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Abstract—Among the non-linear control techniques, some Lya-
punov designmethods (Forwarding/Backstepping) take advantage
of the structure of the system (Feedforward-form/Feedback-form)
to formulate a continuous control law which stabilizes globally
and asymptotically the equilibrium. In addition to stabilization,
we focus on the local behaviour of the closed loop system, pro-
viding conditions under which we can predetermine the behaviour
around the origin for Feedforward systems.

Index Terms—Feedforward form, first order approximation,
forwarding, Lyapunov design, stabilization.

I. INTRODUCTION

T HE synthesis of a stabilizing control law for systems de-
scribed by nonlinear differential equations has been the

subject of great interest by the nonlinear control community
during the last three decades. Depending on the structure of the
model, some techniques are now available to synthesize control
laws ensuring global and asymptotic stabilization of the equi-
librium point.
For instance, we can refer to the popular backstepping ap-

proach (see [1] and the reference therein or [2]), or the for-
warding approach (see [3]–[6]) and some others based on energy
considerations (see [7] for a survey of the available approaches).
Although the global asymptotic stability of the equilibrium

point can be achieved in some specific cases, it remains difficult
to address at the same time, performance issues of a nonlinear
system in a closed loop. However, when the first order approxi-
mation of the non-linear model is considered, some performance
aspects can be addressed by using linear optimal control tech-
niques (using controllers for instance).
Hence, it is interesting to raise the question of synthesizing

a nonlinear control law which guarantees the global asymptotic
stability of the origin while ensuring a prescribed local linear
behavior. This type of question has been already discussed in
the literature when backstepping design is used to synthesize a
nonlinear continuous control law (see [8]).
In the present paper, we consider the same problem in the

case of a system whose structure allows forwarding design tech-
niques (see [4], [5]).

Manuscript received July 06, 2012; revised February 12, 2013; accepted
June 21, 2013. Date of publication August 07, 2013; date of current version
November 18, 2013. Recommended by Associate Editor L. Marconi.
M. S. Benachour, V. Andrieu, and H. Hammouri are with the Université

de Lyon, Lyon F-69622, France and also with the Université Lyon 1, CNRS,
UMR 5007, LAGEP (Laboratoire d’Automatique et de Génie des Procédés),
Villeurbanne 69100, France (e-mail: benachour@lagep.univ-lyon1.fr; ham-
mouri@lagep.univ-lyon1.fr).
L. Praly is with the Centre d’Automatique et Systèmes, Mines ParisTech,

Fontainebleau 77305, France (e-mail: laurent.praly@ensmp.fr).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAC.2013.2277632

The paper is organized as follows. In Section II-A, the
problem under consideration is described. Section II-B is de-
voted to the statement of the main theorem and to its discussion
in the case of systems that are obtained after adding some
dynamics composed of a neutrally stable part and integrations.
Section IV gives an illustration of the results on a class of
systems composed of a quadratic nonlinear part with a linear
subsystem. Finally, Section V gives the conclusion.

II. PROBLEM DESCRIPTION AND GENERAL RESULT

A. Problem Description

To present the problem under consideration, we introduce a
general controlled nonlinear system described by the following
ordinary differential equation:

(1)

with the state in and is a
function such that and is a control input in .
For this system, we can introduce the two matrices describing
its first order approximation at the origin which is assumed to
be stabilizable

For system (1), the problem we intend to solve can be de-
scribed as follows:
Stabilization with prescribed local behavior: Let the linear

state feedback law stabilizing the first order approxi-
mation of system (1) be given. We are looking for a stabilizing
control law , differentiable at 0 such that:
1) the origin of the system

is globally and asymptotically stable.
2) The first order approximation of the control law satisfies

A general answer to this problem has been given in [9], re-
quiring the system to be input affine.
However, the set of local linear controllers are those

which satisfy a specific linear matrix inequality. Adding some
structural constraints on the system (1) this problem has been
addressed in [8] where the system is in strict feedback form.
In our study, we consider the case in which by decomposing

the state as the system (1) can be rewritten in the
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following Feedforward form:

(2)

with in , in and with ,
and are functions, such that
and and is the control input in .

