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a b s t r a c t

We address the problem of state observation for a system whose dynamics may involve poorly known,
perhaps even nonlocally Lipschitz functions and whose output measurement may be corrupted by noise.
It is known that one way to cope with all these uncertainties and noise is to use a high-gain observer
with a gain adapted on-line. The proposed method, while presented for a particular case, relies on a
‘‘generic’’ analysis tool based on the study of differential inequalities involving quadratic functions of
the error system in two coordinate frames plus the gain adaptation law. We establish that, for bounded
system solutions, the estimated state and the gain are bounded.Moreover, we provide an upper bound for
the mean value of the error signals as a function of the observer parameters. Since due to perturbations
the gain adaptation law may drive the observer/plant interconnection to nearby boundary of its stability
region, oscillatory behaviormay emerge. To overcome this issue, we suggest an adaptive procedure based
on a space averaging technique involving several copies of the observer.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

We consider nonlinear systems in the form2

ż = fz(x1, . . . , xn, z, t),
ẋ1 = x2 + f1(x1, z, t),
ẋ2 = x3 + f2(x1, x2, z, t),
...

ẋn−1 = xn + fn−1(x1, x2, . . . , xn−1, z, t),
ẋn = fn(x1, x2, . . . , xn, z, t),
y = x1 + m.

(1)

For such systems, we are interested in estimating the components
x1 to xn of any solution that is bounded in positive times.

To that end,we propose a high-gain observerwith adaptive gain
that measures the plant’s output y perturbed by m and is given
by

✩ The material in this paper was partially presented at the 8th IFAC Symposium
on Nonlinear Control Systems (NOLCOS), September 1–3, 2010, Bologna, Italy.
This paper was recommended for publication in revised form by Associate Editor
Alessandro Astolfi under the direction of Editor Andrew R. Teel.

E-mail addresses: sricardo@u.arizona.edu (R.G. Sanfelice),
Laurent.Praly@ensmp.fr (L. Praly).
1 Tel.: +1 520 626 0676; fax: +1 520 621 8191.
2 The time dependence allows the presence of inputs.
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˙̂x1 = x̂2 + f̂1(x̂1, t) − k1r(ŷ − y),
˙̂x2 = x̂3 + f̂2(x̂1, x̂2, t) − k2r2(ŷ − y),
...
˙̂xn−1 = x̂n + f̂n−1(x̂1, . . . , x̂n−1, t) − kn−1rn−1(ŷ − y),
˙̂xn = f̂n(x̂1, x̂2, . . . , x̂n, t) − knrn(ŷ − y),
ŷ = x̂1,
ṙ = φ(r, ŷ − y),

where the functions f̂i and the positive constants ki, which are the
nominal gains, are to be chosen; r is the observer’s gain, which is
introduced to increase the nominal gain if needed; and φ defines
the adaptation law.

The domain of application of traditional, constant high-gain
observers (Gauthier & Kupka, 1994, 2001) has been enlarged by
incorporating dynamic gain adaptation; see, e.g., Astolfi and Praly
(2006), Andrieu, Praly, and Astolfi (2009), Bullinger and Allgower
(1997), Khalil and Saberi (1987) and Lei, Wei, and Lin (2005).
Dynamic gain adaptation is reminiscent ofwhat has been proposed
in the adaptive control literature for on-line tuning of control
parameters; see, e.g., Egardt (1979), Ilchmann and Owens (1991),
Ioannou and Sun (1996) and Mareels, Van Gils, Polderman, and
Ilchmann (1999).When it is known that the gain r should be larger
than some function of the state that is observable (see Andrieu
et al., 2009; Astolfi & Praly, 2006; Praly, 2003; Praly & Jiang,
2004, for instance), then it is easy to design a satisfactory gain
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adaptation law. When we only know the effect or the properties
that r can guarantee when it is large enough, (see Astolfi & Praly,
2006; Ball & Khalil, 2008; Boizot, Busvelle, & Gauthier, 2010;
Bullinger & Allgower, 1997; Byrnes & Willems, 1984; Khalil &
Saberi, 1987; Lei et al., 2005), then it is more difficult to design an
adaptation law guaranteeing robust performance. Indeed, typically
this adaptation is such that the gain r is nondecreasing along
solutions. Unfortunately, it is known in various contexts that
such a gain adaptation may lead to serious growth problems
when perturbations such as measurement noise are present (see,
e.g., Egardt (1979, Example 4.2), Mareels et al. (1999) and Peterson
and Narendra (1982, Figure 6.a)). A wide variety of fixes have been
proposed in the literature to stop r from increasingwithout bound.
For instance, there exist the dead-zone (Egardt, 1979; Peterson &
Narendra, 1982) or λ-tracking approach (Mareels, 1984), the sigma
modification (Ioannou & Kokotovic, 1984), and, more recently, in
the context of output feedback stabilization, the hybrid approach
proposed in Sanfelice and Teel (2005) consisting of decreasing
(increasing) r by resetting it to a smaller (larger) value when the
output of the system decreases (respectively, increases). The point
is that, instead of keeping the gain r at large values when it is
not needed, more sophisticated mechanisms that tune r to the
local (in time) plant’s data are needed in real-world applications.
In fact, it has been established in Ball and Khalil (2008) and
Vasiljevic and Khalil (2006) that for the constant high-gain case,
measurement noise introduces an upper limit for the gain when
good performance is taken into account. Gain adaptation laws
aiming at satisfying this objective have been proposed recently in
Ahrens and Khalil (2009) and Boizot et al. (2010). In Ahrens and
Khalil (2009), the authors are in a context in which a bound on fi’s
in (1) is known. This allows them to let the gain r switch between
two appropriate values depending on the magnitude of the error
ŷ − y. In Boizot et al. (2010), the authors design an adaptation law
for r relying on the knowledge of an upper bound for r and of the
Lipschitz constant of fi’s.

We design an adaptation law φ for r that does not require
information on the upper bound for r nor of the Lipschitz constant
of fi’s. Our approach consists of analyzing the following set of
inequalities resulting from the interconnection between the plant
in (1) and the observer proposed above:

V̇r(ε)

r
≤ −α1(r)Vr(ε) + β1(r),

ṙ = φ(r, ŷ − y),

V̇s(ξ)

s
≤ −θ1Vs(ξ) + θ2 + α2(r)(ŷ − y)2,

β2(r)(x1 − x̂1)2 ≤ Vr(ε) ≤ α3(s)Vs(ξ).

(2)

The functions Vr and Vs are quadratic in ε and ξ , respectively,
while V̇r and V̇s are their derivatives along solutions, where ε and
ξ are two different coordinates obtained from the same error state
e := x̂ − x. The functions α1, α2, and α3 are increasing whereas
β1 and β2 are decreasing. The constants θ1 and θ2 are positive,
and s is a positive analysis parameter. Particular constructions of
these functions are given in Section 4.3. With these definitions, (2)
induces the following mechanism. From the last inequality, if Vr
is large, then Vs is also large. This is possible only if α2(r)(y − ŷ)2
has been large for some time as the third inequality indicates. If
it was r that was large, then, with the first inequality, using the
monotonicity properties of α1 and β1, this contradicts that Vr is
large. So it has to be that ‖ŷ− y‖ is large. If φ takes positive values
when ‖ŷ− y‖ is large, then, from the second inequality, r will also
become large, forcing Vr to decrease via the first inequality. Since
this does not put any constraint on φ when ‖ŷ − y‖ is small, our
idea is to let φ take nonpositive values in such case.
The paper is organized as follows. Section 2 presents the
construction of the observer as well as the main result. Its proof
along that of technical lemmas are in Section 4. Section 3 is devoted
to the presentation of an illustrating academic example. The proof
of the results are in Section 4.

1.1. Notation

For notation convenience, we utilize the following symbols and
definitions throughout the paper.

