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Convergence of Nonlinear Observers on � With a
Riemannian Metric (Part I)

Ricardo G. Sanfelice and Laurent Praly

Abstract—We study how convergence of an observer whose state
lives in a copy of the given system’s space can be established using
a Riemannian metric. We show that the existence of an observer
guaranteeing the property that a Riemannian distance between
system and observer solutions is nonincreasing implies that the
Lie derivative of the Riemannian metric along the system vector
field is conditionally negative. Moreover, we establish that the ex-
istence of this metric is related to the observability of the system’s
linearization along its solutions. Moreover, if the observer has an
infinite gain margin then the level sets of the output function are
geodesically convex. Conversely, we establish that, if a complete
Riemannian metric has a Lie derivative along the system vector
field that is conditionally negative and is such that the output func-
tion has a monotonicity property, then there exists an observer with
an infinite gain margin.

Index Terms—asymptotic stability, observers, Riemannian
metric.

I. INTRODUCTION

F OR a nonlinear system of the form

(1)

with being the system’s state and the measured
system’s output, we study the problem of obtaining an estimate

of the state by means of the dynamical system, called ob-
server

(2)

with being the observer’s state and the ob-
server’s output, used as the system’s state estimate. We focus
on the case where the state of the observer evolves in a copy
of the space of the system’s state , i.e., they both belong to ,
with, moreover, an output function such that .

We consider the following observer design problem:
Given functions and , design a function such that

for the system

(3)
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the zero estimation error set

(4)

is globally asymptotically stable [see the text below (8)].
Many contributions from different viewpoints have been

made to address problem . While a summary of the very
rich literature on the topic is out of the scope of this paper, it
is important to point out the interest of exploiting a possible
contraction property of the flow generated by the observer.
Study of contracting flows has a very long history and has
been proposed independently by several authors; see, e.g., [7],
[9], and [17]–[19] (see [13] for a historical discussion). In the
context of observers, Riemannian metrics have been used in
[1], [3], and [4], for instance, with the objective of guaranteeing
that the Riemannian distance between the system and observer
solutions decreases to zero. In these papers, the authors con-
sider systems whose dynamics follow from a principle of least
action involving a Riemannian metric, such as Lagrangian
systems with a Lagrangian that is quadratic in the generalized
velocities. The observer design therein exploits some properties
of this metric and local convergence is established via some
ad-hoc modification of this metric or choice of coordinates.

This paper advocates that, since the observability of the
system linearized along each of its solutions may vary sig-
nificantly from one solution to another, the native Euclidean
geometry of the state space may not be appropriate to study
convergence properties of an observer. Instead of insisting
in using a Riemannian metric associated to the system’s dy-
namics, we propose to study Riemannian metrics incorporating
information on the system’s dynamics and observability. In
Section II-B, we show that if for a given Riemannian metric an
observer whose state lives in a copy of the given system’s
state space and makes the Riemannian distance along system
and observer solutions nonincreasing then, necessarily, the
Lie derivative of the metric along the system solutions satis-
fies an inequality involving the output function. Section II-C
shows that if the same conditions hold and the observer has
an infinite gain margin then, necessarily, the level sets of the
output function are geodesically convex. In Section II-D we
establish that if a Riemannian metric with a Lie derivative
satisfying the inequality mentioned above is, in some coordi-
nates, uniformly bounded away from zero and upper bounded
then the system’s linearization along each of its solution must
be detectable. With the insight provided by these necessary
conditions, Section III proposes a set of sufficient conditions
guaranteeing the existence of an observer whose flow leads to
a decreasing Riemannian distance between system’s state and
estimated state.
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For the sake of simplicity, we assume throughout the paper
that the functions are differentiable sufficiently many times.
Moreover, we work under restrictions that can be further re-
laxed, such as time independence of the right-hand sides and
forward completeness of the systems.1.

This paper is devoted to analysis. In a companion paper,
we focus on observer design, namely, on the construction of
a Riemannian metric satisfying the desired inequality on its
Lie derivative and making the level sets of the output function
possibly totally geodesic.

