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a b s t r a c t

We propose a solution to the problem of semiglobal output regulation for nonlinear minimum-phase
systems driven by uncertain exosystems that does not rely upon conventional adaptation schemes to
estimate the frequency of the exogenous signals. Rather, the proposed approach relies upon regression-
like arguments used to derive a nonlinear internal model able to offset the presence of an unknown
number of harmonic exogenous inputs of uncertain amplitude, phase and frequency. The design
methodology guarantees asymptotic regulation if the dimension of the regulator exceeds a lower bound
determined by the actual number of harmonic components of the exogenous input. If this is not the case,
a bounded steady-state regulation error is ensuredwhose amplitude, though, can be arbitrarily decreased
by acting on a design parameter of the regulator.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we propose a new approach to the problem
of semiglobal output regulation for minimum-phase nonlinear
systems in the presence of exogenous inputs consisting of a
superposition of uncertain harmonic oscillations. The problem
of asymptotically tracking/rejecting uncertain exogenous inputs
has received increased attention in recent years. A detailed and
thorough review of relevant earlier works, in the context of
adaptive control theory as well as of output regulation theory, can
be found in the recent paper (Marino & Tomei, 2011). Interest
in the problem in question was particularly boosted by the
appearance of the paper (Serrani, Isidori, & Marconi, 2001), in
which the problem was addressed, for nonlinear systems under
suitable assumptions, by means of a controller that includes an
internal model of the exogenous input (as in the classical theory
of output regulation) whose frequencies are adaptively tuned
so as to obtain perfect tracking in steady-state. Since then, a
number of further contributions have appeared, for linear as well
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as for nonlinear systems. Most of these contributions use a variety
of tools and ideas typical of the adaptive control literature, to
the purpose of adaptively tuning the parameters of an internal
model of the otherwise uncertain exosystem. It is perhaps for this
reason that this area of research has been sometimes referred to,
with an abuse of terminology, as adaptive output regulation. In
particular, the theory of adaptive observers was efficiently used
in Marino and Tomei (2003), for linear systems, and subsequently
in Ding (2003) and in Delli Priscoli, Marconi, and Isidori (2006),
for nonlinear systems, to solve the problem in question, under
appropriate assumptions, in a global and/or semi-global setting.
A case of ‘‘large-scale systems’’ was dealt with in Ye and Huang
(2003). In the recent works (Marino & Tomei, 2008, 2011) the
problem of adaptive output regulation for uncertain minimum-
phase linear systems was addressed in the relevant case in which
the number of harmonics characterizing the exosystem is not
exactly known. An adaptive error feedback control algorithm
was proposed that guarantees exponential convergence of the
error when the regulator exactly models all components of
the exogenous input that are actually excited, while asymptotic
convergence is guaranteed if the exosystem is overmodeled by
the regulator. When the adaptive internal model undermodels the
actual exosystem, the regulation error is reduced to a residual
bound that decreases as the exosystem modeling error decreases.
Applications of the theory of adaptive output regulation can be
found in Isidori, Marconi, and Serrani (2003), to the problem of
controlling the autonomous landing of a helicopter on a rolling
ship, in Bonivento, Isidori, Marconi, and Paoli (2004), to the
problem of rejecting spurious oscillations in a faulty induction
motor, and in Serrani (2006), to the purpose of compensating for
the effect of measurement noises. Implicit in the results of these
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papers (see e.g. in Serrani, 2006, Marino & Tomei, 2011, Marino
& Tomei, 2008 and also in Marconi & Praly, 2008) is the remark
that, to the purpose of achieving asymptotic decay of the error, the
condition that all frequencies of the exosystem be excited is not
necessary, in contrast towhatwould be requested if the purpose of
the adaptive internal model were that of estimating the unknown
frequencies of the actual exosystem.

In this paper we suggest an alternative design methodology,
which does not rely upon the technique of adaptively tuning the
frequencies of an internal model, but rather relies upon certain
results of nonlinear high-gain observers, which have already been
effectively used in the context of nonlinear output regulation (see
e.g. in Byrnes & Isidori, 2004). We develop the theory in a general
framework comprising the case of over- and under-dimensioned
internal models. In the first scenario, capturing the case in which
the number of actual exogenous harmonics is possibly over-
estimated, we show that asymptotic regulation is achieved. On the
other hand, in case the number of actual exogenous harmonics is
under-estimated, the proposed controller guarantees a bounded
steady-state regulation error whose amplitude, though, can be
arbitrarily decreased by acting on a design parameter of the
regulator. The latter feature is interesting ‘‘per se’’ and, to the
best knowledge of the authors, never addressed in the related
literature about nonlinear output regulation. When specialized to
the class of linear systems, the results we obtain can be seen as
an alternative to those recently presented in Marino and Tomei
(2011), whose design methods rely on well-established ‘‘explicit’’
adaptive techniques. Our design strategy, though, is substantially
different. In fact, we are not seeking adaptation of the frequencies
of an internal model of an uncertain exosystem, but rather seek
direct synthesis of a device able to generate all inputs needed to
force a zero steady state error. As emphasized later in the paper,
one of the advantages of our approach is that convergence of the
error to zero is exponential even when the internal model is over-
dimensioned.

The work is organized as follows. In Sections 2 and 3 the
problem is formulated and a set of results that are instrumental
to the design of the output regulator are presented. The design
of internal models for uncertain oscillators is then presented in
Section 4 while Sections 5 and 6 present a simulative example and
conclusive remarks. All the proofs of relevant results are deferred
to Appendix.

2. Problem setting

Consistently with most of the literature on output regulation,
in this work we consider smooth systemsmodeled by equations of
the form

ẇ = s(w)

ż = f (w, z, e1)
ėi = ei+1 i = 1, . . . , r − 1
ėr = q(w, z, e) + b(w, z, e)u

(1)

with state (z, e1, . . . , er) ∈ Rn
× Rr , control input u ∈ R, regu-

lated output e1 ∈ R, in which w ∈ W is a vector of exogenous
inputs, modeling references/disturbances to be asymptotically
tracked/rejected. The set W is a fixed compact set, invariant un-
der the dynamics of ẇ = s(w). The real-valued function b(w, z, e),
usually referred to as ‘‘high-frequency gain’’, is assumed to be
bounded away from zero, namely there exists a b̄ (which is as-
sumed positive without loss of generality) such that

b(w, z, e) ≥ b̄ > 0 for all (w, z, e) ∈ W × Rn
× Rr .

In this setting we address the following problem (semiglobal
output regulation): given any (arbitrary) pair of sets Z ⊂ Rn and

E ⊂ Rr , find an integer d, a compact set Ξ ⊂ Rd and an error-
feedback controller of the form
ξ̇ = α(ξ, e1) u = β(ξ, e1) (2)

yielding a closed-loop system in which all trajectories originating
from W × Z × E × Ξ are bounded and satisfy limt→∞ e1(t) = 0.

