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a b s t r a c t

We consider the problem of approximately tracking a reference trajectory by means of output feedback
for a class of nonlinear systems with some non-globally Lipschitz nonlinearities. We solve this problem
combining dynamic scaling, homogeneity in the bi-limit and new small gain arguments.
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1. Introduction

The problem of controlling a system in such a way that its state
follows a reference trajectory has been widely studied in control
theory and it is still an active field of research (see [1–3]). When
only the output is available for measurement, it can be formulated
as follows. Given:

1. a system η̇ = f (η, u)with output y = h(η),
2. a bounded state and input reference trajectory (ηr , ur),
available at each time but not ahead of time

design an output feedback ẇ = θ(w, y, ηr), u = ϕ(w, y, ηr)which
ensures global convergence or, asymptotic closeness (in a sense to
be specified) of η to ηr .
This problem is challenging since, as shown in [4], controllabil-

ity and observability are not sufficient to guarantee the existence
of a solution, as is the case for linear systems. Hence, some restric-
tions have to be imposed on the nonlinear function f .
Given a state feedback controller, the key step to design an

output feedback controller, is the synthesis of an appropriate
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observer (see [5] for more details). The observer problem is solved
in [6–8], for instance by requiring the nonlinear function f to be
linear in the unmeasured variable, or in [3] where f is required to
be globally Lipschitz with a Lipschitz constant depending on the
output.
Recently, the problem of practical tracking has been solved

in [2] for a class of systems not globally Lipschitz in the unmea-
sured state components, under the assumption the reference tra-
jectory is bounded and this bound is known. The aim of this paper
is to extend this result to achieve asymptotic trackingwhile not re-
quiring knowledge of an upper-bound for the reference trajectory.
To illustrate the key ideas of the design and to relate our

contribution to existing results we first consider an illustrative
example1:
ż = −z + x1+d2 ,
ẋ1 = x2,
ẋ2 = u+ x1+d2 + z,
y = x1,

(1)

where y in R is the available measurement, u in R is the control
input and d is a real number in [0, 1). Given a bounded time

1 For any real numbersw 6= 0 and r ,wr denotes sign(w) |w|r .
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function t 7→ (xr1(t), xr2(t), ur(t)), together with a solution of

żr = −zr + x1+d2,r
we define a state and input reference trajectory ((zr , xr,1, xr,2), ur),
which is an approximate solution of (1), i.e. it solvesżr = −zr + x

1+d
2,r ,

ẋr,1 = xr,2 + δr,1 ,
ẋr,2 = ur + x1+dr,2 + zr + δr,2 ,

(2)

where (δr,1, δr,2) quantifies the approximation error. The problem
is to find an output feedback such that the state (z, x1, x2) of (1)
approaches (in a sense to be specified) (zr , xr,1, xr,2) despite the
presence of (δr,1, δr,2).
Note that system (1) is neither linear nor globally Lipschitzwith

respect to its unmeasured state components due to the presence
of the term x1+d2 . Hence, none of the tracking results developed in
[6–8,3] can be used.Moreover functions zr , xr,1, xr,2, ur , δr,1 and δr,2
are not required to be bounded in norm by some known quantities,
and this impedes the use of the technique proposed in [2].
In this paper, the tracking problem is recast into the problem of

finding ũ = u− ur , depending on (zr , xr,1, xr,2) and x̃1 = x1 − xr,1
such that the solutions of the error systems
˙̃z = −z̃ + (xr,2 + x̃2)1+d − x1+dr,2 ,
˙̃x1 = x̃2 − δr,1,
˙̃x2 = ũ+ (xr,2 + x̃2)1+d − x1+dr,2 + z̃ − δr,2,

asymptotically converges to a ball centered at the origin, with
radius depending only on the asymptotic behavior of δr,1 and δr,2.
To solve this problem we follow a domination approach based

on homogeneity. This leads to regarding the term (xr,2 + x̃2)1+d −
x1+dr,2 + z̃ − δr,2 in the definition of ˙̃x2 as a perturbation which can
be upper bounded as:

|(xr,2 + x̃2)1+d − x1+dr,2 + z̃ − δr,2|

≤ (1+ d)|xr,2|d|x̃2| + |x̃2|1+d + |z̃| + |δr,2|. (3)

This bound is composed of four terms each of which motivates
some particular features of the proposed design.

1. The term (1 + d)|xr,2|d|x̃2| is a known time function which
multiplies a linear function of the tracking error. To deal with
this kind of termwe follow an idea introduced in [9] and design
a high-gain output feedback with a dynamic scaling with gain
updated from the reference signal xr,2.

2. The second term, namely |x̃2|1+d, is a power of the norm of
the tracking error |x̃2|. To deal with this term, we use the
homogeneous in the bi-limit output feedback design tool we
have introduced in [10] (see Appendix A for the definition of
homogeneity in the bi-limit).

3. The term |z̃| depends on the state of the appended dynamics.
We deal with this one by imposing a minimum phase
assumption and invoking a small gain argument. Note that the
gain obtained is time-varying (it depends on xr,2), and this
requires, in the design, to rely on a time-varying small-gain
argument.

4. Finally, the term |δr,2| coming from the approximation error
of the reference is a perturbation which does not necessarily
vanish at the origin. This implies that exact tracking cannot
be obtained. Nevertheless, the use of high gain allows one to
reduce the effect of this disturbance.

In conclusion, the solution to this tracking problem is based on
a domination approach and combines high-gain with dynamic
scaling and homogeneity in the bi-limit.
In Section 2 the main result of the paper is stated, commented

and compared with existing results related to this topic. Section 3
is devoted to the proof of the main result. More precisely, in
Section 3.1 we introduce a homogeneous in the bi-limit output
feedback design for a chain of integrators compatible with the use
of dynamic scaling. With this tool in hand, we propose an output
feedback and adjust some of its parameters by studying the closed-
loop system in Section 3.2. A brief summary of homogeneity in the
bi-limit theory is given in Appendix A, while some technical results
are proved in Appendix B.

2. Main result of the paper

2.1. Problem statement and assumptions

Consider a system whose dynamics are described by:
ż = F(z, x),
ẋ1 = x2 + f1(z, x),
ẋ2 = x3 + f2(z, x),
...
ẋn = u+ fn(z, x),

y = x1, (4)

where x = (x1, . . . , xn) is in Rn, y is the output in R, u is the input
in R and z in Rnz is the state of some appended dynamics.2
Let t 7→ (xr(t), ur(t)) ∈ Rn×R be a bounded function towhich

corresponds a bounded3solution t 7→ zr(t) ∈ Rnz of the appended
state dynamics

żr = F(zr , xr). (5)

We consider t 7→ (xr(t), zr(t), ur(t)) ∈ Rn×R as a state and input
reference trajectory. It is a solution of (4) up to an approximation
error t 7→ δr(t) = (δr,1(t), . . . , δr,n(t)) ∈ Rn, defined as:
δr,1 = xr,2 + f1(zr , xr)− ẋr,1,
δr,2 = xr,3 + f2(zr , xr)− ẋr,2,
...
δr,n−1 = xr,n + fn−1(zr , xr)− ẋr,n−1,
δr,n = ur + fn(zr , xr)− ẋr,n,

(6)

we wish to design an output feedback controller for system (4) to
ensure the convergence (or closeness, see inequality (15)) of the
solutions (x, z) toward this state reference trajectory (xr , zr).
In the design, the z part can be ‘‘neglected’’ provided the

appendeddynamicswith fi as output and x as input are incremental
ISS (see [11]). Specifically, we make the following assumptions.4

Assumption 1 (Minimum-Phase). There exist non-negative C1
functions Zi and C0 functions γi, such that,

(1.1) for each c ≥ 0, the set {z̃ : ∃zr : |zr | +
∑n
i=1 Zi(zr , z̃) ≤ c} is

compact.
(1.2) ∂Zi

∂zr
(zr , z̃)F(zr , xr) +

∂Zi
∂ z̃ (zr , z̃)

[
F(zr + z̃, xr + x̃)− F(zr , xr)

]
≤ −Zi(zr , z̃)+ γi(zr , xr , x̃).

