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Dynamic Versus Static Weighting of Lyapunov Functions

L. Praly, D. Carnevale, and A. Astolfi

Abstract—The relation between static and dynamic Lyapunov functions
weighting is discussed. It is shown that, under some technical assumptions,
stabilizability by means of static weighting implies stabilizability by means
of dynamic weighting. The existence result is illustrated by means of an
example which highlights that the design based on dynamic weighting re-
quires less a-priori information on the system to be stabilized.

Index Terms— Lyapunov function, nonlinear.

I. INTRODUCTION

Lyapunov function scaling is a well-established analysis and design
tool in nonlinear control design. It has been used, for example, to es-
tablish a Lyapunov of the reduction principle arising in center manifold
theory [2], [3], in the study of stability properties of interconnected sys-
tems [4]–[10], in the design of stabilizing control laws for cascaded
or feedback interconnected systems [11], [12], and in adaptive control
systems [13]–[16]. Informally, the idea of Lyapunov function scaling
can be described as follows. Consider a (nonlinear) system, and two
functions and such that the time derivatives of each of these func-
tions, along the solutions of the system, are nonpositive on some sets of
the state space, the union of which coincide with the whole state space.
Lyapunov function scaling allows to determine, if possible, scaling
functions and such that the function is positive
definite (and radially unbounded) and its time derivative is nonposi-
tive in the whole state space. A second well-established analysis and
design tool is dynamic scaling. Dynamic scaling essentially consists in
adding a state component used as a scaling factor. This scaling factor
could play the role of a state norm observer, see [17], [18]. As such
it has been exploited in adaptive control, to render the boundedness
property robust, see for instance [19] for nonlinear adaptive control, in
nonlinear stabilization, to cope with input disturbances, see [20], and
in nonlinear observers, to deal with non-Lipschitz nonlinearities [21].
Alternatively, it could be used to estimate the local incremental rate
of a dynamical system. As such it is helpful in output feedback stabi-
lization, see, for instance, [22] or [23]. By merging the above two tools,
Lyapunov-like functions defined as sums of dynamically weighted par-
tial Lyapunov functions can be constructed. Preliminary results using
this technique are reported in [16] for the case of observer design and
adaptive control and in [24] for the stabilization of simple cascades.
The techincal note is organized as follows. In Section II, an intro-

ductory example and the objectives of the techincal note are presented.
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Section III contains the main results of the techincal note, namely a
technical lemma followed by two formal statements establishing, under
some technical conditions, the strong link between static weighting and
dynamic weighting. Conclusions are given in Section IV.

II. AN INTRODUCTORY EXAMPLE AND GOAL OF THE PAPER

To illustrate the underlying ideas of static and dynamic Lyapunov
function weighting we consider the problem of studying the stability
properties of a simple cascade. To this end, consider the nonlinear
system

(1)

and note that a simple analysis allows to conclude that the origin
is a globally asymptotically stable equilibrium. To establish this
stability result by means of a Lyapunov function, following
[4], for instance, consider the two functions and

, two weighting functions and , and the Lya-
punov function candidate . Since

, is
negative definite if the functions and are chosen to satisfy the
conditions

(2)

or, alternatively, the conditions ,
and , for all and . The above condi-
tions yield the Lyapunov function , which
is such that for all nonzero . An alternative way to study
the properties of the solutions of system (1) is by means of dynamic
Lyapunov function weighting. Following the arguments in [16], con-
sider the Lyapunov-like function1 ,
where for all , is the weighting variable. The time
derivative of the Lyapunov-like functions along the trajectories of the
system is

hence selecting

(3)

with , yields and

As a result, . Note, however, that we
cannot draw any conclusion on the properties of the zero equilibrium of
the system, since no property of the behavior of has been established.
One way to complete the analysis is via the (true) Lyapunov function,
on 2, , the time
derivative of which, along the trajectories of the system, satisfies the
inequality

(4)

1This is not a Lyapunov function per se, since it is not positive definite and
radially unbounded in .
2 denotes the set of strictly positive real numbers.
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As a result, the point is an (locally exponentially) asymptot-
ically stable equilibrium point with domain of attraction .
Although the considered system has state dimension 2, the analysis
above is carried out for a system with dimension 3 but admitting the
given system as a subsystem. It follows that any stability property of
the extended system can be projected onto the given system. The anal-
ysis bymeans of the dynamically weighted Lyapunov function presents
a few advantages and disadvantages that are worth pointing out.
1) The dynamically weighted Lyapunov function is (trivially) con-
structed as a linear combination of the two functions and
with a coefficient which depends upon the weighting variable .
On the other hand, the dynamic of the weighting variable may be
hard to select.