The stabilization problem for this class of system has been
deeply studied in the last two decades employing forwarding
techniques (see for instance [3]–[6], [10], [11]). Compared to
our preliminary result in [12], the novelty comes from the fact
that is not a scalar.
The first order approximation of system (2) is denoted

(3)

with the matrices , and given as

(4)

In the following, we make three structural Assumptions on
the nonlinear system (2). The first one establishes that the first
order approximation is stabilizable.
Assumption 1: The system (3) is stabilizable.
The second assumption we make is also a local prop-

erty and concerns more specifically the vector field
.

Assumption 2: The distribution is
involutive and of constant dimension in a neighborhood of
the origin.
In the case where there is only one input (i.e., ), this

assumption is always satisfied provided .
In the spirit of [4], we make the following assumption on the

matrix in the subsystem.
Assumption 3: There exists a positive definite matrix in

such that the following equality holds:

(5)

This Assumption implies that the matrix has all its eigen-
values with zeros real part and we recover the case in which
is scalar as already studied in our preliminary conference paper
[12].
Also, we assume that the stabilization problem with any pre-

scribed local behavior can be solved for the subsystem in
system (2). More precisely, given in we make the following
assumption on the functions and :
Assumption 4: For all matrices in such that the

matrix is Hurwitz, there exists a function
of class such that the following two properties are sat-

isfied:
1) the origin of the system

(6)

is globally and asymptotically stable;

2) the first order approximation of this function satisfies

(7)

B. Main Result

We are now ready to state the main result which gives suf-
ficient conditions guaranteeing that the stabilization with pre-
scribed local behavior can be solved for system (2).
Theorem 1 (Adding Integration With Prescribed Local

Behavior): Assume the System (2) satisfies Assumptions
1, 2, 3 and 4 for a given in . Let a linear controller

in such that the matrix

(8)

is Hurwitz be given. Assume moreover that there exists a posi-
tive definite matrix defined as

(9)

which satisfies the weak Lyapunov inequality

(10)

and where is a positive definite matrix in which satis-
fies (5) and where is a positive definite matrix and
is a positive real number and is left invertible. Then there
exists a function such that the fol-
lowing properties are satisfied:
1) the function satisfies

(11)

2) the origin of the system

(12)

is gloally stable1. Moreover, if any forward bounded solu-
tion to the system

(13)

defined on , converges to the origin then the origin
is globally asymptotically stable.

C. Discussion on Theorem 1

1) About Assumption 4: Assumption 4 is stronger than a sta-
bilizability property since it is assumed that all local behaviors
can be recovered for the closed loop system when considering
the dynamics only. However, employing the result obtained in
[8], yields that Assumption 4 is satisfied in the case in which the
sub-system is in strict feedback form and when the functions

1An equilibrium point is said globally stable if it is stable and if all solutions
are bounded (see [13, Page 40] for further details).
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and are sufficiently smooth. Note also that it is trivially sat-
isfied when this system is a linear controllable system as studied
in Section IV.
2) About the Weak Linear Lyapunov Inequality: The right

hand side of inequality (10) may not be a full rank matrix. In-
deed, this one is of rank . In order to apply Theorem 1,
we need to find solution to the weak Lyapunov inequality (10)
and (5). Note that in the case there is one input (i.e., ), this
construction can be reformulated in terms of an equivalent linear
matrix inequality. Indeed, we can show the following proposi-
tion.
Proposition 1: Let in be given such

that . Let be a positive definite matrix in
which satisfies (5). The matrix defined in (9) satisfies (10)
with if and only if it satisfies the following linearmatrix
inequality:

(14)
Proof: Assume (14) is satisfied. Since this im-

plies that . Moreover with (5), implies
that is a negative semidefinite matrix. For
this property to hold, this implies that there exists a positive real
number2 such that . Consequently (10) is sat-
isfied. The proof that (10) implies (14) follows the same lines.
In the case in which (this implies that ) this

assumption can always be satisfied (indeed, this is the usual Lya-
punov inequality). However, this is not the case when .
For instance, if we consider the case of a system whose first
order approximation is a linear system of the form

(15)