We approach the problem under assumptions that are quite
common. First, we assume the existence of a continuously
differentiable function π : W → Rn solution of the regulator
equations

∂π(w)

∂w
s(w) = f (w, π(w), 0), (3)

and we let u⋆(w) denote the function

u⋆(w) := −
q(w, π(w), 0)
b(w, π(w), 0)

,

which, as it is well known, provides the (unique) control that
renders the set {(w, z, e) : w ∈ W, z = π(w), e = 0} invariant
for (1).

Furthermore, we require that system (1), viewed as a system
with input u and output e1, is ‘‘minimum-phase’’, i.e. the dynamics
of
ẇ = s(w)

ż = f (w, z, 0)
(4)

satisfy:

Assumption 1. The set

graph(π) = {(w, z) ∈ W × Rn
: z = π(w)}

is locally asymptotically stable for the system (4) with a domain of
attraction of the form W × D where D is an open set satisfying
D ⊃ Z . �

In what follows, we address the problem of semiglobal output
regulation in the simpler case in which r = 1. The reason why
this can be done without loss of generality follows from classical
results about output feedback stabilization which, for the sake of
completeness, are briefly summarized here.

For system (1) consider the change of variables

ei → ζi := k−(i−1)ei , i = 1, . . . , r − 1,
er → θ := er + kr−1a0e1 + kr−2a1e2 + · · · + kar−2er−1,

in which k > 1 is a design parameter and the ai, i = 0, . . . , r − 2,
are such that all roots of the polynomial λr−1

+ ar−2λ
r−1

+ · · · +

a1λ + a0 = 0 have a negative real part. This change of variables
transforms system (1) into a system of the form

ẇ = s(w)

ż = f (w, z, ζ1)

ζ̇ = kAHζ + Bθ

θ̇ = q̃(w, z, ζ , θ, k) + b̃(w, z, ζ , θ, k)u

(5)

in which ζ = (ζ1, . . . , ζr−1), AH is a Hurwitz matrix, and q̃, b̃ are
smooth functions, with b̃(w, z, ζ , θ, k) ≥ b̄ for all (w, z, ζ , θ) ∈

W × Rn
× Rr−1

× R and for all k > 0. Note that, by definition,
ζ1 = e1. Let Ẽ ∈ Rr−1 be a compact set such that e ∈ E ⇒ ζ ∈ Ẽ
and note that, if k > 1, the set Ẽ can be taken to be independent of
k. System (5), regarded as a system with input u and output θ , has
relative degree one and zero dynamics

ẇ = s(w)

ż = f (w, z, ζ1)

ζ̇ = kAHζ .

(6)
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For this system, under Assumption 1, classical results (see Byrnes &
Isidori, 1991) can be invoked to show the existence of a k⋆ > 1 such
that for all k ≥ k⋆ the set graph(π) × {0} is locally asymptotically
stable (locally exponentially if graph(π) is such for system (4)) for
(6), with a domain of attraction of the formW×D̃ , with D̃ ⊃ Z×Ẽ.
Pick, and fix, a value of k > k⋆. If the relative degree-r system
(1), with input u and output e1, satisfies Assumption 1, also the
relative degree-1 system (5), with input u and output θ , satisfies
a similar assumption, the set graph(π) being replaced by the set
graph(π) × {0}.

Suppose now that a controller
˙̃
ξ = α̃(ξ̃ , θ) u = β̃(ξ̃ , θ) (7)
solves the problem of output regulation for system (5). This
controller is driven by the ‘‘dummy’’ regulated output θ and not
by the actual regulated output ζ1. However, by construction, θ is
a fixed linear combination of the components ζ1, . . . , ζr of the
‘‘partial state’’ e of (1). By definition, ei coincides with the (i − 1)-
th derivative, with respect to time, of the actual regulated output
e1. As it is well known, to the purpose of securing asymptotic
convergence to the desired target set, e1, . . . , er can be replaced
by appropriate ‘‘estimates’’ ê1, . . . , êr provided by a ‘‘high-gain
observer’’ driven only by e1. Using these estimates to replace the
expression of θ in (7) yields a controller able to solve the problem
for the original plant (1). Details, and precautions meant to avoid
finite escape times, can be found in Esfandiari and Khalil (1992),
Teel and Praly (1995), Isidori (1999), andMarconi, Praly, and Isidori
(2010) and need not to be repeated here.

On the basis of these arguments, we can inwhat follows restrict
the discussion to the case of systems having relative degree r = 1
which, for notational convenience, are rewritten as

ẇ = s(w)

ż = f (w, z, e) z ∈ Rn

ė = q(w, z, e) + b(w, z, e)u e ∈ R.

(8)

3. Preliminaries

For the class of systems (8) it is known that the problem
in question can be solved if one is able to find an integer d, a
continuous function F : Rd

→ Rd, a continuous function γ : Rd
→

R, a column vector G ∈ Rd×1, and a continuously differentiable
function τ : W → Rd satisfying
∂τ

∂w
s(w) = F(τ (w)) + Gγ (τ(w))

u⋆(w) = γ (τ(w))
∀w ∈ W (9)

and such that
graph(τ ) = {(w, ξ) ∈ W × Rd

: ξ = τ(w)}

is locally asymptotically stable for the system

ẇ = s(w)

ξ̇ = F(ξ) + Gu⋆(w)
(10)

with a domain of attraction of the form W × D ′ with D ′
⊂ Rd an

open set. As amatter of fact the following result holds (seeMarconi,
Praly, & Isidori, 2007).

Theorem 1. Let theminimum-phase Assumption 1 hold. Let (F(·),G,
γ (·)) be chosen to satisfy (9) for some map τ(·) and so that graph(τ )
is locally asymptotically stable for (10) with domain of attraction
W × D ′. Then there exists a continuous function κ : R → R such
that the controller

ξ̇ = F(ξ) + G(v + γ (ξ))

u = γ (ξ) + v

v = −κ(e)
(11)

solves the problem of nonlinear output regulation with Ξ ⊂ D ′.

Remark 1. Under the additional assumptions that the sets graph
(π) and graph(τ ) are also locally exponentially stable for (4) and
(10), respectively, and that the function γ (·) is locally Lipschitz,
the result in the previous proposition holds with v = −κe with κ
a sufficiently large number.

According to the previous result, the problem of output regulation,
for the considered class of systems, reduces to the problem of
designing a triplet (F(·),G, γ (·)) with the required properties. A
triplet fulfilling the properties in question is usually said to have
the internal model property. A number of methodologies for the
design of the triplets with the internal model property have been
proposed so far. In this respect the following result (proved in
Marconi et al., 2007) is conceptually relevant as it shows that a
triplet with the required properties can always be designed.

Proposition 1. Let d ≥ 2 s + 2. There is a positive ℓ̄ ∈ R such
that, for almost all choices (see Marconi et al., 2007 for details) of a
controllable pair (F ,G) ∈ Rd×d

× Rd×1, with F a Hurwitz matrix
whose eigenvalues have a real part which is less than −ℓ̄, then there
exists a continuous function γ : Rd

→ R such that the triplet
(Fξ,G, γ (ξ)) has the internal model property.

