
Automatica 45 (2009) 1789–1798
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Survey paper

A unifying point of view on output feedback designs for global
asymptotic stabilizationI

V. Andrieu a,b,∗, L. Praly c
a LAAS-CNRS, Université de Toulouse, France
b Université de Lyon 1, CNRS UMR 5007, LAGEP, France
c École des Mines de Paris, CAS, 35, rue Saint-Honoré, 77305 Fontainebleau Cedex, France

a r t i c l e i n f o

Article history:
Received 30 May 2007
Received in revised form
4 November 2008
Accepted 15 April 2009
Available online 13 June 2009

Keywords:
Output feedback
Global stabilization
Nonlinear systems

a b s t r a c t

Thedesign of output feedback for ensuring global asymptotic stability is a difficult taskwhichhas attracted
the attention of many researchers with very different approaches. We propose a unifying point of view
aiming at covering most of these contributions.
We start with a necessary condition on the structure of the Lyapunov functions for the closed loop

system. This motivates the distinction of two classes of designs:
– the direct approach, also called control error model analysis, in which the attention is focused on

directly estimating a stabilizer, and
– the indirect approach, also called dynamic error model analysis, in which the stabilization task is

fulfilled for an estimated model of the system and not directly for the system itself.
We show how most available results on this topic can be reinterpreted along these lines.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Problem statement

We are interested in studying the solutions which have been
proposed to the following stabilization problem.
Given two continuous functions f : Rn × R→ Rn and h : Rn →

R, find an integer q and continuous functions ν : Rq × R→ Rq and
$ : Rq × R → R such that the origin is a globally asymptotically
stable equilibrium of the system:

ẋ = f (x, u), y = h(x) x ∈ Rn, y ∈ R,
ẇ = ν(w, y), u = $(w, y) w ∈ Rq, u ∈ R,

(1)

where x is the state of a dynamical system to be controlled, y is a
measured output, u is the control and w is the state of a controller
to be designed.
We restrict our attention here to the global case for two

reasons:
(1) Wewant the domain of attraction to be a given open set which,
in the coordinates of (1), is the whole space,
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(2) For the sake of possibly achieving better performance, we
address the nonlinear terms as they are, forbidding for instance
the possibility of dominating them by functions with linear
growth as typically done in the design of high gain output
feedback addressing the semi-global case.

But the global casewith nonlinear dynamics is difficult. It is known
(see Mazenc, Praly, and Dayawansa (1994)) that stabilizability
and observability are not sufficient for the existence of a global
solution, as opposed, for instance, to the semi-global case (Atassi
& Khalil, 1999; Shim & Teel, 2003; Teel & Praly, 1994) or the local
case (Coron, 1994). For example, for the system

ξ̇1 = ξ2, ξ̇2 = ξ
3
2 + u, y = ξ1

with input u, state (ξ1, ξ2) and measured output y, the above
problem has no solution. But it has a solution if we know that
the state initial condition is in an arbitrary but given compact set
(see end of Section 2.3). Also the so-called ‘‘separation principle’’
is not valid. This has been illustrated in Kokotović (1992) with the
following system1:

ẋ1 = −x1 + (u− x2)x21, ẋ2 = −x2 + x21, y = x1. (2)

A stabilizing state feedback is:

φ(x1, x2) = x2 (3)

1 The static output feedback u = −8y5 solves our output feedback stabilization
problem. This can be seen by completing the squares in the expression of the time
derivative of U in (18).
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and an observer for x2 is:

˙̂x2 = −x̂2 + y2. (4)

It guarantees exponential convergence of x̂2 toward x2 on the time
of existence of the solutions. Hence an output feedback obtained
by designing separately stabilizer and observer as suggested by the
‘‘separation principle’’ is:

ẇ = −w + y2, u = w. (5)

Unfortunately it does not solve our global stabilization problem
since it can be checked that some solutions of the closed loop
system escape to infinity in finite time.
To overcome these difficulties many different routes have been

investigated by different authors and schools. Getting a complete
view of all the literature is very difficult, because of its variety and
its dispersion. In this paper we propose a framework for studying
output feedback designs, in a unified way. For this we rely on
the distinction, we shall motivate in Section 1.2, of two classes of
designs:

(1) the direct approach, also called control error model analysis,
in which the attention is focused on directly estimating a
stabilizer,

(2) the indirect approach, also called dynamic error model
analysis, in which the stabilization task is fulfilled for an
estimated model of the system and not directly for the system
itself.

Such a classification and the terminologywe are using are not new.
They are borrowed from the literature on adaptive linear control
(see Ioannou and Sun (1996)) and have been used in the nonlinear
context in Pomet (1989).
The paper does not contain any new result. It provides new

ways of proving and viewing the existing ones. It heavily relies
on the dissertation (Andrieu, 2005). Also, it is certainly not a
compilation of the existing literature.