It is shown in Appendix A that for all stabilizing linear con-
trollers in the form where are real
numbers (i.e., with ), it is not
possible to find such that the weak Lyapunov inequality (10)
is satisfied with . Hence, our approach can’t be applied
for this stabilizing local control law.
3) About the Result: As mentioned in the previous com-

ment, when , the weak linear Lyapunov inequality is
satisfied for all stabilizing linear controller. Consequently when

, the conclusion of Theorem 1 implies that Assump-
tion 4 is valid for the entire system with stabilizer in .
Hence, with an iterative procedure, higher order systems can be
considered. Indeed, let system (1) be with , with

in the form

... (16)

2Given two real vectors and of the same dimension such that
the matrix is negative semidefinite. Note that we have,

.
Consequently, is an eigenvalue which is strictly positive
unless . Hence the result.

with in , in and in , ,
and are functions, such

that and and is the control input in
. Based on the result obtained from Theorem 1, we can show
the following result:
Theorem 2 (Case of Higher Order Systems): Assume the

subsystem of (16) satisfies Assumptions 2 and 4 with
. Assumemoreover the first order approximation of this system
is stabilizable. For all vectors in

which stabilizes globally and asymptotically
the first order approximation of system (16) and such that there
exists a matrix in the form (9) with in which
satisfies (10) with left invertible then there exists a func-
tion such that the following properties
are satisfied :
1) the function satisfies

2) the origin of the system (16) in closed loop with
is globally stable and if moreover the origin is

the only solution to the system (13) then the origin is glob-
ally asymptotically stable.
Proof: First, employing Theorem 1 it is shown that the
-subsystem in system (16) satisfies Assumption 4 with

. Recursively, we apply again Theorem 1 and we
obtain the result.
In the paper [9], the stabilization with prescribed local be-

havior has been addressed and studied on an inverted pendulum
model. In some specific coordinates, this inverted pendulum
model can be put in forwarding form and a forwarding con-
trol law has been introduced in [4]. It is noticed in [9] that, sta-
tistically, for all local behavior obtained from a approach,
the stabilization with prescribed local behavior could be solved.
Consequently, Theorem 1 and Theorem 2 establish a theoretical
justification on the fact that the approach of [9] applies on the
forwarding model of the inverted pendulum.

PROOF OF THEOREM 1

The proof of this result is divided into four parts. In the first
part, we focus on the linear approximation of the system and we
show that the quadratic Lyapunov function associated with the
local stabilizer (i.e., ) can be rewritten in the form of a Lya-
punov matrix that would have been obtained by following the
forwarding design method of [4]. In the second part of the proof,
we construct a candidate Lyapunov function for the nonlinear
model such that its quadratic approximation is the matrix . In
the third part, from this candidate Lyapunov function we con-
struct a control law which makes non positive the time deriva-
tive of the candidate Lyapunov function. By interpolating this
control law with the local controller, we finally get our solution
to the stabilization with prescribed local behavior. Finally, in the
fourth part, we construct a Lyapunov function associated to this
control law and show that LaSalle invariance principle may be
applied to get asymptotic convergence of the closed loop trajec-
tories toward the origin.
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D. Part 1: Forwarding Local Lyapunov Function

In this part of the proof, we show that the weak Lyapunovma-
trix associated with the matrix can be rewritten in the form
of a Lyapunov matrix that would have been obtained following
the Forwarding design method of [4] or [6].
Indeed, note that the Lyapunov function associated to the ma-

trix can be decomposed as follows:

(17)

where and are, respectively, a matrix in and a
vector in defined as

(18)

If we compare the decomposition in (17) and the structure of the
Lyapunov function obtained by the forwarding technique of [4]
(see [6], (3)), we see that the matrix would be a Lyapunovma-
trix obtained by a forwarding design technique provided there
exists a vector in such that the following two require-
ments are satisfied:
1) There exists a matrix in which may differ from

and such that the following algebraic equation is sat-
isfied (see [4, (132)]):

(19)

2) is a control law for the -subsystem associated
to the Lyapunov matrix . In other words, is a
Hurwitz matrix and the following inequalities are satisfied:

(20)

In this part of the proof we show that a vector satisfying
(19) and (20) does exist. Indeed, we can decompose

with3

With these notation, we have

and, employing the fact that we get

Since we have assumed that is left invertible we can in-
troduce the two matrices respectively in and

(21)

3the symbol stands for a zero matrix.