Although conceptually relevant, the previous result is weak
from a practical viewpoint because the actual construction of
the function γ (·) is not simple (see Marconi & Praly, 2008 for
approximate expressions of practical interest) and because the
function in question is only guaranteed to be continuous.

More constructive designmethodologies and smoothness in the
controller can be obtained at the price of restricting the class of
possible functions u⋆(w) entering in the design of the regulator.
Specifically, it is known (see Byrnes & Isidori, 2004) that the design
of a triplet having the internal model property can be effectively
carried out in the case there exist an integer d and a locally Lipschitz
map φ : Rd

→ R such that

Ldsu
⋆(w) = φ(u⋆(w), Lsu⋆(w), . . . , Ld−1

s u⋆(w)) (12)

∀w ∈ W. In fact, set

τ(w) =

 τ0(w)
...

τd−1(w)

 :=

 u⋆(w)
...

Ld−1
s(w)u

⋆(w)

 (13)

and let φc : Rd
→ R be any locally Lipschitz bounded function that

agrees with φ on τ(W). Then, it turns out that the choice

F(ξ) =


ξ1
...

ξd−1
φc(ξ0, . . . , ξd−1)

− Gξ0 (14)

with ξ = (ξ0, . . . , ξd−1)makes (9) fulfilled with γ (ξ) = ξ0 and for
any vector G. Furthermore, the theory of high-gain observers (see
Esfandiari & Khalil, 1992, Gauthier, Hammouri, & Othman, 1992,
Teel & Praly, 1995) can be successfully used in this context to show
that if the vector G is chosen as

G =

gλ0 g2λ1 · · · gdλd−1

T (15)

where (λ0, λ1, . . . , λd−1) are coefficients of a Hurwitz polynomial
and g > 0 is a high-gain parameter, then the set graph(τ ) is
locally exponentially stable for the system (10) with a domain of
attraction which can be made arbitrarily large by increasing g .

We summarize the general (constructive) result in the forth-
coming Theorem, whose proof is provided in Appendix A. The
result in question is an extension of a result originally proved
in Byrnes and Isidori (2004) to the more general case in which
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relation (12) is satisfied modulo a residual bias (see (16)), intro-
duced to handle the general theory (internal models with ‘‘under-
estimated’’ dimension) presented in Section 3.

Theorem 2. Let Assumption 1 be fulfilled. Let φ : Rd
→ R be a

locally Lipschitz function and ν : W → R a continuous function such
that

Ldsu
⋆(w) = φ(u⋆(w), Lsu⋆(w), . . . , Ld−1

s u⋆(w)) + ν(w) (16)

for all w ∈ W. Then, there exist a g⋆ > 0, a c > 0, and a continuous
function κ : R → R such that for all g ≥ g⋆ the trajectories of
the system (8) in closed-loop with the regulator (11), (14), (15) and
γ (ξ) = ξ0 originating from W × Z × E × Ξ are bounded and such
that

lim
t→∞

sup |e(t)| ≤
c

gd+1
max
w∈W

|ν(w)|. (17)

Furthermore, if ν = 0 and graph(π) is also locally exponentially
stable for system (4), the error converges to zero exponentially.

It is worth noting that, if (12) holds, the previous result provides
an effectiveway to design asymptotic regulators (with exponential
convergence of the error if Assumption 1 is strengthened by asking
exponential stability of the set graph(π)). On the other hand,
in case (16) is satisfied with a non-zero function ν(w), relation
(17) shows the presence of a persistent steady-state regulation
error whose amplitude, though, can be arbitrarily decreased by
increasing the high-gain parameter g .

We conclude this section by emphasizing a further robustness
property of the internalmodel-based regulators, resulting from the
previous design, to possible dynamical uncertainties characteriz-
ing the exosystem. Specifically, we consider the case in which the
exogenous inputw is generated by an exosystem of the form

ẇ = s(w) + εδ(w) (18)

where εδ(w) is a continuous function modeling a dynamical
mismatch between a ‘‘nominal’’ exosystem ẇ = s(w) and the
actual exosystem (18). In this setting we are interested to
investigate the asymptotic properties of the system in closed loop
with a regulator designed on the basis of the nominal exosystem,
when the actual exogenous input is instead generated by (18).
Consistently with the basic approach, we assume the existence
of a compact set Wε that is invariant for (18) and such that the
dynamics of

ẇ = s(w) + εδ(w)

ż = f (w, z, 0).
(19)

satisfy the following assumption.

Assumption 1-bis. There exists a map πε : Wε → Rn such that
the set

graph(πε) = {(w, z) ∈ Wε × Rn
: z = πε(w)}

is locally asymptotically stable for the system (19) with a domain
of attraction of the formWε ×D where D is an open set satisfying
D ⊃ Z . �

The resulting robustness properties of the internal-model based
controller are described in the next corollary that is proved in
Appendix B. In the proposition we refer to the function u⋆

ε(w)
defined as

u⋆
ε(w) = −

q(w, πε(w), 0)
b(w, πε(w), 0)

.

Corollary 1. Let Wε be invariant for (18) and let the dynam-
ics (19) satisfy Assumption 1-bis. Let φ : Rd

→ R be a locally
Lipschitz function and ν : Wε → R a continuous function such
that (16) holds with W and u⋆(w) replaced, respectively, by Wε and
u⋆

ε(w). Finally, let φc : Rd
→ R be any locally Lipschitz bounded func-

tion that agrees with φ on τ(Wε) where τ is defined as in (13) with
u⋆(w) replaced by u⋆

ε(w).
Then, there exist a continuous function ϱ : Wε × R → R, a

g⋆ > 0, a c > 0, and a continuous function κ : R → R such that
for all g ≥ g⋆ the trajectories of the system (8), with s(w) replaced by
s(w) + εδ(w), in closed-loop with the regulator (11), (14), (15) and
γ (ξ) = ξ0 originating fromWε × Z × E × Ξ are bounded and such
that

lim
t→∞

sup |e(t)| ≤
c

gd+1
max
w∈Wε

(|ν(w)| + ε|ϱ(w, ε)|).