• K := [k1 k2 . . . kn]⊤, where ki ∈ R for all i ∈ {1, 2, . . . , n}.
• diag(a11, a22, . . . , ann) denotes the diagonalmatrixwith entries

aii, i = 1, 2, . . . , n.
• Λ(r) = diag(r, . . . , rn).
• Nn−1 = diag(0, 1, . . . , n − 1).
• Given b ∈ R, define R = bI + Nn−1.
• R(r, s) = diag(1 − ( r

s ), 1 − ( r
s )

2, . . . , 1 − ( r
s )

n).
• Given x ∈ Rn, ‖x‖ denotes the Euclidean norm of x.
• Given A ∈ Rn×n, ‖A‖ denotes the induced 2-norm of A.
• Given a function t → f (t), ‖f ‖∞ denotes esssupt‖f (t)‖.
• Given a matrix P ∈ Rn×n, λmin(P) and λmax(P) denote the

minimumandmaximumvalues of its eigenvalues, respectively.

2. Observer expression and main result

System (1) can be compactly written as

ż = fz(x1, . . . , xn, z, t),
ẋ = Ax + F(x, z, t),
y = x1 + m,

(3)

where

A :=



0 1 0 . . . . . . 0
0 0 1 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . . 0

0 0
. . .

. . .
. . . 1

0 0 0 . . . . . . 0


,

F(x, z, t) :=


f1(x1, z, t)

f2(x1, x2, z, t)
...

fn−1(x1, x2, . . . , xn−1, z, t)
fn(x1, x2, . . . , xn, z, t)

 ,

(z, x) ∈ Rm
× Rn is the plant’s state, y ∈ R is the perturbed plant’s

output, andm represents the noise in the measurements of x1.
We study the high-gain observer discussed in Section 1 for (1)

with the particular gain adaptation law defined by

φ(r, ŷ − y) := p1

((ŷ − y)2 − p2)r1−2b

+
p2
r2n


,

with p1 and p2 parameters to be chosenpositive and b to be taken in
(0, 1

2 ). As discussed in Section 1, it is such that the gain r increases
at least when (ŷ− y)2 is larger than p2, but it decreases when (ŷ−

y)2 is smaller than p2(1 −
1

r2n+1−2b ). Note that our adaptation law
makes the interval [1, +∞) forward invariant for the r-component
of any solution.

The above expression for φ has some resemblance with the one
corresponding to an update law with dead zone; cf. Egardt (1979)
and Peterson and Narendra (1982). More precisely, in the most
standard case and in our context, an update law with dead zone
would assume the form

ṙ = p1 max{0, (ŷ − y)2 − p2}r1−2b, (4)
in which case, ṙ is always nonnegative.
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With the definitions above, the proposed observer for the
components x1 to xn of (1) becomes
˙̂x = Ax̂ + F̂(x̂, t) − K(r)(ŷ − y), (5)

ṙ = p1

((ŷ − y)2 − p2)r1−2b

+
p2
r2n


, (6)

ŷ = x̂1, (7)
where x̂ ∈ Rn, ŷ ∈ R,

F̂(x̂, t) :=


f̂1(x̂1, t)

f̂2(x̂1, x̂2, t)
...

f̂n−1(x̂1, x̂2, . . . , x̂n−1, t)
f̂n(x̂1, x̂2, . . . , x̂n, t)

 ,

and with the notation K(r) := Λ(r)K . Given b ∈ (0, 1
2 ) and using

Praly and Jiang (2004, Lemma 1), a vector K ∈ Rn can be chosen
to guarantee the existence of real numbers d0 and d1, and of a
symmetric matrix P such that
0 < d0, 0 < d1, 0 < P, (8)

(A − KC)⊤P + P(A − KC) ≤ −2d0P, (9)
b
2
P ≤ RP + PR ≤ d1P, (10)

where C := [1 0 0 . . . 0] ∈ Rn. Unless otherwise stated, the
parameter b of the gain adaptation law is constrained to the set
(0, 1

2 ).
To establish our main result, we require F and F̂ to satisfy the

following property.

Property (∗). For each compact set C ⊂ Rm
× Rn, there exist γ , L ∈

Rn satisfying, for each i ∈ {1, 2, . . . , n} and all (x, w, z) such that
(z, x + w) ∈ C,

‖fi(x1 + w1, x2 + w2, . . . , xi + wi, z, t) − f̂i(x1, x2, . . . , xi, t)‖

≤ γi + Li
i−

j=1

‖wj‖ (11)

for almost all t.
In particular, the constant vector γ captures a bound on

the unmodeled dynamics, both in the dynamics defined by the
functions f and f̂ , while L corresponds to a bound on the Lipschitz
constant of the mismatch between these functions.

The following lemma introduces conditions for which this
property is guaranteed.

Lemma 2.1. Assume the function F is such that the function (x, z) →

F(x, z, t) is locally bounded uniformly in t and the function F̂ is
bounded. Under this condition, Property (∗) holds.
Proof. For a compact set C, local boundedness of (x, z) →

fi(x, z, t) uniformly in t implies the existence of γ ′
i > 0 such that

‖fi(x1 + e1, . . . , xi + ei, z, t)‖ ≤ γ ′
i for all (z, x + e) ∈ C and for

all t . Boundedness of f̂i implies the existence of γ ′′
i > 0 such that

‖f̂i(x1, . . . , xi, t)‖ ≤ γ ′′
i for all (x1, . . . , xi) and for all t . Then, the

claim follows with γi ≥ γ ′
i + γ ′′

i , Li ≥ 0, i ∈ {1, 2, . . . , n}. Note
that this proof indicates that one could pick Li = 0 in (11). But
keeping Li givesmore flexibility and less conservative results when
a Lipschitz property holds. �

Next, we state our main result. For any pair (F , F̂) such that
Property (∗) holds, it establishes that, for each complete3 and
bounded solution to the plant (3) and bounded measurement

3 A solution is complete if its domain of definition is [0, +∞).
noise, the interconnection between the plant and the proposed
observer, which results in the system (3), (5)–(6), is such that
no finite escape time occurs and that solutions are bounded.
Moreover, it provides an explicit bound for the mean value of the
error signals.

Theorem 2.2. Assume the pair (F , F̂) is such that Property (∗) holds.
Assume further that F̂ satisfies the Carathéodory conditions.4 Given
b ∈ (0, 1

2 ), let K , d0, d1 and P satisfy (9). Then, for each real number
M∞ ≥ 0 and positive gain adaptation law parameters satisfying

p1 > 0, p2 ≥ 4M2
∞

Ç
1 +

2 λmax(P)‖K‖
2

d02λmin(P)

å
(12)

we have that, for each
(A) Carathéodory solution t → (z(t), x(t)) to (3) that is complete

and bounded,
(B) measurement noise given by a measurable function t → m(t)

satisfying ‖m‖∞ ≤ M∞, and
(C) initial condition (x̂(0), r(0)) of (5)–(6) with r(0) ≥ 1,
the corresponding Carathéodory solutions t → (z(t), x(t), x̂(t), r(t))
to system (3), (5)–(6)
(1) exist and are complete,
(2) are bounded on [0, +∞), and
(3) satisfy

lim sup
T→+∞

1
T

∫ t+T

t
(ŷ(τ ) − y(τ ))2dτ ≤ p2 ∀t ≥ 0, (13)

lim sup
T→+∞

lim sup
t→+∞

1
T

∫ t+T

t
|x̂i(τ ) − xi(τ )|2dτ ≤ Bi,◦(p1, p2) (14)

for all i ∈ {1, 2, . . . , n}, where Bi,◦(p1, p2) > 0 is given in (15);
see Remark 2.4.

Remark 2.3. Property (∗) provides an upper bound on the
mismatch F − F̂ for all (x, x̂, z, r, t) on compact sets for the (z, x)
components. Further measurability and continuity conditions on
F̂ and m guarantee local existence of Carathéodory solutions
to system (5)–(6), once a solution of (3) is given. Note that
the assumptions do not guarantee that complete and bounded
Carathéodory solutions t → (z(t), x(t)) to (3) exist. In fact, such
solutions can fail to exist, even locally. Theorem 2.2 asserts
properties only for solutions t → (z(t), x(t), x̂(t), r(t)) to system
(3), (5)–(6) associated to a complete and bounded Carathéodory
solution t → (z(t), x(t)) to (3).

