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Convergence of Nonlinear Observers on R
n

With a Riemannian Metric (Part II)
Ricardo G. Sanfelice and Laurent Praly

Abstract—In “Convergence of Nonlinear Observers on R
n with

a Riemannian Metric (Part I),” we established that a convergent
observer with an infinite gain margin can be designed for a given
nonlinear system when a Riemannian metric showing that the
system is differentially detectable (i.e., the Lie derivative of the
Riemannian metric along the system vector field is negative in
the space tangent to the output function level sets) and the level
sets of the output function are geodesically convex is available.
In this paper, we propose techniques for designing a Riemannian
metric satisfying the first property in the case where the system is
strongly infinitesimally observable (i.e., each time-varying linear
system resulting from the linearization along a solution to the
system satisfies a uniform observability property) or where it is
strongly differentially observable (i.e., the mapping state to output
derivatives is an injective immersion) or where it is Lagrangian.
Also, we give results that are complementary to those in our
previous paper. In particular, we provide a locally convergent
observer and make a link to the existence of a reduced order
observer. Examples illustrating the results are presented.

Index Terms—Estimation theory, Kalman filters, observers,
Riccati equations.

I. INTRODUCTION

W E consider a nonlinear system of the form1

ẋ = f(x), y = h(x) (1)

with x in R
n being the system’s state and y in R

p the measured
system’s output. We are interested in the design of a function F
such that the set

A := {(x, x̂) ∈ R
n × R

n : x = x̂} (2)
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1If the system is time varying (perhaps due to known exogenous inputs),
i.e., ẋ = f(x, t), y = h(x, t) most of the results of [1] as well as those here

can be extended readily by simply replacing x by xe = [x� t]
�, leading

to the time-invariant system with dynamics ẋe = [f(x, t)�1]
�

=: fe(xe),
ye = [h(x, t)�t]� =: he(xe). The drawback of this simplifying viewpoint is
that, when time dependence is induced by exogenous inputs, for each input we
obtain a different time-varying system. And, maybe even more handicapping,
we need to know the time-variations for the design.

is asymptotically stable for the system

ẋ = f(x), ˙̂x = F (x̂, h(x)) . (3)

A solution to this problem that was proposed in [1] is re-
stated in Theorem 2.3, which is in Section II. It relies on
the formalism of Riemannian geometry and gives conditions
under which a constructive procedure exists for getting an
appropriate function F . This solution requires the satisfaction
of mainly two conditions. The first condition is about the
geodesic convexity of the level sets of the output function
(see point 9 in Appendix A). This condition is not addressed
here. Instead, we focus our attention on the second condition,
which is a differential detectability property,2 made precise
in Definition 2.1 below. With the terminology used in the
study of contracting flows in Riemannian spaces, this property
means that f is strictly geodesically monotonic tangentially to
the output function level sets. Forthcoming examples related
to the so-called harmonic oscillator with unknown frequency
will illustrate these notions and provide metrics certifying both
weak and strong differential detectability.

In Section II, we establish results complementing those in
[1]. In Section II-A, we establish that the differential de-
tectability property only is already sufficient to obtain a locally
convergent observer. In Section II-B, we show that this property
implies also the existence of a locally convergent reduced
order observer, in this way, extending the result established
in [2, Corollary 3.1] for the particular case where the metric
is Euclidean. The conclusion we draw from Section II is that
the design of a locally convergent observer can be reduced to
the design a metric exhibiting the differential stability property.
Sections III–V are dedicated to such designs in three different
contexts.

In Section III, under a uniform observability property of
the family of time-varying linear systems resulting from the
linearization along solutions to the system, a symmetric covari-
ant 2-tensor giving the strong differential detectability property
is shown to exist as a solution to a Riccati equation which,
for linear systems, would be an algebraic Riccati equation.
Proposition 3.2 establishes this fact. The resulting metric leads
to an observer that resembles the Extended Kalman Filter; see,
e.g., [3]. In Section III, Proposition 3.5 shows that the metric
can instead be taken in the form of an exponentially weighted
observability Grammian, leading to an observer design method
that is in the spirit of the one proposed in [4].

2This expression was suggested to us by Vincent Andrieu.
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In Section IV, for systems that are strongly differentially
observable [5, Ch. 2.4], we propose an expression for the
tensor that is based on the fact that, after writing the system
dynamics in an observer form, a high gain observer can be
used. This result leads to an observer which has some similarity
with the observer for linear systems obtained using Ackerman’s
formula.

Finally, in Section V, we show how a Riemannian metric can
be constructed for Euler-Lagrange systems whose Lagrangian
is quadratic in the generalized velocities. This result extends the
result in [6].

The design methods proposed in Section III do not neces-
sarily lead to explicit expressions for the metric. Instead, they
give numerical procedures to compute it, only involving the
solution of ordinary differential equations over a grid of initial
conditions. On the other hand, the designs in Sections IV and V
involve computations that can be done symbolically. All of
these various designs are coordinate independent and do not
require to have the system written in some specific form.

To ease the reading, we give a glossary in Appendix A defini-
tions of the main objects we employ from differential geometry.

II. FULL AND REDUCED OBSERVERS UNDER

STRONG DIFFERENTIAL DETECTABILITY

In this section, we study what can be obtained when the
system satisfies the differential detectability property defined
as follows (see items 2, 9, and 11 in Appendix A).

Definition 2.1: The nonlinear system (1) is strongly differen-
tially detectable (respectively, weakly differentially detectable)
on a closed, weakly geodesically convex set C ⊂ R

n with
nonempty interior if there exists a symmetric covariant 2-tensor
P on R

n satisfying

v�LfP (x)v < 0 (respectively ≤ 0)

∀ (x, v) ∈ C × S
n−1 : dh(x)v = 0. (4)

We illustrate this property with an example
Example 2.2: Consider a harmonic oscillator with unknown

frequency. Its dynamics are

ẋ = f(x) :=

⎛⎝ x2

−x3x1

0

⎞⎠ , y = h(x) := x1 (5)

with (x1, x2, x3) ∈ R× R× R>0. As a candidate to check the
differential detectability we pick, in the above coordinates

P (x) =

⎛⎝1 + 2�k2 + 4�2x2
1 −2�k 2�x1

−2�k 2� 0
2�x1 0 1

⎞⎠ (6)

where k and � are strictly positive real numbers. The expression
of its Lie derivative LfP in these coordinates is⎛⎝ 4�kx3 + 8�2x1x2 � �

1 + 2�k2 + 4�2x2
1 − 2�x3 −4�k �

2�kx1 + 2�x2 0 0

⎞⎠

where the various � should be replaced by their symmetric
values. Then, since we have (∂h/∂x)(x)v = v1, where v =
(v1, v2, v3), the evaluation of the Lie derivative of P for a vector
v in the kernel of dh gives

(v2 v3)

(
−4�k 0
0 0

)(
v2
v3

)
= −4�kv22. (7)

This allows us to conclude that the harmonic oscillator with
unknown frequency is weakly differentially detectable. Actu-
ally, as we shall see later when we use a different metric, it is
strongly differentially detectable. �

With this property of differential detectability at hand, we
study in the next two subsections what it implies in terms of
existence of converging full and then reduced order observers.