4. Internal models of uncertain oscillators

4.1. The framework

In thiswork the results summarized abovewill be applied in the
special case in which the function u⋆(w(t)) is a linear combination
ofm0 non-zero harmonics with uncertain frequencies, amplitudes
and phases (see Serrani et al., 2001). In this context, by lettingw =

col(ϖ, w), we can redefine the exosystem dynamics ẇ = s(w) as

ϖ̇ = 0 ϖ ∈ ϖ ⊂ Rm0

ẇ = S(ϖ)w w ∈ W ⊂ R2m0
(20)

where w = (w1 · · · wm0)
T with wi ∈ R2,

S(ϖ) = blkdiag(S1(ϖ1), . . . , Sm0(ϖm0))

Si(ϖi) =


0 ϖi

−ϖi 0


,

(21)

with u⋆(w) which reads as

u⋆(w) = Γ (ϖ)w Γ (ϖ) =

Γ1(ϖ) · · · Γm0(ϖ)


(22)

with Γi(ϖ) ∈ R1×2 and the pair (S(ϖ), Γ (ϖ)) assumed, without
loss of generality, observable for all ϖ ∈ ϖ . The unknown values
of ϖ and w are supposed to range on a known compact set W =

ϖ × W ⊂ Rm0 × R2m0 . It is assumed that W = W1 × · · · ×

Wm0 , withWi = {wi ∈ R2
: ∥wi∥ ∈ [ai, bi]} for some positive ai <

bi, i = 1, . . . ,m0. Note that W is invariant for (20). It is also
assumed that the frequencies ϖi are such that ϖi ≠ ϖj, for all
i, j = 1, . . . ,m0, i ≠ j, and that ϖi ≠ 0 for all i = 1, . . . ,m0.
The signal u⋆(w(t)), hence, is the superposition of m0 harmonic
components of unknown frequencies, dependent on (the initial
condition of) ϖ = (ϖ1 · · · ϖm0)

T , of unknown amplitudes and
phases dependent on the initial condition of w.

Within the previous framework, we are interested to develop a
design methodology not relying upon the exact knowledge of the
number m0 of non-zero harmonics but rather on an estimate m of
m0, withm not necessarily equal tom0. Ifm happens to be larger or
equal to thenumberm0 of such components, asymptotic regulation
is achieved. On the other hand, if m < m0, i.e. if the dimension
of exosysyem is under-estimated, only practical regulation is
obtained with a residual regulation error that – however – can be
arbitrarily decreased by properly tuning a high-gain parameter (in
the light of Theorem 2).

4.2. Design of the internal model

The proposed regulator is a 4m-dimensional system, with state

ξ = col(ξ0, ξ1, . . . , ξ4m−1)
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whose dynamics are constructed (see Proposition 2) starting from
the vector
ℓ(ξ) := (ξ2m, . . . , ξ4m−1)

T

and matrices Ai(ξ) ∈ R2i×2i, i = 1, . . . ,m, defined as the 2i × 2i
upper diagonal block of the following matrix

A(ξ) =


ξ0 ξ1 · · · ξ2m−1
ξ1 ξ2 · · · ξ2m
...

...
...

ξ2m−1 ξ2m · · · ξ4m−2

 .

Note that Am(ξ) = A(ξ).
The construction of the regulator relies on a special ‘‘regularity’’

assumption concerning the matrix Amin{m,m0}, specified as follows.
Let τ(w) be defined as in (13) with d = 4m, that is

τ(w) =

u⋆(w) Lsu⋆(w) · · · L4m−1

s u⋆(w)
T

, (23)
with u⋆(w) defined as in (22) and s(w) defined as in (20)–(21). The
assumption in question is the following one.

Assumption 2. There exists ϵ > 0 such that

| det(Amin{m,m0}(τ (w)))| ≥ ϵ ∀w ∈ W. � (24)

Remarks about the role of this assumption are given after the
forthcoming proposition.

The value of ϵ is used in the design of the regulator. Specifically,
we let A−1

i,sat(ξ), for i = 1, . . . ,m, be any (at least locally Lipschitz)
bounded matrix that agrees with A−1

i (ξ) for all ξ such that
| det Ai(ξ)| ≥ ϵ and bi(ξ) any (at least locally Lipschitz) function
satisfying

bi(ξ) =


1 if | det Ai(ξ)| ≥ ϵ

0 if | det Ai(ξ)| ≤
ϵ

2
.

With the previous notations in hand, we are in the position of
presenting the main result of the section (proved in Appendix C)
that, in conjunction with Theorem 2, yields the required regulator.

Proposition 2. Let condition (24) be fulfilled. Let

φ(ξ) =

m
i=1

αi(ξ)φi(ξ) (25)

where, for i = 1, . . . ,m, the φi’s are defined as2

φi(ξ) = ⌊ℓ(ξ)⌋Ti A
−1
i,sat(ξ)⌊ℓ(ξ)⌋i,

and the αi’s are recursively defined as

αm(ξ) = bm(ξ)

αi(ξ) = bi(ξ)

m
j=i+1

(1 − αj(ξ)) i = 1, . . . ,m − 1.

There exists a continuous function ν : W → R, with the property that
ν ≡ 0 if m ≥ m0, such that relation (16) holds with d = 4m for all
w ∈ W.

We conclude the section with some remarks about the basic
requirement (24). Clearly, the fulfillment of this condition is
influenced by the shape of W. In what follows, it will be
shown that if m ≥ m0 no extra hypotheses are required, while
if m < m0 condition (24) is fulfilled if, among the m0 harmonics
characterizing the signal u⋆(w(t)), at least m0 − m components
have ‘‘sufficiently small’’ amplitudes.

2 We use the notation ⌊v⌋j to denote a vector in R2j obtained by extracting the
first 2j components from the vector v ∈ R2d, d ≥ j.

Proposition 3. Let a ≤ ā be fixed positive numbers and ϖ be a fixed
compact set of Rm0 .

If m ≥ m0, condition (24) holds with W a set of the form W =

ϖ × W in which

W = Wa,ā × · · · × Wa,ā ∈ R2m0 (26)

with Wa,ā = {w ∈ R2
: |w| ∈ [a, ā]}.

If m < m0, there exists a σ̄ > 0 such that for all positive σ ≤ σ̄
condition (24) holds with W a set of the formW = ϖ × W with

W = Wa,ā × · · · × Wa,ā  
m times

Wσa,σ ā × · · · × Wσa,σ ā  
m0−m times

.

The proof of this proposition is deferred to Appendix D.

Remark 2. Note that, if the actual exosystem consists of m0 har-
monic oscillators and m ≥ m0, and hence our internal model is
over-dimensioned, the combination of Theorem 2 and Proposi-
tion 2 leads to the claim that the proposed regulator guarantees
exponential convergence of the error to zero, so long as the set
graph(π) is locally exponentially stable for (4). If specialized to
the class of linear minimum-phase regulated systems (in which
the requirement of exponential stability of the zero dynamics is
indeed fulfilled), this factmeans that the proposed controller guar-
antees exponential regulation even if some of the harmonic oscil-
lators that characterize the exosystem are not ‘‘excited’’. This kind
of asymptotic behavior of the error is not necessarily guaranteed
if the internal model is designed as a fixed bench of oscillators
whose frequencies are adaptively tuned, as proposed in Serrani
et al. (2001) andmore recently inMarino and Tomei (2011) for lin-
ear minimum-phase systems. In this case, in fact, just asymptotic
(and not exponential) regulation is guaranteed.