Remark 2.4. While expression (13) suggests that the bound for the
mean value of the output error can be made small by picking p2
small, the bound in (14) requires that p2 satisfies (12). That is, the
bound in (14) is constrained by the size of the measurement noise
and the conditions (8)–(10). The bounds in (13)–(14) provide an
estimate of achieved performance, in which Bi,◦(p1, p2) is given by

Bi,◦(p1, p2) = min
s>s∗


s2i(a1(s) + 2c1 M2

∞
)

λmin(P)(d0s2 − c0 L̂)

+

2c1
Ä
B1(s, p1, p2) +

1
p2
B2

ä 2n
1−2b

s2(n−i)λmin(P)(d0s2 − c0 L̂)
p2

 , (15)

4 A function f : Rn
×R → Rn satisfies the Carathéodory conditions if: x → f (x, t)

is continuous uniformly in t; t → f (x, t) is measurable uniformly in x; for each
compact set A = X × [a, b] ⊂ Rn

× R, there exists a function mA : [a, b] → R≥0 ,
Lebesgue integrable on [a, b], such that ‖f (x, t)‖ ≤ mA(t) for all (x, t) ∈ A.
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where c0 :=
2 λmax(P)

d0
, c1 := c0‖K‖

2, L̂ :=
2

λmin(P)

∑n
i=1 i L

2
i , a1(s)

:= 2 c0
∑n

i=1
γ 2
i

s2i , a2(s) := max{sb, s(b+n−1)
}
2 λmax(P)

λmin(P)
, s∗ := max

{
p1p2(2n+1)

d0
+


c0 L̂
d0

, s, 1},

B1(s, p1, p2)

:= B1(s, p1, p2)1−2b
+

Ç
2d1 +

2c0 L̂
p1p2

åB1(s, p1, p2) + 2,

B1(s, p1, p2) := max
ß
p1

Å
4a2(s)c1M2

∞
+ a2(s) a1(s)

s2bd0λmin(P)
Ä
d0 −

c0 L̂
s2

ä ã
− p1p2

Å
2a2(s)c1

s2bd0λmin(P)
Ä
d0 −

c0 L̂
s2

äã
+

Å
4c1 s1−2b a2(s)

d0λmin(P)(2n + 1)

ãÇ
2
(d1p1p2 + c0 L̂)

d0

å 2n+1
1+2b

,

4p1
a1(1) + c1M2

∞

d20λmin(P)

™
,

B2 :=
4

d0λmin(P)
a1(1), where, for fixed parameters p2 and γ , the

constant s > 0 is constrained to satisfy 2c1p2 > a1(s), which is
always possible by picking s large enough. Note that Bi,◦(p1, p2)
is given by the minimization of the sum of two terms. The first
term is the bound that one would obtain if the constant vector
L were known and the gain r were kept constant, and satisfying

r > max
ß

c0 L̂
d0

, 1
™

. Indeed, in this case, only the first term of

(15) remains, that is,

lim sup
T→+∞

lim sup
t→+∞

1
T

∫ t+T

t
|x̂i(τ ) − xi(τ )|2dτ

≤
r2i(a1(r) + 2c1M2

∞
)

λmin(P)(d0r2 − c0 L̂)

for all i ∈ {1, 2, . . . , n}. The second term in Bi,◦ corresponds to the
effect of the gain adaptation law.Moreover, when the bound on the
mismatch F − F̂ in Property (∗) is such that γ is zero, since a1 and
B2 are identically zero in such case, using the bound on p2 given in
(12), the bound Bi,◦ can be rewritten as

Bi,◦(p1, p2) = min
s>s∗

1
2

s2ic1
λmin(P)(d0s2 − c0 L̂)

×


1

c1
d0λmin(P)

+ 1
+

4 B1(s, p1, p2)
2n

1−2b

s2n


p2. (16)

The following corollary of Theorem2.2 follows fromRemark 2.4
when γ is zero.

Corollary 2.5. Under the assumptions of Theorem 2.2, given b ∈

(0, 1
2 ) and letting K , d0, d1 and P satisfy (9), if γ = 0 then, for

each real number M∞ ≥ 0, parameters of the gain adaptation law
(6) satisfying (12), there exist a constant β > 0 such that for each
Carathéodory solution t → (z(t), x(t)) to (3), measurement noise
m, and initial condition (x̂(0), r(0)) satisfying conditions (A)–(C) of
Theorem 2.2, respectively, the corresponding Carathéodory solutions
t → (z(t), x(t), x̂(t), r(t)) to system (3), (5)–(6) satisfy

lim sup
T→+∞

lim sup
t→+∞

1
T

∫ t+T

t
‖x̂(τ ) − x(τ )‖2dτ ≤ β M2

∞
. (17)
Remark 2.6. Corollary 2.5 follows from the fact that when γ = 0
we have a1 and B2 identically zero. In such a case, we obtain from
(16)

β :=
2c1

λmin(P)
min
s>s∗

Å
max

i∈{1,2,...,n}
s2i
ã

(d0s2 − c0 L̂)

×


1 + 4

Å
1 +

c1
d0λmin(P)

ã
B1(s, p1, p2)

2n
1−2b

s2n


when p2 = 4M2

∞

Ä
1 +

c1
d0λmin(P)

ä
.

Furthermore, in the absence of measurement noise, the next
corollary of Theorem 2.2 follows immediately from the expression
of the bound (14). In fact, when γ and m are zero, the first term
in (15) vanishes and the bound can be made arbitrarily small by
picking p2 small.

Corollary 2.7. Under the assumptions of Theorem 2.2, given b ∈

(0, 1
2 ) and letting K , d0, d1 and P satisfy (9), if γ = 0 and m ≡ 0

then, for everyϵ > 0, there exists p̄2 > 0 such that, for each parame-
ters of the gain adaptation law (6) satisfying p1 > 0, p2 ∈ (0, p̄2],
each Carathéodory solution t → (z(t), x(t)) to (3), and each ini-
tial condition (x̂(0), r(0)) satisfying conditions (A) and (C) of Theo-
rem 2.2, respectively, the corresponding Carathéodory solutions t →

(z(t), x(t), x̂(t), r(t)) to system (3), (5)–(6) satisfy

lim sup
T→+∞

lim sup
t→+∞

1
T

∫ t+T

t
‖x̂(τ ) − x(τ )‖2dτ ≤ ϵ. (18)

The proofs of the above results are in Section 4.

3. A numerical example

To illustrate the main features of our dynamic high-gain
observer it is already sufficient to consider an elementary second
order linear system. Consider the linear plant

ẋ1 = x2 + ν1x1 + ν2, ẋ2 = 0, y = x1 + m, (19)

with ν1, ν2 > 0, ν1 being known, but ν2 unknown. Note that the
plant can be rewritten as in (3)with F(x) = [ν1 x1+ν2 0]⊤ and that
x = [−

ν2
ν1

0]⊤ is an equilibrium. Following Section 2, the observer

(5) is designed with F̂(x̂) = [ν1 x̂1 0]⊤ and is given by

˙̂x1 = x̂2 + ν1x̂1 − k1r(ŷ − y),
˙̂x2 = − k2 r2(ŷ − y),

ṙ = p1

((ŷ − y)2 − p2)r1−2b

+
p2
r4


, ŷ = x̂1.

(20)

With this particular choice, it follows that Property (∗) holds with
γ = [ν2 0]⊤ and L = [ν1 0]⊤. Straightforward calculations
show that (8)–(10) holds, in particular, for the following set of
parameters: d0 = 0.37, d1 = 2.66, b = 0.183, P =

î
0.75 −0.50

−0.50 0.88

ó
,K =

î
k1
k2

ó
=

î
2
2

ó
, p1 = 20. In the analysis to follow, we study the

effect of varying the parameter ν1 and the measurement noise m
for different values of p2. The parameter ν2 is fixed at 0.1.

