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Invariance-Like Theorems and “lim inf”
Convergence Properties

Giordano Scarciotti, Member, IEEE, Laurent Praly, Member, IEEE, and Alessandro Astolfi, Fellow, IEEE

Abstract—Several theorems, inspired by the Krasovskii-LaSalle
invariance principle, to establish “lim inf” convergence results are
presented in a unified framework. These properties are useful to
“describe” the oscillatory behavior of the solutions of dynamical
systems. The theorems resemble “lim inf” Matrosov and Small-
gain theorems and are based on a “lim inf” Barbalat’s Lemma.
Additional technical assumptions to have “lim” convergence are
given: the “lim inf”/“lim” relation is discussed in-depth and
the role of some of the assumptions is illustrated by means of
examples.

Index Terms—Krasovskii-LaSalle invariance, Lyapunov theo-
rems, Matrosov theorem.

I. INTRODUCTION

THE qualitative study of asymptotic properties of trajec-
tories of nonlinear systems is a key problem in systems

and control theory, see, e.g., [1]–[5]. Among these asymptotic
properties, the most important is attractiveness, which is often
established by means of Lyapunov functions. Although this
formulation is convenient from a practical point of view, it is
in general hard to find a function that fulfills the sufficient (and
in some cases necessary) conditions of the Lyapunov theorems.
It is somewhat easier to find a weak Lyapunov function, i.e.,
a positive definite function with negative semi-definite time
derivative along the trajectories of the systems. In this last case,
for time-invariant systems, the Krasovskii-LaSalle invariance
principle allows to establish attractiveness, under additional
assumptions on the Ω-limit sets of the solutions (see, e.g.,
[6]–[9]).

Another tool that is used to replace the negative definiteness
condition of the Lyapunov theorem and, in addition, can be
used for time-varying systems is Matrosov Theorem (see e.g.,
[10]–[12]). This theorem allows proving attractiveness of equi-
librium points, provided that a linear combination of positive
semi-definite functions is positive definite and their time deriva-
tives along the trajectories of the system have a triangular
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structure. However, to apply Matrosov Theorem it is necessary
to assume stability of the equilibrium point.

In [13], the authors posed the question of what can be estab-
lished if this stability assumption and the positive definiteness
assumption are removed from Matrosov Theorem. The answer
to this question is that it is still possible to establish some
convergence result, although, with reference to the positive defi-
niteness assumption, not as strong as one could think borrowing
from the Krasovskii-LaSalle invariance principle. We call this
convergence “lim inf” convergence, in the sense that we cannot
establish asymptotic stability of the equilibrium point, but we
can show that there is an oscillating behavior with some “nice”
asymptotic properties.

Since (the classical) Matrosov Theorem relies upon the study
of a triangular system of two differential inequalities, it can be
extended in different directions. A straightforward extension
consists in the so-called nested Matrosov Theorem [12], in
which several inequalities are considered. Another extension,
which changes radically the reach of the theorem, consists in
removing the triangular structure of the system of differential
inequalities. In this case the Matrosov inequalities, which can
also be interpreted within the framework of vector Lyapunov
functions (see [14] for instance), lead (assuming additional
hypotheses) to the Lyapunov formulation of the Small-gain
Theorem [15].

The Small-gain Theorem is an important tool to assess the
asymptotic properties of the trajectories of a system resulting
from the interconnection of two or more subsystems. The
Small-gain Theorem has been developed in different formu-
lations depending on which property is used to describe the
input-output behavior of each of the subsystems. For linear
systems the Lp Small-gain Theorem has been successfully
used in input-output formulations of the problem (see e.g., [16,
Chapter 6] and [17]). For nonlinear systems versions based on
Lp-gains (see [18]), but using Lyapunov functions, have been
presented in [19]–[21]. In this paper, the Lyapunov formulation
given in [15] and derived from the property of input-to-state
stability (ISS) (see [22] and [23]) is used. Note that within
this framework other formulations in which interconnections
between possibly non-ISS subsystems are considered (see, e.g.,
[24]–[26]), have been proposed. While the Small-gain Theorem
is usually formulated for two interconnected subsystems it is
often interesting, for practical applications, to study its large-
scale version. A large-scale version of the theorem for linear
systems can be found in [16], whereas a nonlinear formulation
has recently been presented in [27] and [28] (see also [14]).

Preliminary versions of our work have been published in
[13], [29], and [30]. One of the contributions of this paper
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is to generalize the results given in those papers. In addition,
the proofs of the lemmas and theorems are presented, together
with new technical results that are of independent interest.
Finally, this paper sheds light on some of the problems left
open in the preliminary versions. In fact, the role of some of the
assumptions (e.g., the boundedness assumption), the meaning
of the results (e.g., the “lim inf”/“lim” relation) and some
connections with stability theory (e.g., Barbalat’s Lemma) are
analyzed in detail in this paper.

The outcome of this series of papers is a class of theorems
inspired by the Krasovskii-LaSalle invariance principle that can
establish “lim inf” convergence results, thus can “describe”
the oscillatory behavior of the solutions of dynamical systems.
These theorems lead to “lim inf” Matrosov and Small-gain
Theorems which are based on a “lim inf” Barbalat’s Lemma.
In addition, technical assumptions to have “lim” convergence1

are given, and the “lim inf”/“lim” relation and the role of some
of the assumptions are discussed. Applications of the results of
this paper are currently under investigation.

The rest of the paper is organized as follows. This section
continues with the formulation of the problem and with a
discussion on the connections with Matrosov Theorem and the
Small-gain Theorem. In Section II some properties of the so-
called M -matrices are recalled. We also give a small-gain-like
condition and we extend the concept of irreducibility to non-
constant matrices. Section III presents a series of technical
lemmas which forms the core theoretical part of the paper. The
irreducible case is analyzed and connections with Barbalat’s
Lemma are drawn before studying the general reducible case.
In Section IV the use of “linear gains” as opposed to “non-
linear gains” is justified and supported by a series of counter-
examples. In Section V the theorems are applied to the study
of the asymptotic behavior of solutions of dynamical systems.
Sections VI and VII contain examples illustrating the theoreti-
cal results and Section VIII gives some concluding remarks.

Notation: We use standard notation. R+ denotes the
set of non-negative real numbers. A continuous function
α : R+ → R+ is said to belong to class K∞, if it is strictly
increasing, α(0) = 0 and α(s) → +∞ as s → +∞. Id
denotes the identity map, i.e., Id(s) = s. [v]i denotes the i-th
component of the vector v and the notation u ≤ v has to be
understood component-wise.

A. Problem Formulation

Motivated by the attempt to add a new tool to “comparison
theory” for studying the behavior of the solutions of dynamical
systems, we consider the following problem.

Problem 1: Let i ∈ {1, . . . , p} and j ∈ {1, . . . , p}. Let ai :
R+ → [−a, a] be absolutely continuous functions and bi :
R+ → [0, b] be continuous functions. Consider continuous,
positive definite functions αi : R+ → R+ and continuous func-

1“lim” convergence is an abuse of language that we use to indicate the usual
concept of convergence and that allows to clarify the distinction between the
two “types of convergence.”

tions βij : R+ → R+, with i �= j, satisfying βij(0) = 0, such
that the differential inequalities

ȧ1 ≤ −α1(b1) + β12(b2) + · · ·+ β1p(bp),

ȧ2 ≤ −α2(b2) + β21(b1) + · · ·+ β2p(bp),

...