4.3. Fine tuning of the internal model dimension

A possible drawback of the design solution presented in the
previous section is related to the dimension of the regulator, which
is equal to 4m. This fact, in turn, leads to implement a high-gain
controller of the form (11), (14), (15) with the value of the gain
g raised to the 4 m power (see the expression of G), opening the
doors to some problem in the implementation phase if m is large.
In order to mitigate this problem, a first wise design improvement
of the proposed solution is to adopt strategies that adjust the
value of the gain online as suggested, for instance, in Ahrens and
Khalil (2009), Boizot, Busvelle, and Gauthier (2010), and Sanfelice
and Praly (2010). Furthermore, it turns out useful to look for
strategies leading to keep m as small as possible according to the
effective number of exogenous harmonics (i.e.m0). In this respect,
it is interesting to note that the design framework presented
in this paper lends itself to the possibility of ‘‘fine-tuning’’ the
dimension of the internal model, so as to avoid over-dimensioned,
and hence redundant, controllers. This can easily be accomplished
if an upper bound m̄0 for the number of harmonic components of
the exogenous input is available. In this case, in fact, it is easy to
implement – at least in principle – a simple procedure by means
of which the actual value of m0 is identified, and accordingly, the
appropriate value ofm can be set.

Bearing in mind the notation of the previous section and the
proof of Proposition 2, we know that for allw(t) ∈ W,

m = m0 ⇒ det Am(τ (w(t))) ≥ ϵ

m > m0 ⇒ det Am0(τ (w(t))) ≥ ϵ,

det Am0+1(τ (w(t))) = · · · = det Am(τ (w(t))) = 0.
(27)
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We also know that, if m ≥ m0, a property of the form (16) holds
with ν(w) = 0 and, from the proof of Proposition 2, it follows that,
if system (8) is controlled via (11)–(14)–(15) with γ (ξ) = ξ0 and
suitable g > 0 and κ(·), then

lim
t→∞

|ξ(t) − τ(w(t))| = 0. (28)

Suppose an upper bound m̄0 for the actual value of m0 is known,
set m = m̄0, let φ(ξ) be defined as in Proposition 2 and let the
controller be designed as indicated in Proposition 2. The controller
in question is a system of fixed structure

ξ̇ = Aξ + Bφ(ξ) − gDgΛκ(e)
u = ξ0 − κ(e),

(29)

with A, B,Dg , Λ defined as in the proof of Theorem 2. The function
φ(ξ) only depends on the value ofm (which is set equal to m̄0) and
on the value of ϵ.

From the proof of Theorem 2, we know that for every δ > 0,
there is a time Tδ , that – for a fixed plant (8) – depends on the
actual values of m̄0, ϵ, on the choices of Λ, g, κ(·) in (29), and on
the admissible set of initial conditions, such that

|ξ(t) − τ(w(t))| ≤ δ for all t ≥ Tδ,

uniformly in the initial conditions (as long as the latter range over
a fixed compact set). By continuity of det Ai(ξ), it is known that for
each θ there is a δθ such that

|ξ − τ(w)| ≤ δθ ⇒ | det Ai(ξ) − det Ai(τ (w))| ≤ θ

for all i ≤ m̄0. Thus, we deduce that

t ≥ Tδθ ⇒ | det Ai(τ (w(t)))| − θ ≤ | det Ai(ξ(t))|
≤ | det Ai(τ (w(t)))| + θ,

uniformly in the initial condition. From this, taking θ = ϵ/4, we
conclude that (by taking into account (27))

m̄0 = m0 ⇒ | det Am̄0(ξ(t))| ≥ 3ϵ/4 for all t ≥ Tδθ

and

m̄0 > m0 ⇒

| det Am̄0−i(ξ(t))| ≤ ϵ/4 for all t ≥ Tδθ ,

0 ≤ i ≤ m̄0 − m0 − 1
| det Am0(ξ(t))| ≥ 3ϵ/4 for all t ≥ Tδθ .

This suggests a simple procedure to identify the actual value ofm0,
provided that an upper bound m̄0 is known. It suffices, in fact, ‘‘to
wait’’ a time Tδθ , with θ = ϵ/4, and then to determine the value
of m0 as the largest i ≤ m̄0 such that | det Ai(ξ(t))| ≥ 3ϵ/4 for all
t ≥ Tδθ .

4.4. Robustness to slightly varying frequencies

In this part the robustness properties of the internal model de-
sign proposed in Section 4.2 to possibly time-varying frequencies
are investigated. It is shown that if them0 frequencies ϖi are vary-
ing, the resulting steady state regulation error is bounded with an
upper bound linearly dependent on the rate of change of the ϖi’s.

Specifically,within the framework set up in Sections 4.1 and 4.2,
we consider an exosystem of the form (18), with s(w) of the form
(20). As in Corollary 1, we assume that there exists a setWε that is
invariant for (18) and that the dynamics (19) satisfy Assumption 1-
bis. Then, Corollary 1 specializes as follow.

Corollary 2. Let Wε be invariant for (18) and let the dynam-
ics (19) satisfy Assumption 1-bis. Let τ(w) be defined as in (23) with
s(w) replaced by s(w) + εδ(w), and suppose Assumption 2, with W
replaced byWε , is fulfilled for some ϵ. Then, there exist bounded func-
tions ν : Wε → R, with ν(w) = 0 if m ≥ m0, and ϱ : Wε ×R → R,
a continuous function κ : R → R, and a g⋆ > 0 and a c > 0, and
such that for all g ≥ g⋆ the trajectories of the system (8) and (18),

in closed-loop with the regulator (11), (14), (15) and γ (ξ) = ξ0 are
bounded and such that

lim
t→∞

sup |e(t)| ≤
c

g4m+1
max
w∈Wε

(|ν(w)| + ε|ϱ(w, ε)|).

5. Simulation results

We consider the nonlinear system

ẋ1 = x2
ẋ2 = −x1 + µ1x2 − x32 − µ2x1x22 + u

that is a Van der Pol oscillator perturbed by−µ2x1x22 and forced by
the control input u. The vectorµ = (µ1, µ2) is a vector of constant
uncertain parameters whose values range in a compact set. In
the simulation below it is assumed that |µ1| ≤ 2 and |µ2| ≤ 2.
The goal is to make the variable x1 tracking a reference signal x⋆

1
generated as

x⋆
1 = Γ ⋆w⋆, ϖ̇ ⋆

= 0, ẇ⋆ = S⋆(ϖ ⋆)w⋆ w⋆
∈ R2m⋆

0

with m⋆
0 > 0, ϖ ⋆

= (ϖ ⋆
1 , . . . ,ϖ ⋆

r⋆) in which S⋆ is of the form
(21) with S, ϖ and m0 replaced by S⋆, ϖ ⋆ and m⋆

0. The values
of m⋆

0, ϖ
⋆(0) and w⋆(0) are unknown but supposed to range on

known compact sets. By defining the error variables e1 := x1 −

Γ ⋆w⋆ and e2 = x2 − Γ ⋆S⋆w⋆, the error system can be put in the
form (1) where the relative degree r = 2, the z-dynamics are
absent, w = col(µ, ϖ ⋆, w⋆) with the w dynamics given by µ̇ =

0, ϖ̇ ⋆
= 0 and ẇ⋆ = S⋆(ϖ ⋆)w⋆ and where u⋆(w) is given by

u⋆(w) = Γ ⋆w⋆
− µ1Γ

⋆S⋆w⋆
+ (Γ ⋆S⋆w⋆)2

+ µ2(Γ
⋆w⋆)(Γ ⋆S⋆w⋆)2 + Γ ⋆S⋆2w⋆. (30)