As shown in [4] in the context of global asymptotic stabilization
of the origin, the tracking problem under consideration might be
unsolvable. Consequently, we need to impose some restrictions on
the functions fi. In this regard, we make the following assumption.

2 Depending on the structure of the functions F and fi ’s these dynamics are
usually referred as ‘‘inverse dynamics’’. For instance, this is the case if F(z, x) =
F(z, x1).
3 With Assumption 1, boundedness of zr is implied by the boundedness of xr .
4 See Section 2.3.2 for some discussions on Assumptions 1–3.
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Assumption 2 (Nonlinear Bound). : There exist positive real
numbers q1 and q2, a real number d∞ in

[
0, 1
n−1

)
, a positive

real number c∞, a non-negative continuous function Ω , and non-
negative functions µi such that:

(2.1) the functions µi are zero at zero, C1 on (0 + ∞) and
continuous at 0, the functions µq1i are convex and:

sµ′i(s) ≤ q2µi(s) ∀s > 0; (7)

(2.2) for all i in {1, . . . , n} and all (zr , z̃, xr , x̃) in R2nz+2n,

|fi(zr + z̃, xr + x̃)− fi(zr , xr)| ≤ Ω(zr , xr)
i∑
j=1

|x̃j|

+ c∞
i∑
j=1

|x̃j|
1−d∞(n−i−1)
1−d∞(n−j) + µi(Zi(zr , z̃)).

Finally, for the appended dynamics, we impose a bound on the
gain between its input x and its outputs fi.

Assumption 3 (Bound on the Gain). There exists a strictly positive
real number υ such that, for all i in {1, . . . , n} and all (zr , xr , x̃) in
Rnz+2n, we have,

µi((1+ υ)γi(x̃, zr , xr)) ≤ Ω(zr , xr)
i∑
j=1

|x̃j|

+ c∞
i∑
j=1

|x̃j|
1−d∞(n−i−1)
1−d∞(n−j)

where the functions γi, µi,Ω and the positive real number c∞ are
as in Assumptions 1 and 2.

2.2. Main result

For systems satisfying Assumptions 1–3, the high-gain output
feedback we propose to solve the tracking problem is expressed
as:

u = ur + Ln+bφ(L−1x̂),

˙̂x = Sx̂+ BLn+bφ(L−1x̂)+ LLK
(
x̂1 − (y− xr,1)

Lb

)
, (8)

where

L = diag(Lb, . . . , Ln+b−1), (9)

S denotes the left shift matrix of order n, i.e.

Sx̂ =
(
x̂2, . . . , x̂n−1, 0

)T
,

and b is a positive real number chosen to satisfy, 5 for 1 ≤ j ≤ i ≤ n,

1− d∞(n− i− 1)
1− d∞(n− j)

<
i+ b
j− 1+ b

<
i
j− 1

, (10)

for all 1 ≤ j ≤ i ≤ n and with d∞ as given in Assumption 2.
Similarly to [10], the functions K and φ are designed by following

5 This choice is always possible since, for 1 ≤ j ≤ i ≤ n, we have:

i+ b
j− 1+ b

<
i
j− 1

∀b > 0,

and

1 ≤
1− d∞(n− i− 1)
1− d∞(n− j)

<
i
j− 1

∀d∞ ∈

[
0,

1
n− 1

)

the procedure described in Section 3.1.3. Unlike [10], the high-gain
parameter L is updated on line as:

L̇ = −a1L+ Lmax
{
0, a1(a2 + 1− Lε)+ a3Ω(zr , xr)

}
, (11)

where:

Ω(zr , xr) = max
{
Ω(zr , xr)
c∞

, 1
} dU+d∞
1−d∞(n−2)

,

andwhere dU , a1, a2, and a3 are positive real numbers to be defined,
with a1 sufficiently small and dU , a2 and a3 sufficiently large, and ε
is selected to satisfy, for 1 ≤ j ≤ i ≤ n,

0 < ε < i+ b− (b+ j− 1)
1− d∞(n− i− 1)
1− d∞(n− j)

. (12)

The update law (11) is a modification of the one introduced in [9,
(24)] and in [1, (3.12)] or [12, (134)]. Its right-hand side depends
only on the state reference trajectory (xr , zr). Since the reference
trajectory is bounded by assumption, L is upper bounded along any

closed-loop solution. Moreover, if L(0) > a
1
ε
2 , L(t) remains larger

than a
1
ε
2 along any closed-loop solution. In particular, L(t) > 1 if

we select a2 ≥ 1. Finally the presence of the term−a1L allows one
to recover the main property of [9, (24)], i.e. L ‘‘follows’’ its driving
term. Specifically, as established in Appendix B, we have:

lim sup
t→+∞

L(t) ≤
[
a2 +

a3
a1
lim sup
t→+∞

{Ω(zr(t), xr(t))}
] 1
ε

, (13)

lim inf
t→+∞

L(t) ≥
[
a2 +

a3
a1
lim inf
t→+∞

{Ω(zr(t), xr(t))}
] 1
ε

. (14)

We are now ready to state the main result of the paper (proved
in Section 3).

Theorem 1. Under Assumptions 1–3, given any strictly positive real
numbers b satisfying (10) and a sufficiently large real number dU ,
there exist a positive real number cr and functions K and φ such
that, for all sufficiently small strictly positive real number a1 and
sufficiently large real numbers a2 and a3, the following holds.
For any bounded state and input reference trajectory t 7→

(xr(t), zr(t), ur(t)), with bounded approximation error t 7→ δr(t)
given by (6), the solutions of system (4) with the output feedback (8),
(11) are bounded in positive time and satisfy

lim sup
t→+∞

|L−1(x(t)− xr(t))| ≤ cr lim sup
t→+∞

{
n−1∑
i=1

|δr,i(t)|
L(t)i+b

+

(
|δr,i(t)|
L(t)i+b

) 1
1−d∞(n−i−1)

+ 2
|δr,n(t)|
L(t)n+b

}
(15)

with L defined in (9).

2.3. Some remarks

2.3.1. About the result
If the reference trajectory is an exact solution of (4) (i.e. if

δr(t) = 0) or if δr(t) converges to zero as t goes to infinity,
the output feedback given in Theorem 1 ensures that (x(t), z(t))
converges to (xr(t), zr(t)).
In general, (15) implies

lim sup
t→+∞

|y(t)− xr,1(t)| ≤ cr

lim sup
t→+∞

L(t)b

lim inf
t→+∞

L(t)
1+b
1+d∞

× lim sup
t→+∞

{
n−1∑
i=1

|δr,i(t)| + |δr,i(t)|
1

r∞,i+d∞ + 2|δr,n(t)|

}
.
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Therefore, if the reference trajectory is known in advance, for all
κ > 0 we can select the parameter a2 strictly larger than

lim sup
t→+∞

max

a3
a1
Ω(zr(t), xr(t)), cεr

×


n−1∑
i=1
|δr,i(t)| + |δr,i(t)|

1
r∞,i+d∞ + 2|δr,n(t)|

κ


ε

2b


 .

Then, by (13) and (14),

lim sup
t→+∞

|y(t)− xr,1(t)| ≤ κ.

Hence, as in6 [2], we recover a practical result in its usual
formulation.
On the other hand, we do not need to know in advance the

whole reference trajectory or even a bound on it to design the
controller and to get asymptotically closeness of the closed loop
system solutions toward the reference one. This differs from the
results proposed in [2,8].