Example 1.1 (Motivational Example): We illustrate our re-
sults in the following academic system:

(5)

For this system (5), by following [15], we get the observer

(6)

This observer is in the form (2), but cannot be written in the form
of (3) with the coordinates since this would involve .
Nevertheless, with the Lyapunov function

(7)

we obtain for the system-observer interconnection (5), (6)

Since satisfies, for all

this implies that, for all and all

(8)

where is the solution issued from points
for the system-observer interconnection (5), (6). This

establishes that the set is globally asymptotically stable
(nonuniformly in but uniformly in ).

As it will be shown in Section II-A, the key point here is that
is the square of a Riemannian distance between and that

is associated to an -dependent Riemannian metric. Moreover,
as justified in Section II-B, no matter what the observer is, it is
impossible to find a standard quadratic form expressed in the
given coordinates (i.e., a Riemannian distance associated with
a constant Riemannian metric) that is nonincreasing along so-
lutions. This is a motivation for the analysis of observers using

-dependent Riemannian metrics.

1A system is said to be forward complete if each of its solutions exists on
������.

II. NECESSARY CONDITIONS FOR HAVING A RIEMANNIAN

DISTANCE BETWEEN SYSTEM AND OBSERVER

SOLUTIONS TO DECREASE

A. Riemannian Distance

As discussed in Section I, the notions of nonexpanding/con-
tracting flow and geodesically monotone vector fields are suit-
able for studying asymptotic stability of the zero error set in
(4). We start by recalling some basic facts on Riemannian dis-
tance.

Let be a symmetric covariant two-tensor
(see, e.g., [23, p. 17]). If and are two sets of coordinates
related by with being a diffeomorphism, then
expressed in coordinates as and in coordinates as
are related by (see, e.g., [23, Ex. II.2])

(9)

If takes positive definite values then the length of a path
between points and is defined as

(10)

where

With such a definition, is also called a Riemannian metric.
The Riemannian distance is the minimum of
among all possible piecewise paths between and . To
relate the Riemannian distance with geodesics, we invoke the
Hopf–Rinow Theorem (see, e.g., [23, Th. II.1.1]), which asserts
the following: if every geodesic can be maximally extended to

then the minimum of is actually given by the length
of a (maybe nonunique) geodesic, which is called a minimal
geodesic; for more details, see, e.g., [5] and [8]. In the Appendix
we show that, in our context, this maximal extension property
holds on if there exist globally defined coordinates in which

satisfies

(11)

where, for any positive real number ,

with denoting the minimum eigenvalue of .
In this case, the Riemannian metric given by is said to be
complete and, denoting by a minimal (normalized2) geodesic
between and , with , the Riemannian
distance is

(12)

2A normalized geodesic � satisfies ��� ������� � �� ����
��� ������� � � for all � in its domain of definition. In the following, the
adjective “normalized” is omitted.
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Example 2.1: As an illustration, consider the symmetric co-
variant two-tensor expressed in coordinates as

Since condition (11) holds with for all , it is
a complete Riemannian metric. Moreover, using (9), it is easy
to check that in the coordinates , its ex-

pression is . Since is constant,

any minimal geodesic takes the form with
satisfying . Then, a minimal geodesic in

coordinates is given by . Accordingly,
the Riemannian distance between and is

where is given in (7) and .
Having a Riemannian distance, we say that a system

, with solutions , generates a nonexpanding (respec-
tively, contracting) flow if, for any pair in , the
function is nonincreasing (respec-
tively, strictly decreasing); see, e.g., [12]. Also, the vector field

is said to be geodesically monotonic (respectively, strictly
monotonic) if we have

respectively (13)

where is the Lie derivative of the symmetric covariant two-
tensor , whose expression in coordinates is

(14)

for all ; see [5, Exercise V.2.8], [23, p. 17], or [16].
We have the following result (see, for instance, [12] or [1] for a
proof).

Lemma 2.2: A geodesically monotonic (respectively, strictly
monotonic) vector field generates a nonexpanding (respectively,
contracting) flow.