Note that we have

Hence, we have for all real matrices

(22)

Note moreover that we have

Hence, it implies with (10)

This yields recalling that and with (22)

(23)

More precisely, the following inequality is satisfied for all :

(24)

The matrix inequality (24) being true for all matrices , it is
for instance true for where is a
positive real number. Hence we get

Letting goes to infinity implies that we have

(25)

This gives

Consequently it yields

Left multiplying the previous equality by and employing
the fact that with (5) we have it yields

(26)

Hence, we recover (19) with and

(27)
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It remains to check if satisfies (20). Note that (24) and
(25) imply that

Replacing by its definition given in (21) in the previous in-
equality yields

(28)

On another hand, with (26), we have

Hence employing again , inequality (28) be-
comes

(29)

Therefore, for the time being, we showed this surprising
property.
Lemma 1: Let be a matrix in the form (9) solution to the

weak Lyapunov inequality (10) and such that its upper left block
is a Lyapunov matrix associated to (i.e., (5) is satisfied). Then
this matrix can be decomposed in a forwarding-like manner. In
other words, and defined in (18) satisfy (19) and (20).
From this crucial property, we will be able to get a candidate

Lyapunov function for the nonlinear system associated to the
local controller.

E. Part 2: Construction of the Global CLF

In this part of the proof we construct a global (weak) control
Lyapunov function denoted for the nonlinear system (2) and
such that its Hessian satisfies4 . The construc-
tion of the candidate Lyapunov function is based on a modified
forwarding technique inspired from [4] and employs Assump-
tion 4. First, with Assumption 4, and the local stabilizer
given in (27), there exists a function such
that the origin of the system (6) is globally and asymptotically
stable and the local property (7) is satisfied.
Now, we can apply the following Lemma whose proof is

given in Appendix B.
Lemma 2: There exists a Lyapunov function
, proper and positive definite, such that:
• is a Lyapunov function associated to the closed loop
system (6). In other words, we have

(30)
• is locally quadratic and its local approximation is
defined in (18). We have

(31)

4The symbol denotes the operator which gives the Hessian of a given
function in .

For the non linear system (2), following the forwarding de-
sign described in [14] and [4], we can introduce the function

defined as:

(32)

where is the solution initiated from and evaluated at
time of the system

The following Lemma can be obtained from [14, Lemma
6.88]. See also [5, Secction 5.2] and [4].
Lemma 3 ([14]): The function defined in (32) is zero

at the origin, and satisfies the following partial differential
equation:

(33)

With obtained from Lemma 2, the function given in (32)
we consider the candidate Lyapunov function

as

(34)

This function is proper and positive definite and, according to
[4], it is a global weak CLF5.
To complete Part 2 of the proof, it remains to show the

quadratic approximation of the candidate Lyapunov function is
. More precisely, it remains to show that .

Note that

(36)

By evaluating the partial derivative of (33) at the origin where
, and are zero, we get

The eigenvalues of and being all different, the
solution of this algebraic equation is unique and with (19), we
get

Hence, equality (36) becomes

(37)

5Actually we can replace the function by its first order approximation at
the origin namely we can replace by . But then the
Lyapunov function in (34) has to be modified in

(35)

where is a class function to be tuned large (enough). For more details,
see [4], [14] or [13].
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F. Part 3: Construction of the Controller

In this part of the proof we construct the global control law
denoted solution to stabilization with prescribed local be-
havior problem. This one is obtained by interpolating and a
global control law .
By looking at the time derivative of along the solution of

the system (2), we see that a control law ensuring stabilization
of the origin of the system (2) and boundedness of the solutions
can be obtained simply6 as

Indeed, with (30) this gives along the trajectory of the system
(2)