First, we consider the case where ν1 = 1.9 and m is an inde-
pendently and identically normally distributed stochastic process
with mean 0.02 and standard deviation 0.015. The histogram of
this noise is shown in Fig. 1, where the dashed vertical lines corre-
spond to±

√
p2 whereas the dotted vertical line corresponds to the

x1 component− ν2
ν1

of the solution. It follows that the probability of
the norm of the noisem to be larger than

√
p2 is small but non zero.
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Table 1
Numerical comparison of the dead-zone and the proposed gain adaptation laws
with p2 = 0.0025 and ν1 = 1.9.

Method x̂1 − x1 std x̂1 − x1 x̂2 − x2 std x̂2 − x2

Dead-zone −1.99e−02 3.98e−03 1.38e−01 1.38e−02
Proposed −1.99e−02 6.58e−03 1.38e−01 9.00e−03

Fig. 1. Measurement noise histogram. The dashed vertical lines correspond to
±

√
p2 while the dotted vertical line corresponds to the x1 component −

ν2
ν1

of the
solution.

A simulation of (19)–(20) with p2 = 0.0025 and initial
conditions x(0) = [−

ν2
ν1

0]⊤, x̂(0) = [1 0]⊤, and r(0) = 1 is shown
in Fig. 2. In dark/blue, it shows the first 300 s of the trajectory of
the gain r and the tail of the x̂2 − x2 component of the resulting
simulation, while in light gray/magenta, it shows the simulation
with the dead-zone law in (4). A numerical comparison of the dead-
zone and the proposed gain adaptation laws is given in the Table 1
(x̂1 − x1 denotes the mean value). As expected, the proposed gain
adaptation law yields a gain r(t) that decreaseswhile guaranteeing
the estimates to converge, but the dead-zone law uses a gain with
asymptotic value that is nearly six times larger. This is due to a
large error ŷ − y during the transient stage or a potentially bad
choice of the initial condition r(0) (for which there is no a priori
information on how to select it). As pointed out in Ball and Khalil
(2008) and Vasiljevic and Khalil (2006), keeping the gain at large
values may compromise performance whenmeasurement noise is
present. This is what the numbers in Table 1 indicate.

The analysis sketched in Section 1 to argue about boundedness
does not rule out the possibility of oscillations in x̂ and r . In fact,
up to now, a goal of our adaptation law was to bring the gain r
Table 2
Numerical comparison of the dead-zone and the proposed gain adaptation laws
with p2 = 0.0025 and ν1 = 2.22.

Method x̂1 − x1 std x̂1 − x1 x̂2 − x2 std x̂2 − x2

Dead-zone 1.62e−11 1.54e−09 1.00e−01 1.08e−08
Proposed −1.22e−04 3.12e−02 1.00e−01 4.90e−02

back to one. But an unitary value for r corresponds to an unstable
equilibrium point of the error system. In fact, note that when there
is no measurement noise, the error system is given by

ė1 = e2 + ν1 e1 − k1 r e1 − ν2,

ė2 = −k2 r2 e1,

ṙ = p1

(e21 − p2)r1−2b

+
p2
r4


.

(21)

The point e1 = 0, e2 = ν2, r = 1 is an equilibrium to this system.
Around this point, the linearization matrix is

A :=


ν1 − k1r 1 0
−k2r2 0 0

0 0 −p1p2(5 − 2b)


r=1

, (22)

which is Hurwitz if and only if ν1 < k1. This condition is satisfied
in the simulation described above and depicted in Fig. 2. But, when
ν1 ≥ k1, unsatisfactory behavior may appear. Indeed, for ν1 =

2.22, since k1 = 2, instead of obtaining the trajectories shown
in Fig. 2, our gain adaptation law leads to the oscillatory behavior
shown in Fig. 3, where only the tail of both x̂2−x2 and r are shown.
This is confirmed by the numbers in Table 2.

Along the same lines of Corollary 2.7, the size of the oscillations
can be reduced by appropriately tuning the observer parameters.
For instance, for p2 = 0.0001, which corresponds to the original
value of p2 divided by 25, the numerical results are given in Table 3.
The tail of r as well as the trajectories in the (

x̂1−x1
rb ,

x̂2−x2
r1+b , r)-space

for the casewhere p2 = 0.0001, ν1 = 2.22 andm = 0 are shown in
Fig. 4. As expected, we have a (compact) Ω-limit set in 3-D space.
But, very importantly, r is oscillating around the value ν1

k1
= 1.11,

which would make the matrix A in (22) marginally stable. A rather
simple solution to the oscillatory problem consists of adapting
online the appropriate value wewant r to converge to. We call this
value the nominal gain and denote it r . Unfortunately, this value is
likely to evolve with time as the system solution evolves, making
an adaptive procedure based only on the time evolution of r not
appropriate. For instance, a time average could bemisleadingwhen
the oscillations are created by the system solution itself.
(a) r versus time (first 300 s). (b) x̂2 − x2 versus time (tail).

Fig. 2. Complete trajectory of r and final part of x̂2 − x2 for the system (19) and our observer (20) (dark/blue) and for the one with dead-zone in (4) (light gray/magenta)
when p2 = 0.0025, ν1 = 1.9 and m = N (0.02, 0.015). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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(a) r versus time (tail). (b) x̂2 − x2 versus time (tail).

Fig. 3. Trajectories of r and x̂2 − x2 (tails) when p2 = 0.0025, ν1 = 2.22 andm = 0.
(a) r versus time (tail). (b) Set A in the (
x̂1−x1

rb
,

x̂2−x2
r1+b , r)-space.

Fig. 4. Trajectory of r (tail) and the asymptotic phase portrait of ( x̂1−x1
rb

,
x̂2−x2
r1+b , r) when p2 = 0.0001, ν1 = 2.22 andm = 0.
Table 3
Numerical comparison of the dead-zone and the proposed gain adaptation laws
with p2 = 0.0001 and ν1 = 2.22.

Method x̂1 − x1 std x̂1 − x1 x̂2 − x2 std x̂2 − x2

Dead-zone 3.57e−11 1.31e−08 1.00e−01 1.17e−07
Proposed 1.05e−05 6.20e−03 1.00e−01 9.72e−03

An alternative view of the situation is to consider that, in the
oscillatory case, the observer answer is, at each time, not a single
point, but rather the set of points A depicted in Fig. 4(b). The
knowledge at each time of what this set is and the mean value for
its r component could provide a good estimation of the limiting
value for the nominal value r . A way to learn the set A is to sample
it, i.e., to have a sufficient (but finite) number of points moving
on this set that are as far apart as possible in such a way that
their distribution represents the setA itself well enough. Then, the
proposed approach is to have several copies of the observer with
estimates that are sufficiently far apart from each other running
simultaneously as to provide the desired points moving on the
(compact) set A. Then, the objective is to solve an optimization
problem involving the chordal distance as the cost function, e.g.,

max
x̂i,.∈A

min
i≠j

|x̂i,. − x̂j,.|,

where x̂i,.’s are the state estimates given by copies of the observer.
This problem is closely related to packing5 (see Conway, Hardin,

5 But we are facing the extra problem of not knowing the ‘‘manifold’’ where the
points evolve.
& Sloane, 1996; Sarlette & Sepulchre, 2009, for instance). To solve
this problem, we propose to inject a (small) disturbance in the
observer dynamics in the direction of the gradient of the above
cost. With a possible theoretical analysis in mind and in view of
the technicalities presented in the next section, we propose the
following collection of nobs observers:

˙̂xi,1 = x̂i,2 + ν1 x̂i,1 − k1 ri (ŷi − y)

+ k1r1+b
i

−
j≠i

Ç
ŷi − y
rbi

−
ŷj − y
rbj

å
,

˙̂xi,2 = −k2 r2i (ŷi − y) + k2r2+b
i

−
j≠i

Ç
ŷi − y
rbi

−
ŷj − y
rbj

å
,

ṙi = p1

Å
((ŷi − y)2 − p2)r1−2b

i +
p2
r4i

ã
, ŷi = x̂i,1,

(23)

i = 1, . . . , nobs, where the rightmost terms in the first two equa-
tions correspond to the injection terms with gains k1 and k2 ob-

tained as

k1
k2


= µP−1

Ä
1
0

ä
, with µ to be chosen large enough

to speed up the sampling of A while keeping the observer stable.
With nobs = 3, µ = 0.026, p2 = 0.0025, ν1 = 2.22 and m = 0,
the resulting setAwith the proposed collection of observers is de-
picted in light gray/magenta in Fig. 5(b) while the corresponding
ri’s are shown in Fig. 5(a). It also shows in dark/blue the set A for
the initial observer, which indicates that the effect of the repel-
lent terms in the collection of observers is to increase the mean
value of ri’s. Note that, now, ri’s are oscillating around 1.21, which
wouldmake the linearizationmatrix associatedwith the error sys-
tem given in (22)marginally stable, and that their phase difference
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(a) r versus time (tail). (b) Set A in the (
x̂1−x1

rb
,

x̂2−x2
r1+b , r)-space.