If inequality (13) holds for the observer vector field then
is (respectively, strictly)

decreasing; however, this property is more than what is needed
for the zero estimation error set to be (respectively, asymp-
totically) stable. Actually, it is sufficient to have an observer
giving rise to a (respectively, strictly) decreasing function

for all pairs in . That is,
we do not insist on having a Riemannian distance between any
two arbitrary observer solutions to decrease, but only to have a
decreasing Riemannian distance between any observer solution
and its corresponding system solution (which is a particular ob-
server solution).

B. Necessity of Geodesic Monotonicity in the Directions
Tangent to the Level Sets of the Output Function

Since the Riemannian distance between and is locally
Lipschitz, its upper right-hand Dini derivative is given by

(15)
for each . It is nonpositive when the function

is nonincreasing.
Theorem 2.3: Assume there exists a complete Rie-

mannian metric such that, for each

(16)

holds along any solution of (3), then

such that
(17)

Furthermore, if there exists a function
such that is a function on a neigh-
borhood of with the property that, for some

(18)

and, for each ,

(19)

holds along any solution of (3), then there exists a continuous
function satisfying

(20)

Proof: To simplify the notation, let
be the function defined as the square of the Riemannian

distance, i.e., , and notice that3

(21)

3Since ��� ������� � ��� ��� � � ��� ��� �.
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Pick an arbitrary point in . From [14, Th. 3.6], there
exists a (normal coordinate) neighborhood such that is

on . From (21) and (16) (respectively, from (21)
and (19), on ), we have

respectively

Let be a strictly real number such that, for any in , the unit
sphere, and for all are the coordinates of
a point in . We have4

(22)

and5

(23)

and, for all and

respectively

With the definition of , this implies that is forward invariant,
i.e., the solutions to (3) with as initial condition remain
in for all . This implies

(24)

By differentiating this identity with respect to , we get

(25)

For in , we obtain

respectively (26)

4This follows from the fact that a first order approximation of the geodesic
is ���� � � � �� � � �� � with � � ���� � �, which yields � ���� �� �
	���� �� � �� � ��� � �� � ������ � ���� ��� �, where the subindex in
� indicates dependence on ��� ��.

5This follows from � � �� being a minimizer of � for all �.

To compute the limit for approaching 0 note that we have the
following Taylor expansion around

Define and note that

With (22) and (23), we get

and with (24)

This yields

(27)

Also, with (24), we get

(28)

Similarly, we can obtain

(29)

Then, combining (27), (28), and (29), we have that inequality
(26) gives

respectively

or, equivalently, using (25) and (14)

(30)

respectively (31)
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It follows that (30) already implies (17). Also, when (19) holds,
by completing squares and using Cauchy–Schwarz inequality,
we get successively, for any function and
all in

Equation (20) follows from (18) by picking as any continuous
function satisfying

for all .
When compared with (13), which says is (respectively,

strictly) geodesically monotonic, the necessary condition (17)
(respectively, (20)) says only that the vector field is geodesi-
cally (respectively, strictly) monotonic in the directions sat-
isfying , i.e., in the directions tangent to the
level sets of the output function .

Remark 2.4: Theorem 2.3 can be interpreted as an extension
of [20, Prop. 3]. In this reference, a function depending
only on , called a state-independent error Lyapunov func-
tion, is obtained from stability properties of . In such a case,
the conditions in (23) yield a constant matrix . Then, Theorem
2.3 implies that, for all is a semidefinite positive ma-
trix that satisfies, for all

It follows that, for all and , we have the
implication

(32)

When , this property corresponds to the one established
in [20, Prop. 3]. It is worth pointing out that a limitation of the
work in [20] is that the results are extrinsic, i.e., they depend
on the coordinates since a quadratic form may not be quadratic
after a nonlinear change of coordinates. On the other hand, the
necessary conditions in Theorem 2.3 are intrinsic. In fact, let
be a diffeomorphism on leading to the new coordinates

(33)

Let , , , , and be , , , , , and , respectively, in
the new coordinates. We have (9) and

Substituting these expressions in (20), we get

and since is invertible it gives

which is inequality (20) in coordinates.
Furthermore, from the definition of and with completion

of squares as in the proof of Theorem 2.3, it can be checked that
condition (20) is preserved, but with a modified function , after
an output-dependent time scaling of the system, i.e., when is
replaced by with taking strictly positive
values.