ȧp ≤ −αp(bp) + βp1(b1) + · · ·+ βp(p−1)(bp−1), (1)

hold for almost all t in R+.
The “lim inf”/“lim” convergence problem consists in de-

termining the asymptotic properties of the functions bi, more
precisely, in determining conditions on the functions αi and βij

such that

lim inf
t→∞

p∑
i=1

bi(t) = 0, (2)

or

lim
t→∞

p∑
i=1

bi(t) = 0. (3)

The key feature of the inequalities (1) is, in line with the
approach followed in [13], [29], and [30], that the arguments
bi of the functions αi and βij are not related a-priori with the
functions ak in the left-hand side. To illustrate this statement
we recall the (simplest) formulation of the Matrosov Theorem
and of the Small-gain Theorem.

Consider a nonlinear system described by the equation

ẋ = f(x), (4)

where x ∈ R
n, is the state of the system and the function

f : Rn → R
n is locally Lipschitz. Assume there exists an equi-

librium point which, without loss of generality, we choose as
the origin of the coordinate system, i.e., f(0) = 0.

Theorem 1 (Matrosov Theorem [10]–[13]): Consider sys-
tem (4). Let i ∈ {1, 2}. Assume there exist

1) a differentiable, positive definite and radially unbounded
function V0 : Rn → R+ such that V̇0 ≤ 0 along all the
solutions of system (4);

2) two differentiable functions Vi : R
n → R and two con-

tinuous, positive semi-definite functions hi : R
n → R+

such that the function h1 + h2 is positive definite;
3) a continuous function β21 : R+ → R+, such that

β21(0) = 0;

satisfying, along all the solutions of system (4), the inequalities

V̇1 ≤ −h1,

V̇2 ≤ −h2 + β21(h1). (5)

Then the equilibrium x = 0 of system (4) is globally asymptot-
ically stable.
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Theorem 2 (Small-gain Theorem2 [15], [29]): Consider sys-
tem (4). Let i ∈ {1, 2}. Assume there exist

1) two C1 functions Vi : R
n → R+ such that the function

V1 + V2 is positive definite and radially unbounded;
2) two class K∞ functions αi : R+ → R+ and two contin-

uous functions β12, β21 : R+ → R+, such that β12(0) =
β21(0) = 0;

satisfying, along all the solutions of system (4), the inequalities

V̇1 ≤ −α1(V1) + β12(V2),

V̇2 ≤ −α2(V2) + β21(V1). (6)

If the small-gain condition

β21 ◦ α−1
1 ◦ β12 ◦ α−1

2 < Id, (7)

holds, then the equilibrium x = 0 of system (4) is globally
asymptotically stable.

Note that in Problem 1 and Theorem 1 and 2 differential
inequalities with similar structure are studied; in Theorem 1
and 2 the inequalities must hold when the functions are eval-
uated along any solution. Instead in Problem 1, we restrict our
attention to those particular solutions which are bounded.

We are also interested in generalizing Theorem 1, removing
the stability assumption and not requiring that a linear com-
bination of positive-semidefinite functions be positive definite
(in the spirit of LaSalle invariance principle), and Theorem 2,
allowing the arguments hi of the functions αi and βij to be
not related a-priori with the functions Vk in the left-hand side
(in the spirit of Matrosov Theorem). Note that as anticipated
in [29] and illustrated in detail here, the result that we prove
may not hold when the nonlinear functions αi and βij satisfy
the nonlinear small-gain condition (7): a more restrictive linear
small-gain-like condition may be required.

II. PRELIMINARY RESULTS ON THE TEST MATRIX

In this section we define the notion of “test matrix” associ-
ated to the inequalities (1) and we recall or prove properties
which are instrumental to establish the results of the following
sections.

Definition 1: A principal minor of order j of an n× n matrix
A is the determinant of the j × j sub-matrix obtained from A by
deleting n− j columns and n− j rows with the same indices.

A leading principal minor of order j of a matrix A is the
determinant of its upper-left j by j sub-matrix and is indicated
by the notation Mj(A).

Definition 2 [31]: A Z-matrix is a matrix with non-positive
off-diagonal elements.

Definition 3 [31, Condition E17, Theorem 6.2.3]: A
Z-matrix having all its leading principal minors strictly positive
is called a non-singular M -matrix.

2The Small-gain Theorem is usually applied in the study of the stability
properties of the equilibrium point of an interconnected system. In this paper,
following the Lyapunov formulation given in [15], we abuse the terminology
saying that the Small-gain Theorem holds for the inequalities (6), ignoring if
these arise as the result of a composition of systems.

Definition 4 [31]: A matrix is reducible if, after some
permutation of the rows and the columns, it can be written
in a lower block triangular form. Otherwise it is said to be
irreducible.

Lemma 1 [31, Theorem 6.2.7]: The inverse of a non-singular
M -matrix A has non-negative entries. Moreover, if A is irre-
ducible, the inverse has strictly positive entries.

In the following we call test matrix the matrix Q with the
(i, j) element equal to −βij(bj), if i �= j, or to αj(bj), if i = j,
namely3

Q=

⎡
⎢⎢⎢⎢⎢⎢⎣

α1(b1) −β12(b2) · · · −β1p(bp)

−β21(b1) α2(b2)
. . .

...
...

. . .
. . .

...
−β(p−1)1(b1) · · · αp−1(bp−1) −β(p−1)p(bp)
−βp1(b1) · · · −βp(p−1)(bp−1) αp(bp)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that Q is a Z-matrix.
When, for all k = 1, . . . , p, l = 1, . . . , p, with k �= l, there

exist non-negative real numbers γkl satisfying

sup
s∈(0,b̄]

βkl(s)

αl(s)
≤ γkl, (8)

we associate to the test matrix Q a matrix Γ defined as the
matrix with off-diagonal elements equal to− sups∈(0,b̄](βkl(s)/
αj(s)) and diagonal elements equal to one. Again Γ is a
Z-matrix.

Lemma 2: Assume the following.
1) The test matrix Q satisfies the following linear small-

gain-like condition: there exists a strictly positive real
number ε such that, for all j = 1, . . . , p and all
(b1, . . . , bp) in [0, b̄]p, we have

Mj (Q(b1, . . . , bp)) ≥ ε

j∏
k=1

αk(bk). (9)

2) Each function s 	→ (βkl(s)/αl(s)) is bounded.
Then the matrix Γ satisfies

Mj(Γ) ≥ ε, ∀j = 1, . . . , p. (10)

Proof: Condition (9) is equivalent to

Mj

(
Q diag

(
1

α1
, . . . ,

1

αp

))
≥ ε, ∀j and ∀bi ∈ (0, b̄].

By definition of supremum, there exist p sequences {bln} such
that

βkl(bln)

αl(bln)
≤ sup

s∈(0,b̄]

βkl(s)

αl(s)
≤ βkl(bln)

αl(bln)
+

1

n
.

Since a minor is a polynomial in the entries of the matrix and
the bln are bounded, this yields

Mj(Γ) ≥ ε+ p

(
1

n

)
, ∀j = 1, . . . , p,

3Omitting the arguments of Q.
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where p(1/n) is a polynomial in 1/n that goes to zero as n →
∞, i.e., p(0) = 0, hence the claim. �

Another way to make sure that (10) holds when the second
assumption of Lemma 2 is satisfied is by defining a matrix Γ
with off-diagonal elements equal to some −γkl satisfying (8)
and diagonal elements equal to one and check if we have

Mj(Γ) ≥ ε > 0, ∀j = 1, . . . , p.