A. Local Asymptotic Stabilization of the Set A
In [1, Theorem 3.3 and Lemma 3.6] we have established the

following result (see also [7]).
Theorem 2.3: Assume there exist a Riemannian metric P and

a closed subset C of Rn, with nonempty interior, such that

A1: C is weakly geodesically convex.
A2: There exist a continuous function ρ : Rn → [0,+∞)

and a strictly positive real number q such that

LfP (x) ≤ ρ(x)dh(x) ⊗ dh(x)− qP (x) ∀x ∈ C. (8)

A3: There exists a C2 function R
p × R

p � (ya, yb) �→
δ(ya, yb) ∈ [0,+∞) satisfying

δ (h(x), h(x)) = 0,
∂2δ

∂y2a
(ya, yb)

∣∣∣∣
ya=yb=h(x)

> 0

for all x ∈ C, and, such that, for any pair (xa, xb)
in C × C satisfying h(xa) 
= h(xb) and, for any min-
imizing geodesic γ∗ between xa = γ∗(sa) and xb =
γ∗(sb) satisfying γ∗(s) ∈ C for all s in [sa, sb], sa ≤ sb,
we have

d

ds
δ (h (γ∗(s)) , h (γ∗(sa))) > 0 ∀ s ∈ (sa, sb].

Then, for any positive real number E there exists a continuous
function kE : Rn → R such that, with the observer given by
(see item 4 in Appendix A)

F (x̂, y) = f(x̂)− kE(x̂)gradPh(x̂)
∂δ

∂ya
(h(x̂), y)� (9)

the following holds3:

D
+d(x̂, x) ≤ − q

4
d(x̂, x)

for all (x, x̂) ∈ {(x, x̂) : d(x̂, x) < E}
⋂

(int(C)× int(C)).

3D+d(x̂, x) is the upper right Dini derivative along the solution, i.e., with
(X̂((x̂, x), t), X(x, t)) denoting a solution of (3)

D+d(x̂, x) = limsup
t↘0

d
(
X̂ ((x̂, x), t) ,X(x, t)

)
− d(x̂, x)

t
.
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Theorem 2.3 establishes that, when assumptions A1–A3
hold, for every given positive number E, an observer with
vector field as in (9) renders the set A in (2) asymptotically
stable with a domain of attraction containing the set {(x, x̂) :
d(x̂, x) < E}

⋂
(int(C)× int(C)).

Condition A2 is a stronger version of what we have called
differential detectability in the introduction. We come back to it
extensively below.

Condition A3 is a restrictive way of saying that the output
level sets are geodesically convex. Fortunately, even without
assumption A3, inspired by [6, Theorem 1], we can design an
observer making the set (2) asymptotically stable. As opposed
to Theorem 2.3, its domain of attraction cannot be made arbi-
trarily large.

Proposition 2.4: Assume there exist a Riemannian metric P
and a closed subset C of Rn, with nonempty interior, such that:

A1’: C is weakly geodesically convex and there exist coor-
dinates denoted x and positive numbers p and h̄1 such
that, for each x in C, we have

p ≤ |P (x)| , |HessPh(x)| ≤ h̄1 (10)

where HessPh is the p-uplet of the Hessian of the
components hi of h; see item 5 in Appendix A.

A2’: There exist a positive real number ρ̄ and a strictly
positive real number q such that

LfP (x) ≤ ρ̄dh(x)⊗ dh(x) − qP (x) ∀x ∈ C. (11)

A3’: There exists a C2 function R
p × R

p � (ya, yb) �→
δ(ya, yb) ∈ [0,+∞) and positive real numbers δ̄1 and
δ2 satisfying

δ (h(x), h(x)) = 0,
∂2δ

∂y2a
(ya, yb)

∣∣∣∣
ya=yb=h(x)

> δ2I

(12)
for all x ∈ C∣∣∣∣ ∂δ∂ya

(h(xa), h(xb))

∣∣∣∣ ≤ δ̄1d(xa, xb) (13)

for all (xa, xb) ∈ C × C.

Then, with the observer given by

F (x̂, y) = f(x̂)− k gradPh(x̂)
∂δ

∂ya
(h(x̂), y)� (14)

the following holds:

D+d(x̂, x) ≤ −rd(x̂, x) (15)

for all (x, x̂) ∈ {(x, x̂) : d(x̂, x) ≤ (ε/k)}
⋂

(C × C) when
we have

k ≥ ρ̄

2δ2
, q > r, ε :=

(q − r)p

2h̄1δ̄1
. (16)

Remark 2.5: We make the following observations:

1) A key difference with respect to the result in Theorem 2.3
is that, in the latter, the domain of attraction gets larger

with the increase of the observer gain, while the domain
of attraction guaranteed by the result in Proposition 2.4
decreases when k increases.

2) When there exists a positive real number h̄2 satisfying∣∣∣∣∂h∂x(x)
∣∣∣∣ ≤ h̄2 ∀x ∈ C

a function δ satisfying A3’ is simply

δ(ya, yb) = |ya − yb|2.

Indeed, let γ∗ : [sa, sb] → R
n be a minimizing geodesic

between xa and xb that stays in C. We have∣∣∣∣ ∂δ∂ya
(h(xa), h(xb))

∣∣∣∣
= 2 |h(xa)− h(xb)|

= 2

∣∣∣∣∣∣
sb∫

sa

∂h

∂x
(γ∗(r))

dγ∗

ds
(r)dr

∣∣∣∣∣∣
= 2

sb∫
sa

√
∂h

∂x
(γ∗(r))P (γ∗(r))−1 ∂h

∂x
(γ∗(r))�

×
√

dγ∗

ds
(r)�P (γ∗(r))

dγ∗

ds
(r)dr

≤ 2h̄2√
p
d(xa, xb).

�
Proof: It is sufficient to show that the vector field x̂ �→

F (x̂, y) is geodesically strictly monotonic with respect to P
(uniformly in y), at least when x̂ and x are sufficiently close.
See [1, Lemma 2.2] and the discussion before it. With the co-
ordinates given by assumption A1’ and item 5 in Appendix A,
we have

LFP (x̂, y) = LfP (x̂)− kLgradP hP (x̂, y)⊗ ∂δ

∂ya
(h(x̂), y)�

− 2k
∂h

∂x
(x̂)�

∂2δ

∂y2a
(h(x̂), y)

∂h

∂x
(x̂)

= LfP (x̂)− 2k HessPh(x̂)⊗
∂δ

∂ya
(h(x̂), y)�

− 2k
∂h

∂x
(x̂)�

∂2δ

∂y2a
(h(x̂), y)

∂h

∂x
(x̂).

Here, the notation HessPh⊗ v, with v a vector in R
p stands

for
∑p

i=1 HessPhivi, where each HessPhivi is a covariant
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2-tensor. So, with (10)–(13) and (16), we obtain successively

LFP (x̂, y) ≤ LfP (x̂) + 2kh̄1δ̄1d(x̂, x)−2kδ2
∂h

∂x
(x̂)�

∂h

∂x
(x̂)

≤ −qP (x̂) + k
2h̄1δ̄1
p

d(x̂, x)P (x̂)

− (2kδ2 − ρ̄)
∂h

∂x
(x̂)�

∂h

∂x
(x̂)

≤ −rP (x̂)

for all (x, x̂) ∈ {(x, x̂) : d(x̂, x) ≤ (ε/k)}
⋂
(C × C). Since C

is weakly geodesically convex, (15) follows by integration
along a minimizing geodesic. �

The proofs of Theorem 2.3 and Proposition 2.4 differ mainly
on the way the term HessPh(x̂)⊗ (∂δ/∂ya)(h(x̂), y)

� is han-
dled. With Assumption A3, related to the geodesic convexity of
the output level sets, it can be shown to be harmless because
of its sign. Instead, with Assumption A3’ only, we go with
upper bounds and show it is harmless at least when x̂ and x
are sufficiently close. Hence, a local convergence result in the
latter case and a regional one in the former are obtained.

B. A Link Between the Existence of P and a Reduced
Order Observer

In [2, Corollary 3.1] it is established that, if, in some coordi-
nates, the expression of the metric P is constant and that of h is
linear, then there exists a reduced order observer. In this section,
we establish a similar result without imposing the metric to be
Euclidean. The interest of a reduced order observer is that there
is no correction term to design. This task is replaced by that of
finding appropriate coordinates. In our context, the existence of
such coordinates is guaranteed by the following result from [8].