The desired steady state input is thus a polynomial function of the
state w. By Huang (1995) it turns out that system µ̇ = 0, ϖ̇ ⋆

= 0
and ẇ⋆ = S⋆(ϖ ⋆)w⋆ with ‘‘output’’ (30) is immersed into a system
of the form (20)–(21)–(22). For example if m⋆

0 = 1, all the desired
steady state inputs of the form (30) can be generated by means of
an exosystem of the form (20)–(21)–(22) with m0 = 2, ϖ(0) =

(ϖ ⋆(0), 3ϖ ⋆(0)) andwith initial conditions ofw ∈ R4 dependent
on the initial conditions of (ϖ ⋆, w⋆) and on the value of µ. The
internal model based regulator can be thus designed according
to the theory presented in the paper. In particular, by following
the theory in Section 4.2, we have chosen m = 2 (resulting in
an internal model of dimension 8). After a few numerical tests
obtained by taking W = {w ∈ R4

: |w| ≤ 5} and ϖ = {ϖ ∈ R2
:

|ϖ1| ≤ 4, |ϖ2| ≤ 10}, the internal model unit has been tuned
with ϵ = 5 · 10−3 (see (24)), g = 10 and the λi’s so that the 8 roots
of λ8

+ λ7λ
7

+ · · · λ1λ + λ0 = 0 are half in −1 and half in −2.
By following the theory presented in the final part of Section 2, a
stabilizer has been then designed with k = 1, a0 = 1, and κ =

102 (see (11)). The designed controller has been simulated in
different scenarios in order to check all the features of the proposed
internal model unit design. In particular, the simulated reference
signal x⋆

1 is shown in Fig. 1. In a first time period [0, 25] s
(labeled (a) in the figure) a reference signal x⋆

1 composed by
two harmonics (at frequencies ϖ ⋆

1 = 1 and ϖ ⋆
2 = 3, both with

amplitude 1) has been implemented in order to simulate a scenario
in which the internal model is under-dimensioned with respect
to the exosystem generating the ideal steady state control input
(in this case m0 = 8 and m = 2). According to Theorem 2 the
regulator guarantees a bounded steady state tracking error that
can be observed in Fig. 2. According to the value of g the error
is of magnitude 10−4. At time t = 25 the second harmonics of
the reference signal is disconnected so that the reference signal
becomes a pure unitary harmonic at frequency ϖ ⋆

1 = 1 (in this
case m0 = m = 2). This reference signal is kept unchanged in the
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Fig. 1. Reference signal x⋆
1(t).

Fig. 2. Tracking error e1(t) = x1(t) − x⋆
1(t).

Fig. 3. Control input u(t).
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time interval [25, 50] s, labeled (b) in Fig. 1. In this case the internal
model embedded in the regulator has the right dimension and, as
predicted by the theory, the error converges to zero (see Fig. 2). At
time t = 50 s, the frequency of the single harmonic of x⋆

1 is steadily
decreased in order to reach the valueϖ ⋆

1 = 0.5 at time t = 60 s. As
predicted by Corollary 2 the regulator still guarantees a bounded
tracking error that can be observed in Fig. 2. In the subsequent
time interval [60, 90] s, labeled (d) in Fig. 1, the frequency of the
reference signal is kept constant at ϖ ⋆

1 = 0.5 and, as shown by
Fig. 2, the internal model adapts to the new frequency and steers
the tracking error to zero. Finally, in the time interval [90, 110] s
(labeled (e) in Fig. 1), the reference signal is set to zero in order to
simulate a lack in the persistence of excitation, namely an over-
dimensioned internal model (in this case m0 = 0 < m = 2). As
shown by Fig. 2 even in this case the error converges to zero. The
behavior of the control input u(t) is shown in Fig. 3.

6. Conclusions

This paper presented a new approach to design adaptive
internal model-based regulators for a class of minimum-phase
nonlinear systems. With respect to existing approaches, the
proposed method does not rely upon an explicit adaptation
method of the control law. The new method has been developed
in a general framework handling both the case of over- and under-
dimensioned internal models. In the case of under-dimensioned
internal models we showed how the proposed controller ensures
a bounded steady state regulation error that can be arbitrarily
decreased by acting on a design parameter. Future works on
this subject will focus on extending the design methodology
also to the class of nonlinear but linearly parametrized uncertain
exosystems and on numerical validation of the proposed approach
and comparison with existing methods.

Appendix A. Proof of Theorem 2

We consider the change of variable ξ → ξ̃ := ξ − τ(w),

transforming system (8), (11), with F as in (14) and γ (ξ) = ξ0,
as

ẇ = s(w)

ż = f (w, z, e)
˙̃
ξ = Aξ̃ + B


φ̃(ξ̃ ,w) − ν(w)


+ Gv

ė = q(w, z, e) + b(w, z, e)(τ0(w) + ξ̃0 + v)

(A.1)

where A is the ‘‘shift’’ matrix (all entries are zeros except those on
the superdiagonal which are all ones), B =


0 · · · 0 1

T ,
φ̃(ξ̃ ,w) = φc(ξ̃ + τ(w)) − φ(τ(w)).

Since φ is locally Lipschitz and φc is locally Lipschitz and bounded
and agrees with φ on τ(W), there exist two real numbers c1 and c2
so that we have

|φ̃(ξ̃ ,w)| ≤ min{c1|ξ̃ |, c2} ≤ c1|ξ̃ | ∀(ξ̃ ,w) ∈ Rd
× W.

Note also that q(w, z, 0) + b(w, z, 0)τ0(w) = 0 for all (w, z) ∈

graph(π). By the further change of variable (meant to put system
(A.1) in normal form)

ξ̃ → χ := ξ̃ − G
 e

0

1
b(w, z, s)

ds,

system (A.1) transforms as

ẇ = s(w)

ż = f (w, z, e)

χ̇ = Aχ + B

φ̃(χ,w) − ν(w)


−G


χ0 + τ0(w) +

q(w, z, 0)
b(w, z, 0)


+ L(w, z, χ, e)

ė = q(w, z, e) + b(w, z, e)

×


τ0(w) + χ0 + gλ0

 e

0

1
b(w, z, s)

ds + v


(A.2)

where

L = AG
 e

0

1
b(w, z, s)

ds

+ B


φ̃


χ + G

 e

0

1
b(w, z, s)

ds,w


− φ̃(χ,w)


−G


q(w, z, e)
b(w, z, e)

−
q(w, z, 0)
b(w, z, 0)

+ gλ0

 e

0

1
b(w, z, s)

ds

+

 e

0

∂

∂w
1

b(w, z, s)
dsẇ +

 e

0

∂

∂z
1

b(w, z, s)
ds ż


.