2.3.2. About the assumptions
Note that for system (1),

• Assumption 1 follows from inequality (3) taking

Z1(zr , z̃) = Z2(zr , z̃) = |z̃|2,

and

γ1(x̃, zr , xr) = γ2(x̃, zr , xr) =
∣∣∣(1+ d)|xr,2 |d |x̃2| + |x̃2 |1+d ∣∣∣2.

• Assumption 2 is satisfied setting d∞ = d, c∞ =
√
2 and picking

Ω(zr , xr) =
√
2(1+ d)|xr,2|d, µ1(s) = µ2(s) =

√
s,

q1 = 2, q2 =
1
2
.

• Finally, Assumption 3 is satisfied with υ = 1.

Consequently, system (1) belongs to the class of systems
satisfying Assumptions 1–3 and Theorem 1 applies.
When compared with what can be found in the textbooks [7,6]

or in [8] for instance, our approach allows us to deal with dynamics
which, in appropriate coordinates, may have some polynomial
growth in the unmeasured state components (as expressed by
Assumption 2).
Assumption 1 is more general than the incremental property

introduced in [11] (see also [13]) since the gainγi in Assumption1.2
depends also on (zr , xr). Nevertheless it retains its main property
on the behavior of the solutions. Specifically it implies that, for
all bounded time functions t 7→ (x(t), xr(t)), if a corresponding
solution t 7→ zr(t) of the appended dynamics of system (4),
i.e. solution of:

żr = F(zr , xr),

is bounded, then all solutions t 7→ z(t) of:

ż = F(z, x)

are bounded as well. If furthermore, for all i, γi(zr(t), xr(t), x(t) −
xr(t)) goes to zero when t goes to infinity, then |z(t) − zr(t)| goes
to zero.

6 See Section 2.3.2 for more details.
The presence of the δr,i offers great flexibility for checking
our Assumptions. Specifically, it follows from our proof that
Assumptions 1 and 2 need not to hold for all (zr , xr). It is sufficient
they are satisfied with F(zr , xr) and δr,i given by (6). For example,
in the case with no appended dynamics, by letting:

δr,1 = ẋr,1 − f1(xr), xr,i = 0, δr,i = fi(xr) ∀i ≥ 2,

Assumption 2 becomes:

|fi(x̃)| ≤ Ω(xr)
i∑
j=1

|x̃j| + c∞
i∑
j=1

|x̃j|
1−d∞(n−i−1)
1−d∞(n−j) .

Then, with fi being locally Lipschitz, around the origin, we recover
the result on practical tracking in [2] where standard homogeneity
and domination is also used.
In the same way, by letting

F(zr , xr) = 0, δr,i = fi(0, xr)− fi(zr , xr),

Assumption 1.2 reduces to a simple ISS property as assumed for
example in [8].
Finally, the presence of the function Ω in Assumptions 2 and

3 is an important feature. It is necessary to account for the fact
that the local Lipschitz constant depends on around where the
solution is and therefore aroundwhere (zr , xr) is. But, not knowing
in advance the reference trajectory, we have no a priori upper
bound for this term. This term makes the analysis much more
involved and requires ad hoc small gain arguments.

2.3.3. About the reference trajectory
The standard output tracking problem consists of designing

a feedback which guarantees boundedness of the closed loop
solutions while ensuring convergence of the output to a desired
reference signal yr . To solve this problem, we follow the classical
two degrees of freedom design technique. Namely we separate the
problem into two subproblems:

• trajectory generation,
• feedback compensation.

Feedback compensation is the object we present in full detail in
this paper. The purpose of trajectory generation is to synthesize
a state and input reference trajectory (xr , zr , ur) for the system
given the desired reference signal yr . Here we do not require this
trajectory to be feasible since a ‘‘dynamical mismatch’’ quantified
by δr is allowed. In addition we do not require this state and
input reference trajectory, and therefore the reference signal to be
available ahead of time.
The problem of state and input reference trajectory generation

is rendered more difficult by the presence of appended dynamics.
When the systemwe consider is right invertible (see [14]), oneway
to solve this problem (among many others) is to decompose it in
two sub-problems:

1. generation of the time derivatives of the desired reference
signal yr ,

2. transformation of these derivatives into a state and input
reference trajectory.

The problem of obtaining the time derivative of the desired
reference signal is an observer problem. It can be solved once we
have a model of the system which generates the reference signal,
the so-called exo-system in regulation theory [15]. For example,
we could pick as approximate exo-system y(m)r (t) = 0, i.e. yr(t) is
approximated as a polynomial of degreem−1 in t (themodel used
in [2] is ẏr = 0).
Then, to obtain the appropriate signals (xr , ur) and zr , from

yr and its time derivatives y
(i)
r , we follow a standard inversion
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procedure (see [14]). Specifically, if we can partition x in (xa, xb)
so that (4) takes the specific form7

ż = F(z, xa),
ẋa1 = xa2 + f1(xa1),
...
ẋana−1 = xana + fna−1(xa1, . . . , xana−1),
ẋana = xb1 + fna(z, xa),
ẋb1 = xb2 + fna+1(z, xa, xb1),
...
ẋbnb = u+ fna+nb(z, xa, xb1, . . . , xbnb),

y = xa1, (16)

then by formal differentiation we obtain functions φai so that
xr,ai = φai(yr , . . . , y

(i−1)
r ), and by on-line integration of

żr = F(zr , xr,a),

we obtain zr from xr,a. Finally, again by formal differentiation, we
obtain functions φbi so that

xr,bi = φbi(zr , yr . . . , y(na+i−1)r ), ur = φbn(zr , yr . . . , y(na+nb)r ).

If, for the z subsystem there exist a particular initial condition z(0)
and a bounded time function t 7→ xa(t) (considered here as input)
such that the corresponding solution t 7→ z(t) is bounded, then, by
the minimum phase Assumption 1.1.2, the above procedure yields
a bounded state and input reference trajectory provided that the
function t 7→ (yr(t), . . . , y

(na+nb)
r (t)) is bounded. Note thatwe rely

on aminimum phase assumption and this is not surprising in view
of the key role this assumption plays, as discussed in [16].
For system (1) it is possible to compute an exact state and input

trajectory from yr , ẏr and ÿr selecting xa = (x1, x2) with xb = ∅.
Indeed, we obtain:

xr,2 = ẏr , ur = ÿr − (ẏr)1+d − zr , żr = −zr + (ẏr)1+d.

Unfortunately, in general, the estimation process yielding the time
function ẏr(t) and ÿr(t) from the knowledge of yr(t) is not exact,
and consequently generates an approximation for this reference
trajectory (i.e. non-zero δ1 and δ2).
The procedure above is only one of many possible solutions.

Others may exploit optimal control or flatness [17].

3. Proof of Theorem 1

The proof of inequality (15) is divided into two parts. In the first
part we introduce the functions K and φ appearing in the output
feedback given in (8). In the second part we show how a proper
selection of the parameters dU , a1, a2 and a3 in the high-gain update
law (11) yields the result.

3.1. Construction of K and φ

3.1.1. Posing the problem as an output feedback stabilization problem
The first step is to pose the tracking problem as a problem of

stabilization by output feedback. Setting

ũ = u− ur , x̃ = x− xr , z̃ = z − zr ,

we obtain:{
˙̃z = F(zr + z̃, xr + x̃)− F(zr , xr),
˙̃x = Sx̃+ Bũ+ f (zr + z̃, xr + x̃)− f (zr , xr)− δr ,

(17)

where B = (0, . . . , 1)T and δr = (δr,1, . . . , δr,n).
The objective is to find ũ depending on the output x̃1 = y− xr,1

and on the state reference trajectory (zr , xr) such that (15) holds.