Theorem 2.6 ([8, p. 57, Section 19]): Let P be a complete
Riemannian metric on R

n. Assume p = 1 and h has rank 1 at
x0 inRn. Then, there exists a neighborhoodNx0

of x0 on which
there exists coordinates

x = (y, χ)

such that, for each x in Nx0
, the expression of h and P in these

coordinates can be decomposed as

y = h ((y, χ)) (17)

P ((y, χ)) =

(
Pyy(y, χ) 0

0 Pχχ(y, χ)

)
(18)

with Pyy(y, χ) in R
p×p and Pχχ(y, χ) in R

(n−p)×(n−p).
Proof: See [8, p. 57, Section 19]. A sketch of another

proof is as follows. Note first that, the Constant Rank Theorem
implies the existence of a neighborhood of x0 on which coordi-
nates (y, χ̄) are defined and satisfy h(x) = h((y, χ̄)) = y. Let
the expression of the metric in the (y, χ̄)-coordinates be

P ((y, χ̄)) =

(
P yy(y, χ̄) P yχ̄(y, χ̄)

P χ̄y(y, χ̄) P χ̄χ̄(y, χ̄)

)

and let ϕ(y, χ̄) denote the solution, evaluated at time h(x0),
of the time-varying system (dx/dy) = −P χ̄χ̄(y, x)

−1P χ̄y(y, x)
issued from x = χ̄ at time y = y. The proof can be com-
pleted by showing that the function ϕ defined this way on
a neighborhood of x0 satisfies all the required properties for
(y, χ) = (y, ϕ(y, χ̄)) to be the appropriate coordinates in the
neighborhood of x0. �

Example 2.7: Consider the matrix P in (6) with y = x1, χ̄ =
(x2, x3). We have

P χ̄y(y, χ̄) =

(
−2�k

2�y

)
, P χ̄χ̄(y, χ̄) =

(
2� 0
0 1

)
.

This leads to the system

dx

dy
= f(y, x) = −P χ̄χ̄(y, x)

−1P χ̄y(y, x) =

(
k

−2�y

)
the solutions of which, at time y, going through x0 at time
y0, are

X(x0, y0; y) = x0 +

(
k[y− y0]

−� [y2 − y20]

)
.

So in particular, we get

ϕ ((y, χ̄)) = X ((x2, x3), y; 0) =

(
x2 − ky

x3 + �y2

)
.

From the proof above, it follows that the coordinates (y, χ)
satisfying (18) in Theorem 2.6 are:

(y, χ1, χ2) = ϕ(x) = ϕ ((y, χ̄))=
(
x1, x2 − kx1, x3 + �x2

1

)
.

(19)

They are defined on the open set

Ω = Nx0
= ϕ(R2 × R>0) (20)

and they give

Pyy ((y, χ)) = 1, Pχχ ((y, χ))

(
2� 0
0 1

)
.

�
Let us express the differential detectability and the observer

(9) in the special coordinates given by Theorem 2.6. The
dynamics of (1) in the coordinates (y, χ) are

ẏ = fy(y, χ), χ̇ = fχ(y, χ).

We notice that, by decomposing a tangent vector as v =
(
vy
vχ

)
,

and since (∂h/∂y)(x0) 
= 0, we find that (17) gives, for every
x = (y, χ) in Nx0

∂h

∂x
(x)v = 0 ⇐⇒ ∂h

∂y
(y, χ)vy = 0 ⇐⇒ vy = 0.
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It follows that, with expression (18) and in (y, χ) coordinates,
condition A2 in (8) is as follows:

2v�χPχχ(y, χ)
∂fχ
∂χ

(χ)vχ +
∂

∂y

(
v�χPχχ(y, χ)vχ

)
fy(y, χ)

+
∂

∂χ

(
v�χPχχ(y, χ)vχ

)
fχ(y, χ) ≤ −qv�χPχχ(y, χ)vχ (21)

for all (y, χ, vχ) such that (y, χ) ∈ Nx0
, vχ ∈ S

n−2. Also our
observer (9) takes the form

˙̂y = fy(ŷ, χ̂)− kE ((ŷ, χ̂))
1

Pyy ((ŷ, χ̂))

∂δ

∂ya
(ŷ, y)

˙̂χ = fχ(ŷ, χ̂).

The remarkable fact here is that there is no “correction term”
in the dynamics of χ̂. Hence, we may expect that, if P is a
complete Riemannian metric for which there exist coordinates
defined on some open set Ω satisfying (17), (18), and (21) (with
Ω replacing Nx0

), then the system

˙̂χ = fχ(y, χ̂) (22)

(with y instead of ŷ!) could be an appropriate reduced order
observer in charge of estimating the unmeasured components
χ. To show that this is indeed the case, we equip R

n−p, in
which this reduced order observer lives, with the y dependent
Riemannian metric χ �→ Pχχ(y, χ). For each fixed y, we define
the distance

dχ(χa, χb; y)=min
γχ

sb∫
sa

√
dγχ
ds

(s)�Pχχ (y, γχ(s))
dγχ
ds

(s)ds

(23)

where γχ is any piecewise C1 path satisfying γχ(sa) = χa,
γχ(sb) = χb. With this, we have the following result for the
reduced order observer (22).

Proposition 2.8: Let Pχχ be a y-dependent Riemannian
metric on R

n−p and C be a closed subset of Rn, with nonempty
interior, satisfying:

A1”: C is weakly Pχχ-geodesically convex in the following
sense: if (χa, χb, y) is such that (y, χa) and (y, χb) are
in C, then there exists a minimizing geodesic [sa, sb] �
s �→ γ∗

χ(s) in the sense of (23) such that (y, γ∗
χ(s)) is

in C for all s in [sa, sb]. Also, there exist coordinates
denoted χ and positive numbers p, py1, f̄y1, such that,
for each (y, χ) in C, we have

pIn−p ≤ Pχχ(y, χ),

∣∣∣∣∂Pχχ

∂y
(y, χ)

∣∣∣∣ ≤ py1∣∣∣∣∂fy∂χ
(y, χ)

∣∣∣∣ ≤ f̄y1.

A2”: There exists a strictly positive real number q such that
(21) holds on C × S

n−p−1.

Then, along the solutions to the system

ẏ = fy(y, χ), χ̇ = fχ(y, χ), ˙̂χ = fχ(y, χ̂)

the following holds:

D+dχ(χ̂, χ; y) ≤ −rdχ(χ̂, χ; y)

for all (χ, χ̂, y) such that (y, χ), (y, χ̂) ∈ C and

dχ(χ̂, χ) ≤
(q − 2r)p

√
p

p̄y1f̄y1
. (24)

The rationale is that, if the system is strongly differentially
detectable (see Definition 2.1), then there exists a reduced order
observer that is exponentially convergent as long as (y, χ) and
(y, χ̂) are in C and the coordinates x = (y, χ) exist, which,
when p = 1, we know is the case on a neighborhood of any
point where h has rank 1.

