suppose there exists (x;, x;) in &% and k
in{1,...,d,} such thatx} # x; and

h(x}) = h(x}) , Lg h(x3) # Lg, h(x3).
Then, the control law u with all its components zero except its kth
one which is
_ Lgh(xa) — Leh(xp)
B Lgkh(xa) - Lgkh(xb)
is defined on a neighborhood of (x}, x;). The corresponding solu-

tions X,(x}, t) and X,(x}, t) are defined on some time interval [0, T)
and satisfy

h(Xy(x;, t)) = h(Xy(x;.t)) VYVt €[0,T).

Since x;; is different from xj, this contradicts the uniform observ-
ability. Thus .4(1) holds.

Let now i in {2,...,dy + 1} be such that Property B(i) holds
and A(j) is satisfied for all j in {1,...,i — 1}. To establish by
contradiction that A(i) holds, we assume this is not the case. This
means that there exists (x} o, x; ;) in S> and k in {1, ..., d,} such
that Hi(x} o) = Hi(x} o) but Ly, LT (x5 o) # Lg L' (%} o). This implies
X3 o # Xpo- By continuity of LgkL}’1 and according to 5(i), there
exists x; (resp x;) in S sufficiently close to x; ; (resp x} ) satisfying
Xy E Xy,

Hi(x)) = Hi(xp),  Lg Ly '(x)) # Lg L' (x}),
oH;i_;

and is full-rank at x} or x;. Without loss of generality, we

ax

suppose it is full-rank at x}. Thus, %J is full-rank at x} for allj < i.
We deduce that there exists an open neighborhood V, of x} such
that for allj < i, aaixl is full-rank on V4. Since A(j) holds for all j < i,
according to Lemma 8, H;(V,) is open for all j < i and there exist
locally Lipschitz functions g; : Hj(V,) — R% such that, for all x, in
Va,

ai(Hi(xa)) = Lglf "h(x,) (A1)

Also, Hi(x?) = H;(x;) implies that Hj(x}) is in the open set H;(V,).
Continuity of each H; implies the existence of an open neighbor-
hood Vj, of x; such that H;(V},) is contained in H;(V,) for all j < i.

Thus, for any x4 in Vjp, Hj(xg) is in H;(V,), and there exists x, in
Vq such that Hj(x,) = H;(xg). According to .A(j) this implies that
Lel}'h(xg) = LeL}'h(x,) and with (A.1),

Lelk "h(xg) = LIS ' h(xe) = gi(Hi(xe)) = g(Hi(x5))-

Therefore, (A.1) holds on V, and V.
Then, the control law u with all its components zero except its
kth one which is

Lih(xq) — Ly h(xp)
Le Lf"h(Xa) — Lg L™ h(xp)

Uy = —

is defined on a neighborhood of (x}, x;). The corresponding so-
lutions X,(x}, t) and X,(x;, t) are defined on some time interval
[0, T) where they remain in V, and V} respectively. Let Z,(t) =
Hi(Xu(x3, 1)), Zo(t) = Hi(Xu(xj, t)) and W(t) = Zg(t) — Zy(t) on
[0, T). Since, for all j < i, (A.1) holds on V, and V}, , (W, Z,) is
solution to the system :

wy; = wy +(g1(Za,1) — 91(2a,1 — w1))u
Wi = Wit

+(gj(za,1s .. ~aZa,j) - gj(za,l — W1, ..., 205 — wj))u
w; = 0

Za1 = Zn+91(ze1)u

2a.j = zZin1+ Qj(za,lv cee Za,j) u

Zgj = U

with initial condition (0, H;(x})), where  is the time derivative of
Z,i(t). Note that the function (0, Z,) is also a solution to this system
with the same initial condition. Since the functions involved in this
system are locally Lipschitz, it admits a unique solution. Hence,
for all t in [0, T[, W(t) = 0, and thus Z,(t) = Z,(t), which
implies h(X(x7, t)) = h(X(x}, t)). Since x; is different from x}, this
contradicts the uniform observability. Thus .A(i) holds.

Appendix B. Technical lemmas

In this appendix, we consider two continuous functions @ :
R" — R" and y : R" — R? and a subset S of R" such that

D(x)=B(y) V(x,y) €S y(x)=yY). (B.1)
Lemma 5. There exists a function ¢ defined on y(S) such that
D(x) = p(y(x)) VxeS. (B.2)

Proof. Define the map ¢ on y(S) as
¢2)= | ().

XeS

y(x)=z
For any z in y(S), the set ¢(z) is non-empty and single-valued
because according to (B.1), if z = y(xs) = y(xp), then &(x,) =
@(xp). Therefore, we can consider ¢ as a function defined on y(S)
and it verifies (B.2). W

Lemma 6. Consider any compact subset C of S. There exists a class
K function p such that for all (x,, xp) in C?

|@(xa) — @(xp)l < p (Iy(Xa) = ¥(X)]) - (B.3)
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Proof. We denote D(xq, X5) = |y (Xq) — y(xp)|. Let

po(s) = max
(Xa, Xp) € C
D(le Xb) S N

|@(Xa) — P(xp)].