7 xb is not an argument of F and z is not an argument of f1 , . . . , fna−1 .
3.1.2. A high-gain domination approach
The x̃ dynamics of the system (17) have the structure of a

chain of integrators disturbed by nonlinear terms depending on
the tracking error (x̃, z̃), the state reference trajectory (xr , zr)
and the approximation error δr . This motivates us to use the
domination approach introduced in [18] (see also [19]). In this
context, the nonlinear functions (the fi’s) are not used in the
design but considered as perturbations and the output feedback is
designed on a dominating model which in this case is the chain
of integrators. To ensure robustness to these nonlinearities, we
employ high-gain techniques. This leads us to design the controller
with the scaled coordinates:

X̃i = Lb+1−ix̃i (18)

where L is the updated high-gain and b is a positive real number
satisfying (10). Compared to the scaled coordinates used in the
high-gain approach in [18], we add an extra high-gain parameter
b which has been introduced in [9] and which allows gain
adaptation.

3.1.3. Homogeneous in the bi-limit output feedback for a chain of
integrators
Following the domination approach, we focus on the dominant

part of system (17) in the scaled coordinate (18), i.e. a chain of
integrators, with state X = (X1, . . . ,Xn) in Rn described by:

Ẋ = SX+ Bu, y = X1. (19)

To design the output feedback controller for system (19) we use
the tools developed within the framework of homogeneity in the
bi-limit, introduced in [10]. (See Appendix A for a brief summary.)
Selecting d0 = 0 and with d∞ given by Assumption 2,

homogeneity in the bi-limit is obtained for system (19) with the
weights r0 = (r0,1, . . . , r0,n) and r∞ = (r∞,1, . . . , r∞,n) as8:

r0,i = 1, r∞,i = 1− d∞(n− i), i ∈ {1, . . . n}. (20)

In [10] we have proposed an output feedback for system (19) given
by:

u = φ(X̂) ,
˙̂
X = SX̂+ Bφ(X̂)+ K(X̂1 −X1), (21)

where X̂ = (X̂1, . . . , X̂n) is in Rn, K is a homogeneous in the bi-
limit vector fieldwithweights r0 and r∞, and degrees 0 and d∞ and
φ is homogeneous in the bi-limit function with weights r0 and r∞,
and degrees 1 and 1+ d∞. Setting:

E = (e1 . . . , en)T = X̂− X

the chain of integrators (19) with the controller (21) can be
described by:{
˙̂
X = SX̂+ Bφ(X̂)+ K(e1)
Ė = SE + K(e1).

(22)

In [10], the design of K and φ is performed recursively by following
an observer/controller approach in such a way that there exists
homogeneous in the bi-limit Lyapunov function U of degree dU
satisfying, for some real number c1,

∂U
∂E
(X̂, E) (SE + K(e1))+

∂U
∂X
(X̂, E)

(
SX̂+ Bφ(X̂)+ K(e1)

)
≤ −c1

(
U(X̂, E)+ U(X̂, E)

dU+d∞
dU

)
. (23)

8 Note that r∞,i increases with i and is in (0, 1].
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To combine this tool with dynamic scaling we need to establish
a specific property on the Lyapunov function U . This property
is homogeneous in the bi-limit version of the one given in [9,
equation (16)] or in [3, Lemma A1] and also used in the context
of observer design in [20]. Namely, given the diagonal matrix

D = diag(b, 1+ b, . . . , n− 1+ b),

where b is a positive real number satisfying (10), the function φ
and the vector field K are selected such that the Lyapunov function
U satisfies (23), and also:

∂U
∂E
(X̂, E)DE +

∂U

∂X̂
(X̂, E)DX̂ ≥ c2U(X̂, E), (24)

for some positive real number c2.
Such a property can be obtained by modifying the recursive

procedure given in [10] as claimed in the following statement the
proof of which is omitted but can be found in [21].

Theorem 2. Let dU be a positive real number satisfying dU ≥
2max1≤j≤n r0,j + d∞. There exists homogeneous in the bi-limit
function φ : Rn → R+ with associated triples (r0, 1, φ0) and
(r∞, 1+ d∞, φ∞), homogeneous in the bi-limit vector field K :
R → Rn, with associated triples (r0, d0, K0) and (r∞, d∞, K∞)
and a positive definite, proper and C1 function U : R2n → R+,
homogeneous in the bi-limit with associated triples (r0, dU ,U0) and
(r∞, dU ,U∞), such that the following holds.
1. The homogeneous approximating functions U0 andU∞ are positive
definite and proper and for all j in {1, . . . , n}, the functions ∂U

∂ej
and

∂U
∂X̂j
are homogeneous in the bi-limit with approximating functions(

∂U0
∂ej
, ∂U∞
∂ej

)
and

(
∂U0
∂X̂j
, ∂U∞
∂X̂j

)
respectively.

2. There exist two positive real numbers c1 and c2 such that (23) and
(24) are satisfied.

We choose dU satisfying also
dU−1
1+d∞

> q1, with q1 given in
Assumption 2. In this way the functions µqi are convex for all q ≥
dU−1
1+d∞

. In what follows the parameters dU and b, the vector field
K and the function φ are assumed fixed, it remains to select the
parameters a1, a2 and a3 appearing in the high-gain updated law
(11).

3.2. Properties of the closed loop system

3.2.1. ISS property with respect to the δr,i’s
The system (4) with the controller (8), (11), introduced in

Section 2.2, can be fully described by the high-gain update law (11),
the z̃ dynamics in (17) and the equations9
Ė = L(SE + K(e1))−

L̇
L
DE −∆f (L)−∆δ(L),

˙̂
X = L(SX̂+ Bφ(X̂)+ K(e1))−

L̇
L
DX̂

(25)

where E = (e1, . . . , en)T and X̂ = (X̂1, . . . , X̂n)
T are defined as:

X̂ = L−1x̂, E = L−1(x̂− x̃) (26)

and

∆f (L) = L−1(f (zr + z̃, xr + x̃)− f (zr , xr)),

∆δ(L) = L−1(δr,1, . . . , δr,n)

are regarded as perturbations.

9 Note that = −L−1 L̇DL−1 .
By inequality (23), the function U obtained from Theorem 2
satisfies, along the solutions of system (25),

≤ −c1Lθ
(
U(X̂, E)

)
+ TDS + TDist , (27)

where θ is the function defined on R+ as:

θ(s) = s+ s
d∞+dU
dU , (28)

and

TDS = −
L̇
L

(
∂U

∂X̂
(X̂, E)DX̂+

∂U
∂E
(X̂, E)DE

)
,

TDist = −
∂U
∂E
(X̂, E)[∆f (L)+∆δ(L)].

The above discussion and Assumption 2 yield the following
result, the proof of which is given in Appendix B.2.

Lemma 1. There exist two positive real numbers c3 and c4 such
that, for all sufficiently small strictly positive real numbers a1 and
sufficiently large real numbers a2 and a3, inequality (27) becomes:

≤ −4c3Lθ
(
U(X̂, E)

)
+ c4L1−ε

n∑
i=1

ζi(Yi)

+ Lc4
n∑
i=1

ζi

(
δr,i

Li+b

)
, (29)

where

Yi = Lε−(i+b)µi(Zi(zr , z̃)) (30)

and the ζi are C1, convex, strictly increasing and homogeneous in the
bi-limit functions with weights 1 and r∞,i + d∞ and degrees dU and
dU + d∞, defined as10:

ζi(s) =
∫ s

0
max{|σ |dU−1, |σ |

dU−r∞,i
r∞,i+d∞ }dσ , ∀i ∈ {1 . . . , n− 1},

ζn(s) =
∫ s

0
min{|σ |dU−1, |σ |

dU−1
1+d∞ }dσ .