Fig. 5. Trajectories of ri ’s (tails) and set A in the (
x̂i,1−x1

rbi
,

x̂i,2−x2
r1+b
i

, ri)-space when nobs = 3, µ = 0.026, p2 = 0.0025, ν1 = 2.22 and m = 0. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 4
Numerical comparison of the dead-zone, proposed, and modified gain adaptation
laws with p2 = 0.0025 and ν1 = 2.22.

Method x̂1 − x1 std x̂1 − x1 x̂2 − x2 std x̂2 − x2

Dead-zone −2.03e−02 4.30e−03 1.45e−01 1.57e−02
Proposed −2.03e−02 2.93e−02 1.45e−01 4.59e−02
Modified −2.02e−02 5.40e−03 1.45e−01 8.61e−03

is approximately 2π
3 rad (meaning that the separation of the points

samplingA is indeedmaximized). From the collection of observers
we extract, at each time t , the average value

r(t) =
1
3

3−
i=1

ri(t), (24)

which we consider to be the right nominal value for the gain of our
initial observer. Our motivation for using this nominal value for r
emerges from the following conjecture we draw from our analy-
sis: the appropriate value of r is in the convex hull of the values
that r takes from A. On the other hand, averaging the estimates x̂i,.
to get a better estimate may not be a good idea since there is no
guarantee that xi,.’s would be in the convex hull of the estimates.

Our initial observer in (5)–(7) can be rewritten in terms of
the nominal gain r by replacing the original r by the product r r
and noting that the properties established earlier for the original
observer still hold when r is constant. Then, we obtain

˙̂x1 = x̂2 + ν1x̂1 − k1rr(ŷ − y),
˙̂x2 = −k2r2r2(ŷ − y),

ṙ = p1

((ŷ − y)2 − p2)r1−2b

+
p2
r4


, ŷ = x̂1.

(25)

Then, for the same setting as in the simulations presented in Fig. 3
but with measurement noise, i.e., with nobs = 3, µ = 0.026,
p2 = 0.0025, ν1 = 2.22, and m an independently and identically
normally distributed stochastic process with mean 0.02 and
standard deviation 0.015, the trajectories for r and x̂2−x2 obtained
with r as in (24) are shown in Fig. 6 (dark/blue). The simulation for
our original observer (25) is also shown (light gray/magenta). We
observe that, for the observer in (25), the oscillations are reduced
significantly, as is confirmed by the numbers in Table 4.

4. Proofs

Theorem 2.2 is about system (3), (5)–(6) with state x =

(z, x, x̂, r), whose dynamics are compactly written in the form

ẋ = f(x, t). (26)
For any C1 function x → h(x), its Lie derivative Lfh is Lfh =
∂h
∂x

(x) f(x, t). It is useful to distinguish this derivative with the time
derivative denoted by ‘‘·’’. In particular for a Carathéodory solution

t → x(t) to (26), we have
˙ 

h(x(t)) = Lfh(x(t)), but, in general, only
for almost all t in the domain of definition of the solution.

4.1. Error dynamics

With the error state vector definition e = x̂ − x, we obtain

Lfe = Ae + F̂(x̂, t) − F(x, z, t) − K(r)e1 + K(r)m. (27)
By following Praly (2003) for instance, we introduce the

following r-scaled error coordinates

ε :=
1

rb−1
Λ(r)−1e (28)

or equivalently, for each i ∈ {1, 2, . . . , n}, εi =
ei

rb+i−1 . We obtain

Lfεi =
Lfei
rb+i−1

− (b + i − 1)εi
Lfr
r

= rεi+1 − kirε1 −
Lfr
r

(b + i − 1)εi

+
f̂i(x̂1, x̂2, . . . , x̂i, t) − fi(x1, x2, . . . , xi, z, t)

rb+i−1
+

ki
rb−1

m.

In compact form, this reads

Lfε

r
=

Å
A − KC − R

Lfr
r2

ã
ε + ∆(x, x̂, z, r, t) +

K
rb

m, (29)

where C = [1 0 . . . 0]⊤ ∈ Rn and ∆ is the function defined as

∆(x, x̂, z, r, t) :=
1
rb

Λ(r)−1(F̂(x̂, t) − F(x, z, t)). (30)

The following bound on ∆ will be used to derive the right-hand
sides of the first and third inequality in (2). For a proof, see Sanfelice
and Praly (2010).

Lemma 4.1. Assume Property (∗) holds. Then, for each compact set
C ⊂ Rm

× Rn, and for all (x, x̂, z, r, t) such that (z, x) ∈ C, we have

‖∆(x, x̂, z, r, t)‖2
≤

2
r2b

n−
i=1

γ 2
i

r2i
+

L̂
r2

ε⊤Pε, (31)

where L̂ is given by L̂ =
2

λmin(P)

∑n
i=1 i L

2
i .

Along with the r-scaled error coordinates ε, we introduce s-
scaled error coordinates, where s is a positive constant parameter
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(a) r versus time (tail). (b) x̂2 − x2 versus time (tail).

Fig. 6. Trajectories of r and x̂2 − x2 (tails) when p2 = 0.0025, ν1 = 2.22 andm = 0. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
(only for analysis, not part of the observer) which remains to be
chosen. More precisely, let

ξ :=
1

sb−1
Λ(s)−1e. (32)

Then, its Lie derivative satisfies

Lfξi = sξi+1 −
ki

sb−1

 r
s

i
(ŷ − y)

+
f̂i(x̂1, x̂2, . . . , x̂i, t) − fi(x1, x2, . . . , xi, z, t)

sb+i−1
,

where, by definition, ŷ−y = e1−m. This can bewritten compactly
as
Lfξ

s
= (A − KC)ξ + ∆(x, x̂, z, s, t) +

K
sb
m +

RK
sb

(ŷ − y),

where we recall the notationR(r, s) = diag
Å
1 −

 r
s


, 1 −

 r
s

2
, . . . , 1 −

 r
s

n
ã

.

Note that we have the following inequality, which we shall use
later on:

‖R(r, s)‖ ≤

1 −

 r
s

n
 ∀s, r > 0. (33)

Also, by proceeding as in the proof of Lemma 4.1, we have for all
s ≥ 1 and (x, x̂, z, s, t) such that (z, x) ∈ C,

‖∆(x, x̂, z, s, t)‖2
≤

2
s2b

n−
i=1

γ 2
i

s2i
+

L̂
s2

ξ⊤Pξ . (34)

4.2. Properties of quadratic functions of e

With P = P⊤ > 0 satisfying (9) and (10), we define
Vr(ε) := ε⊤Pε, Vs(ξ) := ξ⊤Pξ .

From the definitions of ε and ξ , we get
Vr(ε) ≤ a2(s)Vs(ξ) ∀e ∈ Rn, r ≥ 1,
b ∈ (0, 1/2), s > 0, (35)

where a2(s) = max{sb, s(b+n−1)
}
2 λmax(P)

λmin(P)
. We have

λmin(P) ε2
1 ≤ Vr(ε) ∀ε ∈ Rn. (36)

The following properties of Vr and Vs are key in establishing our
main result.