This defines properly a non decreasing function with non negative
values which satisfies :

|P(xa) = P(x6)] < po(D(Xa, %p))  ¥(Xa, Xp) € C2.

Also po(0) = 0. Indeed if not there would exist (x4, x,) in C?
satisfying :
D(Xq, ) =0 , |®(xq) — P(xp)| > 0.

But this contradicts Eq. (B.1).

Moreover, it can be shown that this function is also continuous
at s = 0. Indeed, let (s¢)ken be a sequence converging to 0. For
each k, there exists (X 1, Xp.r) in C2 which satisfies D(x, k, Xp k) < Sk
and po(sk) = [P (Xq,k) — P (Xp,k)]. The sequence (Xq k, Xp i Jken being
in a compact set, it admits an accumulation point (x}, x;) which,
because of the continuity of D must satisfy D(x};,x;) = 0 and
therefore with (B.1) also @(x}) — @(x;;) = 0. It follows that pg(sk)
tends to 0 and py is continuous at 0.

Now, the function, defined by the Riemann integral

2s
o(s) = ;/S po(s)ds+s ,s>0
0 ,s=0

is continuous and strictly increasing and we have :

|B(xs) — D)l < p(D(xe, %)) Vl(Xg, %) €C*. m
Lemma 7. Consider any compact subset C of S. There exists a
continuous function ¢ defined on RY such that

&(x) =¢(y(x)) Vxec.

Proof. Consider ¢ and p given by Lemmas 5 and 6 respectively. For
any (zq, z,) in ¥(C)?, there exists (x,, X) in €% such that z; = y(x,)
and z, = y(xp). Applying (B.3) to (x4, xp) and using (B.2), we have

[p(za) — d(zp)l < p(lza — 2p]) -

This means that ¢ is uniformly continuous on the compact set y(C).
Thus, ¢ is also bounded on y(C). We deduce from McShane (1934,
Corollary 2) (applied to each component of ¢) that ¢ admits a
uniformly continuous (and bounded) extension definedonR?. ®

Lemma 8. Assume that ¢ < n and consider an open subset V of S
such that %—Z is full-rank on V, namely y is a submersion on V. Then,
y(V) is open and there exists a C! function ¢ defined on y(V) such
that

2(x)=9¢(y(x)) VxeV.

Proof. y is an open map according to Lee (2013, Proposition 4.28),
thus y(V) is open. Consider the function ¢ given by Lemma 5 and
take any z* in y(V). There exists x* in V such that z* = y(x*). y
being full-rank at x*, according to the constant rank theorem, there
exists an open neighborhood V* of x* and C! diffeomorphisms

Y R" — V*and ¢, : R — y(V*) such that for all x in R":

YW (%) = ¥a(x1, ..., Xg) .
It follows that for all z in y(V*)

y(n(y; '(2),0)) =z

namely y admits a C' right-inverse y" defined on y(V*) which is
an open neighborhood of z*. Therefore, = ® o y™ and ¢ is C!
atz*. m

References

Andrieu, V. (2014). Convergence speed of nonlinear Luenberger observers. SIAM
Journal on Control and Optimization, 52(5), 2831-2856.

Andrieu, V., & Praly, L. (2006). On the existence of a Kazantzis-Kravaris | Luenberger
observer. SIAM Journal on Control and Optimization, 45(2), 432-456.

Bartle, R. (1964). The elements of real analysis. John Wiley & Sons.

Bernard, P., Praly, L., & Andrieu, V. (2016). Non Lipschitz triangular canonical form
for uniformly observable controlled systems. I[FAC Symposium on Nonlinear
Control Systems.

Bernard, P., Praly, L., & Andrieu, V. (2017). Observers for a non-Lipschitz triangular
form. Automatica, 82, 301-313.

Besangon, G. (1999). Further results on high gain observers for nonlinear suystems.
IEEE Conference on Decision and Control, 3, 2904-2909.

Ciccarella, G., Dalla Mora, M., & Germani, A. (1993). A Luenberger-like observer for
nonlinear systems. International Journal of Control, 57(3), 537-556.

Gauthier, J.-P., & Bornard, G. (1981). Observability for any u(t) of a class of nonlinear
systems. IEEE Transactions on Automatic Control, 26, 922-926.

Gauthier, J.-P., Hammouri, H., & Othman, S. (1992). A simple observer for nonlinear
systems application to bioreactors. IEEE Transactions on Automatic Control, 37(6),
875-880.