Indeed in this case, we have

Mj(Γ) ≥ Mj(Γ).

This follows from the fact that Lemma 1 implies that Mj(Γ) is
a non-increasing function of γkl.

We show now that, when the small-gain-like condition (9) is
satisfied, the irreducibility of Q implies the boundedness of the
functions s 	→ (βij(s)/αj(s)) on (0, b̄].

Lemma 3: Assume the test matrix Q satisfies the linear
small-gain-like condition (9). If, for some index j, there exists
a vector (b∗1, . . . , b

∗
j−1, b

∗
j+1 . . . , b

∗
p) in (0, b̄]p−1 such that, for

all bj ∈ (0, b̄], the matrix Q(b∗1, . . . , b
∗
j−1, bj , b

∗
j+1 . . . , b

∗
p) is ir-

reducible then, for all i �= j, the functions s 	→ (βij(s)/αj(s))
are bounded on (0, b̄].

Proof: By definition, the small-gain-like condition (8)
implies that Q(b1, . . . , bp) is an M -matrix for all (b1, . . . , bp) in
[0, b̄]p. It implies also that det(Q(b1, . . . , bp)) is strictly positive
for all (b1, . . . , bp) in (0, b̄]p.

Let j and (b∗1, . . . , b
∗
j−1, b

∗
j+1 . . . , b

∗
p) in (0, b̄]p−1 be such that

the matrix Q(b∗1, . . . , b
∗
j−1, s, b

∗
j+1 . . . , b

∗
p) is irreducible for all

s in (0, b̄]. Omitting the argument (b∗1, . . . , b
∗
j−1, s, b

∗
j+1 . . . , b

∗
p)

when it is not necessary, let qk, for all k, be the k-th entry of the
j-th row of adj(Q) = det(Q)Q−1. From Lemma 1 qk is strictly
positive. Also qk does not depend on s. Indeed the row j of QT

depends only on s, and qk is the determinant of the sub-matrix
formed by deleting the j-th row and the k-th column of QT .
Finally, the j-th diagonal element of the matrix identity

det(Q)I = adj(Q)Q,

yields

0 < det(Q) = qj
(
b∗1, . . . , b

∗
j−1, b

∗
j+1, . . . , b

∗
p

)
αj(s)

−
p∑

k=1
k �=j

qk
(
b∗1, . . . , b

∗
j−1, b

∗
j+1, . . . , b

∗
p

)
βkj(s) ∀s ∈ (0, b̄].

Since for any i �= j, qi is strictly positive, this implies

βij(s) +

p∑
k=1
k �=j,i

qk
(
b∗1, . . . , b

∗
j−1, b

∗
j+1, . . . , b

∗
p

)
qi

(
b∗1, . . . , b

∗
j−1, b

∗
j+1 . . . , b

∗
p

) βkj(s)

<
qj

(
b∗1, . . . , b

∗
j−1, b

∗
j+1 . . . , b

∗
p

)
qi

(
b∗1, . . . , b

∗
j−1, b

∗
j+1 . . . , b

∗
p

)αj(s), ∀s ∈ (0, b̄], ∀i �= j

and therefore

βij(s)

αj(s)
<

qj
(
b∗1, . . . , b

∗
j−1, b

∗
j+1 . . . , b

∗
p

)
qi

(
b∗1, . . . , b

∗
j−1, b

∗
j+1 . . . , b

∗
p

) , ∀s ∈ (0, b̄ ], ∀i �= j.

�

In view of this result we define what we mean by the fact that
Q as a function of (b1, . . . , bp) is irreducible.

Definition 5: A test matrix is said to be irreducible as a func-
tion if, for each index j, there exists a vector (b∗1, . . . , b

∗
j−1,

b∗j+1 . . . , b
∗
p) in (0, b̄ ]p−1 such that, for all bj ∈ (0, b̄ ], the

matrix Q(b∗1, . . . , b
∗
j−1, bj , b

∗
j+1 . . . , b

∗
p) is irreducible.

The outcome of Lemma 3 is that if the inequalities in (1)
cannot be re-written in triangular form by means of a permu-
tation of rows and columns or more precisely if the associated
test matrix is irreducible as a function, then the linear small-
gain-like condition implies the existence of the matrix Γ with
no additional hypotheses. In other words, when Q is irreducible
as a function and (9) holds there is no need to assume that the
functions s 	→ (βij(s)/αj(s)) are bounded.

III. MAIN TECHNICAL RESULTS

In this section we present lemmas which constitute the core
theoretical part of the paper. They will be used to establish the
results of the following sections dealing with the study of the
behavior of solutions of ordinary differential equations which
are known to exist on [0,+∞), and taking values in a compact
set, as detailed in Problem 1. For this reason we assume,
without loss of generality, that all functions are bounded.

We begin with the irreducible case in the first subsection,
we study the triangular reducible case in the second and we
conclude with the triangular block reducible case in the last.

A. Irreducible Case

Lemma 4: Let i ∈ {1, . . . , p} and j ∈ {1, . . . , p}. Let ai :
R+ → [−a, a] be absolutely continuous functions and bi :
R+ → [0, b ] be continuous functions. Consider continuous,
positive definite functions αi : R+ → R+ and continuous func-
tions βij : R+ → R+, with i �= j, satisfying βij(0) = 0, such
that the following hold.

1) The differential inequalities

ȧ1 ≤ −α1(b1) + β12(b2) + · · ·+ β1p(bp),

ȧ2 ≤ −α2(b2) + β21(b1) + · · ·+ β2p(bp),

...

ȧp ≤ −αp(bp) + βp1(b1) + · · ·+ βp(p−1)(bp−1), (11)

hold for almost all t in R+.
2) The test matrix Q associated to (11) is irreducible as

a function and satisfies the linear small-gain-like condi-
tion (9).

Then we have

lim inf
t→∞

p∑
i=1

bi(t) = 0. (12)

If the functions bi are uniformly continuous then we have

lim
t→∞

p∑
i=1

bi(t) = 0. (13)



652 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 3, MARCH 2016

To prove Lemma 4, we observe in the next statement, given
without proof to save space, that Cesàro’s summability implies
the “lim inf” convergence.

Lemma 5: Let σ : R → R be a continuous function. If

lim
t→∞

1

t

t∫
0

σ(s)ds = 0,

then

lim inf
t→∞

|σ(t)| = 0.

Remark 1: If σ has constant sign then it is sufficient that σ
be piecewise continuous.

Proof of Lemma 4: By Lemmas 2 and 3 we know the γij
defined in (8) exist and the inequality (10) holds. Hence the i-th
line in (11) gives

ȧi ≤ −αi(bi) +

p∑
j=1
j �=i

γijαj(bj). (14)

To rewrite this inequality in more compact notation let

a =

⎡
⎣ a1

...
ap

⎤
⎦ , b =

⎡
⎣ b1

...
bp

⎤
⎦ , α(b) =

⎡
⎢⎣
α1(b1)

...
αp(bp)

⎤
⎥⎦ .

Then (14) reads

ȧi ≤
[
γi1 . . . γi(i−1) − 1 γi(i+1) . . . γip

]
α(b). (15)

With the definition of the matrix Γ, this reduces further to

[ȧ]i ≤ [−Γα]i. (16)

Since, by (10), Γ has all leading principal minors with strictly
positive determinant, by Lemma 1, Γ−1 has all positive entries,
hence the relation

[Γ−1ȧ]i ≤ [−α]i, (17)

holds. In fact each of the inequalities in (17) is obtained as a
weighted sum, with positive weights, of the inequalities in (16).
Integrating from 0 to t each of these relations yields

t∫
0

[α (b(s))]i ds ≤ −
t∫

0

[
Γ−1ȧ(s)

]
i
ds

≤
[
Γ−1 (a(t)− a(0))

]
i
.