Lemma 4.2. Assume Property (∗) holds. Then, for each compact set
C ⊂ Rm

× Rn, Vr(ε) satisfies, for all (x, x̂, z, r) such that (z, x) ∈ C
and almost all t , the following property:
LfVr

r
≤ −

Ç
d0 −

Ç
d1 p1p2
r1+2b

+
c0 L̂
r2

åå
Vr(ε) +

a1(r)
r2b

+
c1
r2b

m2,

(37)

where the constants γ and L are obtained, for the given compact set
C, from Lemma 4.1.

Proof. We obtain
LfVr

r
= ε⊤(P(A − KC) + (A − KC)⊤P)ε

+ 2ε⊤P
K
rb

m − ε⊤(PR + R⊤P)ε
Lfr
r2

+ 2ε⊤P∆(·).

By decomposing Lfr = rdot+ + rdot−, where rdot+ = max{Lfr, 0}
and rdot− = min{Lfr, 0}, using (9) and Lemma 4.1, and completing
squares, we get

LfVr

r
≤ −2d0ε⊤Pε −

b
2
rdot+
r2

ε⊤Pε − d1
rdot−
r2

ε⊤Pε

+
d0
2

ε⊤Pε +
2λmax(P)

d0
‖∆(x, x̂, z, r, t)‖2

+
d0
2

ε⊤Pε

+
2λmax(P)

d0

 Krbm

2

.

Combining terms, using (31) and (6) yields (37). �

Lemma 4.3. Assume Property (∗) holds. For each compact set C ⊂

Rm
× Rn, Vs(ξ) satisfies, for all (x, x̂, z, r) such that (z, x) ∈ C and

almost all t , the following property:

LfVs

s
≤ −

Ç
d0 −

c0 L̂
s2

å
Vs(ξ) +

a1(s)
s2b

+ 2
c1
s2b

m2

+ 2
c1
s2b


1 −

 r
s

n2
(ŷ − y)2, (38)

where the constants γ and L are obtained, for the given compact set
C, from Lemma 4.1.

Proof. We have
LfVs

s
= ξ⊤(P(A − KC) + (A − KC)⊤P)ξ

+ 2ξ⊤P∆(x, x̂, z, s, t) + 2ξ⊤P
K
sb
m

+ 2ξ⊤P
R(r, s)K

sb
(e1 − m).
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Proceeding as in the proof of Lemma 4.2, and using (34), it follows

LfVs

s
≤ −

Ç
d0 −

c0L̂
s2

å
ξ⊤Pξ +

2c0
s2b

n−
i=1

γ 2
i

s2i

+
2c0
s2b

‖K‖
2m2

+
2c0
s2b

‖R(r, s)K‖
2(e1 − m)2.

The claim follows using the bound (33). �

4.3. Proof of Theorem 2.2

Since F̂ satisfies the Carathéodory conditions by assumption,we
are guaranteed that, to any Carathéodory solution to (3) which is
defined and bounded on [0, +∞), each measurement noise satis-
fying ‖m‖∞ ≤ M∞, and each initial condition (x̂(0), r(0)), with
r(0) ≥ 1, there corresponds a (maybe nonunique) Carathéodory
solution t → (z(t), x(t), x̂(t), r(t)) to (3), (5)–(6) defined on some
right maximal interval [0, σ ). Our task here is to prove that σ is in-
finite, i.e., the solution is complete, and that the solution is bounded
on [0, +∞) and satisfies (13)–(18).

For each Carathéodory solution t → (z(t), x(t)) to (3) that is
defined and bounded on [0, +∞) there exists a compact set C such
that (z(t), x(t)) ∈ C for all t ≥ 0. This is the (solution dependent)
compact set to be used in our technical results in Sections 4.1 and
4.2. It follows that we have C-dependent functions L̂ and a1 such
that, by combining (6) and (35)–(38), we have, for almost all t in
[0, σ ),

V̇r(ε(t))
r(t)

≤ −

Ç
d0 −

Ç
d1p1p2
r(t)1+2b

+
c0 L̂
r(t)2

åå
Vr(ε(t))

+
a1(r(t))
r(t)2b

+
c1

r(t)2b
m(t)2,

ṙ(t) = p1

Å
((ŷ(t) − y(t))2 − p2)r(t)1−2b

+
p2

r(t)2n

ã
,

V̇s(ξ(t))
s

≤ −

Ç
d0 −

c0 L̂
s2

å
Vs(ξ(t)) +

a1(s)
s2b

+ 2
c1
s2b

m(t)2

+ 2
c1
s2b

Å
1 −

Å
r(t)
s

ãnã2

(ŷ(t) − y(t))2,

and, for all t in [0, σ ),

λmin(P)

r2b
(x1(t) − x̂1(t))2 ≤ Vr(ε(t)) ≤ a2(s)Vs(ξ(t)). (39)

Using the constant bound onm, these inequalities correspond to a
particular case of those in (2). They capture the main feature of the
dynamic interconnection between the plant (1) and the proposed
observer. We have sketched in the introduction how they can be
exploited to prove Theorem 2.2. We proceed in four steps, which
are presented in the next sections.

4.3.1. No finite escape time in ε and r
Let k ≥ 0 to be fixed later. Using (37) and (6), we have, for

almost all t in [0, σ ),

˙ 
kVr(ε(t)) + r(t) ≤ −k

Ç
d0r(t) −

Ç
d1p1p2
r(t)2b

+
c0 L̂
r(t)

åå
Vr

+ kr(t)1−2ba1(r(t)) + kc1r(t)1−2bm(t)2

+ (p1(ŷ(t) − y(t))2 − p1p2)r(t)1−2b
+

p1p2
r(t)2n

.

Then, with (36),

p1(ŷ(t) − y(t))2r(t)1−2b
≤

2p1r(t)
λmin(P)

Vr(ε(t)) + 2p1m(t)2r(t)1−2b.

Since the L∞ norm of m is bounded by M∞, the function r →

r1−2ba1(r) is nonincreasing, and r(t) ≥ 1 for all t in [0, σ ), by
picking k ≥
2p1

d0 λmin(P)
, we obtain for almost all t in [0, σ )

˙ 
kVr(ε(t)) + r(t) ≤ k(d1p1p2 + c0 L̂)Vr(ε(t)) + p1p2

+ r(t)1−2b(k c1 ‖m‖
2
∞

+ 2‖m‖
2
∞
p1 − p1p2) + ka1(1)

≤ max{(d1p1p2 + c0 L̂), (k c1 + 2 p1)‖m‖
2
∞

− p1p2}

× (kVr(ε(t)) + r(t)) + ka1(1) + p1p2. (40)

This establishes that Vr(ε(t)) and r(t) cannot grow faster than
exponentially. Since the solution t → (x(t), z(t)) is known to
be defined on [0, +∞), with the definition of ε, we conclude by
contradiction that the solution t → (x(t), z(t), x̂(t), r(t)) of the
system (3), (5)–(6) is also complete, i.e., σ is infinite.

4.3.2. Boundedness of ε
To prove boundedness of ε, we select s large enough. Since for

s ≥ 1, we have1 −

 r
s

n
 ≤ rn, (41)

bymultiplying both sides of (6) by c1
p1 s2b r

2n and solving for the term
with factor (ŷ − y)2, we get that

2
c1
s2b

1 −

 r
s

n
2 (ŷ − y)2 ≤ 2

c1
s2b

r2nr1−2b(ŷ − y)2

= 2
c1

p1s2b
r2nLfr + 2

c1p2
s2b

r2nr1−2b
− 2

c1p2
s2b

.