(31)

If the functions Zi’s were not present (via Yi), inequality (29)
would give readily an ISS property between δr,i

Li+b
and (X̂, E). To

prove this claim note that the function

s ∈ Rn 7→

(
n−1∑
i=1

|si| + |si|
1

r∞,i+d∞ +
|sn|
1+ |sn|

(
1+ |sn|

1
1+d∞

))dU
is positive definite, homogeneous in the bi-limit with weights
1 and r∞,i + d∞ and degrees dU and dU and its homogeneous

approximating functions (i.e.
∑n
i=1 |si|

dU and
∑n
i=1 |si|

dU
r∞,i+d∞ ) are

positive definite. Furthermore, since the function s ∈ Rn 7→
θ−1

(
c4
c3

∑n
i=1 ζi (si)

)
is homogeneous in the bi-limit with the same

weights and degree11 by Claim A.3 in Appendix A, there exists a

10 Recall that dU − 1 ≥
dU−r∞,i
r∞,i

for all i in {1, . . . , n− 1} and dU − 1 ≥
dU−1
1+d∞

.
11 θ : R+ → R+ defined in (28) is a bijective, homogeneous in the bi-
limit function, and satisfies all assumptions of [10, Proposition 2.11]. This implies
homogeneity in the bi-limit of its inversemap θ−1 : R+ → R+ with approximating

homogeneous functions s and s
dU

d∞+dU . Then [10, Proposition 2.10] implies that the
function θ−1

(
c4
c3

∑n
i=1 ζi (si)

)
is homogeneous in the bi-limit with degrees dU and

dU .



658 V. Andrieu et al. / Systems & Control Letters 58 (2009) 652–663
positive real number c5 such that:

θ−1

(
c4
c3

n∑
i=1

ζi (si)

)

≤ cdU5

(
n−1∑
i=1

|si| + |si|
1

r∞,i+d∞ +
|sn|
1+ |sn|

(
1+ |sn|

1
1+d∞

))dU
,

≤ cdU5

(
n−1∑
i=1

|si| + |si|
1

r∞,i+d∞ + 2|sn|

)dU
. (32)

Hence, without Yi in the inequality (29), we would have (see [22]):

lim sup
t→+∞

U(X̂, E(t)) ≤ cdU5 lim sup
t→+∞

[
n−1∑
i=1

(
|δr,i(t)|
L(t)i+b

)

+

(
|δr,i(t)|
L(t)i+b

) 1
r∞,i+d∞

+ 2
|δr,n(t)|
L(t)n+b

]dU
. (33)

In addition, since the function U is positive definite, homogeneous
in the bi-limit with degrees dU and dU and its homogeneous
approximating functions are positive definite, and since r∞,i is
smaller or equal to 1, ClaimA.3 in Appendix A implies the existence
of a positive real number c13 such that:

U(X, E) ≥ c13
∣∣X̂− E∣∣dU = c13 ∣∣L−1x̃∣∣dU , (34)

which implies that (15) holds with cr =
c5
c
dU
13

.

3.2.2. Small-gain arguments
To establish an inequality like (33) in the presence of Zi (or

Yi), we need a more advanced argument relying on a small gain
theorem.
First of all, note that, Assumptions 1 and 3 yield the following

result, the proof of which is in Appendix B.3.

Lemma 2. There exist two positive real numbers c6 and c7 such
that, for all sufficiently small strictly positive real numbers a1 and
sufficiently large real numbers a2 and a3, we have, along the
trajectories of the closed-loop system,

≤ −c6ζi(Yi)+ c7Ω(zr , xr)θ
(
U(X̂, E)

)
, ∀i{1, . . . , n}. (35)

Lemma 2 quantifies the ISS gain between (X̂, E) and Yi, which,
unfortunately, depends on (xr , zr) (through the function Ω).
Nevertheless, due to the special structure of the high-gain update
law (11), an inequality similar to (33) can still be obtained.
Suppose that a1 is sufficiently small and that a2 and a3 are

sufficiently large such that Lemmas 1 and 2 apply. Then, inequality
(35) yields, for all 0 ≤ s ≤ t ,

ζi(Yi(t)) ≤ exp(c6(s− t))ζi(Yi(s))

+

∫ t

s
exp(c6(r − t))c7Ω(r)θ(U(r))dr,

where we have used the compact notation:

U(t) = U(X̂(t), E(t)), Yi(t) = L(t)ε−(i+b)µi(Zi(zr(t), z̃(t))),
Ω(t) = Ω(zr(t), xr(t)).
The inequality above, together with definition (30) and inequality
(29) divided by L1−ε , yields:

≤ −4c3L(t)εθ (U(t))+ L(t)εc4
n∑
i=1

ζi

(
δr,i(t)
L(t)i+b

)
+ c4 exp(c6(s− t))

n∑
i=1

ζi
(
L(s)ε−(i+b)(µi(Zi(s)))

)
+ nc4c7

∫ t

s
exp(c6(r − t))

[
Ω(r)θ(U(r))

]
dr, (36)

where :
Zi(t) = Zi(zr(t), z̃(t)).
This yields:

≤ −4c3L(t)εθ (U(t))+ L(t)εc4
n∑
i=1

ζi

(
δr,i(t)
L(t)i+b

)
+ c4 exp(c6(s− t))

n∑
i=1

ζi
(
L(s)ε−(i+b)(µi(Zi(s)))

)
+ nc4c7 sup

[s,t]

{
exp

( c6
2
(r − t)

)
θ(U(r))

}
×

∫ t

s
exp

( c6
2
(r − t)

)
Ω(r)dr. (37)

Now, assume for the time being that L satisfies12:

L(t)ε ≥
1
c3

[
nc4c7

∫ t

s
exp

( c6
2
(r − t)

)
Ω(r)dr + 1

]
∀t ≥ 0.

(38)
In this case (37) becomes, for all s ≤ t ,

≤ −4c3L(t)εθ (U(t))+ L(t)εc4
n∑
i=1

ζi

(
δr,i(t)
L(t)i+b

)
+ c4 exp(c6(s− t))

n∑
i=1

ζi
(
L(s)ε−(i+b)(µi(Zi(s)))

)
+ [c3L(t)ε − 1] exp

(
−
c6
2
t
)
sup
[s,t]

{
exp

( c6
2
r
)
θ(U(r))

}
,

≤ −[4c3L(t)ε + 1]θ (U(t))+ L(t)εc4
n∑
i=1

ζi

(
δr,i(t)
L(t)i+b

)
+ c4 exp(c6(s− t))

n∑
i=1

ζi
(
L(s)ε−(i+b)(µi(Zi(s)))

)
+ c3L(t)ε exp

(
−
c6
2
t
)
sup
[s,t]

{
exp

( c6
2
r
)
θ(U(r))

}
. (39)

Since the functions δ and L are upper bounded on R+ and L(0) >

a
1
ε
2 ≥ 1, there exist ∂m and Lm that satisfy:

∂m ≥

n∑
i=1

ζi

(
δr,i(t)
L(t)i+b

)
, Lm ≥ L(t) ≥ a

1
ε
2 ≥ 1, ∀t ≥ 0. (40)

Then, given the initial conditions L(0) and Zi(0), we can find a
sufficiently large positive real numberUm, strictly larger thanU(0),
and satisfying, for all i,

θ(Um) ≥ c4
n∑
i=1

ζi
(
L(0)ε−(i+b)(µi(Zi(0)))

)
+ c4Lεm∂m. (41)

12 This property will be established at the end of the proof.
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Suppose there exists a time tm in the positive time domain of
existence of the solution such that U(tm) = Um and U(r) < Um
for all r in [0, tm). This implies

sup
[0,tm]

{
exp

( c6
2
r
)
θ(U(r))

}
= exp

( c6
2
tm
)
θ(U(tm)).

On the other hand, by (41), setting s = 0 and t = tm in (39) yields

≤ −3c3L(tm)εθ(U(tm)) < 0 .