Since the functions ai are bounded, there exists a positive real
number α such that, for all i

t∫
0

[α (b(s))]i ds ≤ α.

By adding all the above inequalities we have that

t∫
0

p∑
i=1

αi (bi(s)) ds < +∞, (18)

hence, by Lemma 5, we conclude

lim inf
t→∞

p∑
i=1

αi (bi(t)) = 0.

Since the functions αi are positive definite, this implies (12).
When the functions bi are also uniformly continuous, the func-
tions t 	→ αi(bi(t)) are uniformly continuous. So in this case,
by Barbalat’s Lemma, (18) gives

lim
t→∞

p∑
i=1

αi (bi(t)) = 0

and therefore (13) follows. �

B. Triangular Reducible Case

Lemma 6: Let p ≥ 3, i ∈ {1, . . . , p} and j ∈ {2, . . . , p}.
Let ai : R+ → [−a, a] be absolutely continuous functions and
bi : R+ → [0, b ] be continuous functions. Consider continuous,
positive definite functions αi : R+ → R+ and continuous func-
tions βij : R+ → R+, with j < i, satisfying βij(0) = 0, such
that the differential inequalities

ȧ1 ≤ −α1(b1),

ȧ2 ≤ −α2(b2) + β21(b1),

...

ȧp ≤ −αp(bp) + βp1(b1) + · · ·βp(p−1)(bp−1),

hold for almost all t in R+. Then

lim
t→∞

1

t

t∫
0

p∑
i=1

bi(s)ds = 0 (19)

and therefore

lim inf
t→∞

p∑
i=1

bi(t) = 0. (20)

Remark 2: As opposed to the irreducible case given in
Lemma 4, in the triangular reducible case boundedness of the
functions s 	→ (βij(s)/αj(s)) does not play any role.

To prove Lemma 6 we use the following sufficient condition
to have Cesàro’s summability of an integral [32], i.e., conver-
gence of the mean, stated without proof to save space.

Lemma 7: Let σ : R → R be a locally integrable function.
If, for all ε > 0, there exits a positive number μ such that∣∣∣∣∣∣

t∫
0

σ(s)ds

∣∣∣∣∣∣ ≤ εt+ μ, (21)
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for all t ≥ 0, then

lim
t→∞

1

t

t∫
0

σ(s)ds = 0.

Remark 3: Lemma 5 and 7 provide a weaker version of
Barbalat’s Lemma (see e.g., [5]). In fact, the classical Barbalat’s
Lemma can be recovered when the function σ is uniformly
continuous and (21) holds for ε = 0.

Another notion that we need to introduce concerns a function
ϕ associated with a pair of functions (α, β).

Let b be a non-negative real number. To a continuous positive
definite function α : R+ → R+ and a continuous function β :
R+ → R+, satisfying β(0) = 0, we associate the function ϕ :
[1,+∞) → R defined as

ϕ(ρ) = max
b∈[0,b]

(β(b)− (ρ− 1)α(b)) . (22)

Lemma 8: The function ϕ takes non-negative values and is
non-increasing, Lipschitz and such that limρ→+∞ ϕ(ρ) = 0.

Proof: Since α and β are continuous and [0, b ] is compact,
for each ρ ∈ [1,+∞) there exists (at least one) b(ρ) in [0, b ]
such that

ϕ(ρ) = β (b(ρ))− (ρ− 1)α (b(ρ)) .

As a result, for any ρ′ ≥ ρ′′ ≥ 1

ϕ(ρ′′) = β (b(ρ′′))− (ρ′′ − 1)α (b(ρ′′))

≥ β (b(ρ′))− (ρ′′ − 1)α (b(ρ′))

≥ β (b(ρ′))− (ρ′ − 1)α (b(ρ′))

= ϕ(ρ′)

≥ β (b(ρ′′))− (ρ′ − 1)α (b(ρ′′)) .

This yields

0 ≤ ϕ(ρ′′)− ϕ(ρ′) ≤ (ρ′ − ρ′′)α,

where

α = max
b∈[0,b]

α(b),

i.e., the function ϕ is Lipschitz and non-increasing.
Note now that, since α is continuous and positive definite, for

any sequence {ρn}, such that limn→+∞ ρn = +∞, there exists
N > 0 and a sequence {bn} ⊂ [0, b ], satisfying limn→+∞ bn =
0, and α(bn) = 1/nρn, for all n ≥ N . In addition, since
b(ρn) ∈ [0, b ],

β(bn) + α(bn)−
1

n
≤ ϕ(ρn) = β (b(ρn))− (ρn − 1)α (b(ρn))

and therefore

0≤ρn α (b(ρn))+β(bn)+α(bn)≤β (b(ρn))+α (b(ρn))+
1

n
.

This implies that limn→∞ α(b(ρn)) = 0 and, since α is continu-
ous and positive definite, that limn→∞ b(ρn) = 0. Finally, since
β is zero at zero and continuous

lim
ρ→+∞

ϕ(ρ) = 0,

which also proves that ϕ takes non-negative values. �
Note that Lemma 8 holds also for a linear combination of

functions β(b). In this case we use the notation

ϕj(ρ) = max
bj∈[0,b]

(βj(bj)− (ρ− 1)αj(bj)) , (23)

with βj(bj) =
∑p

i=1
i�=j

kiβij(bj), where the weights ki are non-

negative.
We are now ready to prove Lemma 6.

Proof of Lemma 6: The claim is proved by contradiction.
To simplify the discussion consider the case p = 3, which
contains all ingredients necessary for the general proof.

Let ϕ2 : [1,+∞) → R be defined as

ϕ2(ρ) = max
b2∈[0,b]

(β32(b2)− (ρ− 1)α2(b2)) .

Let also ε be an arbitrarily chosen strictly positive real number.
Since by Lemma 8, ϕ2 is non-increasing and limρ→+∞ ϕ2(ρ) =
0, we can select ψ2(ε) in [1,+∞) such that

ϕ2(ψ2(ε)) ≤
ε

2
.

Let ϕ1 : [1,+∞) → R be defined as

ϕ1(ρ) = max
b2∈[0,b]

(ψ2(ε)β21(b1) + β31(b1)− (ρ− 1)α1(b1)) .

Similarly, for all ε > 0 we can select ψ1(ε) in [1,+∞)
such that

ϕ1(ψ1(ε)) ≤
ε

2
.

Note now that

˙︷ ︸︸ ︷
ψ1(ε)a1 + ψ2(ε)a2 + a3
≤ −ψ1(ε)α1(b1) + ψ2(ε)β21(b1) + β31(b1)

− ψ2(ε)α2(b2) + β32(b2)− α3(b3)
≤ (ϕ1 (ψ1(ε))+ϕ2 (ψ2(ε)))− (α1(b1)+α2(b2)+α3(b3)) .