With (38), this leads to, for almost all t ≥ 0,
˙ 

Vs(ξ(t))
s

−
c1

p1s2b
2

2n + 1
r(t)2n+1

≤ −s

Ç
d0 −

c0 L̂
s2

åÅ
Vs(ξ(t))

s
−

c1
p1s2b

2
2n + 1

r(t)2n+1
ã

+
a1(s)
s2b

+
2c1p2
s2b

r(t)2nr1−2b
−

2c1p2
s2b

+
2c1
s2b

m(t)2

− s

Ç
d0 −

c0 L̂
s2

å
c1

p1s2b
2

2n + 1
r(t)2n+1. (42)

Now observe that p1p2(2n+1)
d0

+


c0 L̂
d0

is the largest solution of

s2d0 − s p1p2(2n + 1) − c0 L̂ = 0. (43)

It follows that picking s > max
ß

p1p2(2n+1)
d0

+


c0 L̂
d0

, 1
™

implies

that

c1p2
s2b

r2n+1

Ç
1
r2b

−

Ç
d0 −

c0 L̂
s2

å
s

p1p2(2n + 1)

å
≤ 0.

Then, inequality (42) becomes, for almost all t ≥ 0,
˙ 

Vs(ξ(t))
s

−
c1

p1s2b
2

2n + 1
r(t)2n+1

≤ −s

Ç
d0 −

c0 L̂
s2

åÅ
Vs(ξ(t))

s
−

c1
p1s2b

2
2n + 1

r(t)2n+1
ã

+
a1(s)
s2b

−
2c1p2
s2b

+
2c1
s2b

m(t)2. (44)

We define ρ :=
2

2n+1 r
2n+1, α◦(s) =

2
2n+1 s

2n+1
1+2b , and

a3(s) := −
a1(s)
s2b

+
2c1p2
s2b

. (45)
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Since a1(s) goes to zero as s goes to infinity there exists s satisfying
2c1p2 ≥ a1(s). Since a1 is also monotonic, we get a3(s) > 0 for all
s > s. Note also that we have ρ = α◦(r1+2b).

By solving the differential inequality (44), we get for all t ≥ 0,

Vs(ξ(t))
s

≤
c1

p1s2b
ρ(t) + exp

Ç
−s

Ç
d0 −

c0 L̂
s2

å
t

å
×

Ñ
Vs(ξ(0))

s
−

c1
p1s2b

ρ(0) −

2c1
s2b ‖m‖

2
∞

− a3(s)

s
Ä
d0 −

c0 L̂
s2

ä é
+

2c1
s2b ‖m‖

2
∞

− a3(s)

s
Ä
d0 −

c0 L̂
s2

ä . (46)

By choosing

s > max


p1p2(2n + 1)

d0
+

 
c0L̂
d0

, s, 1


, (47)

we get the existence of σ1 > 0, solution dependent, such that for
all t ≥ σ1, we have thatÑ

Vs(ξ(0))
s

−
c1

p1s2b
ρ(0) −

2c1
s2b ‖m‖

2
∞

− a3(s)

s
Ä
d0 −

c0 L̂
s2

ä é
× exp

Ç
−s

Ç
d0 −

c0 L̂
s2

å
t

å
≤

1
2

a3(s)

s
Ä
d0 −

c0 L̂
s2

ä .
Then, inequality (46) becomes

Vs(ξ(t))
s

≤
c1

p1s2b
ρ(t) +

2c1
s2b ‖m‖

2
∞

−
a3(s)
2

s
Ä
d0 −

c0 L̂
s2

ä ∀t ≥ σ1.

This implies, for all t ≥ σ1,

ρ(t) ≥

Ñ
Vs(ξ(t))

s
−

2c1
s2b ‖m‖

2
∞

−
a3(s)
2

s
Ä
d0 −

c0 L̂
s2

ä é p1s2b

c1

and therefore, with the definition of α◦, and (39)

α◦(r(t)1+2b) ≥

Ñ
Vs(ξ(t))

s
−

2c1
s2b ‖m‖

2
∞

−
a3(s)
2

s
Ä
d0 −

c0 L̂
s2

ä é p1s2b

c1

≥

Ñ
Vr(ε(t))
s a2(s)

−

2c1
s2b ‖m‖

2
∞

−
a3(s)
2

s
Ä
d0 −

c0 L̂
s2

ä é p1s2b

c1
. (48)

Since b ∈ (0, 1
2 ) and r(t) ≥ 1, for all t ≥ 0, we have that

d1p1p2
r(t)1+2b

+
c0 L̂
r2

≤ (d1p1p2 + c0 L̂)
1

r(t)1+2b
∀t ≥ 0.

Then, using Lemma 4.2 and (35), we obtain, for almost all t ≥ σ1,

1
r(t)

˙ 
Vr(ε(t)) ≤ −d0Vr(ε(t)) +

(d1p1p2 + c0 L̂)
r(t)1+2b

Vr(ε(t))

+
a1(r(t))
r(t)2b

+
c1

r(t)2b
‖m‖

2
∞

≤ −d0Vr(ε(t)) +
(d1p1p2 + c0 L̂)Vr(ε(t))

r(t)1+2b

+ a1(1) + c1‖m‖
2
∞

.

Now, for s > max{ p1p2(2n+1)
d0

+


c0 L̂
d0

, s, 1}, let v0 be defined as

max

s a2(s)
2c1
s2b ‖m‖

2
∞

−
a3(s)
2

s
Ä
d0 −

c0 L̂
s2

ä +

Å
c1

p1s2b
s a2(s)

2
2n + 1

ã
×

Ç
2
(d1p1p2 + c0 L̂)

d0

å 2n+1
1+2b

, 2
a1(1) + c1‖m‖

2
∞

d0

 .

It can be verified that we haveÑ
v0(s)
s a2(s)

−

2c1
s2b ‖m‖

2
∞

−
a3(s)
2

s
Ä
d0 −

c0 L̂
s2

ä é p1s2b

c1

−α◦

Ç
(d1p1p2 + c0 L̂) v0(s)

d0 v0(s) − a1(1) − c1‖m‖2
∞

å
≥ 0

and since the left-hand side defines a strictly increasing function
of v0, the same holds for any v ≥ v0(s). This implies V̇r(ε(t)) < 0
for all t ≥ σ1 such that Vr(ε(t)) > v0(s) and therefore there exists
a continuous function η1 with nonnegative values such that η1(t)
goes to 0 as t tends to ∞ and

Vr(ε(t)) ≤ v0(s) + η1(t) ∀t ≥ 0. (49)

Boundedness of ε(t) follows readily.

4.3.3. Boundedness of r
To show boundedness of t → r(t), recall that (40) reads

˙ 
kVr(ε(t)) + r(t) ≤ k(d1p1p2 + c0 L̂)Vr(ε(t))

+ r(t)1−2b((kc1 + 2p1)‖m‖
2
∞

− p1p2)

+ ka1(1) + p1p2 (50)

for almost all t ≥ 0. Knowing that we have ‖m‖∞ ≤ M∞, with
k =

2
d0λmin(P)

p1, we choose p1, p2 > 0 in the gain adaptation law
(6) to satisfy

M2
∞

≤
p1p2

2(kc1 + 2p1)
=

1
4

1
c1

d0λmin(P)
+ 1

p2. (51)

Then, using the inequality

(r1 + r2)1−2b
≤ r1−2b

1 + r1−2b
2 ∀r1, r2 ≥ 0

with r1 = kVr(ε) and r2 = r , from (50), we get, for almost all t ≥ 0,
˙ 

kVr(ε(t)) + r(t) ≤ −
p1p2
2

(kVr(ε(t)) + r(t))1−2b

+
p1p2
2

(kVr(ε(t)))1−2b

+ (d1p1p2 + c0 L̂) kVr(ε(t))
+ ka1(1) + p1p2. (52)

Since t → kVr(ε(t)) is bounded, this inequality implies the same
holds for t → kVr(ε(t)) + r(t) and t → r(t).

This completes our proof of boundedness of the solution t →

(z(t), x(t), x̂(t), r(t)). Indeed, we know by assumption that t →

(z(t), x(t)) is bounded. We have established that t → (ε(t), r(t))
is bounded.With the definition (28) of ε and e, we have proved the
claim.