The necessary conditions in Theorem 2.3 can be used to char-
acterize the family of Riemannian metrics possibly leading to a
Riemannian distance that is nonincreasing [via (17)] or strictly
decreasing [via (20)] along solutions. For instance, condition
(17) can be used to justify that, for system (5), there is no such
a Riemannian metric that is constant.

Example 2.5 (Motivational Example—Continued): For
the family of constant Riemannian metrics of the form

for (5), for each such that

we obtain

which cannot be nonpositive for each . On the other hand, it
can be shown that the family of Riemannian metrics satisfying
(17) can be described as

(34)

with and ,
, ,

where are sufficiently smooth func-
tions with and not vanishing. A particular choice
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is , , and
, which leads to

(35)

C. Necessity of Geodesic Convexity of the Level Sets of the
Output Function

In Theorem 2.3, we studied the implications of the existence
of an observer making nonin-
creasing, in particular, when converges to (in the proof,

approaches ). Now we study the implications
of the existence of such an observer for the case when is far
away from . To this end, for each in , let be
a function satisfying

with a minimal geodesic between and . Then, we have
and hence, at time is a

path between and . Also, we have

Also, we know from the first-order variation formula (see, for
instance, [24, Th. 6.14] or [12, Th. 5.7]) that we have

On the other hand, in general, for each in the domain of defi-
nition, we have only

Then, the upper right-hand Dini derivative of the distance be-
tween and in (15) satisfies

(36)

Even though (36) is an inequality condition, we proceed as if
it were an equality. In such a case, if the observer makes the

distance nonincreasing along solutions then necessarily
the right-hand side of (36) has to be nonpositive. To get a better
understanding of what this means, consider the case when6

(37)

Then, for the right-hand side of (36) to be nonpositive, with
, we must have

(38)

At this point, it is important to note that is the di-
rection in which the state estimate “sees” the system state
along a minimal geodesic. Such a direction is unknown to the
observer. The only known information is that, for given be-
longs to the following -level set7 of the output function:

Hence, (38) implies the following property: given and , the
level set of the output function is “seen” from along a
minimal geodesic, within a cone whose aperture is less than .
As stated in Lemma 2.7 below, this property implies that
is geodesically convex; see [22, Def. 6.1.1] and [10, Sec. 9.4].

Definition 2.6 (Geodesic Convexity): A subset of is said
to be geodesically convex if, for any pair of points

, there exists a minimal geodesic between
and satisfying

Lemma 2.7: Let be a complete Riemannian
metric. Assume is a subset of such that, for any in ,
there exists a unit vector such that, for any in and any
minimal geodesic between and , with

, we have

Then, is geodesically convex.
Proof: Assume that is not geodesically convex. Then,

there is a pair such that, for any minimal geodesic
between and , there exists in

for which is not in . Let . Note
that defines a minimal geodesic between

and , with .
With our assumption, since and are in , there exists a
unit vector satisfying

But this impossible since we have
.

6For a given� � , this condition holds for every minimal geodesic � such
that ��� ������� belongs to the closed half space �� � � � � ������� �
��.

7By 	-level set of 
 we mean the intersection, for each � � �� �� � � � �
, of
the sets �� � � 
 ��� � 	 �.
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For Example 1.1, we shall see in the following section that,
with the help of item 2a of Proposition A.3, for any , the level
set is geodesically convex for the
Riemannian metric given in (35).

As announced above, we conclude from Lemma 2.7 that
geodesic convexity of the levels sets of the output function
is a necessary property in the “general situation” where (37)
holds (and when (36) is an equality). Actually, it is necessary,
without any extra condition, when the observer has an infinite
gain margin.

Definition 2.8 (Infinite Gain Margin): The observer
for is said to have an infinite gain margin

with respect to if (24) holds for every and, for any
geodesic minimal on , we have

(39)

for all .
The term infinite gain margin follows from the fact that, if

the observer makes
nonincreasing (for each solution) and (39) holds, then the same
holds for the observer for any
real number .