As a result

t∫
0

3∑
i=1

αi (bi(s)) ds

≤ (ϕ1 (ψ1(ε)) + ϕ2 (ψ2(ε))) t

+ (ψ1(ε)a1(0) + ψ2(ε)a2(0) + a3(0))

− (ψ1(ε)a1(t) + ψ2(ε)a2(t) + a3(t))

≤ (ϕ1 (ψ1(ε)) + ϕ2 (ψ2(ε))) t+ 2 (ψ1(ε) + ψ2(ε) + 1) a

≤ ε t+ 2 (ψ1(ε) + ψ2(ε) + 1) a.

Since ε is arbitrary, the claim follows by Lemmas 5 and 7.
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In the case p > 3 the claim can be proved along the same
lines defining p− 1 functions ϕj . �

Remark 4: If in Lemma 6 we assume that the functions
βij/αj are bounded and the functions bi are uniformly contin-
uous, then we have the “lim” convergence result

lim
t→∞

p∑
i=1

bi(t) = 0.

In fact in the previous proof we can pick

ε = 0, ψ2 = 1 + γ21, ψ1 = 1 + γ31 + γ32ψ2

and follow the same arguments as in the proof of Lemma 4.

C. Triangular Block Reducible Case

We are now ready to study the triangular block reducible
case that can be regarded as a generalization of the previous
results. To this end, let sl = rl − rl−1, with s0 = r0 = 0, be
the dimension of the column vectors

al =
[
a(rl−1+1) a(rl−1+2) · · · arl

]T
,

bl =
[
b(rl−1+1) b(rl−1+2) · · · brl

]T

and define

αl(bl)

=
[
α(rl−1+1)(b(rl−1+1)) α(rl−1+2)(b(rl−1+2)) · · · αrl(brl)

]T
,

δl(bl) =

rl∑
j=(rl−1+1)

⎡
⎢⎢⎢⎣
δ(rl−1+1)j(bj)
δ(rl−1+2)j(bj)

...
δ(rl)j(bj)

⎤
⎥⎥⎥⎦ , with

δkj =

{
−αj if k = j,
βkj if k �= j,

μlm(bm) =

rm∑
j=(rm−1+1)

μlm(bj)

=

rm∑
j=(rm−1+1)

⎡
⎢⎢⎢⎣
β(rl−1+1)j(bj)
β(rl−1+2)j(bj)

...
β(rl)j(bj)

⎤
⎥⎥⎥⎦ .

Proposition 1: Let i ∈ {1, . . . , p} and j ∈ {1, . . . , p}. Let
ai : R+ → [−a, a] be absolutely continuous functions and bi :
R+ → [0, b ] be continuous functions. Consider continuous,
positive definite functions αi : R+ → R+ and continuous func-
tions βij : R+ → R+, with i �= j, satisfying βij(0) = 0. Let al,
bl, δl, and μlm be vectors of dimension sl, with components

obtained from the ai’s, bi’s, αi’s, and βij’s, such that the
following hold.

1) The differential inequalities

ȧ1 ≤ δ1(b1),

ȧ2 ≤ μ21(b1) + δ2(b2),

...

ȧq ≤ μq1(b1) + μq2(b2) + · · ·+ δq(bq), (24)

with rq = p, hold for almost all t in R+.
2) The matrix Ql for each diagonal element δl is irreducible

as a function and satisfies the linear small-gain-like con-
dition (9).

Then

lim
t→∞

1

t

t∫
0

p∑
i=1

bi(s)ds = 0 (25)

and therefore

lim inf
t→∞

p∑
i=1

bi(t) = 0. (26)

Remark 5: As expected, (26) holds with no additional re-
strictions on the off-diagonal elements μlm. However, as dis-
cussed in Remark 4, if all functions βij/αj in the off-diagonal
element μlm are bounded and the bi are uniformly continuous
then (26) can be replaced by

lim
t→∞

p∑
i=1

bi(t) = 0. (27)

Proof: We consider the case with q = 3 blocks, namely

ȧ1 ≤ δ1(b1),

ȧ2 ≤ μ21(b1) + δ2(b2),

ȧ3 ≤ μ31(b1) + μ32(b2) + δ3(b3),

which contains all the ingredients necessary for the general
proof. Define Γl as the matrix corresponding to the test matrix
Ql attached to the vector δl and 1l as the row vector with sl
elements equal to 1. Let also ε be an arbitrarily chosen strictly
positive real number. In a way similar to the one followed to get
(16), we obtain

δl(bl) ≤ −Γlα(bl)

and therefore

Γ−1
l δl(bl) ≤ −α(bl).

This leads to

Γ−1
1 ȧ1 ≤ −α1(b1),

Γ−1
2 ȧ2 ≤ Γ−1

2 μ21(b1)−α2(b2),

Γ−1
3 ȧ3 ≤ Γ−1

3 μ31(b1) + Γ−1
3 μ32(b2)−α3(b3).
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To deal with the terms in b2, we define s2 functions ϕi :
[1,+∞) → R as

ϕr1+1(ρ) = max
br1+1∈[0,b]

(
13Γ

−1
3 μ32 (br1+1)

− (ρ− 1)αr1+1 (br1+1)
)
,

...

ϕr2(ρ) = max
br2∈[0,b]

(
13Γ

−1
3 μ32 (br2)− (ρ− 1)αr2 (br2)

)
.

(28)

By Lemma 8, the functions ϕi are non-increasing and
limρ→+∞ ϕi(ρ) = 0. As a result, we can select a vector ψ2(ε)
of size s2 with components ψi(ε) in [1,+∞) such that

r2∑
i=r1+1

ϕi (ψi(ε)) ≤
ε

2
.

This gives

13Γ
−1
3 μ32(b2)−ψ2(ε)α2(b2) ≤

ε

2
− 12α2(b2).

Similarly, to deal with the terms in b1, we define s1 functions
ϕi : [1,+∞) → R as

ϕ1(ρ) = max
b1∈[0,b]

(
ψ2(ε)Γ

−1
2 μ21(b1)

+ 13Γ
−1
3 μ31(b1)− (ρ− 1)α1(b1)

)
...

ϕr1(ρ) = max
br1∈[0,b]

(
ψ2(ε)Γ

−1
2 μ21 (br1) + 13Γ

−1
3 μ31 (br1)

− (ρ− 1)αr1 (br1)) . (29)

Again, by Lemma 8, the functions ϕi are non-increasing and
limρ→+∞ ϕi(ρ) = 0. So we can select a vector ψ1(ε) of size
s1 with components ψi(ε) in [1,+∞) such that

r1∑
i=1

ϕi (ψi(ε)) ≤
ε

2
.

This gives

ψ2(ε)Γ
−1
2 μ21(b1) + 13Γ

−1
3 μ31(b1)

− ψ1(ε)α1(b1) ≤
ε

2
− 11α1(b1).

So we have obtained

13Γ
−1
3 ȧ3 +ψ2(ε)Γ

−1
2 ȧ2 +ψ1(ε)Γ

−1
1 ȧ1

≤ ε− 13α3(b3)− 12α2(b2)− 11α1(b1)

≤ ε−
r3∑
i=1

αi. (30)

The claim follows by integrating both sides of (30) from 0 to t
and applying Lemmas 5 and 7. �

IV. ON THE LINEAR SMALL-GAIN-LIKE CONDITION

In this section we discuss the linear small-gain condition and
explain why it is necessary to use this in the assumptions of
Proposition 1 instead of the nonlinear condition. The discus-
sion, for simplicity, is limited to the case p = 2, in which (9)
yields

β12(b2)β21(b1) ≤ (1− ε)α2(b2)α1(b1), ∀(b1, b2) ∈ [0, b̄ ]2.
(31)

To simplify the discussion we restrict ourselves to consider the
case in which the functions αi are invertible and the above
inequality (31) holds for all non-negative real numbers b1 and
b2. Then, from the theory of interconnected nonlinear systems,
we would expect that stability properties be related to the
nonlinear small-gain condition

β21 ◦ α−1
1 ◦ β12 ◦ α−1

2 (s) < s, ∀s > 0. (32)

Lemma 9: If β12 (β21 respectively) is positive definite, con-
dition (31) implies, but it is not implied by, condition (32).