This contradicts the definition of tm. Consequently, Um upper
bounds the function t 7→ U(t) in the positive time domain
of the existence of the solution. Since t 7→ L(t) is bounded,
the same holds for t 7→ (x̂(t), x̃(t)) and therefore also for
t 7→ γi(zr(t), xr(t), x̃(t)). Then, by integration, we obtain from
Assumption 1.2 that, for all i, the function t 7→ Zi(zr(t), z̃(t)) is
bounded on the positive time domain of existence of the solution.
Hence, by Assumption 1.1, the same holds for t 7→ z̃(t). This
implies that the positive time domain of existence is [0,+∞) and
that the closed loop solution is bounded on this interval.
It remains to establish (15). Let U be any positive real number

satisfying

U > cdU5 lim sup
t→+∞

(
n−1∑
i=1

|δr,i(t)|
L(t)i+b

+

(
|δr,i(t)|
L(t)i+b

) 1
r∞,i+d∞

+ 2
|δr,n(t)|
L(t)b+n

)dU
, (42)

with c5 given in (32). By definition of lim sup, there exists tl such
that

U ≥ cdU5

(
n−1∑
i=1

(
|δr,i(t)|
L(t)i+b

)
+

(
|δr,i(t)|
L(t)i+b

) 1
r∞,i+d∞

+ 2
|δr,n(t)|
L(t)b+n

)dU
,

∀t ≥ tl. (43)

Furthermore, using (32), we obtain:

L(t)εc4
n∑
i=1

ζi

(
δr,i(t)
L(t)i+b

)
≤ c3L(t)εθ

(
U
)
, ∀t ≥ tl. (44)

Let Zi,m be a bound for the function t 7→ Zi(t) and:

tk =
1
c6
ln

 c4
n∑
i=1
ζi(a

1− i+bε
2 µi(Zi,m))

c3a2θ
(
U
)

 .
By (40), we have:

c4 exp(c6(s− t))
n∑
i=1

ζi
(
L(s)ε−(i+b)(µi(Zi(s)))

)
≤ c3L(t)εθ

(
U
)
,

∀t ≥ s+ tk. (45)

Define now

U(s) = sup
r≥s
U(r),

and assume that we have:

U(s) ≥ U ∀s ≥ tl. (46)

Then, by (44) and (45), (39) with s ≥ tl, gives:

≤ −[4c3L(t)ε + 1]θ(U(t))+ 3c3L(t)εθ(U(s))

∀t ≥ s+ tk.
So, for each time t ≥ s+tk forwhichwe have θ(U(t)) ≥ 3
4θ(U(s)),

we obtain:

< −θ(U(t)).

It follows from the proof of [23, Theorem 1] that we have:

lim sup
t→+∞

θ(U(t)) ≤
3
4
θ(U(s)).

But the definition (28) of θ gives:

θ(a) ≤ ρθ(b)⇒ a ≤ ρ
dU

d∞+dU b ∀a, b ≥ 0,∀ρ ∈ [0, 1].

This yields:

lim sup
t→+∞

U(t) ≤
(
3
4

) dU
d∞+dU

U(s)

and this for all s ≥ tl. By taking the limit for s going to infinity, we
get

lim sup
t→+∞

U(t) ≤
(
3
4

) dU
d∞+dU

lim sup
t→+∞

U(t)

and therefore lim supt→+∞ U(t) = 0, which contradicts (46). We
conclude that, for each U satisfying (42), there exists s satisfying:

U(s) = sup
r≥s
U(r) < U

from which (15) follows.
To complete the proof it remains to show that the property (38)

is satisfied. By letting

M = Lε,

(11) gives:

Ṁ = −εa1M + εMmax
{
0, a1(a2 + 1−M)+ a3Ω(zr , xr)

}
.

SinceM ≥ a2 ≥ 1, when:

a1(a2 + 1)+ a3Ω(zr , xr) ≥ a1M,

we get:

Ṁ ≥ −εa1M + ε
[
a1(a2 + 1−M)+ a3Ω(zr , xr)

]
,

≥ −2εa1M + ε
[
a1(a2 + 1)+ a3Ω(zr , xr)

]
and, when:

a1(a2 + 1)+ a3Ω(zr , xr) < a1M,

we get:

Ṁ = −2εa1M + εa1M,
≥ −2εa1M + ε

[
a1(a2 + 1)+ a3Ω(zr , xr)

]
.

By integration this yields:

M(t) ≥ exp(−2εa1t)
(
M(0)−

a2 + 1
2

)
+ εa3

∫ t

0
exp(2εa1(r − t))Ω(zr(r), xr(r))dr +

a2 + 1
2

.

Picking L(0)ε = M(0) ≥ a2, the inequality (38) holds provided a1
is chosen sufficiently small and a2 and a3 sufficiently large.
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4. Conclusion

We have solved a tracking problem by output feedback
for minimum phase non-linear systems which globally admit
a strict normal form. Unlike most existing results, we allow
nonlinearities in the model satisfying a polynomial type growth
in the unmeasured state components. In particular, the result
obtained generalizes the one obtained in [2] since asymptotic
trackingmay be obtainedwithout knowing an upper-bound on the
reference trajectory.
This has been achieved by exploiting the tools of domination,

homogeneity in the bi-limit, dynamic scaling and a novel time
varying small gain argument.

Appendix A. Homogeneity in the bi-limit

For details on the notion of homogeneity in the bi-limit the
reader is referred to [10]. For completeness,we recall the definition
and state the main properties used in the paper.
Given a weight r = (r1, . . . , rn) in (R+/{0})n, we define the

dilation of a vector x in Rn as

λr � x =
(
λr1x1, . . . , λrnxn

)T
.

Definition 1 (Homogeneity in the 0-limit).

• A continuous function φ : Rn → R is said to be homogeneous
in the 0-limit with the associated triple (r0, d0, φ0), where r0 in
(R+/{0})n is the weight, 13 d0 in R+ the degree and φ0 : Rn →
R the approximating function, respectively, if φ0 is continuous
and not identically zero and, for each compact set C in Rn \ {0}
and each ε > 0, there exists λ∗ such that we have:

max
x∈C

∣∣∣∣φ(λr0 � x)λd0
− φ0(x)

∣∣∣∣ ≤ ε ∀λ ∈ (0, λ∗].
• A vector field f =

∑n
i=1 fi

∂
∂xi
is said to be homogeneous

in the 0-limit with the associated triple (r0, d0, f0), where
f0 =

∑n
i=1 f0,i

∂
∂xi
, if, for each i in {1, . . . , n}, the function

fi is homogeneous in the 0-limit with the associated triple(
r0, d0 + r0,i, f0,i

)
. 14

Definition 2 (Homogeneity in the∞-limit).

• A continuous functionφ : Rn → R is said to be homogeneous in
the∞-limit with the associated triple (r∞, d∞, φ∞) where r∞
in (R+/{0})n is theweight, d∞ inR+ the degree andφ∞ : Rn →
R the approximating function, respectively, if φ∞ is continuous
and not identically zero and, for each compact set C in Rn \ {0}
and each ε > 0, there exists λ∗ such that we have:

max
x∈C

∣∣∣∣φ(λr∞ � x)λd∞
− φ∞(x)

∣∣∣∣ ≤ ε ∀λ ∈ [λ∗,+∞).
• A vector field f =

∑n
i=1 fi

∂
∂xi
is said to be homogeneous

in the ∞-limit with the associated triple (r∞, d∞, f∞), with
f∞ =

∑n
i=1 f∞,i

∂
∂xi
, if, for each i in {1, . . . , n}, the function fi is

homogeneous in the∞-limitwith the associated triple (r∞, d∞
+r∞,i, f∞,i

)
.