D. Necessity of Uniform Detectability

The necessary condition in (20) is linked to an observability
property of the family of linear time-varying systems obtained
from linearizing (1) along its solutions. Assuming the system
(1) is forward complete, for each , the corresponding solution
to (1) is defined on . For each , the lin-
earization of and evaluated along a solution gives
the following functions defined on

These functions define the following family of linear
time-varying systems with state and output :

(40)

Systems (40) are parameterized by the initial condition of the
chosen solution .

The following theorem establishes a relationship between a
detectability property of (40) and the existence of a bounded
away from zero, upper bounded symmetric covariant two-tensor
whose Lie derivative satisfies (20).

Theorem 2.9: Assume system (1) is forward complete and
that there exist a symmetric covariant two-tensor

and strictly positive real numbers and satisfying (20)
and

(41)

Then, for each , there exists a continuous8 function
such that the origin of the linear time-varying

system

(42)

is uniformly exponentially stable.

8We do not ask the function � to be bounded.

Proof: To any , we associate the functions
, , and

defined as

(43)

We have

(44)

and, with (20), (18), (14), and the definitions in (43), we get

Then, with (42), we have .
The conclusion follows with (44).

It follows from this proof that, if we do not have the upper
bound in (41), we still have exponential stability, but we loose
the uniformity property. This would be the case, for instance,
for the system (5) of Example 1.1 with given by (35) whose
eigenvalues satisfy

(45)

(46)

Exponential stability of the origin of (42) is a detectability
property for (40). The necessity of this property for the existence
of can be exploited to actually construct it, as it will be shown
in the companion paper.

III. A SUFFICIENT CONDITION

In the previous section, we assumed the existence of an ob-
server making the function nonin-
creasing (respectively, strictly decreasing) with being the dis-
tance associated with a Riemannian metric . We showed that

has to satisfy a (respectively, strict) inequality involving the
output function. In this section, we start from the data of such a
metric and investigate the possibility of designing an observer
making the corresponding Riemannian distance strictly
decreasing along solutions.

In view of Theorem 2.3, we assume that satisfies

with a strictly positive real number, but also willing to be
in a “general situation” in which (37) holds and motivated by
Lemma 2.7, we restrict our attention to the case where the
level set of the output function is geodesically convex for
any in . Actually, we ask for the stronger (see Proposi-
tion A.3) property that the sets are totally geodesic (see
[6, Sec. V.II]).
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Definition 3.1 (Totally Geodesic Set): Given a function
and a closed subset of , the set

is said to be totally geodesic if, for any pair in
such that

any geodesic with

satisfies

where is the maximal interval containing 0 so that is
contained in .

In the Appendix, we establish a necessary and sufficient
checkable condition for the sets to be totally geodesic.

Example 3.2 (Motivational Example—Continued): For
the system in Example 1.1, it is sufficient to check that the
Christoffel symbol [see (65)] associated with the particular
choice of in (35) for the family (34) is zero. In fact, we have

.
The following theorem gives a sufficient condition for the

existence of an observer for the single output case.
Theorem 3.3: Assume there exist a complete Riemannian

metric and a set such that
H1: is geodesically convex, closed, and with nonempty
interior.
H2: there exist a continuous function
and a strictly positive real number such that

(47)

H3: The number of outputs is and, for each in
, the set is totally geodesic.

Then, for any positive real number there exists a continuous
function such that, with the observer given by

(48)

where

(49)

the following holds [see (15)]:

(50)

Moreover, expression (48) is intrinsic (i.e., coordinate indepen-
dent) and gives an observer with infinite gain margin.

Example 3.4 (Motivational Example—Continued): We have
already checked that, for the system (5) and with given in
(35) all the conditions of Theorem 3.3 hold globally, i.e., with

. Hence, the observer given by (48) becomes

Remark 3.5:
• Theorem 3.3 gives a (nonglobal) solution to problem .

When the assumptions of Theorem 3.3 hold globally, i.e.,
they hold for , the observer given by (48) guar-
antees convergence of the estimated state to the system
state, semiglobally with respect to the zero estimation error
set .
The fact that we do not get global asymptotic stability is
likely due to the elementary form of the observer (48) and
its infinite gain margin. We expect that other choices for
this observer are possible to obtain a global asymptotic
stability result.