2) Boundedness of the weighting variable is established a-poste-
riori.

3) There is no clear relation between the statically weighted Lya-
punov function and the dynamically weighted one, i.e. between
the constraint (2) on the ratio and the expression
of in (3). In particular, existence of one does not imply, in gen-
eral, existence of the other.

We conclude the section noting that in the simple, motivating, example
discussed above we have focused on stability analysis, while in the rest
of the techincal notewedealwith a feedbackdesign problem in a general
context. More specifically, aim of this techincal note is to partly address
the issues raised at the end of Section II. In particular, a technical re-
sult, establishing a link between statically weighted control Lyapunov
functions and dynamically weighted control Lyapunov functions is pre-
sented.This result givesconditionsunderwhich,withanadditional tech-
nical assumption for each case, both weighted control-Lyapunov func-
tion anddynamicallyweightedLyapunov function exist.

III. MAIN RESULTS

A. A Technical Lemma

Consider a nonlinear system described by equations of the form

(5)

with state , input , and, without loss of generality,
.

Assume that there exist three functions ,
and , with , such that the following

holds.
(P1) The function is positive definite and radially un-
bounded.
(P2) For each pair satisfying

the inequality
holds.

(P3) For each strictly positive real number there exists a strictly
positive real number such that, for each pair satisfying

, and

Under assumption (P1), assumptions (P2) and (P3) are stating that, for
fixed to a sufficiently large positive value, the function

is a Control Lyapunov Function (CLF) satisfying the Small
Control Property (SCP) [25].
Remark 1: In the sequel we shall see that in (P2) is the key ingre-

dient to design the weights of the statically weighted control-Lyapunov
function and to design the update law of the weighting factor of the
dynamically weighted one. Specifically, the weights and should
be such that and, similarly, is
what should be.

Remark 2: Without the knowledge of one could try to define in-
directly, that is not from what it should be, but from the properties that
it allows to achieve. For example, may be such that, when is large
enough, a function of the state is integrable along closed-loop solu-
tions. This selection yields, for large, the update law , which
however may lead to severe nonrobustness problems, since arbitrarily
small perturbations or the presence of noise may prevent from
converging to zero sufficiently fast. This may not be an issue in anal-
ysis problems but it is certainly one in design problems. We are now
ready to establish a preliminary result.
Lemma 1: Consider system (5). Assume conditions (P1) to (P3)

hold. Then there exists a function defined and continuous in the set
satisfying

(6)

for all such that and .
Lemma 1 is a direct consequence of what is known on universal for-

mulae for the design of state feedback laws exploiting CLFs satisfying
the SCP, see [25], [26].
Remark 3: The reader should not be misled by the result in Lemma

1, which does not establish that is a stabilizing state feedback. Indeed,
the expression on the l.h.s. of the inequality (6) is the time derivative
of the weighted Lyapunov function for constant, whereas
inequality (6) holds only provided is larger than . Hence, if
is a bounded function, a stabilizer from is obtained selecting

whereas, if is unbounded, either we consider only com-
pact sets and obtain semi-global asymptotic stability, or we allow to
follow the variations of . This latter case has to be dealt with care.
In fact the function is, in general, not a stabilizer
since may not be a CLF.

B. Static Weighting

Consider system (5) and the problem of designing a static state feed-
back

(7)

such that the origin of the closed-loop system is asymptotically stable.
This problem admits a solution if conditions (P1) to (P3) hold and
provided an additional technical assumption is satisfied by the triple

.
Proposition 1: Assume conditions (P1) to (P3) hold. If the triple

is such that there exists a pair of , class
functions, with nowhere zero derivative, satisfying

(8)

then there exists a continuous functions such that the origin is an
asymptotically stable equilibrium of the closed-loop system (5)–(7).

Proof: Let . From the properties
of and , and condition (P1), this function is positive definite and
radially unbounded. Consider now any continuous function defined
on the set and satisfying inequality (6), and define
the feedback (7) as . Since and
have nonzero values and (8) holds, this function is well-defined and

continuous on and
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is, by Lemma 1 and (8), negative definite. The claim thus fol-
lows since, along the solutions of the closed-loop system,

.