(38)

which is non positive. But, unfortunately, the first order approx-
imation of the control law is

with

And this one is not equal to the given one .
Hence the control law is not a solution to the

stabilization with prescribed local behavior.
The idea of the construction is to show that the two controllers

and makes the time derivative
of a same Lyapunov function non positive in a small neighbor-
hood of the origin.
Indeed, we have the following lemma whose proof is given

in appendix.
Lemma 4 (Same Lyapunov Function for the two Controllers
and ): There exist a positive definite function

and three positive real numbers , and such
that for all such that we have

(39)

6Note that to design this control, we need to construct the function solu-
tion to the PDE (33). Hence, it may be difficult to apply this strategy for general
feedforward systems. However, as shown in the following Section, when we
consider some specific systems, this control law may be given in closed form.
Moreover, when considering the Lyapunov function given in (35) and pro-
vided we are able to compute the function , an explicit solution may be given.

and

(40)

The proof of this Lemma relies on the use of change of coor-
dinates which rectifies the controlled vector field around the
origin. This property relies on Assumption 2.
The two controllers and making non positive the time

derivative of the same Lyapunov function and the system being
input affine it yields that any convex combination of both con-
trollers will have the same property. Hence, we can interpolate
in a neighborhood of the origin this control law with the pre-
scribed one

(41)

with any smooth function taking value in and such that

if
if

Indeed, in this case we get along the solution of the system (2)
and for all such that

This is sufficient to conclude that we have stability of the
equilibrium. Note however that in order to study its asymptotic
behavior and its convergence toward zero we make in the fol-
lowing section an analysis by introducing a Lyapunov function
associated to our controller.

G. Part 4: Modification of the Global CLF to Prove
Asymptotic Stability

In this part, we unite the two functions and in order
to obtain a Lyapunov function associated to the controller .
Following [15] consider the function defined as

where is any smooth and non increasing function such that

if
if

and is a positive real number such that
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Note that we have with

and different cases may be distinguished:
1) If . In this case, we have

, and . Con-
sequently, we get

2) If . In this case, we
have . Consequently, we have

and

Moreover we have and
. Hence, with (39) it yields

3) If . We have and
. Hence, it yields

On another hand we have

Hence

Hence, we get global stability and local asymptotic stabilization.
Moreover, the control law satisfies the local property requested.
Finally, from LaSalle invariance principle, it follows that, for

each trajectory, there exists a real number such that it con-
verges the trajectories converge to the largest set of points ,
invariant for the system

and satisfying

Recalling that , we get the result.

III. ILLUSTRATION ON A PARTICULAR CLASS OF SYSTEMS

In this section, we consider the problem of designing a robust
stabilizing control law for a class of disturbed strict feedforward
systems with linear dynamics and a quadratic function . In
other words we consider the case in which the system (2) is in
the form

(42)

where to simplify the presentation we consider the mono input
case (i.e., ) and is an unknown input which is assumed
to be a locally bounded time function taking values in and
and are locally Lipschitz function of appropriate dimen-

sion. We assume that the function is a quadratic function.
Hence, this one can be written in the form

... (43)

where for all in , is in .
A framework to design a robust control law for this system

can be to follow the design methodology (see [16]). In this
context, we are looking for a control law that satisfies two dis-
tinct objectives:
1) The first one is to guarantee the asymptotic stability of the
origin when the disturbance vanishes.

2) The second one is to guarantee a given attenuation level
of a quadratic functional of the state and control in the
framework. More precisely, given a positive definite ma-
trix in and a positive real number
(the attenuation level) we want to find a stabilizing feed-
back control law such that the following in-
equality is satisfied for all in :

(44)

where denotes the solution of system (42) ini-
tialized to the origin.
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Solving this problem relies on the construction of a solution to
a nonlinear Hamilton Jacobi Isac equality which can be difficult
(or impossible) to solve (see [16]).
However, if we focuss on the linear approximation of system

(42), then this problem can be solved locally. The first order
approximation of system (42) is a linear system defined as

(45)
In compact form, this linear system can be rewritten as follows:

In the linear context, the Hamilton Jacobi Isac equality is an
algebraic equation defined as

(46)

where the solution is a positive definite matrix in
, and a robust linear control for system

(45) solving the disturbance attenuation problem as defined by
inequality (44) for the linear approximation is given as