• As discussed in Section II-B, we do not claim in Theorem
3.3 that the flow generated by the observer has a contrac-
tion property but simply that the Riemannian distance be-
tween estimated state and system state decays along the so-
lutions. In other words, this result establishes that the func-
tion can be used as a Lyapunov function
for the zero error set and guarantees this function has an
exponential decay along the solutions, but it does no say
that decays along two arbitrary solutions of the
flow generated by the observer.

Theorem 3.3 is a direct consequence of the following lemma
(for which there is no restriction on the number of outputs) and
the fact that, when the number of outputs is , assump-
tion H3 implies the assumption H3 of the lemma; see Proposi-
tion A.3.

Lemma 3.6: Assume there exist a complete Rie-
mannian metric , a set , a continuous function

, and a strictly positive real number
satisfying H1 and H2 of Theorem 3.3. Assume also there exists
a function satisfying

(51)

for all , and, such that
H3 : for any pair in satisfying

and for any minimal geodesic between
and satisfying for all ,
with , we have

(52)

Then, the claim of Theorem 3.3 holds true with a function
satisfying H3 [instead of as in (49)].

Remark 3.7:
Property H3 says that we can find a “distance-like” func-
tion in the output space allowing us to express that the
output function preserves some kind of monotonicity.
Namely, as the distance increases along a geodesic in the
state space, the same holds in the output space measured
by . This property has some relationship with the no-
tions of metric-monotone function introduced in [21] and
of geodesically monotone function defined in [22, Defini-
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tion 6.2.3]. In the Appendix, we establish a connection with
totally geodesic sets and geodesic convexity.
With such a property, by following a descent direction for
the “distance” in the output space, we are guaranteed to
decrease the distance in the state space. This feature is ex-
ploited in the observer given by (48) via a high-gain term
which enforces that such a descent direction is dominating.
Property H3 with has been invoked
already in [25] but for the case when is constant.
Proof: The Riemannian metric being complete, any

geodesic is defined on and the Riemannian dis-
tance is given by the length of a minimal geodesic
between and . Since is geodesically convex by H1, for
any pair in , there exists a minimal geodesic
between and satisfying
for all .

Let be any pair in and denote a minimal
geodesic between and satisfying

for all . With , take as in (48). It gives

(53)

On the other hand, we have

(54)

Also the Euler–Lagrange form of the geodesic equation reads,
for the th coordinate

Then, with the definition of and (47), we get

(55)

where, in the last inequality, we have used
since is

normalized. With as given in (12), replacing (55)
into (54) yields

(56)

Then, from (36), using (53) and (56), we obtain

(57)

To proceed it is appropriate to associate two functions and
to any triple with in and , a minimal
geodesic between and satisfying

for all . These functions are defined on as
follows:9

if , and

if , and

We remark with (51) that reaches its global minimum at
. This implies

9When �� � � the functions � and � are only defined at zero.
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for all . As a consequence, the functions an are
continuous on . Moreover, the property H3 gives readily
the implication

In the case where , then either
• and then . So, with (51),

we have either or .
The latter condition implies

.
• or . Then, we consider the following two cases:

1) is constant on . Then we have
for all and there-

fore for all .
2) is not constant on . Then, there exists

some in such that
. With H3 , this implies that the function

is not constant on
, but since we have

, this function must
reach a maximum at some point in
where we have ,

, and therefore
, but this contradicts H3 . So

this case is impossible.
In any case, we have established that is non negative
and if it is zero then for all .

Now, let be an arbitrary point in . Call it origin. For each
integer , we introduce the set

From the Hopf–Rinow Theorem [23, Th. II.1.1] is compact.
To conclude it is sufficient to prove the existence of a real

number such that, for any pair in and any minimal
geodesic between and satisfying

for all , we have

Indeed, with this inequality, the definitions of and and (57)
where , we obtain (50) provided the function
satisfies

If would not exist, we could find a sequence
, with , in , and a

minimal geodesic between and
satisfying for all and

(58)

We have that is in the compact set and is a min-
imal geodesic taking values in when restricted to . Also

is in a compact set independent of since
we have

where is continuous and , satisfying

is in a compact set independent of . Finally, we have
. Hence, the sequence is in a com-

pact set and therefore admits a cluster point . It fol-
lows from [23, Lemma III.4.2] that there exists a geodesic
which is minimal on and such that is a
cluster point of the sequence . On the other hand, we have