C. Dynamic Weighting

Consider system (5) and the problem of designing a dynamic state
feedback

(9)

such that the closed-loop system (5), (9) has the following properties:
• the signal remains in some compact subset of for
all ;

• there exists some nominal value such that the point
is a globally stable equilibrium;

• the component converges to zero as time goes to infinity.
As expressed in the following statement, this problem admits a solution
if conditions (P1) to (P3) hold and provided an additional technical
assumption is satisfied by the triple .
Proposition 2: Assume conditions (P1) to (P3) hold. If the triple

is such that the function is radially un-
bounded then there exist continuous functions and and a constant

such that the closed-loop system (5)–(9) has the following
properties.
• The set is forward invariant.
• is a stable equilibrium.
• For each initial condition in , the com-
ponent converges to zero as time goes to infinity.
Proof: To begin with observe that since the function takes

only nonnegative values, zero can only be a minimum and therefore a
critical value of . It follows that

(10)

Consider now the function , which, as
a function of , is defined and on , and it is such
that, by condition (P1), and, for
all real numbers and , there exists a real number such that

for all , . In words, this says
that is a positive definite and radially unbounded function,
uniformly in , in compact subsets of .
Select any continuous function , defined on the set

and satisfying inequality (6). Note that Lemma 1 guarantees the
existence of such a function. Define in addition the function of the
feedback (9) as

(11)

and the function as

(12)

Along the solutions of the closed-loop system we have

(13)

By Lemma 1, is strictly negative for all nonzero and all

, hence (10) implies that
. As a result, is a partial (not

in ) CLF for the interconnected system (5)–(9), with as in (11) and
as control input, for which the SCP holds trivially for .
From this property, we look for a , possibly rendering the set

, with , forward invariant along the solu-
tions of the closed-loop system, to achieve the stabilization objective.
To this end, define3

if ,

elsewhere
(14)

with . By classical results on CLF, see [25]–[27], the function
is well-defined and continuous on and it is such

that setting yields

(15)

Note that takes only nonnegative values, hence selecting
yields a monotonically nondecreasing along the solutions of the
closed-loop system. This problem can be solved recalling that the
function takes nonpositive values and selecting

(16)

with . In fact, since
, by (13) and (15), this selection yields

(17)

We conclude that, on the positive time domain of existence of closed-
loop solutions, is bounded and is in-
tegrable. To complete the analysis of the solutions of the closed-loop
system observe that given a , class function , to be defined,
with derivative of class , there exists a class function such
that4, for any pair of strictly positive real numbers

(18)

As a result, recalling that is nonpositive and that
takes values in [0,1], then from (14) it holds

(19)

3For compactness, in what follows we drop the arguments of the functions
whenever this does not cause confusion.
4As suggested by Reviewers a possible choice is .
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for all . On the other hand (10) im-
plies for all
and therefore, by continuity,

. Note also that the function
is continuous. It

follows that there exist class functions and such that is
, its derivative is a class function and

for all , yielding

. Observe now that to any we
can associate a neighborhood of the origin such that

for all and all . In addition is strictly
negative for all and all . Moreover, since

, when , and the function is radially
unbounded, there exists a function , with nonde-
creasing and nonintegrable derivative , satisfying

(20)

for all and all . In conclusion, the bound

(21)

holds. Consider now the function

(22)

with . With (16), exploiting the inequalities (17)
and (21) yields (see the equation at the bottom of the previous page).
This inequality, together with inequality (17), establishes the result.
Remark 4: If a continuous function

satisfying , for all is known,
then we can replace in (16) with
. Then replacing in (22) with

yields

As a result, the point is asymptotically stable, with
as basin of attraction.

Remark 5: The existence proof in Proposition 2 relies on the use of
universal formulae [25]–[27]. However, in specific examples (see the
introductory example) it is possible to design the feedback control and
the dynamics of the weighting variable directly, i.e., without the use
of universal formulae.
Remark 6: Propositions 1 and 2 differ in the extra assumption

for the former and radially unbounded
for the latter. Both assumption are trivially satisfied when is radially
unbounded whereas in general the assumptions of the Proposition 2

on dynamic weighting to hold are (slightly) more restrictive than the
necessary conditions for the assumption of the Proposition 1 on static
scaling to hold. (Further material can be downloaded at [28]).