Proof: We first show that the linear condition implies the
nonlinear one. Pick any pair (b1, b2) in ]0, b̄]2 and note that the
linear condition (31) yields

[
β12 ◦ α−1

2 (b2)
] [

β21 ◦ α−1
1 (b1)

]
≤ (1− ε)b1b2.

In particular, the selection

s > 0, b2 = s, b1 = β12 ◦ α−1
2 (s),

yields

b1 β21 ◦ α−1
1 ◦ β12 ◦ α−1

2 (s) ≤ (1− ε) b1s,

which implies condition (32).
To show that the converse is not true, let α1(s) = s, β12(s) =

s2, α2(s) = s and β21(s) = γ
√
s. The nonlinear small-gain re-

duces to γs ≤ (1− ε)s which holds for all 0 ≤ γ < 1, whereas
the linear condition reduces to γ(b2/

√
b1) < (1− ε) which

does not hold whatever the positive value of γ is. �
As usual for small-gain conditions it is difficult to establish

the true necessity of (31). We now show that violation of the
non-strict inequality yields the existence of functions ai and bi
such that the convergence result of Lemma 4 does not hold.

Lemma 10: Assume there exist strictly positive real numbers
b1a, b2b and b2c such that

β12(b2b)β21(b1a)

α2(b2b)α1(b1a)
> 1,

β12(b2c)β21(b1a)

α2(b2c)α1(b1a)
< 1. (33)

Then there exist functions ai and bi such that the convergence
result in Lemma 4 does not hold.

Remark 6: Condition (33) says that, with b1 = b1a, the in-
equality (31) holds for b2 = bc but does not for b2 = b2b.

Proof: Assume for the time being that we can find strictly
positive real numbers ε1 and ε2 such that there exist strictly
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positive real numbers Tb and Tc satisfying the linear equations[
β12(b2b)− α1(ε1) β12(b2c)− α1(ε1)
α2(b2b)− β21(ε1) α2(b2c)− β21(ε1)

] [
Tb

Tc

]

= −
[
β12(ε2)− α1(b1a)
α2(ε2)− β21(b1a)

]
. (34)

Then, let b1 and b2 be piecewise constant and (1 + Tb + Tc)-
periodic functions defined as

b1(t) =

{
b1a if t ∈ [0, 1],
ε1 if t ∈]1, 1 + Tb + Tc[,

b2(t) =

⎧⎨
⎩

ε2 if t ∈ [0, 1],
b2b if t ∈]1, 1 + Tb],
b2c if t ∈]1 + Tb, 1 + Tb + Tc[.

As a result

a1(1 + Tb + Tc)− a1(0)

≤ −[α1(b1a)− β12(ε2)] + [−α1(ε1) + β12(b2b)]Tb

+ [−α1(ε1) + β12(b2c)]Tc

= 0

and

a2(1 + Tb + Tc)− a2(0)

≤ −[α2(ε2)− β21(b1a)] + [−α2(b2b) + β21(ε1)]Tb

+ [−α2(b2c) + β21(ε1)]Tc

= 0.

Therefore the result holds with ai any constant function.
Now to prove that Tb, Tc do exist we note that when ε1 and

ε2 are both zero, the solution of the equations (34) is

Tb =
α2(b2c)α1(b1a)− β12(b2c)β21(b1a)

α2(b2c)β12(b2b)− α2(b2b)β12(b2c)
,

Tc =
β12(b2b)β21(b1a)− α2(b2b)α1(b1a)

α2(b2c)β12(b2b)− α2(b2b)β12(b2c)
.

By condition (33) Tb and Tc are strictly positive if the de-
nominator is strictly positive. This is indeed the case since,
multiplying the inequalities in (33), yields

β12(b2b)β21(b1a)α2(b2c)α1(b1a)

> α2(b2b)α1(b1a)β12(b2c)β21(b1a),

where α1(b1a) > 0, since b1a > 0 and β12(b2b) > 0 because of
(33). Therefore, by continuity, Tb and Tc are strictly positive
when ε1 and ε2 are strictly positive, and sufficiently small. �

Thus, (31) is necessary to guarantee that there do not ex-
ist functions b1 and b2 such that the convergence result of
Lemma 4 does not hold.

V. “LIM INF” ASYMPTOTIC PROPERTIES

IN DYNAMICAL SYSTEMS

Proposition 1 can be applied to study asymptotic properties
of the solutions of dynamical systems. In particular the follow-

ing theorem solve Problem 1 and gives conditions to establish
the “lim inf” or “lim” convergence of such solutions.

Theorem 3: Let i ∈ {1, . . . , p} and j ∈ {1, . . . , p}. Consider
system (4) and let Vi : R

n → R be C1 functions and hi : R
n →

R+ be continuous functions. Consider continuous, positive
definite functions αi : R+ → R+, continuous functions βij :
R+ → R+, satisfying βij(0) = 0. Let V l, hl, δl, and μlm be
vectors of dimension sl, with components obtained from the
Vi’s, hi’s, αi’s, and βij’s,4 such that the following hold.

1) Along the solutions of system (4), we have

V̇ 1(x) ≤ δ1 (h1(x)) ,

V̇ 2(x) ≤ μ21 (h1(x)) + δ2 (h2(x)) ,

...

V̇ q(x) ≤ μq1 (h1(x)) + μq2 (h2(x)) + · · ·+ δq (hq(x)) ,

(35)

∀x ∈ R
n, with rq = p.

2) The matrix Ql for each diagonal element δl is irreducible
as a function and satisfies the linear small-gain-like con-
dition (9).

Then, for any bounded solution t 	→ X(x, t) of (4)

lim
t→∞

1

t

t∫
0

p∑
i=1

hi (X(x, s)) ds = 0

and therefore

lim inf
t→∞

p∑
i=1

hi (X(x, t)) = 0. (36)

Moreover,
3a) if all functions βij/αj of all off-diagonal elements μlm are

bounded,
or

3b) if the largest invariant set Hp contained in the set

Ωh1,...,hp
= {x ∈ R

n : h1(x) = h2(x) = · · · = hp(x) = 0}

is stable,
then

lim
t→∞

p∑
i=1

hi (X(x, t)) = 0. (37)

Proof: Property (36) follows directly from Proposition 1
with hi(X(x, t)) playing the role of bi(t).

If 3a) holds, (37) follows directly from Remark 5 with
hi(X(x, t)) playing the role of bi(t). Note that the uniform
continuity of t 	→ hi(X(x, t)) follows from the continuity of

4In particular

V l =
[
V(rl−1+1) V(rl−1+2) · · · Vrl

]T
hl =

[
h(rl−1+1) h(rl−1+2) · · · hrl

]T
.
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hi, and the boundedness of the locally Lipschitz function t 	→
X(x, t) (since f is continuous).

If 3b) holds suppose that all the blocks have dimension
one and p = 3. This contains all ingredients necessary for the
general case.