It follows that takes its values in a compact
set independent of and the functions , and re-
stricted to this compact set are continuous and bounded. Also,
from the geodesic equation and completeness, the same hold
for , , and restricted to . With the
definition of , this implies that the right-hand side of
(58) is upper bounded, say by . Consequently, we have

Since is nonnegative, this implies
, but we have seen that this implies

. On the other hand (58) yields
where is strictly positive. So we have

a contradiction. This establishes the existence of .
Finally, in (53), we have, with (52)

and . So (39) holds and the observer
has an infinite gain margin.

To prove the last point of Theorem 3.3, let define a diffeo-
morphism as in (33). Let , , , and be the expressions of

, , , and respectively in the new coordinates. We have
(9), (34), and , .
This implies

Therefore, the expression of the observer remains the same after
the change of coordinates.

IV. CONCLUSION

If for a Riemannian metric and an observer such that the
distance between estimated state and system state decreases
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along the solutions, then the Lie derivative of along the sys-
tems solutions satisfies the inequality in Theorem 2.3 involving
the output function. Also, the satisfaction of such an inequality
together with the existence of upper and lower bounds for
[see (41)] imply detectability of the linear time-varying sys-
tems obtained from linearizing the given system (1) along its
solutions. Moreover, we have seen how the geodesic convexity
of the output function level sets is necessary if the observer has
an infinite gain margin and, in a general situation, when the
Riemannian distance between estimated state and system state
decreases along the solutions of (3).

Conversely, from the data of a Riemannian metric satisfying
the necessary conditions in Theorem 2.3 and (41), and when the
level sets of the output function are totally geodesic, we showed
how to construct, for the single output case, an observer guar-
anteeing convergence of the estimated state to the system state,
semiglobally with respect to zero estimation error set .

Also, although in Section II we have given an expression
of an observer, at this time, we consider this only as an exis-
tence result and not as an observer design interesting for applica-
tion. Actually we have investigated mainly only the possibility
and interest of studying observer convergence via a Riemannian
metric, crystallizing the idea of using a contraction property.
In a companion paper, we focus on observer design, where we
study several scenarios in which it is possible to construct a
Riemannian metric satisfying the desired inequality on its Lie
derivative and making the level sets of the output function pos-
sibly totally geodesic.

As a final remark, we observe that extensions of the results to
nonautonomous systems, in particular those with inputs, seem
possible using the proof techniques proposed here. Also time
scaling exploiting the concept of unbounded observability, as in
[2], is expected to be useful in relaxing the system completeness
assumption.

APPENDIX

A. A Necessary Condition for Completeness

The following lemma provides conditions on that guar-
antee that geodesics can be maximally extended to .

Lemma A.1: Suppose that a symmetric covariant two-tensor
satisfies

(59)

where, for any positive real number ,
. Then, with as Riemannian

metric on , any geodesic can be maximally extended to .
Proof: Let and be any point in the ball in

centered at the origin and with radius . The Euclidean distance
satisfies , where

is any piecewise path between and . Using (10), this
implies that, for any positive number

(60)

Let be any normalized geodesic maximally defined on
. By definition, it satisfies

(61)

Let be any closed interval contained in . The
function is bounded (with the Euclidean
norm). We denote . By continuity,
there exists in satisfying . Then,
from (60) and (61), we obtain

(62)

Because is the maximal interval of
definition of , if is finite, we must have

. Now in the case
where we have the definition of
implies

. Then, with assumption (59) and (62), we get

This is a contradiction. Then, we are left with the case
. But this contradicts (61)

since we just established that is bounded on , which,
with (59), implies that is bounded away from 0.

The same arguments apply to show that .

B. On Totally Geodesic Sets and Property H3

Proposition A.2: Let be a complete Riemannian metric on
and be a geodesically convex subset of .

1) If there exists in satisfying and all
the sets for in are totally geodesic then
is constant on .