IV. CONCLUSION

The relation between static and dynamic Lyapunov function scaling
has been discussed. It has been shown that, under proper technical con-
ditions, the two tools are equivalent. This theoretical, existence, result
has been motivated by means of a simple example and has been illus-
trated on a worked out design problem. Applications of the proposed
tool to the stabilization of general cascaded systems (see the prelimi-
nary results in [24]) and to output feedback stabilization of system with
iISS inverse dynamics are under investigation.
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Stochastic Integration Filter

Jindřich Duník, Ondřej Straka, and Miroslav Šimandl

Abstract—The technical note deals with state estimation of nonlinear sto-
chastic dynamic systems. Traditional filters providing local estimates of
the state, such as the extended Kalman filter, unscented Kalman filter, or
the cubature Kalman filter, are based on computationally efficient but ap-
proximate integral evaluations. On the other hand, the Monte Carlo based
Kalman filter takes an advantage of asymptotically exact integral evalua-
tions but at the expense of substantial computational demands. The aim of
the technical note is to propose a new local filter that utilises stochastic in-
tegration methods providing the asymptotically exact integral evaluation
with computational complexity similar to the traditional filters. The tech-
nical note will demonstrate that the unscented and cubature Kalman filters
are special cases of the proposed stochastic integration filter. The proposed
filter is illustrated by a numerical example.

Index Terms—Bayesian filters, nonlinear filtering, state estimation, sto-
chastic systems.

I. INTRODUCTION

The problem of recursive state estimation of discrete-time stochastic
dynamic systems from noisy or incomplete measured data has been a
subject of considerable research interest for the last several decades.
The general solution to the estimation problem, based on the

Bayesian approach, is given by the Bayesian recursive relations
(BRRs) for computation of probability density functions (pdfs) of
the state conditioned by the measurements. These pdfs provide a full
description of the immeasurable state. The closed form solution to the
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BRRs is available only for a few special cases [1], e.g., for a linear
Gaussian system which leads to the well-known Kalman filter (KF).
In other cases, it is necessary to apply some approximative methods.
These methods can be divided into two groups: local and global
methods [2].
The global methods are based on a certain type of approximation

of the BRRs and generate the conditional pdf of the state. The global
methods are represented by e.g., the particle filter (PF) [3], the point-
mass method [4], the Gaussian sum method or the ensemble Kalman
filter (EnKF) [5].
The local methods are based on an approximation of a system de-

scription so that the KF design technique can be used for the BRRs
solution, i.e., the conditional mean and covariance matrix are com-
puted instead of the conditional pdf. This rough approximation of the
model and a posteriori estimates induces local validity of the estimates
and consequently impossibility to generally ensure convergence of the
local filter (LF) estimates. On the other hand, the advantage of the
local methods can be found in the simplicity of the BRRs solution. The
local methods either approximate the nonlinear functions appearing in
the system description or approximate the pdfs representing state esti-
mates. The former group of filters is based on functions’ approximation
using polynomial expansions, e.g., the Taylor or Stirling expansions
[1], [6]–[9]. As an example, the extended Kalman filter (EKF), second
order filter or divided difference filters (DDFs) can be mentioned. The
latter group approximate the pdfs representing state estimates by a set
of deterministically chosen weighted points [8]–[13]. This approach
uses the unscented transform (UT) or it can be viewed as an applica-
tion of deterministic quadrature or cubature integration methods. The
unscented Kalman filter (UKF), the Gauss-Hermite filter or the cuba-
ture Kalman filter (CKF) exemplify this approach1. An alternate way
of approximating the pdfs of the state estimate is to use a set of ran-
domly chosen points. This approach is in fact based on Monte Carlo
(MC) integration and its application leads to the Monte Carlo Kalman
filter (MCKF) [14].
As the local filters follow the structure of the KF algorithm, they can

be written in a unified framework [9]. The approximation based on the
polynomial expansions, UT or deterministic integration methods usu-
ally leads to approximate integral evaluation only, but with low com-
putational complexity. On the other hand, the MC integration allows
asymptotically exact integral evaluation. Thus it leads to significantly
better filter performance in terms of estimation quality. However, it is
connected with a significant increase of computational demands.
The goal of the technical note is to propose a novelmore accurate and

computationally efficient LF based on stochastic integration methods.
The stochastic integration methods provide an asymptotically exact in-
tegral evaluation with convergence faster than the MC integration; thus
with significantly lower computational costs.
The technical note is organised as follows. System specification and

problem statement is given in Section II. The stochastic integration
methods and the novel stochastic integration filter are introduced and
analysed in Section III. In Section IV, a numerical illustration of the
proposed filter is given and concluding remarks are drawn in Section V.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

In this technical note, the discrete-time nonlinear stochastic system

(1)

(2)

1It is notable that the UKF and the DDFs (and their variants) can be viewed
as one class of filters, namely derivative-free Kalman filters [9], although they
are based on different ideas.
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