Note that L(w, z, χ, 0) = 0 for all (w, z, χ) ∈ W × Rn
× Rd. By

following the high-gain observer theory (see Esfandiari & Khalil,
1992, Teel & Praly, 1995), we finally re-scale the χ variable as

χ = Dg χ̃ with Dg = diag(1, g, . . . , gd−1)

in this way transforming the χ and e dynamics in (A.2) as

˙̃χ = gHχ̃ +
1

gd−1
B

φ̃(Dg χ̃ ,w) − ν(w)


− gΛyz(w, z)

+D−1
g L(w, z,Dg χ̃ , e)

ė = q(w, z, e) + b(w, z, e)

×


τ0(w) + χ̃0 + gλ0

 e

0

1
b(w, z, s)

ds + v


where Λ =


λ0 · · · λd−1

T
, yz = τ0(w) +

q(w,z,0)
b(w,z,0) , and H is a

Hurwitzmatrix, independent of g , whose eigenvalues are the roots
of the polynomial p(s) := sd −

d−1
i=0 λisd−1−i. The overall closed-

loop system, regarded as a system with input v and output e, has
relative degree one and zero dynamics given by

ẇ = s(w)

ż = f (w, z, 0)

˙̃χ = gHχ̃ +
1

gd−1
B

φ̃(Dg χ̃ ,w) − ν(w)


− gΛyz(w, z).

(A.3)

Standard ISS arguments, using the fact that H is Hurwitz and
that φ̃(χ,w) is globally Lipschitz in χ , uniformly in w, can be
used to show that there exists a g⋆ > 0 such that for all g ≥ g⋆

the χ̃-subsystem, regarded as a system with inputs (yz, ν), is ISS.
In particular there exists a positive c ′ such that the following
asymptotic estimate holds

lim
t→∞

sup |χ̃(t)|

≤ c ′ max


1
gd

lim
t→∞

sup |ν(w(t))|, lim
t→∞

sup |yz(t)|


.

Seeing (A.3) as the subsystem (4) driving the χ̃ subsystem
through the coupling function yz(w, z), using the minimum-
phase assumption and the fact that yz(w, z) = 0 for all (w, z) ∈
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graph(π), standard arguments can be used to conclude that system
(A.3), also regarded as a system with inputs ν, is ISS with an
asymptotic estimate of the form

lim
t→∞

sup |(w(t), z(t), χ̃(t))|graph(π)×{0} ≤
c ′

gd
lim
t→∞

sup |ν(w(t))|.

From this, the small gain arguments of Marconi et al. (2007) lead
to the conclusion that there exists a continuous κ(·) such that the
claim of Theorem 2 holds for some positive c. Furthermore, κ(·) is
linear if graph(π) is also locally exponentially stable for (4).

The second part of the claim, namely exponential convergence
of the error when ν = 0 and graph(π) is locally exponentially
stable for (4), follows from Byrnes and Isidori (2004).

Appendix B. Proof of Corollary 1

The result immediately follows by the fact the φ(·) is locally
Lipschitz and by Theorem 2. As a matter of fact note that for all
k ≥ 0

Lks(w)+εδ(w)u
⋆
ε(w) = Lks(w)u

⋆
ε(w) + ερk(w, ε) (B.1)

where ρk(w, ε) is a continuous function. By using the previous
expression, it turns out that

Lds(w)+εδ(w)u
⋆
ε(w)

= φ(u⋆
ε(w), Ls(w)u⋆

ε(w), . . . , Ld−1
s(w)u

⋆
ε(w)) + ν(w) + ερd(w, ε)

= φ(u⋆
ε(w), Ls(w)u⋆

ε(w), . . . , Ld−1
s(w)u

⋆
ε(w))

− φ(u⋆
ε(w), Ls(w)+εδ(w)u⋆

ε(w), . . . , Ld−1
s(w)+εδ(w)u

⋆
ε(w))

+ φ(u⋆
ε(w), Ls(w)+εδ(w)u⋆

ε(w), . . . , Ld−1
s(w)+εδ(w)u

⋆
ε(w))

+ ν(w) + ερd(w, ε)

= φ(u⋆
ε(w), Ls(w)+εδ(w)u⋆

ε(w), . . . , Ld−1
s(w)+εδ(w)u

⋆
ε(w))

+ ν(w) + ερd(w, ε) + ∆(w, ε)

where

∆(w, ε) := φ(u⋆
ε(w), Ls(w)u⋆

ε(w), . . . , Ld−1
s(w)u

⋆
ε(w))

− φ(u⋆
ε(w), Ls(w)+εδ(w)u⋆

ε(w), . . . , Ld−1
s(w)+εδ(w)u

⋆
ε(w)).

From this, the result immediately follows, by compactness
arguments, using (B.1), the fact that φ(·) is locally Lipschitz and
Theorem 2.

Appendix C. Proof of Proposition 2

Let

pm0(λ) = λ2m0 + a2m0−1λ
2m0−1

+ · · · + a1λ + a0

be the characteristic polynomial of the block-diagonal matrix
S(ϖ). By the Cayley–Hamilton theorem, it turns out that
pm0(S(ϖ)) = 0 and thus

Γ (ϖ) Sk(ϖ) pm0(S(ϖ))w = 0 (C.1)

for any (ϖ, w) ∈ W and any k ≥ 0. If m0 > m we introduce the
coefficients ci = ai/a2m, i = 0, . . . , 2m0 − 1, and c2m0 = 1/a2m,
which are well defined as the coefficient a2m ≠ 0 (as all ‘‘even’’
coefficients of the characteristic polynomial of a set of oscillators),
and we note that relation (C.1) implies that

Lk+2m
s u⋆

= −c0Lksu
⋆
− · · · − c2m−1Lk+2m−1

s u⋆

− c2m+1Lk+2m+1
s u⋆

− · · · − c2m0L
k+2m0
s u⋆ (C.2)

for all k ≥ 0, with u⋆(w) defined as in (22) and s(w) defined as
in (20)–(21). On the other hand, if m0 ≤ m, we let ci = 0, i =

0, . . . , 2(m−m0)−1, and ci = ai−2(m−m0), i = 2(m−m0), . . . , 2m−

1, and we note that relation (C.1) implies that

Lk+2m
s u⋆

= −c0Lksu
⋆
− · · · − c2m−1Lk+2m−1

s u⋆. (C.3)

By collecting the 2m relations obtained by evaluating (C.2) and
(C.3) for k = 0, . . . , 2m − 1, one obtains

ℓ(τ (w)) = −Am(τ (w)) c + Q (w) (C.4)

where c = (c0, . . . , c2m−1)
T and

Q (w) = −

L2m+1
s u⋆

· · · L2m0
s u⋆

...
. . .

...

L4ms u⋆
· · · L2m+2m0−1

s u⋆


c2m+1

...
c2m0


ifm0 > m, whileQ (w) = 0 otherwise. Furthermore, relations (C.2)
and (C.3) evaluated for k = 2m yield

L4ms u⋆(w) = −ℓT (τ (w)) c + q(w) (C.5)

where

q(w) = c2m+1L4m+1
s u⋆

− · · · − c2m0L
2(m+m0)
s u⋆

ifm0 > m, while q(w) = 0 otherwise.
Suppose m ≤ m0. In this case, by Assumption 2, the matrix

Am(τ (w)) is nonsingular for all w ∈ W. Hence, (C.4) can be
uniquely solved for c as

c = A−1
m (τ (w))[Q (w) − ℓ(τ (w))].