2) Let be the following open subset of :

(63)

If all the sets for in are totally geodesic
then we have, for all and all

(64)

where are continuous arbitrary functions
and are the Christoffel symbols

(65)
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Conversely, if (64) holds for any in , then all the sets
for in are totally geodesic.

Proof of Item 1: The set being geodesically convex, for
any there exists a minimal geodesic between
and satisfying . Since we
have and the set
is totally geodesic, we get being arbitrary in

, must be constant on .
Proof of Item 2 (Necessity): If is empty, the statement holds

vacuously. If is nonempty, let be in . It is in the totally
geodesic set . Then, for any in satisfying

(66)

consider a geodesic satisfying

(67)

with values in on an interval . We have
for all . This implies that we have

(68)

But, with the geodesic equation, if we let
,

we have

(69)

Then, using (67) and (68), we have

(70)

where is the th component of . Hence, we have established
for all

. The result follows
from the S-Lemma (see [11] for instance). In particular, we can
pick the functions satisfying (64) as, for each , the en-
tries of the matrix

Proof of Item 2 (Sufficiency): For any in , let
be any pair in satisfying ,

, and let be any geodesic
satisfying . Let be the maximal
interval containing 0 so that is contained in . If is
reduced to a point, there is nothing to prove. If not is an

interval with a non empty interior. Then, with (69) and (64), for
any interior point of , we have, for each in

Let be the matrix with entries defined as,
, for each . The

linear time varying system has unique so-
lutions. The only one satisfying is identically 0. So
with the uniqueness of the solution of the geodesic equation we
must also have and therefore

for each and each . Also, by con-
tinuity, if the upper bound (respectively lower bound )
of is in , then we have also (respectively

).
Proposition A.3: Let be a complete Riemannian metric on
and be a geodesically convex subset of .

1) If property H3 holds then all the sets for in
are:

a) totally geodesic;
b) geodesically convex.

2) If and all the sets for in are totally
geodesic then

a) they are all geodesically convex;
b) property H3 holds with

Proof of Item 1a: Let be an arbitrary pair in
satisfying

(71)

Consider the geodesic satisfying

(72)

Since is complete, is defined on . Let be
the maximal interval containing 0 so that is contained
in .

If is reduced to a point, there is nothing to prove. In the
other case, for the sake of getting a contradiction, assume that

is not constant along this geodesic on , i.e., there exists
in , say positive, satisfying
for all . Let be the infimum of the real numbers

in satisfying . By continuity is
in and we have . Also, the definition
of implies that, for any in , there exits in

such that . Also, when
, the function being constant on , we have

(73)

Note that, with (71) and (72), the same holds when .
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Now let be a geodesic ball centered at with
geodesic radius sufficiently small to ensure that each geodesic
between and any point in this ball is minimal. See [5, Th.
VI.7.2]. With associated with as shown above, we define a
function as for all . It is a
minimal geodesic between and

satisfying for all
and . So, according to H3 , we have

for all . In particular, we have

But (73) leads to a contradiction since

Proof of Item 1b: Let be any arbitrary
pair of points satisfying . Since is
geodesically convex, there exists a minimal geodesic be-
tween and satisfying
for all . We have

, but (52)
implies the left-hand side of this equation is zero if and only if
we have for all , that is, the
geodesic remains in the set for all in .

Proof of Item 2a: Let be any arbitrary pair
of points satisfying . Since is geodesi-
cally convex, there exists a minimal geodesic between

and satisfying for all
. For the sake of getting a contradiction, assume that

is not geodesically convex. Then, there exists
such that , but being in , this

implies . By continuity and compact-
ness, the function admits a
maximum at some in and, hence

(74)

When the dimension of outputs is one, this implies
. Since the set

is totally geodesic and takes its values
in on the interval containing , we conclude that

takes actually its values in on .
This contradicts (74), and so must be geodesically
convex.

Proof of Item 2b: Let be an arbitrary pair of points
in satisfying . Since is geodesi-
cally convex, there exists a minimal geodesic between

and satisfying for
all . Assume there exists in satisfying

,
. Then, since

is totally geodesic, and takes its values
in on , we have for
all which contradicts .
Then, has a constant sign, but since we have

, this sign must be the
same as the one of . We conclude that we have

for all .
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