1.2. An illuminating detour

To motivate our forthcoming classification of output feedback
designs, we consider a general interconnected system2

η̇s = fs(ηs, ηe), η̇e = fe(ηs, ηe) (6)

with fs and fe two continuous functions. As we shall see, writing
the closed loop system (1) as system (6) leads to distinct
interpretations depending on which part of the state (x, w) is
named ηs or ηe.
Assume the origin is a globally asymptotically stable equilib-

rium for system (6). Then there exists a C∞ positive definite and
radially unbounded function V whose derivative along the solu-
tions of the system is negative definite. It follows that ηs 7→
ArgminηeV (ηs, ηe) is a set valued map with non-empty values. We
have (see Prieur and Praly (2004)) and (Pan, Ezal, Krener, andKoko-
tović (2001, Section III)):

Lemma 1. If there exists a selectionηs 7→ ψ(ηs) ∈ ArgminηeV (ηs, ηe)
which is locally Hölder3 of order strictly larger than 12 , then the follow-
ing holds:

(1) U(ηs) = V (ηs, ψ(ηs)) is a C1 control Lyapunov function (CLF) for
the system:

η̇s = fs(ηs, u)

2 Index ‘‘s’’ is to be thought as ‘‘stabilize’’ and index ‘‘e’’ as ‘‘estimating’’.
3 A function f is said to be Hölder of order α if there exists a real number k such
that we have |f (x1)− f (x2)| ≤ k|x1 − x2|α , for all (x1, x2).
whose derivative is made negative definite by the feedback4 u =
ψ(ηs). Precisely,

ηs 7→
dUnom(ηs) =

∂U
∂ηs

(ηs)fs(ηs, ψ(ηs)) (7)

is a negative definite function.
(2) There exists a continuous function H satisfying:

V (ηs, ηe) = U(ηs)+ (ηe − ψ(ηs))TH(ηs, ηe)(ηe − ψ(ηs)). (8)

Hence with an extra condition – Hölder selection – global
asymptotic stability of the origin of system (9) gives rise to the
decomposition (8) which exhibits:
(1) a CLF for the ηs sub-system associated to the stabilizing state
feedback ψ;

(2) a quadratic term in ηe − ψ(ηs) that, in the present context, it
is tempting to interpret as an estimation error, with ηe playing
the role of an estimation of the stabilizer ψ(ηs).

We have also the following decomposition for the time derivative
of V along (6):
V̇ (ηs, ηe) = dUnom(ηs)+ (ηe − ψ(ηs))T

× [A(ηs, ηe)η̇e +B(ηs, ηe)] , (9)
with the function dUnom defined in (7) and some functions A and
B. Since V̇ is negative definite, η̇e must be such that the positive
part of:
(ηe − ψ(ηs))

T [A(ηs, ηe)η̇e +B(ηs, ηe)]
is canceled or dominated by the negative definite function
dUnom(ηs).
The decomposition (8) is the basis of the classification we

propose for output feedback designs. Specifically,
(1) when the role of ηs is played by the system state x and the one
of ηe by the controller statew, i.e.:
ηs = x, ηe = w,

then we have what we call a direct design, or a control error
model analysis.

(2) Instead, when:
ηs = w, ηe = x
or5

ηs = (w, y), ηe = x (mod y = h(x)),
then we have what we call an indirect design, or a dynamic
error model analysis.

In each of these two classes, variations are possibly depending on
how much the stability margin (for instance quantified by dUnom)
is used in designing η̇e, as discussed about (9) above.

1.3. System in normal form

To illustrate our presentation we shall quote known results for,
but not only, systems in the so-called normal form,

ż = F(z, ξ1),

ξ̇1 = ξ2, . . . , ξ̇n−1 = ξn,

ξ̇n = f (z, ξ1, . . . , ξn)+ g(ξ1)u,
y = ξ1,

(10)

for which a complete coordinate-free characterization is given
in Byrnes and Isidori (1991, Corollary 5.7). This is one of the
most general (nominal) structures for which we know how to

4 In this case, we say that the feedback ψ is associated to the CLF U .
5 x (mod y = h(x)) means that ηe is made of the components of x that are not
directly given by the knowledge of y = h(x). This notionmakes full sensewhen h(x)
can be used as a coordinate, i.e. when the function h is injectivewith | ∂h