13 If x is partitioned as (xa, xb), we use (r0a, r0b) (respectively (r∞a, r∞b)) to denote
the weights of xa and xb .
14 In the case of a vector field the degree d0 can be negative as long as d0+r0,i ≥ 0,
for all 1 ≤ i ≤ n.
Definition 3 (Homogeneous in the bi-limit function). A continuous
functionφ : Rn → R (or a vector field f ) is said to behomogeneous
in the bi-limit if it is homogeneous in the 0-limit and homogeneous
in the∞-limit.

We now recall some properties of homogeneous in the bi-
limit functions. Let η and γ be two continuous homogeneous in
the bi-limit functions with weights r0, r∞, degrees dη,0, dη,∞ and
dγ ,0, dγ ,∞, and continuous approximating functionsη0,η∞, γ0, γ∞.

Claim A.1. The function x 7→ η(x)γ (x) is homogeneous in the
bi-limit with the associated triples (r0, dη,0 + dγ ,0, η0γ0) and
(r∞, dη,∞ + dγ ,∞, η∞γ∞).

Claim A.2. If the degrees satisfy dη,0 ≥ dγ ,0 and dη,∞ ≤ dγ ,∞, and
γ (x) ≥ 0, and we have the following implications for all non-zero x
in Rn:

γ (x) = 0⇒ η(x) < 0,
γ0(x) = 0⇒ η0(x) < 0,
γ∞(x) = 0⇒ η∞(x) < 0,

then there exists a real number k∗ such that, for all k ≥ k∗, and for all
non-zero x in Rn:

η(x) < kγ (x), η0(x) < kγ0(x), η∞(x) < kγ∞(x).

Claim A.3. If the degrees satisfy dη,0 ≥ dγ ,0 and dη,∞ ≤ dγ ,∞ and
the functions γ , γ0 and γ∞ are positive definite then there exists a
positive real number c satisfying η(x) ≤ cγ (x) for all x in Rn.

Appendix B. Technical proofs

B.1. Proof of inequalities (13) and (14)

For any t0 ≥ 1, let

L̄t0 =
(
a2 +

1
t0
+
a3
a1
sup
s≥t0

Ω(s)
) 1
ε

.

Then from (11)

L̇(t) ≤ −a1L(t)+ L(t)max
{
0, a1

(
1−

1
t0
+ L̄εt0 − L(t)

ε

)}
∀t ≥ t0.

It follows that

L̇(t) ≤ −
a1
t0
L(t) ∀t ≥ t0 ≥ 1 : L(t) ≥ L̄t0 .

From the proof of [23, Theorem 1], this yields:

lim sup
t→+∞

L(t) ≤ L̄t0 .

As a result inequality (13) follows allowing t0 to go to+∞.
Similarly, let

Lt0 =
(
a2 −

1
t0
+
a3
a1
inf
s≥t0

Ω(s)
) 1
ε

.

This gives

≤ −
a1
t0
L(t) ≤ −

a4
t0
(Lt0 − L(t))

∀t ≥ t0 : Lt0 ≥ L(t) (≥ a
1
ε
2 ),
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where:

a4 =
a1a

1
ε
2

Lt0 − a
1
ε
2

.

It follows that

lim inf
t→+∞

L(t) ≥ Lt0 ,

from which (14) follows letting t0 go to+∞.

B.2. Proof of Lemma 1

This proof is composed of two steps. We first give a bound on
TDS and then on TDist .
Bound on the term TDS . Eq. (24), and the expression of L̇ in (11),
give:

TDS ≤ −[a1(a2 − Lε)+ a3Ω(zr , xr)]

×

(
∂U

∂X̂
(X̂, E)DX̂+

∂U
∂E
(X̂, E)DE

)
.

From Theorem 2, point (1), for each i in {1, . . . , n} the functions
∂U
∂ei
(X̂, E) and ∂U

∂X̂i
(X̂, E) are homogeneous in the bi-limit with

the same weights (r0, r0) and (r∞, r∞) and degrees dU − 1 and
dU − r∞,i. Hence, by Claim A.1 in Appendix A, the function
(X̂, E) 7→ ∂U

∂X̂
(X̂, E)DX̂ + ∂U

∂E (X̂, E)DE is homogeneous in the bi-
limit with weights (r0, r0) and (r∞, r∞) and degrees dU and dU .
Hence Claim A.3 yields a positive real number c11 such that:

∂U

∂X̂
(X̂, E)DX̂+

∂U
∂E
(X̂, E)DE ≤ c11U(X̂, E).

Finally, using (24) once again and since a
1
ε
2 ≤ L

ε
≤ L, we get

TDS ≤ −c2a3Ω(zr , xr)U(X̂, E)+ c11a1LU(X̂, E). (47)

Bound on the term TDist . By Assumption 2, (9), (26) and (20), we
have, for all i,

|(∆f (L))i| = L1−i−b|fi(zr + z̃, xr + x̃)− fi(zr , xr)|,

≤ Ω(zr , xr)
i∑
j=1

Lj−i|X̂j − ej| + c∞L1−i−b

×

i∑
j=1

|Lb+j−1(X̂j − ej)|
r∞,i+d∞
r∞,j + L1−i−bµi(Zi).

Inequality (12) implies that, for all L ≥ a
1
ε
2 ≥ 1,

1
a2
≥ L−ε ≥ L

(b+j−1)
r∞,i+d∞
r∞,j

−i−b
.

Consequently, for all (X̂, E) in R2n and L ≥ a
1
ε
2 ≥ 1,

|(∆f (L))i| ≤ Ω(zr , xr)
i∑
j=1

|X̂j − ej|

+
c∞
a2
L
i∑
j=1

|X̂j − ej|
r∞,i+d∞
r∞,j + L1−i−bµi(Zi).

On the other hand, the functions
∣∣∣ ∂U∂ei (E)∣∣∣ |X̂j − ej| and

∣∣∣ ∂U∂ei (E)∣∣∣∣∣X̂j − ej
∣∣ r∞,i+d∞

r∞,j are homogeneous in the bi-limit with weights
(r0, r0) and (r∞, r∞) and degrees dU and dU + r∞,j − r∞,i (≤ dU)
and, respectively, dU − 1 +
r∞,i+d∞

r∞,j
(≥ dU ) and dU + d∞. Hence,

Claim A.3 yields positive real numbers c12 and c13 such that:

|TDist | ≤ c12Ω(zr , xr)U(X̂, E)+
c∞c13
a2
Lθ
(
U(X̂, E)

)
+

n∑
i=1

∣∣∣∣∂U∂ei (X̂, E)
∣∣∣∣ L1−i−bµi(Zi)+ n∑

i=1

∣∣∣∣∂U∂ei (X̂, E)
∣∣∣∣ L1−i−bδr,i.

(48)

Collecting (27), (47) and (48) withΩ ≥ Ω

c∞
, we obtain

≤ −

[
c1 − c11a1 −

c∞c13
a2

]
Lθ
(
U(X̂, E)

)
− [c2a3 − c12c∞]Ω(zr , xr)U(X̂, E)

+

n∑
i=1

∣∣∣∣∂U∂ei (X̂, E)
∣∣∣∣ L1−i−bµi(Zi)+ n∑

i=1

∣∣∣∣∂U∂ei (X̂, E)
∣∣∣∣ L1−i−bδr,i.