Gauthier, ].-P., & Kupka, 1. (2001). Deterministic observation theory and applications.
Cambridge University Press.

Hermann, R., & Krener, A. (1977). Nonlinear controllability and observability. IEEE
Transactions on Automatic Control, 22(5), 728-740.

Jouan, P., & Gauthier, J. (1996). Finite singularities of nonlinear systems. Output
stabilization, observability, and observers. Journal of Dynamical and Control
Systems, 2(2), 255-288.

Khalil, H. K., & Praly, L. (2013). High-gain observers in nonlinear feedback control.
International Journal of Robust and Nonlinear Control, 24.

Leborgne, D. (1982). Calcul différentiel et géométrie. Presse Universitaire de France.

Lee, J. M. (2013). Introduction to smooth manifolds. Springer.

McShane, E. J. (1934). Extension of range of functions. American Mathematical
Society. Bulletin, 40(12), 837-842.

Pauline Bernard graduated from MINES ParisTech in 2014
with a Master degree in Applied Mathematics and Auto-
matic Control. She is now a Ph.D. student at the Control
and Systems Center, MINES ParisTech, under the supervi-
sion of Laurent Praly and Vincent Andrieu.

Prof. Laurent Praly received the engineering degree from
the Ecole Nationale Supérieure des Mines de Paris (Mines-
ParisTech) in 1976 and the Ph.D. degree in Automatic
Control and Mathematics in 1988 from Université Paris IX
Dauphine.

After working in industry for three years, in 1980 he
joined the Centre Automatique et Systémes at Ecole des
Mines de Paris where he is still now. He has made several

long-term visits to various institutions (Department of
// / Electrical and Computer Engineering at the University of
Illinois at Urbana-Champaign, Institute for Mathematics
and its Applications at the University of Minnesota, University of Sydney, University
of Melbourne, Institut Mittag-Leffler, University of Bologna).

His main research interests are in observers and feedback stabiliza-
tion/regulation for controlled dynamical systems under various aspects — linear
and nonlinear, dynamic, output, under constraints, with parametric or dynamic
uncertainty, disturbance attenuation or rejection. On these topics, he is contributing
both on the theoretical aspect with many academic publications, and the practical
aspect with applications in power systems, electric drives, mechanical systems in
particular walking robots, and aerodynamical and space vehicles.



http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb1
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb2
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb3
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb3
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb3
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb3
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb3
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb3
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb3
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb3
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb3
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb4
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb5
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb6
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb7
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb8
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb9
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb10
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb11
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb12
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb13
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb14
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb14
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb14
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb14
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb14
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb14
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb14
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb14
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb14
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb15
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb15
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb15
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb15
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb15
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb15
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb15
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb15
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb15
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16
http://refhub.elsevier.com/S0005-1098(17)30379-5/sb16

300

P. Bernard et al. / Automatica 85 (2017) 293-300

His article “V. Andrieu and L. Praly: A Unifying Point of View on Output Feedback
Designs for Global Asymptotic Stabilization”, received the Automatica Survey Prize

in2011.

Laurent Praly is an IFAC Fellow.

Vincent Andrieu graduated in applied mathematics from
“INSA de Rouen”, France, in 2001. After working in ONERA
(French aerospace research company), he obtained a Ph.D.
degree from “Ecole des Mines de Paris” in 2005. In 2006,
he had a research appointment at the Control and Power
Group, Dept. EEE, Imperial College London. In 2008, he
joined the CNRS-LAAS lab in Toulouse, France, as a “CNRS-
chargé de recherche”. Since 2010, he has been working
in LAGEP-CNRS, Universit de Lyon 1, France. In 2014, he
joined the functional analysis group from Bergische Uni-
versitt Wuppertal in Germany, for two years. His main

research interests are in the feedback stabilization of controlled dynamical non-
linear systems and state estimation problems. He is also interested in practical
application of these theoretical problems, and especially in the field of aeronautics
and chemical engineering.

Hassan Hammouri received the Ph.D. degrees of math-
ematics from the University Joseph Fourier in 1983 and
the D.Sc. degree in control from the Institut National Poly-
technique de Grenoble in 1991. Since 1992, he is professor
of automatic control in the department of Electrical and
Chemical engineering of University Lyon 1. His research
interests include stability of nonlinear systems, nonlinear
observer, fault diagnosis, control of distributed parameter
systems, and applications to control of Electrical, Mechan-
ical and Chemical systems.



	On the triangular canonical form for uniformly observable controlled systems
	Introduction
	Context
	Definitions and problem statement

	Immersion case (O>dx)
	Existence of varphidz satisfying (4)
	Existence of gi satisfying (5)
	A solution to Problem P

	Lipschitzness of the triangular form
	A sufficient condition
	A necessary condition

	Conclusion
	Proof of Lemma 2
	Technical lemmas
	References