Proof: Let (χ, χ̂, y) be such that (y, χ) and (y, χ̂) are in
C. From our assumption, there exists a minimizing geodesic
[s, ŝ] � s′ �→ γ∗

χ(s
′) such that (y, γ∗

χ(s
′)) is in C for all s′ in

[s, ŝ]. By following the same steps as in [9, Proof of Theorem 2]
and with [1, (36)], we can show that we have

D
+dχ(χ̂, χ; y)

≤
ŝ∫

s

dγ∗
χ

ds (r)
�
[
LfχPχχ

(
y, γ∗

χ(r)
)
+

∂Pχχ

∂χ

(
y, γ∗

χ(r)
)
ẏ
]
dγ∗

χ

ds (r)

2
√

dγ∗
χ

ds (r)�Pχχ

(
y, γ∗

χ(r)
) dγ∗

χ

ds (r)
dr

where ẏ = fy(y, χ). So our result holds if the term between
brackets is upper bounded by −2rP (y, γ∗

χ(r)). Note that, in
the coordinates given by A1”, (21) can be rewritten as

LfχPχχ

(
y, γ∗

χ

)
+

∂Pχχ

∂y
(y, γ∗

χ)ẏ ≤ −qPχχ

(
y, γ∗

χ

)
+

∂Pχχ

∂y

(
y, γ∗

χ

) [
fy(y, χ)− fy

(
y, γ∗

χ

)]
(25)

for all (χ, γ∗
χ, y) such that (y, χ) and (y, γ∗

χ) are in C. But we
have also∣∣∣∣∂P∂y (y, γ∗

χ(r)
) [

fy(y, χ)− fy
(
y, γ∗

χ(r)
]∣∣∣∣

≤ p̄y1f̄y1
dχ(χ̂, χ; y)√

p

Pχχ

(
y, γ∗

χ(r)
)

p
.

Hence, the result holds when (24) holds. �
In this proof, we see that the restriction (24) disappears and q

can be zero, if p̄y1 is zero, i.e., if Pχχ does not depend on y. This
is indeed the case when the level sets of the output function are
totally geodesic as shown in [1]. Hence, we have the following
result.

Proposition 2.9: Under conditions A1” and A2” in
Proposition 2.8 with q possibly zero, if Pχχ does not depend
on y, we have

D
+dχ(χ̂, χ) ≤ −qd(χ̂, χ) (26)

for all (χ, χ̂, y) such that (y, χ) and (y, χ̂) are in C.
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Again, the rationale is that if, the system is strongly (respec-
tively weakly) differentially detectable and the output function
level sets are totally geodesic, then there exists a reduced order
observer which makes the zero error set {(y, χ, χ̂) : χ = χ̂}
exponentially stable (respectively stable) as long as (y, χ) and
(y, χ̂) are in C and the coordinates x = (y, χ) exist.

Example 2.10: Consider the harmonic oscillator with un-
known frequency (5). Its dynamics expressed in the coordinates
(y, χ1, χ2) we have obtained in (19) are

ẏ = χ1 + ky

χ̇1 = −y(χ2 − �y2)− k(χ1 + ky)

χ̇2 = 2�y(χ1 + ky). (27)

In Example 2.2, we have shown this system is weakly differ-
entially detectable with a metric the expression of which in the
(y, χ1, χ2) coordinates is

P ((y, χ1, χ2)) =

[[
∂ϕ

∂x
(x)

]−1
]�

P (x)

[
∂ϕ

∂x
(x)

]−1

=

⎛⎝1 0 0
0 2� 0
0 0 1

⎞⎠ . (28)

As already observed in Example 2.7, the decomposition given
in (18) of Theorem 2.6 with even the Pχχ block independent of
y. So the assumptions of Proposition 2.9 are satisfied with C =
R

3, but with q = 0 and the zero error set (with Ω given in (20))

Z =
{
(y, χ1, χ2, χ̂1, χ̂2) ∈ Ω× R

2 : χ2 = χ̂2

}
is globally stable. To check that we have actually global
stability, we note that the Lie derivative of the Pχχ block of P
in (28) along the vector field given by (27) satisfies for all y

2 Sym

((
2� 0
0 1

)(
−k −y
2�y 0

))
=

(
−4�k 0
0 0

)
where for a matrix A, Sym(A) = (A+A�)/2. This establishes
that the vector field fχ defined as

fχ(y, χ) =

(
−y(χ2 − �y2)− k(χ1 + ky)

2�y(χ1 + ky)

)
is weakly geodesically monotonic uniformly in y. This implies
that the flow it generates is a weak contraction. The solutions
of the harmonic oscillator being bounded, the same holds for
the solutions of

˙̂χ = fχ(y, χ̂). (29)

Then, according to [10, Theorem 2], the set4

Z \
(
ϕ ({(0, 0)} × R>0)× R

2
)

with ϕ defined in (19), is globally asymptotically stable for the
interconnected system (5), (29). �

4This means that the initial condition for (x1, x2) is not the origin.

III. DESIGN OF RIEMANNIAN METRIC P FOR LINEARLY

RECONSTRUCTIBLE SYSTEMS

We have seen in [1, Theorem 2.9] (see also [11,
Proposition 3.2]) that differential detectability implies that each
linear (time varying) system given by the first order approxi-
mation of (1) (assumed to be forward complete) along any of
its solution is uniformly detectable. In [11, Proposition 3.2],
it is also shown that, if this uniform linear detectability is
strengthened into a uniform reconstructibility property (or, say,
uniform infinitesimal observability [5, Section I.2.1]), then a
Riemannian metric exhibiting differential detectability does
exist. In this section, we recover this last property through the
solution of a Riccati equation and propose a numerical method
to compute the metric P .5

To do all this, we assume the existence of a backward invari-
ant open set Ω for the system (1). This implies that, for each x
in Ω, there exists a strictly positive real number σx, possibly in-
finite, such that the corresponding solution to (1), t �→ X(x, t),
is defined with values in Ω over (−∞, σx). For each such
x, the linearization of f and h evaluated along t �→ X(x, t)
gives the functions t �→ Ax(t) = (∂f/∂x)(X(x, t)) and t �→
Cx(t) = (∂h/∂x)(X(x, t)), which are defined on (−∞, σx).
To these functions, we associate the following family of linear
time-varying systems with state ξ in R

n and output η in R
p:

ξ̇ = Ax(t)ξ, η = Cx(t)ξ (30)

which is parameterized by the initial condition x of the chosen
solution t �→ X(x, t). Below, Φx denotes the state transition
matrix for (30). It satisfies

∂Φx

∂s
(t, s) = Ax(t)Φx(t, s), Φx(s, s) = I.

Definition 3.1 (Reconstructibility): The family of systems
(30) is said to be reconstructible on a set Ω if there exist strictly
positive real numbers τ and ε, such that we have

0∫
−τ

Φx(t, 0)
�Cx(t)

�Cx(t)Φx(t, 0)dt ≥ εI ∀x ∈ Ω. (31)

Proposition 3.2: Let Q be a symmetric contravariant
2-tensor. Assume there exist:

i) an open set Ω ⊂ R
n that is backward invariant for (1) and

on which the family of systems (30) is reconstructible;
ii) coordinates for x such that the derivatives of f and h are

bounded on Ω and we have

0 < qI ≤ Q(x) ≤ qI ∀x ∈ Ω. (32)

Then, there exists a symmetric covariant 2-tensor P defined on
Ω, which admits a Lie derivative LfP , satisfying

LfP (x)=dh(x) ⊗ dh(x)−P (x)Q(x)P (x) ∀x ∈ Ω (33)

5Some of the material in this section is in [12], which we reproduce here for
the sake of completeness.
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and there exist strictly positive real numbers p and p such that,
in the coordinates given above, we have

0 < pI ≤ P (x) ≤ pI ∀x ∈ Ω. (34)

Proof: The proof of Proposition 3.2 can be found in [12].
It relies on a fixed point argument, the core of which is the
fact the flow generated by the differential Riccati equation is
a contraction. This fact, first established for the discrete time
case in [13], is proved in [14] for the continuous-time case. �

Remark 3.3: In his introduction of Riccati differential equa-
tions for matrices in [15] and [16], Radon has shown that such
equations can be solved via two coupled linear differential
equations. (See also [17].) In our framework, this leads to obtain
a solution to (33) by solving in (α, β) the coupled system

n∑
i=1

∂α

∂xi
(x)fi(x) = −∂f

∂x
(x)�α(x) +

∂h

∂x
(x)

∂h

∂x
(x)�β(x)

n∑
i=1

∂β

∂xi
(x)fi(x) = Q(x)α(x) +

∂f

∂x
(x)β(x) (35)

with β invertible and then picking P (x) = α(x)β(x)−1 . �
Remark 3.4: Our observer in (3) with right-hand side given

by (9) or (14) resembles the Extended Kalman filter for a
particular choice of δ. In fact, when the metric is obtained by
solving (33), the observer we obtain from (9) (or (14)) with
δ(ya, yb) = |ya − yb|2 resembles an Extended Kalman Filter
(see [3], for instance) since, in some coordinates, our observer is

˙̂x = f(x̂)− 2kE(x̂)P (x̂)−1 ∂h

∂x
(x̂)� (h(x̂)− y) (36)

n∑
i=1

∂P

∂xi
(x̂)f(x̂)=−P (x̂)

∂f

∂x
(x̂)− ∂f

∂x
(x̂)�P (x̂)

+
∂h

∂x
(x̂)�

∂h

∂x
(x̂)−P (x̂)Q(x̂)P (x̂) (37)

while the corresponding extended Kalman filter would be

˙̂x = f(x̂)− P−1 ∂h

∂x
(x̂)�(h(x̂)− y) (38)

Ṗ = −P
∂f

∂x
(x̂)− ∂f

∂x
(x̂)�P +

∂h

∂x
(x̂)�

∂h

∂x
(x̂)− PQ(x̂)P.

(39)

The expressions for ˙̂x in (38) and (36) are the same except for
the presence of kE in (36). On the other hand, (37) and (39)
are significantly different. The former is a partial differential
equation which can be solved off-line as an algebraic Riccati
equation. If the assumptions in Proposition 3.2 are satisfied,
(37) has a solution, guaranteed to be bounded and positive
definite on Ω. Nevertheless, assumption A3 of Theorem 2.3
may not hold but then according to Proposition 2.4, we have a
locally convergent observer.

The differential Riccati (39) of the extended Kalman filter
is an ordinary differential equation with P being part of the
observer state. The corresponding observer is also known to
be locally convergent but under the extra assumption that P

is bounded and positive definite. See [18] for instance. Un-
fortunately, even when the assumptions in Proposition 3.2 are
satisfied, we have no guarantee that P has such properties
except may be if x̂ remains close enough to x (which is what is
to be proved). �

The quadratic term P (x)Q(x)P (x) in the “algebraic Riccati
equation” (33), can be replaced by λP (x). Specifically we have
the following reformulation of [11, Proposition 3.2].

Proposition 3.5: Under the conditions of Proposition 3.2,
there exists λ > 0 such that, for each λ > λ, there exists a
symmetric covariant 2-tensor P defined on Ω that admits a Lie
derivative LfP satisfying

LfP (x) = dh(x)⊗ dh(x) − λP (x) ∀x ∈ Ω (40)

and there exist strictly positive real numbers p and p such that
the expression of P in the coordinates given by the assumption
satisfies (34).

Proof: See [12]. �
Remark 3.6: When the metric is given by (40), the observer

we obtain from (9) with δ(ya, yb) = |ya − yb|2 resembles the
Kleinman’s observer, dual of the Kleinman’s controller pro-
posed in [4]. Indeed, in some coordinates, our observer is

˙̂x = f(x̂)− 2kE(x̂)P (x̂)−1 ∂h

∂x
(x̂)� (h(x̂)− y)

P (x) = lim
T→∞

0∫
−T

exp(λt)Φx(t, 0)
�Cx(t)

�Cx(t)Φx(t, 0)dt

the latter being a solution to (40). Correspondingly, Kleinman’s
observer would be

˙̂x = f(x̂)−W (x̂)−1 ∂h

∂x
(x̂)� (h(x̂)− y)

W (x) =

0∫
−T

Φx(t, 0)
�Cx(t)

�Cx(t)Φx(t, 0)dt

with T positive. �
Example 3.7: For the harmonic oscillator with unknown

frequency (5), it can be checked that the following expression
of P is a solution to (40):

P (x)=

⎛⎜⎝
λ2+2x3

λ(λ2+4x3)
, �, �

− 1
(λ2+4x3)

, 2
λ(λ2+4x3)

, �
−λ3x1+(λ2−4x3)x2

λ2(λ2+4x3)
2 , (3λ2+4x3)x1−4λx2

λ2(λ2+4x3)
2 , a

⎞⎟⎠ (41)

where the various � should be replaced by their symmetric
values and

a =
6λ4 + 12λ2x3 + 16x2

3

λ3(λ2 + 4x3)
3 x2

1 −
4(5λ2 + 4x3)

λ2(λ2 + 4x3)
3x1x2

+
4(5λ2 + 4x3)

λ3(λ2 + 4x3)
3x

2
2.

�
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One way to prove Proposition 3.2, respectively,
Proposition 3.5, is to show that the system

ẋ=f(x)

π̇=F (x, π)=−π
∂f

∂x
(x)− ∂f

∂x
(x)�π+

∂h

∂x
(x)�

∂h

∂x
(x)−πQ(x)π

respectively

ẋ = f(x)

π̇ = F (x, π) = −π
∂f

∂x
(x)− ∂f

∂x
(x)�π +

∂h

∂x
(x)�

∂h

∂x
(x)−λπ

admits an invariant manifold of the form {(x, π) : π = P (x)}.
These facts suggest the following method to approximate P .

Given x in Ω at which P is to be evaluated, pick T > 0 large
enough, and perform the following steps6:

Step 1) Compute the solution [−T, 0] � t �→ X(x, t) to (1)
backward in time from the initial condition x at time
t = 0, up to a negative time t = −T .

Step 2) Using the function [−T, 0] � t �→ X(x, t) obtained
in Step 1, compute the solution [−T, 0] � t �→ Π(t)
with initial condition π(−T ) = pIn, to

π̇ = −π
∂f

∂x
(X(x, t))− ∂f

∂x
(X(x, t))� π

+
∂h

∂x
(X(x, t))�

∂h

∂x
(X(x, t))−πQ (X(x, t))π

respectively to

π̇ = −π
∂f

∂x
(X(x, t))− ∂f

∂x
(X(x, t))� π

+
∂h

∂x
(X(x, t))�

∂h

∂x
(X(x, t))−λπ

with λ large enough.
Step 3) Define the value of P at x as the value Π(0).

By griding the state space of x and approximating P at each
such x, the method suggested above can be considered as a
design tool, at least for low dimensional systems. Note that
the computations in Step 1 and Step 2 only require the use of
a scheme for integration of ordinary differential equations. In
the following example, we employ this method to approximate
the metric P for the harmonic oscillator after a convenient
reparameterization allowing a reduction of the number of points
needed in a grid for a given desired precision.

Example 3.8: The second version of the proposed algorithm
applied to the harmonic oscillator in (5) leads to an approx-
imation of the analytic expression of the metric P given in
Example 3.7. To this end, we exploit the fact that

√
x3 and t

6In the case where the system is time varying and its time variations are dealt
with as explained in footnote 1, these steps do require the knowledge of the
time functions. This imposes a difficulty when, for instance, the time functions
are induced by inputs provided by a feedback law.

have the same dimension and, similarly, x1/
√
x3, and x2/x3

have the same dimension. To exploit this property, we let

r =
√
x3x2

1 + x2
2, cos(θ) =

√
x3x1

r

sin(θ) =
x2

r
, ω =

λ
√
x3

.