Hence setting c3 =
c1
10 , for all sufficiently small a1 and large a2 and

a3, we have

≤ −5c3Lθ
(
U(X̂, E)

)
+

n∑
i=1

∣∣∣∣∂U∂ei (X̂, E)
∣∣∣∣ µi(Zi)Li+b−1

+

n∑
i=1

∣∣∣∣∂U∂ei (X̂, E)
∣∣∣∣ δr,i

Li+b−1
. (49)

The function (X̂, E, δr,i) 7→ ∂U
∂ei
(X̂, E)δr,i is homogeneous in the bi-

limit with degrees dU and dU+d∞ and theweights 1 and r∞,i+d∞

for δr,i. Hence there exists a positive real number c4 satisfying for
any E, i, Zi and L ≥ 1,∣∣∣∣∂U∂ei (X̂, E)

∣∣∣∣ δr,iLi+b ≤ c32nθ(U(X̂, E))+ c4ζi
(
δr,i

Li+b

)
,

L1−ε
∣∣∣∣∂U∂ei (X̂, E)

∣∣∣∣ µi(Zi)Li+b−ε
≤ L
c3
2n
θ
(
U(X̂, E)

)
+ c4L1−εζi

(
µi(Zi)
Li+b−ε

)
,

where ζi is the homogeneous in the bi-limit function defined in
(31). Hence, inequality (49) becomes (29) and yields the claim of
Lemma 1. �

B.3. Proof of Lemma 2

Before entering the proof of Lemma 2, it is useful to list some
properties of the functions µi and ζi. The functions µ

q1
i are zero at

zero and convex, hence by (7), we have:

1
q1
µi(s) ≤ sµ′i(s) ≤ q2µi(s) ∀s > 0. (50)

Similarly, by definition (31) of the function ζi, we have:

ζi(s) ≤ sζ ′i (s) ≤
dU + d∞

1− d∞(n− 2)
ζi(s) ∀s ≥ 0. (51)

By integration, this gives:

ζi(rs) ≤ r
dU+d∞

1−d∞(n−2) ζi(s) ∀s ≥ 0,∀r ≥ 1. (52)

Also, since dU satisfies
dU−1
1+d∞

> q1, the functions s 7→ ζi(µi(s)) are
convex, C1 and zero at zero. It follows that we have the equations
in Box I:

Proof of Lemma 2. By Box I and Yi defined in (30), Assumption 1.2
gives the equation in Box II.
Since L̇+ a1L is non-negative and ε satisfies (12), we have:

[ε − (i+ b)]
L̇
L
ζ ′i (Yi)Yi ≤ [(i+ b)− ε]a1ζ

′

i (Yi)Yi.
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∂

∂r
ζi(rµi(s)) = ζ ′i (rµi(s))µi(s),

∂

∂s
ζi(rµi(s)) = rζ ′i (rµi(s))µ

′

i(s) if s > 0,
= 0 if s = 0

0 ≤
∂

∂s
ζi(rµi(s1)) ≤

∂

∂s
ζi(rµi(s2)) ∀0 ≤ s1 ≤ s2, ∀r ≥ 0.

Box I.
≤ [ε − (i+ b)]
L̇
L
ζ ′i (Yi)Yi + L

ε−(i+b)ζ ′i (Yi)µ
′

i(Zi(zr , z̃))
[
−Zi(zr , z̃)+ γi(x̃, zr , xr)

]
if Zi 6= 0,

= 0 if Zi = 0.

Box II.
To exhibit an upper bound on Lε−(i+b)ζ ′i (Yi)µ
′

i(Zi(zr , z̃))
[
−Zi(zr ,

z̃)+ γi(x̃, zr , xr)
]
we distinguish two cases:

(1) γi(x̃, zr , xr) ≤
Zi(zr , z̃)
1+ υ

, (2) γi(x̃, zr , xr) >
Zi(zr , z̃)
1+ υ

,

with υ given in Assumption 3.
Case (1): (50) yields:

Lε−(i+b)ζ ′i (Yi)µ
′

i(Zi(zr , z̃))
[
−Zi(zr , z̃)+ γi(x̃, zr , xr)

]
≤ −

υ

1+ υ
Lε−(i+b)ζ ′i (Yi)µ

′

i(Zi(zr , z̃))Zi(zr , z̃),

≤ −
υ

q1(1+ υ)
ζ ′i (Yi)L

ε−(i+b)µi(Zi(zr , z̃)),

≤ −
υ

q1(1+ υ)
ζ ′i (Yi)Yi.

Case (2): By using successively the second equation in Box I, (50)
and (51), we get:

Lε−(i+b)ζ ′i (Yi)µ
′

i(Zi(zr , z̃))
[
−Zi(zr , z̃)+ γi(x̃, zr , xr)

]
≤ Lε−(i+b)ζ ′i

(
Lε−(i+b)µi

(
(1+ υ)γi(x̃, zr , xr)

))
×µ′i

(
(1+ υ)γi(x̃, zr , xr)

)
γi(x̃, zr , xr)−

1
q1
ζ ′i (Yi)Yi,

≤ ζ ′i
(
Lε−(i+b)µi

(
(1+ υ)γi(x̃, zr , xr)

))
×

q2
1+ υ

Lε−(i+b)µi
(
(1+ υ)γi(x̃, zr , xr)

)
−
1
q1
ζ ′i (Yi)Yi,

≤
dU + d∞

1− d∞(n− 2)
q2
1+ υ

ζi
(
Lε−(i+b)µi

×
(
(1+ υ)γi(x̃, zr , xr)

))
−
1
q1
ζ ′i (Yi)Yi,

where by Assumption 3, (26) and L ≥ 1, we have:

Lε−(i+b)µi
(
(1+ υ)γi(x̃, zr , xr)

)
≤ Lε−(i+b)

i∑
j=1

Ω(zr , xr)|x̃j| + c∞|x̃j|
r∞,i+d∞
r∞,j

≤ max
{
Ω(zr , xr)
c∞

, 1
}
c∞

i∑
j=1

|X̂j − ej| + |X̂j − ej|
r∞,i+d∞
r∞,j .

Since the function (sj) 7→
∑i
j=1 |sj| + |sj|

r∞,i+d∞
r∞,j is homogeneous

in the bi-limit with weights r0 and r∞ and degrees 1 and r∞,i+d∞,
the function ζi is homogeneous in the bi-limit with weights 1 and
r∞,i+ d∞ and degrees dU and dU + d∞, and the function (X̂, E) 7→
θ
(
U(X̂, E)

)
is positive definite, proper and homogeneous in the
bi-limit with weights (r0, r0) and (r∞, r∞) and degrees dU and
dU + d∞, there exists a positive real number c7 such that we have:

dU + d∞

1− d∞(n− 2)
q2
1+ υ

ζi

×

(
c∞

i∑
j=1

|X̂j − ej| + |X̂j − ej|
r∞,i+d∞
r∞,j

)
≤ c7θ

(
U(X̂, E)

)
.

Hence, with (52), we have obtained:

dU + d∞

1− d∞(n− 2)
q2
1+ υ

ζi
(
Lε−(i+b)µi((1+ υ)γi(x̃, zr , xr))

)
≤ c7max

{
Ω(zr , xr)
c∞

, 1
} dU+d∞
1−d∞(n−2)

θ
(
U(X̂, E)

)
.

Combining the two cases, we get:

Lε−(i+b)ζ ′i (Yi)µ
′

i(Zi(zr , z̃))
[
−Zi(zr , z̃)+ γi(x̃, zr , xr)

]
≤ −

υ

q1(1+ υ)
ζ ′i (Yi)Yi

+ c7max
{
Ω(zr , xr)
c∞

, 1
} dU+d∞
1−d∞(n−2)

θ
(
U(X̂, E)

)
which implies for Box II:

≤ −

(
υ

q1(1+ υ)
− [(i+ b)− ε]a1

)
ζ ′i (Yi)Yi

+c7max
{
Ω(zr , xr)
c∞

, 1
} dU+d∞
1−d∞(n−2)

θ
(
U(X̂, E)

)
,

≤ −c6ζi(Yi)+ c7max
{
Ω(zr , xr)
c∞

, 1
} dU+d∞
1−d∞(n−2)

θ
(
U(X̂, E)

)
,

where to get the latter inequality we have used (51) and chosen c6
satisfying:

c6 <
υ

q1(1+ υ)

and a1 satisfying

a1 <
υ

q1(1+υ)
− c6

n+ b
.

This completes the proof of the Lemma. �
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