(47)

However, this control law guarantees only local asymptotic sta-
bility of the origin of system (42). We may apply the design
methodology given in Theorem 1 to design a global asymptotic
stabilizing controller such that its local behavior
is exactly .
We assume that the system (45) is controllable and the matrix
is skew symmetric. This yields that Assumption 1 and 3 are

satisfied. Moreover, the subsystem being linear, it yields that
Assumption 2 and 4 are trivially satisfied. In this case, we may
apply the procedure of Theorem 1 as described by the following
four steps.
1) First, we choose a local prescribed behavior by solving
the HJB algebraic (46) for given tuning parameters and
.

2) We solve the linear matrix inequality (14) to find a for-
warding like matrix [see Theorem 1 (10)]. Note that
this step is not guaranteed to succeed when . This
gives us a stabilizing controller for the -subsystem
(see (27)] and its associated Lyapunov matrix [given in
(18)].

3) Then, using this and , we give an explicit solution
to the partial differential (33). As shown in AppendixD,

in our particular context this one can simply be expressed
as

... (48)

where is solution to the Sylvester equation

(49)

and are matrices in obtained by
solving the unsquare Sylvester equation7

...

...
... (50)

where the operator is the Kronecker tensor product.
4) Next we construct the globally stabilizing feedback law
defined as

(51)

and we modify this, control law to match the local desired
behavior. To complete the modified forwarding procedure,
we construct a control law [see (41)] with function

chosen as

if

if
if

(52)
where is computed with Lemma 4.

The benchmark example [10], (39), (see also [11]) fits in
the class of system considered in this section. More precisely,
system (42) is studied in the particular cases in which ,

and the parameters are selected as follows:

(53)

For this system we can follow the procedure to design a global
stabilizer with local optimality.
1) We select the tuning parameter of the local optimal con-
troller as

Solving the associated Riccati equation (see (46)) by em-
ploying the routine (care) of Matlab with the attenuation
level , it yields the local optimal controller

2) In the case , we obtain directly the matrix given
as

7It is shown in Appendix D that this Sylvester equation admits a solution.
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Fig. 1. Example of a closed loop trajectory.

Fig. 2. Controllers.

This yields the controller and the matrix given as

3) We get the solution to the PDE given in (48) with

4) By aMatlab computation, it yields the positive real number
given as

In the following figures is considered simulation of this con-
trol law when considering to be a gaussian white noise with
variance 2.
In Fig. 1 is shown a state trajectory when considering a par-

ticular initial condition for the disturbed model.
In Fig. 2 is depicted the associated control law. The red one

is the locally optimal control. The blue is the evaluation of the
optimal local and linear control law along the solution of the
system. Finally the green one is the evaluation of the global
forwarding control law. It can be checked that the solution goes
from the green toward the red one when the solution gets close
to the origin.
Fig. 3 compares the proposed control law which is locally

optimal with respect to a given cost and the control law given in
[10], (39), when considering solution initiated from the origin.

Fig. 3. Comparison with the controller of [10, Equation (39)].

IV. CONCLUSION

We have studied the problem of designing a stabilizing con-
troller which ensures a desired local behavior. We have shown
that given a prescribed locally stabilizing control law, provided
there exists a Lyapunov matrix with a specific structure, this sta-
bilizing local behaviors can be reproduced when using the for-
warding design technique developed in [4], [5]. This is made
possible by modifying the forwarding design adequately. Note
that when the subsystem is of dimension 1, this result estab-
lishes that all stabilizing local behaviors can be reproduced. This
result gives a theoretical justification of a statistical result given
in [9].