Since V1 is bounded and decreasing along all the trajectories
of the system by assumption, the first inequality in (35), namely
V̇1 ≤ −α1(h1) implies that

lim
t→∞

h1 (X(x, t)) = 0.

Since the solution is bounded, X(x, t) has an ω-limit set Ω(x)
which is invariant and compact, the previous limit implies

Ω(x) ⊂ Ωh1
= {x ∈ R

n : h1(x) = 0} .

For every xω1
∈ Ω(x), h1(xω1

) = 0 which, by the second
inequality in (35), implies

lim
t→∞

h2 (X (xω1
, t)) = 0

and similarly to the previous discussion, this implies

Ω(xω1
) ⊂ Ωh1,h2

= {x ∈ R
n : h1(x) = h2(x) = 0} .

For every xω2
∈ Ω(xω1

), h1(xω2
) = h2(xω2

) = 0 which, by
the third inequality in (35), implies

lim
t→∞

h3 (X (xω2
, t)) = 0

and again, this implies

Ω(xω2
)⊂Ωh1,h2,h3

={x ∈ R
n : h1(x)=h2(x)=h3(x)=0} .

This proves that, if the differential inequalities (35) are in
triangular form and Ωh1,...,hp

is stable, then (37) holds. Note
that, if the first block of the differential inequalities (35) has
dimension greater than one, then (37) follows directly from
Lemma 4 applied to that block. The proof of the general
triangular block case can be derived from this last fact and the
discussion carried out for the triangular case.

Now we prove that it is sufficient that the largest invariant
set Hp contained in Ωh1,...,hp

is stable. Again, for simplicity,
consider the case p = 3. Assume, by contradiction, that there
exist x in R

n, ε strictly positive and a sequence tm going to
infinity with m such that

d (X(x, tm),H3) > ε.

Since H3 is stable there exists δ strictly positive such that, for
any χ in R

n satisfying

d(χ,H3) ≤ δ, (38)

we have

d (X(χ, s),H3) ≤ ε, ∀s ≥ 0. (39)

Then, since Ω(x) is a closed invariant set we have Ω(xω1
) ⊂

Ω(x) and since H3 is the largest invariant set contained in
the set Ωh1,h2,h3

one has Ω(xω2
) ⊂ H3. Now because of the

convergence of X(xω2
, t) to its ω-limit set Ω(xω2

), hence there
exists T2 such that

d (X (xω2
, T2) ,H3) ≤ d (X (xω2

, T2) ,Ω(xω2
)) ≤ δ

2
and

X (xω2
, T2) ∈ Ω(xω1

) ⊂ Ω(x).

This means that X(xω2
, T2) is an ω-limit point of X(x, t), there

exists T such that

|X(x, T )−X (xω2
, T2)| ≤

δ

2
.

As a result the triangular inequality yields

d (X(x, T ),H3)

≤ |X(x, T )−X (xω2
, T2)|+ d (X (xω2

, T2) ,H3)

≤ δ.

Therefore χ = X(x, T ) satisfies (38), which by (39) yields a
contradiction. �

Remark 7: The fact that (37) is implied by the stability
of Ωh1,...,hp

is a restatement of a well-known result, see for
instance [23, Lemma I.4]. The fact that (37) is implied by the
stability of the largest invariant set Hp contained in Ωh1,...,hp

is
a new result.

Remark 8: If 3b) holds then (37) implies that Hp is asymp-
totically stable.

VI. AN ELEMENTARY EXAMPLE

In this section we present an elementary example which gives
a simple illustration of how the results of the paper can be
used. Of course, the convergence properties we obtain could
be established with classical tools. A more involved example is
presented in the next section.

Example 1: Consider the 2-dimensional system describing
the Duffing oscillator, namely

ẋ1 = x2

ẋ2 = αx1 − βx2 − γx3
1 (40)

with (x1, x2) ∈ R
2, α > 0, β > 0 and γ > 0. The equilibrium

points are (x1, x2) = (0, 0), (x1, x2) = (±
√

α/γ, 0). Let

V1(x1, x2) =
1

β

(
γ
x4
1

4
− α

x2
1

2
+

x2
2

2

)

and

V2(x1, x2, x3) = −
(
αx1 − γx3

1

)
x2.

Then

V̇1 = −x2
2,

V̇2 = −
(
α− 3γx2

1

)
x2
2 −

(
αx1 − γx3

1

)2
+ β

(
αx1 − γx3

1

)
x2.

(41)

Since V1 is radially unbounded, the first equality in (41) implies
that all trajectories are bounded. Then, selecting

c ≥ sup
t

|X1(x1, x2, t)| ,



658 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 3, MARCH 2016

(41) yields

V̇2 ≤ −1

2

(
αx1 − γx3

1

)2
+

(
3γc2 − α+

β2

2

)
x2
2,

which motivates the choice

α1(s) = s, α2(s) =
1

2
s,

β12(s) = 0, β21(s) =

(
3γc2 − α+

β2

2

)
s,

b1 = x2
2, b2 =

(
αx1 − γx3

1

)2
.

Note that we have a triangular structure and that

sup
s>0

β21(s)

α1(s)
=

6γc2 − 2α+ β2

2

is finite, hence Theorem 3 yields

lim
t→+∞

X2(x1, x2, t)
2+

(
αX1(x1, x2, t)−γX1(x1, x2, t)

3
)2

=0,

which implies that the solutions of the system are converging to
at least one equilibrium point.

VII. A MORE ELABORATE EXAMPLE

Consider the class of systems described by the differential
equations

ẋ1 = η x1

(
1− x2

1 − x2
2

)
xr
3 + k1x2 [Ψ(x1+) + xp

3] ,

ẋ2 = η x2

(
1− x2

1 − x2
2

)
xr
3 − k1x1 [Ψ(x1+) + xp

3] ,

ẋ3 = −k2x
q
3, (42)

where (x1, x2, x3) ∈ R
3, x1+ = max{x1, 0}, Ψ is a positive

definite function, p and r ≥ p are positive even integers, q is a
positive odd integer, k1, k2 are positive and η ≥ 0. The set of
equilibrium points is given by {(x1, x2, x3) : x1+ = x3 = 0}.
Note that

˙︷ ︸︸ ︷
x2
1 + x2

2 + x2
3 = −η

(
x2
1 + x2

2

) (
x2
1 + x2

2 − 1
)
xr
3 − k2x

q+1
3 .

This shows that all solutions are bounded. Let

V1(x1, x2, x3) =
x2
3

2k2
and

V2(x1, x2, x3) =
x2

k1
.

Then

V̇1 = −xq+1
3 ,

V̇2 =
η

k1
x2

(
1− x2

1 − x2
2

)
xr
3 − x1 [Ψ(x1+) + xp

3]

= −x1Ψ(x1+) + xp
3

[
−x1 +

η

k1
x2

(
1− x2

1 − x2
2

)
xr−p
3

]

≤−x1+Ψ(x1+)+xp
3

[
x1−+

η

k1

(
x2

(
1−x2

1−x2
2

))
+
xr−p
3

]
,

(43)

where x1− = −min{x1, 0}. These inequalities motivate the
choice

δ1(s) = α1(s) = s
q+1
2 , δ2(s) = α2(s) = s,

μ21(s) = β21(s) = cs
p
2 ,

h1(x) = b1 = x2
3, h2(x) = b2 = x1+Ψ(x1+),

where

c ≥ x1− +
η

k1

(
x2

(
1− x2

1 − x2
2

))
+
xr−p
3 .