Replacing this into (C.5) yields

L4ms u⋆(w) = −ℓT (τ (w)) A−1
m (τ (w))[Q (w) − ℓ(τ (w))] + q(w)

= ℓT (τ (w))A−1
m (τ (w))ℓ(τ (w)) + ν(w), (C.6)

in which

ν(w) = −ℓT (τ (w)) A−1
m (τ (w))Q (w) + q(w).

In the special case m = m0, we have Q (w) = 0 and q(w) = 0 and
hence ν(w) = 0.

Consider now the casem > m0, inwhichwe know thatQ (w) =

0 and q(w) = 0. Observe that for all i = 1, . . . ,m, the matrix
Ai(τ (w)) can be factored as

Ai(τ (w)) = Oi(ϖ) Ci(ϖ, w) i = 1, . . . ,m

in which Oi ∈ R2i×2m0 and Ci ∈ R2m0×2i are the matrices

Oi(ϖ) =

Γ T (ϖ) ST (ϖ)Γ T (ϖ) · · · (S2i−1(ϖ))TΓ T (ϖ)

T
Ci(ϖ, w) =


w S(ϖ)w · · · S2i−1(ϖ)w


.

From this, we observe that rankAi(τ (w)) ≤ 2m0 for all i. Since, by
Assumption 2, rankAm0(τ (w)) = 2m0 for all w ∈ W, we conclude
that thematrix Am(τ (w)) has rank 2m0, with the first 2m0 columns
of Am(τ (w)) being linearly independent for allw ∈ W.

Any solution of (C.4) can be written as c = c⋆ + ck where c⋆
is a solution of (C.4) and ck ∈ KerAm(τ (w)). From the properties
of Am(τ (w)) just described, it turns out that a possible solution of
(C.4) is given by c⋆ = col(c ′

⋆, 0) with (recall that Q (w) = 0)

c ′

⋆ = −A−1
m0

(τ (w))−1
⌊ℓ(τ (w))⌋m0

.

Hence, using c = c⋆ + ck, with ck ∈ KerAm(τ (w)), in (C.5), we have
(recall that q(w) = 0)

L4ms u⋆(w) = −ℓT (τ (w))


−A−1

m0
(τ (w))⌊ℓ(τ (w))⌋m0

0


+ ck


.
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From (C.4), it is seen that

ℓT (τ (w)) ck = −cTAT
m(τ (w)) ck = 0

because Am(τ (w)) = AT
m(τ (w)) and ck ∈ KerAm(τ (w)). Hence

L4ms u⋆(w) = ⌊ℓT (τ (w))⌋m0
A−1
m0

(τ (w))⌊ℓ(τ (w))⌋m0
. (C.7)

Letting i∗ := min{m0,m}, and using the fact that Assumption 2
implies A−1

i⋆ (τ (w)) = A−1
i⋆,sat(τ (w)), the two formulas (C.6) and

(C.7) can be rewritten together as

L4ms u⋆(w) = ⌊ℓT (τ (w))⌋i⋆ A
−1
i⋆,sat(τ (w))⌊ℓ(τ (w))⌋i⋆ + ν(w)

= φi⋆(τ (w)) + ν(w)

with φi⋆(ξ) defined as in the proposition and ν(w) = 0 whenever
m0 ≤ m. From this, from the definition of φ and the fact that, by
the definition of the αi’s, αi⋆(τ (w)) = 1 and αi(τ (w)) = 0 for all
i ≠ i⋆, the result of Proposition 2 follows.

Appendix D. Proof of Proposition 3

First, note that in both cases W is clearly invariant, since the
norm of the state of each oscillator is kept constant by the flow
of S.

Consider first the casem ≥ m0 and note that

Ar(τ (w)) = Or(ϖ)Cr(ϖ, w)

with Om0 ∈ R2m0×2m0 and Cm0 ∈ R2m0×2m0 defined as

Om0(ϖ)

=

Γ T (ϖ) ST (ϖ)Γ T (ϖ) · · · (S2m0−1(ϖ))TΓ T (ϖ)

T
Cm0(ϖ, w) =


w S(ϖ)w · · · S2m0−1(ϖ)w


.

Since, by hypothesis, ϖi ≠ ϖj for i ≠ j and no ϖi is zero, the latter
matrices are indeed non singular if (Si(ϖ), Γi(ϖ)) is observable
for all i and if W has the structure indicated in (26). Hence (24)
holds for some ϵ > 0 dependent on a and ϖ .

Consider now the casem < m0 and let ϖ ∈ Rm0 be partitioned
as ϖ = (ϖ ′, ϖ ′′) ∈ Rm

× Rm0−m with ϖ ′
= (ϖ1 · · · ϖm)T and

ϖ ′′
= (ϖm+1 · · · ϖm0)

T . If w ∈ R2m0 is partitioned consistently as
w = (w′, w′′) ∈ R2m

× R2(m0−m), then ẇ′
= S ′(ϖ ′)w′ and ẇ′′

=

S ′′(ϖ ′′)w′′ where S ′(ϖ ′) = blkdiag(S1(ϖ1), . . . , Sm(ϖm)) and
S ′′(ϖ ′′) = blkdiag(Sm+1(ϖm+1), . . . , Sm0(ϖm0)). Let ϖ be a set
of the formϖ = ϖ ′

× ϖ ′′ andW a set of the formW = W ′
×W ′′

with W ′
= Wa,ā × · · · × Wa,ā ∈ R2m and W ′′

= Wσa,σ ā × · · · ×

Wσa,σ ā ∈ R2(m0−m). Finally, letw′
= (ϖ ′, w′) andw′′

= (ϖ ′′, w′′).
Since the function u⋆(w) can be decomposed as u⋆(w) =

u⋆ ′(w′) + u⋆ ′′(w′′) with u⋆ ′
=
m

i=1 Γi(ϖi)wi, and u⋆ ′′
u =

m0
i=m+1

Γi(ϖi)wi, it turns out that τ(w) and Am(τ (w)) can be expressed as
τ(w) = τ ′(w′) + τ ′′(w′′) and

Am(τ (w)) = Am(τ ′(w′)) + Am(τ ′′(w′′))

where τ ′ and τ ′′ are defined as τ with (S, u⋆) replaced by (S ′, u⋆ ′)

and (S ′′, u⋆ ′′), respectively. By the definition of τ ,

det(Am(τ (w))) = det(Am(τ ′(w1)) + σAm(τ ′′(w2)))

with w1 ∈ ϖ1 × W1 and w2 ∈ ϖ2 × (1/σ)W2. By the discussion
above, there exists η > 0 such that | det(Am(τ ′(w1)))| ≥ η for all
w1 ∈ ϖ1 × W1. From this the result of the proposition follows by
the continuity of the determinant in the parameter σ .
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