4.3.4. Results in the mean
Solving for (e1(t)−m(t))2, or equivalently, for (ŷ(t)− y(t))2 in

(6), we get, for almost all t ≥ 0,

(ŷ(t) − y(t))2 =
ṙ(t)

r(t)1−2bp1
−

p2
r(t)2n+1−2b

+ p2.
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It follows that

(ŷ(t) − y(t))2 ≤ p2 +
ṙ(t)

r(t)1−2bp1
= p2 +

˙ 
r(t)2b

2bp1
,

and, hence, for all t ≥ 0 and T > 0,

1
T

∫ t+T

t
(ŷ(τ ) − y(τ ))2dτ ≤ p2 +

1
T

sup
τ≥t

r(τ )2b

2bp1
. (53)

Inequality (13) follows from the boundedness along the solutions
of r2b established in Section 4.3.3.

Solving (38) between t and t + τ with

s > max

 
c0 L̂
d0

, 1


, (54)

gives

Vs(ξ(t + τ)) ≤ exp

Ç
−s

Ç
d0 −

c0 L̂
s2

å
τ

å
Vs(ξ(t))

+ s
∫ τ

0
exp

Ç
−s

Ç
d0 −

c0 L̂
s2

å
(τ − σ)

å
×

Ñ
a1(s)
s2b

+ 2
c1
s2b

‖m‖
2
∞

+ 2
c1
s2b

1 −

Ñ
sup

u≥t+σ

r(u)

s

én
2

× (ŷ(t + σ) − y(t + σ))2

é
dσ .

Then, integrating between t and t + T , using the definition Vs(t) =

1
T

 t+T
t Vs(ξ(τ ))dτ , (53), (41), and the fact that r(t) ≥ 1 for all t ,

we obtain
λmin(P)

T

∫ t+T

t
ξ(τ )⊤ξ(τ )dτ ≤ Vs(t) ≤

Vs(ξ(t))

s
Ä
d0 −

c0 L̂
s2

ä
T

+

Å
a1(s)
s2b + 2 c1

s2b ‖m‖
2
∞

+ 2 c1
s2b sup

τ≥t
r(τ )2n(⋆1)

ãÄ
d0 −

c0 L̂
s2

ä ,

where (⋆1) = p2 +
1
T

supτ≥t r(τ )2b

2 b p1
. Then, with (32), we get

1
T

∫ t+T

t
ei(τ )2dτ ≤

s2(b+i−1)Vs(ξ(t))

λmin(P)s
Ä
d0 −

c0 L̂
s2

ä
T

+

s2i(a1(s) + 2c1‖m‖
2
∞

+ 2c1 sup
τ≥t

r(τ )2n(⋆1))

λmin(P)(d0s2 − c0 L̂)
. (55)

To go further, we need an estimation of supτ≥t r(τ ). From (52), we
get, with k =

2
d0λmin(P)

p1,

sup
τ≥t

r(τ )1−2b
≤ sup

τ≥t
(kVr(ε(τ )) + r(τ ))1−2b

≤ sup
τ≥t

(kVr(ε(τ )))1−2b
+ 2 + η2(t) (56)

+

Ç
2d1 +

2c0 L̂
p1p2

å
sup
τ≥t

kVr(ε(τ )) +
1
p2

4
d0λmin(P)

a1(1),

where η2(t) tends to 0 as t goes to infinity.
Similarly, from (49), when s > max
ß

p1p2(2n+1)
d0

+


c0 L̂
d0

, s, 1
™
,

we get

sup
τ≥t

kVr(ε(τ )) ≤
2

d0λmin(P)
p1v0(s) + kη1(t)

≤ max

2p1a2(s)
Ä

2c1
s2b ‖m‖

2
∞

−
a3(s)
2

ä
d0λmin(P)

Ä
d0 −

c0 L̂
s2

ä
+

Å
4c1 s1−2b a2(s)

d0λmin(P)(2n + 1)

ãÇ
2
(d1p1p2 + c0 L̂)

d0

å 2n+1
1+2b

,

2k
a1(1) + c1‖m‖

2
∞

d0

+ k η1(t).

Using the definition of a3(s) in (45) and replacing k =
2

d0λmin(P)
p1,

we obtain

sup
τ≥t

kVr(ε(τ )) ≤ max

p1
4a2(s)c1‖m‖

2
∞

+ a2(s) a1(s)

s2bd0λmin(P)
Ä
d0 −

c0 L̂
s2

ä
− p1p2

Ñ
2a2(s)c1

s2bd0λmin(P)
Ä
d0 −

c0 L̂
s2

äé
+

Å
4c1 s1−2b a2(s)

d0λmin(P)(2n + 1)

ã
×

Ç
2
(d1p1p2 + c0 L̂)

d0

å 2n+1
1+2b

,

4p1
a1(1) + c1‖m‖

2
∞

d20λmin(P)

+ k η1(t).

With the definitions of B1 and B2 in Section 2, we obtain from (55)
and (56)

lim sup
T→+∞

lim sup
t→+∞

1
T

∫ t+T

t
ei(τ )2dτ

≤
s2i(a1(s) + 2c1‖m‖

2
∞

)

λmin(P)(d0s2 − c0 L̂)
+

2c1
Ä
B1(s, p1, p2) +

1
p2
B2

ä 2n
1−2b

s2(n−i)λmin(P)(d0s2 − c0 L̂)
p2.

Then, combining s ≥ 1, (47), (51) and (54) the claim holds for

s > s∗ := max


p1p2(2n + 1)

d0
+

 
c0L̂
d0

, s, 1



p2 ≥ 4M2
∞

Å
1 +

c1
d0λmin(P)

ã
.

(57)

To establish Corollary 2.5, note that when a1(s) ≡ 0, we have
that B2 = 0 and from (57) that

lim sup
T→+∞

lim sup
t→+∞

1
T

∫ t+T

t
ei(τ )2dτ

≤
2s2ic1‖m‖

2
∞

λmin(P)(d0s2 − c0 L̂)
+

2c1B1(s, p1, p2)
2n

1−2b

s2(n−i)λmin(P)(d0s2 − c0 L̂)
p2. (58)

The claim follows by taking p2 equal to its lower bound in (57).
Since for γ = 0 and m ≡ 0 the first term of (58) vanishes, B1

and B1 can be written as functions of p1p2 with B1
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B1(s, p1p2) =
4c1 s1−2b a2(s)

d0λmin(P)(2n + 1)

Ç
2
(d1p1p2 + c0 L̂)

d0

å 2n+1
1+2b

and the definition of B1. Since, in this case, p2 is only constrained
to be positive, Corollary 2.7 readily follows.

4.4. On the case when L is known

As indicated in Remark 2.4, the first term of (58) is the bound
that onewould obtainwhen the constant vector L is known. In fact,
in such a case, the analysis parameter s is not needed and r can be
chosen to be a constant such that

d0r2 − c0 L̂ > 0,

in which case, from (37), we have, for almost all t

V̇r(ε(t))
r

≤ −

Ç
d0 −

Ç
d1p1p2
r1+2b

+
c0 L̂
r2

åå
Vr(ε(t))

+
a1(r(t))

r2b
+

c1
r2b

m(t)2.

Then, proceeding as to obtain (58), ∀i ∈ {1, 2, . . . , n}

lim sup
T→+∞

lim sup
t→+∞

1
T

∫ t+T

t
ei(τ )2dτ ≤

r2i(a1(r) + 2c1‖m‖
2
∞

)

λmin(P)(d0r2 − c0 L̂)
.

5. Conclusion

We have shown that it is possible to design an observer to
reconstruct bounded solutions of a system. We provide bounds
on the mean of the error signals that can be employed to analyze
performance of the observer. The main feature of the high-gain
observer proposed is the on-line updated gain, which is not
necessarilymonotonic along solutions. This allows us, in particular,
to cope with measurement noise. Even though we establish
that the performance in the mean can be upper bounded as a
function of the observer and analysis parameters, the price to be
paid is a potentially highly oscillatory behavior of the estimates.
This is expected from the analysis of a closely related system
studied in Mareels et al. (1999). To improve the behavior, we
have presented an adaptive procedure based on space averaging
technique and involving several copies of the observer.
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