Note that we have a triangular structure and that, for any strictly
positive b̄, we have

sup
b∈(0,b̄]

β21(b)

α1(b)
= sup

b∈(0,b̄]

c

b
q−p+1

2

,

which is finite for p ≥ q + 1 and infinite otherwise. By
Theorem 3

lim
t→+∞

1

t

t∫
0

[
X3(x1, x2, x3, t)

2

+X1+(x1, x2, x3, t)Ψ (X1+(x1, x2, x3, t))] = 0.

Since

lim
t→+∞

t∫
0

X3(x1, x2, x3, t)
q+1(τ)dτ < +∞,

lim
t→+∞

X3(x1, x2, x3, t) = 0,

then

lim
t→+∞

X1+(x1, x2, x3, t)Ψ (X1+(x1, x2, x3, t))

= 0, if p ≥ q + 1,

lim inf
t→+∞

X1+(x1, x2, x3, t)Ψ (X1+(x1, x2, x3, t))

= 0, otherwise. (44)

In what follows we focus on the case p = q − 1 and we show
that the asymptotic property expressed by the second of equa-
tions (44) cannot be improved. To this end re-write the system
using polar coordinates (θ, ρ) in the (x1, x2)-plane, i.e.,

ρ̇ = ηρ(1− ρ2)xr
3,

θ̇ = −k1

(
Ψ(ρ(cos θ)+) + xq−1

3

)
,

ẋ3 = −k2x
q
3.

From the first equation, we obtain

ρ(t) =
ρ(0) exp

(
η
∫ t

0 x3(s)
rds

)
√

1− ρ(0)2 + ρ(0)2 exp
(
2η

∫ t

0 x3(s)rds
) .
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This implies

η = 0 ⇒ ρ(t) = ρ0

η > 0, x3(t)
r integrable ⇒ min(1, ρ0) ≤ ρ(t)

≤ max(1, ρ0)

η > 0, x3(t)
r not integrable ⇒ ρ(t) → 1.

From the second equation

θ(t) ≤ θ(0)− k1

t∫
0

x3(s)
q−1ds

and from the third equation

dx3

x3
= −k2x

q−1
3 dt

and then

1

k2
(log (x3(t))− log (x3(0))) = −

t∫
0

x3(s)
q−1ds,

that can be directly substituted in the right hand side of θ(t). As
a result

θ(t) ≤
[
θ(0)− k1

k2
log (x3(0))

]
+

k1
k2

log (x3(t))

and, since limt→∞ x3(t) = 0, θ(t) tends to −∞ modulo 2π, i.e.,
θ(t) does not converge. Hence the vector (x1(t), x2(t)) does
not stop turning around the origin. This implies that

lim sup
t→+∞

x1+(t) �= 0,

for all (x1(0), x2(0)) ∈ R
2/{0}. This last equation shows that

the asymptotic property expressed by the second of equations
(44) cannot be improved.

A. “lim inf” Convergence Case

Let p = 2, q = 3, k1 = k2 = 1, Ψ(s) = |s| and consider the
three cases η = 0; η = 1 with r = 2; and η = 1 with r = 4.
Fig. 1 shows the trajectory of the system with initial condition
x(0) = [0.5 0 1]′ for the three cases, whereas Fig. 2 shows
the time histories of the states x1, x2, and x3. Note that the
time axis is in log-scale. Fig. 2 highlights that all trajectories
with initial condition off the (x1, x2)-plane have an oscillatory
behavior with a period that tends to infinity.

Note that trajectories with initial conditions such that
x3(0) = 0 converge to the set

{
(x1, x2) | x2

1 + x2
2 = x1(0)

2 + x2(0)
2, x1 ≤ 0

}
,

i.e., to a semi-circle centered at the origin, the size of which
depends upon the initial conditions. This set is not stable, hence
condition 3b) does not hold.

Fig. 1. The trajectory of system (42), with p = 2, q = 3, k1 = k2 = 1,
Ψ(s) = |s|, x(0) = [0.5 0 1]′, for the three considered cases. The trajectory
converges to the circle of radius ρ0 = 0.5 for η = 0 (red/dotted); of radius
min(1, ρ0) ≤ ρ ≤ max(1, ρ0) for η = 1 and r = 4 (blue/solid); of radius 1
for η = 1 and r = 2 (green/dashed).

Remark 9: The ω-limit set of the trajectories of the system
starting off the (x1, x2)-plane is, as detailed in [33], a chain
recurrent set, which strictly contains the ω-limit set of the
trajectories of the system starting in the (x1, x2)-plane, con-
sistently with the results in [33] and [34] on asymptotically
autonomous semiflows.

Remark 10: As a consequence of the discussion in this
section, the (x1, x2)-subsystem of system (42), with p = 2
and q = 3, and x3 regarded as an input, does not possess the
converging-input converging-state property, see [35]–[37]. This
does not contradict the result in [35], which highlights (among
other things, and similarly to what is done in this paper) the
importance of asymptotic stability (of an equilibrium, or of a
set) to establish asymptotic properties of solutions.

Remark 11: In [13], further connections with the results in
[38] are drawn for one particular case of systems (42).

B. “lim” Convergence Case

Let p = 2, q = 3, Ψ(s) = |s|, η = 0 and consider the two
cases k1 = k2 = 1; and k1 = 1000, k2 = 1. Fig. 3 shows a
trajectory with initial state x(0) = [1 0 1]′. Unlike the previous
case x1(t) and x2(t) converge to a point such that x1+ = 0.
Note that this is the case also if x1 and x2 undergo fast
transient (solid line). Finally, Fig. 4 shows the projection of
the phase portrait on the (x1, x2)-plane for p = 2, q = 3, k1 =
k2 = 1, Ψ(s) = |s| and η = 0 and the set of initial conditions
{(x1(0), x2(0), x3(0)) : x1(0)

2 + x2(0)
2≤1, x3(0)=1}.

VIII. CONCLUSION

A class of theorems inspired by the Krasovskii-LaSalle in-
variance principle has been presented in a unified framework.
The contribution of the paper is a tool to study “lim inf” con-
vergence properties of solutions of dynamical systems. In par-
ticular the theorems give sufficient conditions to determine the
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Fig. 2. Time histories of the states of the system (42) with p = 2, q = 3, k1 = k2 = 1, Ψ(s) = |s| and x(0) = [0.5 0 1]′: η = 0 (red/dotted); η = 1 and
r = 4 (blue/solid); η = 1 and r = 2 (green/dashed).

Fig. 3. Time histories of the states of the system (42) with p = 2, q = 1, Ψ(s) = |s|, η = 0 and x(0) = [1 0 1]′: k1 = k2 = 1 (blue/dashed); k1 = 1000,
k2 = 1 (red/solid).

Fig. 4. Projection of the phase portrait on the (x1, x2)-plane for p = 2,
q = 3, k1 = k2 = 1, Ψ(s) = |s| and η = 0 and the set of initial con-
ditions {(x1(0), x2(0), x3(0)) : x1(0)2 + x2(0)2 ≤ 1, x3(0) = 1}. The
final states are represented by stars.

convergence in the mean and the “lim inf” convergence. These
theorems are derived by a relaxation of Matrosov and Small-

gain Theorems, and they are based on a “lim inf” Barbalat’s
Lemma (Lemma 5 and 7). Additional technical assumptions to
have “lim” convergence are given. The “lim inf”/“lim” relation
and the role of some of the assumptions are illustrated by means
of examples.
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