Then, it can be checked that the metric P can be factorized as

P (x1, x2, x3, λ)=M(x3)
−1P (cos(θ), sin(θ), 1, ω)M(x3)

−1

where M(x3) = diag(x
1/4
3 ,

√
x3x

1/4
3 , (x3

√
x3x

1/4
3 /r)). This

shows that it is sufficient to know the function (θ, ω) � (S1 ×
R>0) �→ P (cos(θ), sin(θ), 1, ω) and the value of x3 to know
the functionP everywhere on (R2 \ {0})× R

2
>0. Further using

the fact that

∂h

∂x
(x1, x2, x3) = (1 0 0)

the gain of the proposed observer reduces to

P (x1, x2, x3, λ)
−1 ∂h

∂x
(x1, x2, x3)

�

=

⎛⎝√
x3 0 0
0 x3 0

0 0 x2
3

r

⎞⎠P (cos(θ), sin(θ), 1, ω)−1

⎛⎝1
0
0

⎞⎠ .

This shows that it is sufficient to know the function

(θ, ω) � (S1 × R>0) �→

⎛⎝P−1
11 (cos(θ), sin(θ), 1, ω)

P−1
12 (cos(θ), sin(θ), 1, ω)

P−1
13 (cos(θ), sin(θ), 1, ω)

⎞⎠
to know the observer gain everywhere on (R2 \ {0})× R

2
>0.

Hence, it is sufficient to grid the circle S
1 with mθ points and

the strictly positive real numbers with mω points, and therefore
to store only 3 ∗mθ ∗mω values in which the above function
is interpolated.

We note that for the computation of P using the algorithm
above, since a closed-form expression of the solutions to (5)
is available, Step 1 of the algorithm is not needed. To com-
pute an approximation of P , we define a grid of the (θ, ω)-
region [−π, π]× [4, 7] with mθ ∗mω points with mθ = 360
and mω = 100. The value of T used in the simulations is
chosen as a function of ω, namely, T (ω), so as to guarantee a
desired absolute error for the approximation of P for the given
point (θ, ω) from the grid.

Fig. 1 shows state estimates x̂ using the observer in (14) for
a periodic solution to (5). These solutions start from the same
initial condition and are such that the state estimates asymptot-
ically converge to the periodic solution. The solid blue/darkest
solution corresponds to the estimate obtained using in (14) the
analytic expression of P in (41) with parameter λ = 8, which is
a large enough value to satisfy the desired precision. The other
solutions in Fig. 1 correspond to estimates obtained with dif-
ferent computed values of P using our algorithm. The dash dot
blue/gray solution is obtained when observer gain is discretized
over the chosen grid and provided to the observer using nearest
point interpolation. The dashed red/dark solution is obtained
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Fig. 1. Solutions to the observer converging to the estimate obtained with
exact gain with λ = 8 (solid blue/darkest), with exact gain discretized over
a grid (dash dot blue/gray), and with computed and interpolated gain (dashed
red/dark). (a) Solutions. (b) Estimation errors.

when the observer gain is computed (over the same grid) using
the algorithm proposed above. For each simulation, the error
trajectories converge to zero. Note that the error between the
dash dot blue/gray solution and the dashed red/dark solution is
quite small. As the figures suggest, the estimates obtained with
the approximated gains are close to the one obtained with its
analytical expression. Additional numerical analysis confirms
that the error between the solutions gets smaller as the number
of points and the quality of the interpolation are increased. �

IV. DESIGN OF RIEMANNIAN METRIC P FOR STRONGLY

DIFFERENTIALLY OBSERVABLE SYSTEMS

According to [5, Def. 4.2 of Ch. 2], the nonlinear system
(1) is strongly differentially observable of order no on an open
set Ω if, for the positive integer no, the function Hno

: Ω →
R

m×no defined as

Hno
(x) =

(
h(x), Lfh(x), . . . , L

no−1
f h(x)

)�
(42)

is an injective immersion, i.e., an injective map whose differen-
tial is injective at each point x in Ω.

Example 4.1: For the system (5) in Example 3.7, successive
derivatives of y lead to

H3(x) = (x1, x2,−x3x1)
�

H4(x) = (x1, x2,−x3x1,−x3x2)
�.

The map H3 is an injective immersion on Ω3 = (R \ {0})×
R× R>0 which is not an invariant set. Instead H4 is an injec-
tive immersion on Ω4 = (R2 × R>0) \ ({(0, 0)} × R+) which
is an invariant set. Hence, the system in Example 3.7 is strongly
differentially observable of order 4 on the invariant set Ω4. �

The property that Hno
is an injective immersion implies that

the family of systems (30) is reconstructible (on Ω). According
to Section III, this property further implies that differential
detectability holds with a metric obtained as a solution of (33)
or of (40). But we can take advantage of the strong observability
property to give another more explicit expression for the metric.
Precisely, we assume the following properties.

B: There are coordinates for x in Ω such that:

• Hno
is Lipschitz and a uniform immersion, i.e., assume

the existence of strictly positive real numbersh and h such
that we have

hI ≤ ∂Hno

∂x
(x)�

∂Hno

∂x
(x) ≤ hI ∀x ∈ Ω. (43)

• There exists a strictly positive real number ν such that,
in the given coordinates for x, we have the following
Lipschitz-like condition7∣∣∣∣∂Lno

f h

∂x
(x)

∣∣∣∣ ≤ 1

ν

∣∣∣∣∂Hno

∂x
(x)

∣∣∣∣ . (44)

To exploit these properties, we note first that we have

LfHno
(x) =

∂Hno

∂x
(x)f(x) = AHno

(x) +BLno

f h(x)

y = h(x) = CHno
(x) (45)

where A, B, and C are given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 Im 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . Im
0 . . . . . . . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎜⎜⎜⎝

0
...
...
0
Im

⎞⎟⎟⎟⎟⎟⎟⎠
C = (Im 0 . . . . . . 0).

Then, among the many results known about high gain ob-
servers, we have the following property.

7We say that (44) is a Lipschitz-like condition since, the function Hno , being
injective, has a left inverse Hli

no
satisfying Hli

no
(Hno (x)) = x. Consequently,

we have Lno
f h = Lno

f (h ◦Hli
no

◦Hno ). It follows that, if the function ξ �→
Lno
f (h ◦Hli

no
)(ξ) is Lipschitz, then (44) holds.
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Lemma 4.2: Given ν satisfying (44), there exist an (m×
no)× (m× no) symmetric positive definite matrix Pν , a (m×
no)×m column vector Kν , and a strictly positive real number
q satisfying

Pν(A−KνC)+(A−KνC)
�Pν+2qIm×no

+
1

qν2
PνBB�Pν≤0.

(46)

With Lemma 4.2, we pick P as the metric induced by the
immersion Hno

. (See [19, Ex. 2, Ch. II].) Namely, in the
coordinates x given by assumption B so that (43) and (44) hold,
we express P on Ω as

P (x) =
∂Hno

∂x
(x)�Pν

∂Hno

∂x
(x). (47)

Remark 4.3: The above design of P relies strongly on the
high gain observer technique. Nevertheless, the observer we
obtain differs from a usual high gain observer, at least when no

is strictly larger than n, i.e., Hno
is an injective immersion and

not a diffeomorphism. Indeed, the state x̂ of our observer lives
in R

n, whereas the state of a usual high gain observer would
live in R

no , not diffeomorphic to R
n, and a left inverse of Hno

would be needed to extract x̂ from this state.
Proposition 4.4: Suppose that, with Hno

defined in (42),
Assumption B holds and let Pν be any symmetric positive defi-
nite matrix satisfying (46). Then, (47) defines a positive definite
symmetric covariant 2-tensor which satisfies the differential
detectability property (4) on Ω.