APPENDIX

On the Feasibility of the Weak Lyapunov Inequality: In
this Section, we study the feasibility of the weak Lyapunov in-
equality (10) when considering systems whose first order ap-
proximation is the system (15). Assume a stabilizing local con-
troller is given. Note that, the necessary and
sufficient conditions to make a globally and
asymptotically stabilizing input are

(54)

First of all note that . Let

in be a Lyapunov matrix which satisfies (5). Note that

Hence, this implies that and . In other word,
the only Lyapunov matrix which satisfies (5) are those which
take the form . For a candidate Lyapunov matrix in the
form (we have normalized with respect to )
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to, be positive definite, parameters , and must satisfy

Assume there exists and which satisfies (54) and such
that there exists , and with and not equal to zero such
that the weak Lyapunov inequality (10) is satisfied. Inequality
(10) implies that the following matrix is non positive:

It implies that for all in , we have

Hence, this implies that . Moreover for all in ,
we have

which means for all in

Hence, which contradicts the assertion.
Proof of Lemma 2: The proof of this Lemma is based on

recent results obtained in [15]. Indeed, the design of the func-
tion is obtained from the uniting of a quadratic local con-
trol Lyapunov function (denoted ) and a global control Lya-
punov function (denoted ) obtained employing a converse
Lyapunov theorem.
First of all, employing the converse Lyapunov theorem of

Kurzweil [17], there exists a function
such that

On the other hand, with (20), the function is
such that

Due to the fact that satisfies (7) it yields that the matrix
is the first order approximation of the -subsystem

in (2) with the control law . Consequently, it implies
that there exists a positive real number such that

Employing [15, Theorem 2.1], it yields the existence of a func-
tion and a positive real number such that
1) for all in

2) for all in such that , we have

and consequently .
This conclude the proof of Lemma 2
Proof of Lemma 4: With Assumption 2, there ex-

ists a neighborhood of the origin in which the distribu-
tion is regular, involutive and
of constant dimension . Employing Frobenius theorem
[18, Theorem 1.4.1], we know there exists a neighbor-
hood of the origin and a diffeomorphism

such that

Let be the diffeomorphism defined as
. Note that we have .

Moreover, we have

...

...

Hence, we get

...
...

If we denote the new coordinates , the system (2) takes
the form

(55)

where is a matrix in for all in and
. Note that since , we have .
Consider now the Lyapunov function

We will show that this Lyapunov function is nonincreasing in
a neighborhood of the origin when employing the control law

. Note that there exists and such that
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Note that we have the properties

When the time derivative of the function
satisfies along the trajectories of the nonlinear system

(2)

This gives

Hence we get,

(56)

where is the matrix defined in (57), as shown at the bottom
of the page, where is the negative definite matrix defined
in (29). This matrix satisfies where

is a positive real number. Moreover we have

Moreover, we have

(58)

Hence, (56) becomes

(59)

Note that

Hence, this implies that there exists a positive real number
such that when we get along the solutions of the
system (2) for all such that

With the same analysis, it is possible to find a positive real
number such that by taking we get a
positive real number such along the trajectories of the closed
loop system we have for all such that

Note that since is a diffeomorphism, we get the existence of a
positive real number such that around the origin .
Hence, we get the result with .

Solving the PDE for the Illustrative Example: In this sec-
tion we show that given, a vector such that
is Hurwitz the following partial differential equation:

(60)

can be solved explicitly when the function is the quadratic
function defined in (43).
First of all, note that following (32), the solution
can be expressed as:

(61)
The function being quadratic, this implies that the function
is also quadratic and may be written in the form (48) with

are matrices in to be selected. As-
sume for the time being that there exist solutions to the two

(57)
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Sylvester (49) and (50) and let be these so-
lutions. Note that we have

where is the matrix in defined by

...

However, employing the fact that is solution
to the Sylvester (50), we get

...

...
...

...
...

Hence, it implies

...
...

where we have used the fact that satisfies the Sylvester (49).
Employing the fact that

...
...

it yields

...

...

Consequently, if are matrices in so-
lution to the Sylvester (49) and (50) the function defined in
(48) is solution to the PDE (60).
It remains to show that the two Sylvester (49) and (50) admit a

solution. Note that for the first one [i.e., (49)], this is trivial since
the two matrices and have different eigenvalues
( is Hurwitz and is stable).

The same property holds for (50). Indeed, with the matrix
given in (18), we have

Note that we have

since, by assumption, . Consequently, it implies with
(20)

which is a Lyapunov equality with Lyapunovmatrix .

Hence, it establishes that the matrix

is Hurwitz and has different eigenvalues with the matrix

.
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