Here, similar to Ackerman’s formula for linear systems,
where the observer gain uses the inverse of the observability
matrix, the gain of our observer, namely, P (x̂)−1(∂h/∂x)(x̂)�,
resulting from expressing the metric as in (47) is obtained by
writing the system in an observable form. This form can be
obtained using (∂Hno

/∂x)(x) as the observability matrix, the
inverse of which also appears in the gain of our observer.

Proof: We proceed by establishing the needed properties
for P .

• P is a symmetric covariant 2-tensor: Let x̃ be other co-
ordinates related to x by x̃ = ϕ(x) with ϕ being a diffeo-
morphism. Let also h̃, P̃ , and H̃no

denote the expression
of h, P , and Hno

in the coordinates x̃, respectively. They
satisfy

h̃(x̃) = h(x), f̃(x̃) =
∂ϕ

∂x
(x)f(x)

∂h

∂x
(x) =

∂h̃

∂x̃
(x̃)

∂ϕ

∂x
(x), Hno

(x) = H̃no
(x̃)

∂ϕ

∂x
(x)

P (x) =
∂ϕ

∂x
(x)�P̃ (x̃)

∂ϕ

∂x
(x)

the latter showing that P satisfies the rule a linear oper-
ator should obey under a change of coordinates to be a
symmetric covariant 2-tensor.

• P is positive definite: Using (47) and the positive definite-
ness of Pν , we have

0 < λmin(Pν)hI ≤ P (x) ≤ λmax(Pν)hI ∀x ∈ Ω.

• P satisfies (4): With (45) and (51), we obtain

LfP (x) =
∂Hno

∂x
(x)�(PνA+A�Pν)

∂Hno

∂x
(x)

+
∂Hno

∂x
(x)�PνB

∂Lno

f h

∂x
(x)+

∂Lno

f h

∂x
(x)�B�Pν

∂Hno

∂x
(x)

from where it follows that:

LfP (x)≤ ∂Hno

∂x
(x)�

(
PνKνC+ C�K�

ν Pν − 2qI

− 1

qν2
PνBB�Pν

)
∂Hno

∂x
(x)

+
∂Hno

∂x
(x)�PνB

∂Lno

f h

∂x
(x)

+
∂Lno

f h

∂x
(x)�B�Pν

∂Hno

∂x
(x)

≤ ∂Hno

∂x
(x)�PνKν

∂h

∂x
(x)+

∂h

∂x
(x)�K�

νPν
∂Hno

∂x
(x)

− q

(
2
∂Hno

∂x
(x)�

∂Hno

∂x
(x)

− ν2
∂Lno

f h

∂x
(x)�

∂Lno

f h

∂x
(x)

)
.

Then, using (44), we get

v�LfP (x)v ≤ −qv�
∂Hno

∂x
(x)�

∂Hno

∂x
(x)v

≤ − qh

λmax(Pν)h̄
v�P (x)v

for all (x, v) such that (∂h/∂x)(x)v = 0, which is (4) in
the given coordinates). �

Example 4.5: With the above, we see that a Riemannian met-
ric, appropriate for the design of an observer for the harmonic
oscillator with unknown frequency in Example 3.7, can be
parameterized on (R2 × R>0) \ ({(0, 0)} × R>0) as

P (x)=

⎛⎝1 0 −x3 0
0 1 0 −x3

0 0 −x1 −x2

⎞⎠P

⎛⎜⎜⎝
1 0 0
0 1 0

−x3 0 −x1

0 −x3 −x2

⎞⎟⎟⎠
whereP remains to be designed as a positive definite symmetric
4 × 4 matrix. �

V. DESIGN OF RIEMANNIAN METRIC P
FOR LAGRANGIAN SYSTEMS

In this section, we show that, besides differentially ob-
servable systems studied above Lagrangian systems make an-
other family for which we can easily get an expression for a
Riemannian metric that satisfies the differential detectability
property introduced in Definition 2.1, at least with symbolic
computations and with no need to solve any equation. To show
this, we follow the ideas in the seminal contribution [6] and
employ the metric used in [19] and [20].
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Let Q be an n-dimensional configuration manifold equipped
with a Riemannian metric g. Once we have a chart for Q
with coordinates qk, with k ∈ {1, 2, . . . , n}, we have also co-
ordinates (qk, vl) with (k, l) ∈ {1, 2, . . . , n}2 for its tangent
bundle with q being the generalized position and v the gen-
eralized velocity. Assume we have a Lagrangian L : T Q → R

of the form L(q, v) = (1/2)v�g(q)v − U(q), where the scalar
function U is the potential energy. The corresponding Euler-
Lagrange equations written via any chart are

q̇k = vk, v̇l = −Cl
abvavb + Sl(q, t) (49)

where k, l, a, b ∈ {1, 2, . . . , n}; S is a source term, a known
time-varying vector field on R

n; a, b are dummy indices used
for summation in Einstein notation8; and Cl

ab are the Christoffel
symbols associated with the metric g, namely

Cl
ab(q) =

1

2

(
g(q)−1

)
lm

(
∂gma

∂xb

(q) +
∂gmb

∂xa

(q)− ∂gab
∂xm

(q)

)
.

We consider the measurement y is q, namely y = h(q, v) = q.
The metric we propose below is for the tangent bundle T Q.

There are many ways of defining a Riemannian metric for the
tangent bundle of a Riemannian manifold [21]. We follow the
same route as the one proposed in [6] to study the local conver-
gence of an observer by considering the following modification
of the Sasaki metric (see [20, (3.5)] or [19, page 55]):

P (q, v) =

(
Pqq(q, v) Pqv(q, v)
Pvq(q, v) Pvv(q, v)

)
where the entries of the n× n-dimensional blocks Pqq , Pqv ,
Pvq , and Pvv are, respectively, Pij , Piβ , Pαj , and Pαβ ,
defined as

Pij(q, v) = agij(q)− c
(
gib(q)C

b
aj(q)va + gaj(q)C

a
bi(q)vb

)
+ bgcd(q)C

c
ai(q)C

d
bj(q)vavb

Piβ(q, v) = −cgiβ(q) + bgβb(q)C
b
ai(q)va

Pαj(q, v) = −cgαj(q) + bgαa(q)C
a
bj(q)vb

Pαβ(q, v) = bgαβ(q)

where a, b, and c are strictly positive real numbers satisfying
c2 < ab, gab are the entries of the metric g; and, here and below,
roman indices i, j, and k are used to index the components of
q, Greek indices α, β, and γ to index the components of v, and
a, b, c, and d are dummy roman or Greek indices.

We obtain

(η� ω�)P

(
η

ω

)
=ηiPijηj+ ηiPiβωβ+ ωαPαjηj+ ωαPαβωβ

=aηigijηj+b(ωα+Cα
aivaηi)gαβ

(
ωβ+C

β
bjvbηj

)
− 2cηigiβ

(
ωβ+C

β
ajvaηj

)
.

Since g is positive definite and c2 < ab, we see that P takes
positive definite values.

8∑
m ambmk is denoted ambmk where the fact that the index m is used

twice means that we should sum in m.

To check that we have the differential detectability property
(4), we rewrite (49) in the following compact form:

q̇ = v, v̇ = fv(q, v, t), y = h(q, v) = q.

Since we have

∂h

∂(q, v)
(q, v)

� ∂h

∂(q, v)
(q, v) =

(
In 0
0 0

)
∈ R

2n×2n

inequality (4) is satisfied if we have, for some strictly positive
real number q

(Pvq Pvv)

(
I

∂fv
∂v

)
+

(
I

∂fv
∂v

�
)(

Pqv

Pvv

)
+

∂Pvv

∂q
v +

∂Pvv

∂v
fv ≤ −qPvv.

With the component-wise expression of fv in (49), the sym-
metry of g, and using Kronecker’s delta to denote the identity
entries, the left-hand side above is nothing but[
(−cgαc + bgαaC

a
bcvb) δcβ − bgαa

(
Ca
bβ + Ca

βb

)
vb
]

+ [δαc(−cgcβ+bgβaC
a
bcvb)−(Ca

αb+Ca
bα)vbbgaβ]+b

∂gαβ
∂qb

vb

= −2cgαβ − b

[
gαaC

a
βb + gβaCa

αb
− ∂gαβ

∂qb

]
vb = −2cgαβ.

Hence, (4) holds since b and c are strictly positive, and the
entries of Pvv are bgαβ .

Example 5.1: Consider a system with L(q, v) =
(1/2) exp(−2q)v2 for all q, v ∈ R as Lagrangian. The associ-
ated metric and its Christoffel symbols are g(q) = exp(−2q),
C = −1. Then, the system dynamics are given by q̇ = v,
v̇=v2. Since the (unique) Christoffel symbol is C=−1, we get

P (q, v) = exp(−2q)

(
a+ 2cv + bv2 −c− bv

−c− bv b

)
.

�

VI. CONCLUSION

We have established that strong differential detectability is
already sufficient for the observer proposed in [1] to guaran-
tee that, at least locally, a Riemannian distance between the
estimated state and the system state decreases along solutions.
Moreover in such a case, the existence of a full order observer
implies the existence of a reduced order one. This extends the
result in [2, Corollary 3.1] established for the particular case of
an Euclidean metric.

The design of the metric, exhibiting the strong differential de-
tectability property and consequently allowing us to design an
observer, is possible when the system is strongly infinitesimally
observable (i.e., each time-varying linear system resulting from
the linearization along a solution to the system satisfies a
uniform observability property). In such a case, one needs
the solution of an “algebraic” (actually a partial differential
equation) Riccati equation. This leads to an observer which
resembles an Extended Kalman Filter.
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With the same strong infinitesimal observability property, we
can also proceed with a linear equation instead of the quadratic
Riccati equation. In this case the metric we obtain is nothing
but an exponentially weighted observability Grammian.

The two designs above need the solution of a partial differen-
tial equation. But thanks to the method of characteristics, it can
be obtained off-line by solving ordinary differential equations
on a sufficiently large time interval and over a grid of initial
conditions in the system state space.

A simpler design is possible when the system is strongly
differentially observable (i.e., the mapping state to output deriv-
atives is an injective immersion). Indeed in this case the metric
can be expressed as a linear combination of functions which
can be obtained by symbolic computations. It then remains to
choose the linear coefficients.

As already shown in [6], another case where the metric can be
obtained via symbolic computations is for Euler-Lagrange sys-
tems whose Lagrangian is quadratic in the generalized velocities.

Unfortunately, to obtain observers for which convergence
holds globally or at least regionally and not only locally, the
metric may need to satisfy an extra property. As shown in [1],
one such property is geodesic convexity of the level sets of
the output function. This condition leads to additional algebraic
equations involving the Hessian of the output function.

APPENDIX

A. Notations and Short Glossary of Riemannian Geometry

1) S
n denotes the n-dimensional unit sphere.

2) Given a function h : Rn → R
p, dh denotes its differential

form whose expression in coordinates x is (∂hk/∂xj)(x)
for each k in {1, . . . , p} and each j in {1, . . . , n}. With
⊗, a tensor product, dh(x) ⊗ dh(x) is a symmetric co-
variant 2-tensor whose expression in coordinates x is∑p

k=1(∂hk/∂xj)(x)(∂hk/∂xj)(x).
3) A Riemannian metric is a symmetric covariant 2-tensor

with positive definite values. The associated Christoffel
symbols in coordinates x are

Γl
ij =

1

2

∑
k

(P−1)kl

[
∂Pik

∂xj
+

∂Pjk

∂xi
− ∂Pij

∂xk

]
.

4) Given a Riemannian metric P and a real valued function
h, gradPh denotes the (Riemannian) gradient of h. It is
its first covariant derivative. Its expression in coordinates
x is (see [22, Sections 1.2 and 2])

gradPh(x) = P (x)−1 ∂h

∂x
(x)�.

5) Given a Riemannian metric P and a real valued function
h, HessPh denotes the (Riemannian) Hessian of h. It is
its second covariant derivative. Its expression in coordi-
nates x is

[HessPh(x)]ij =
∂2h

∂xi∂xj
(x)−

∑
l

Γl
ij(x)

∂h

∂xl
(x).

It satisfies (see [22, Sections 1.2 and 2])

LgradP hP (x) = 2 HessPh(x). (50)

6) The length of a C1 path γ between points xa and xb is
defined as

L(γ)
∣∣∣sb
sa

=

sb∫
sa

√
dγ

ds
(s)�P (γ(s))

dγ

ds
(s)ds

where γ(sa) = xa and γ(sb) = xb.
7) The Riemannian distance d(xa, xb) is the minimum of

L(γ)|sbsa among all possible piecewise C1 paths γ be-
tween xa and xb. A minimizer giving the distance is
called a minimizing geodesic and is denoted γ∗.

8) A topological space equipped with a Riemannian distance
is complete when every geodesic can be maximally ex-
tended to R.

9) A subsetS ofRn is said to be weakly geodesically convex
if, for any pair of points (xa, xb) in S × S, there exists a
minimizing geodesic γ∗ between xa = γ∗(sa) and xb =
γ∗(sb) satisfying γ∗(s) ∈ S for all s ∈ [sa, sb]. A trivial
consequence is that any two points in a weakly geodesi-
cally convex can be linked by a minimizing geodesic.

10) Given a C1 function h : Rn �→ R
p and a closed subset C

of Rn, the set

S = {x ∈ R
n : h(x) = 0} ∩ C

is said to be totally geodesic if, for any pair (x, v) in
S × R

n such that (∂h/∂x)(x)v = 0 and v�P (x)v = 1,
any geodesic γ with γ(0) = x, (dγ/ds)(0) = v satisfies
h(γ(s)) = 0 for all s ∈ Jγ , where Jγ is the maximal
interval containing 0 so that γ(Jγ) is contained in C.

11) Given a set of coordinates for x, the Lie derivative LfP
of a symmetric covariant 2-tensor P is, for all v in R

n

v�LfP (x)v = lim
t→0

⎡⎢⎣
[(

I + t∂f∂x (x)
)
v
]�

P (X(x, t))

t

×

[(
I + t∂f∂x (x)

)
v
]

t
− v�P (x)v

t

⎤⎥⎦
=

∂

∂x

(
v�P (x)v

)
f(x)+2v�P (x)

(
∂f

∂x
(x)v

)
where t �→ X(x, t) is the solution to (1). If there exist
coordinates in R

n denoted x and a function ϕ : Rn → R
p

such that the expression of P is

P (x) =
∂ϕ

∂x
(x)�P

∂ϕ

∂x
(x)

where P is a symmetric matrix, then we have

LfP (x) =
∂Lfϕ

∂x
(x)�P

∂ϕ

∂x
(x) +

∂ϕ

∂x
(x)�P

∂Lfϕ

∂x
(x)

(51)

where Lfϕ is the image by ϕ of the vector field f (in R
n).

Indeed, we have

v�LfP (x)v = 2v�
∂ϕ

∂x
(x)�P

∂Lfϕ

∂x
(x)v.
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We would like the reader to distinguish the notation LfP
for the Lie derivative of a symmetric covariant 2-tensor
from Lfϕ, which is used for the more usual Lie derivative
of a function ϕ, or equivalently, the vector field induced
by a function.
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