∂x | never zero.
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design a globally asymptotically stabilizing output feedback and
whose study has been initiated by Kanellakopoulos, Kokotović, and
Morse (1991) andMarino and Tomei (1991) and further developed
for instance in Andrieu and Praly (2008), Andrieu, Praly, and
Astolfi (2008), Freeman and Kokotović (1996), Jiang, Mareels, Hill,
and Huang (2004), Karagiannis, Jiang, Ortega, and Astolfi (2005),
Krishnamurthy and Khorrami (2004), Marino and Tomei (2005)
and Polendo and Qian (2005); Qian and Lin (2006) (see also the
references therein).
An important point to emphasize is that, as usual with systems

whose dynamic is nonlinear, the coordinates play a very significant
role. By changing coordinates we may have a better view on some
peculiarity of the system. For instance, by choosing arbitrarily
sufficiently smooth functions a1 to an−1, positive, and b1 to bn−1,
we can find another set of coordinates (z, y1, . . . , yn) with which
the above dynamic (10) can be rewritten as6:
ż = F(z, y1),
ẏ1 = a1(z, y1)y2 + b1(z, y1), y = y1,
...

ẏn−1 = an−1(z, y1, . . . , yn−1)yn + bn−1(z, y1, . . . , yn−1),
ẏn = an(y1)u+ bn(z, y1, . . . , yn),
or, in compact form, as:
χ̇ = A(χ, y)+ B(y)u, ẏ = C(χ, y), (11)
with:
χ = (z, y2, . . . , yn). (12)
For example the following system:

ξ̇1 = ξ2, ξ̇2 = ξ
2
2 + u, y = ξ1 (13)

is in the normal form (10). And, with the change of coordinates:(
ξ1
ξ2

)
7→

(
y1
y2

)
=

(
ξ1

ξ2 exp(−ξ1)

)
,

its dynamic appears as being:
ẏ1 = exp(y1)y2, ẏ2 = exp(−y1)u, y = y1.
Instead of the quadratic nonlinearity present in (13), we have now
simply linear terms up to multiplication by strictly positive output
functions.

2. Direct design = control error model analysis

2.1. The context

The design is approached by viewing the closed loop system (1)
as system (6) with the following identification:
ηs = x, ηe = w.

Lemma 1 says (ignoring the requirement of a Hölder selection!)
that, if the stabilization problem is solved, then there exist a
function ψ and a Lyapunov function V such that we have:

V (x, w) = U(x)+ (w − ψ(x))TH(x, w)(w − ψ(x)) (14)
V̇ (x, w) = dUnom(x)+ (w − ψ(x))T [A(x, w)ẇ +B(x, w)]

< 0 ∀(x, w) 6= 0 (15)
where,

dUnom(x) =
∂U
∂x
(x)f (x,$(ψ(x), h(x))) < 0 ∀x 6= 0. (16)

These three relations can be interpreted as follows.
(1) As mentioned above, we can view w as an estimator of ψ(x),
whose meaning is clarified below.

6 The change of coordinates (yi = ψi(ξ1, . . . , ξi))i=1,...,n is recursively defined as

ψi+1 =
ψ̇i−bi
ai
with ψ1(ξ1) = ξ1
(2) (16) says that, for the system:

ẋ = f (x, u), (17)

we have a CLF U to which is associated the state feedback:

u = φ(x) = $(ψ(x), h(x)).

Embedded here is a control reparameterization:

u = $(v, y),

with v the new control. This operation allows us to go from
the estimated ψ to the state feedback φ. For instance, in the
case where the function ψ is the identity map,w should be an
estimation of the state x itself.

(3) Finally, (15) says that ẇ must be designed to get V̇ negative
definite. This can be done by using or not the already negative
term dUnom, i.e. by exploiting or not the stability margin of the
state feedback.

We call this approach direct design sincew is ‘‘directly’’ estimating
ψ(x), the reparameterized state feedback, which is the only
information we need for the stabilization of (17). But w is only an
estimation, hence, when implementing the control as (see (1)):

u = $(w, y) = $(w, h(x)),

weare introducing the control error e = ψ(x)−w as a disturbance.
This explains why we call also this method control error model
analysis.
According to this direct approach, an output feedback design

consists of the following steps:

Step 1: Design a stabilizing state feedback φ(x) for system (17),
Step 2: Do a control reparameterization of this state feedback as:

φ(x) = $(ψ(x), h(x)),

Step 3: Design an observer, i.e. ẇ, for the reparameterized control
lawψ which also guarantees the negativeness of V̇ in (15).

We can re-interpret along these lines what is proposed for in-
stance in Andrieu and Praly (2008, Section 2), Arcak and Kokotović
(2001), Polendo and Qian (2005) and Qian and Lin (2006).
A peculiarity of this approach is to design first a state feedback

and second an observer. To illustrate it, we come back to system
(2). We have seen that an output feedback, designed by following
the ‘‘separation principle’’, may not solve the global stabilization
problem. The problem is that step 3 above has not been completed.
Namely, in the design of ẇ, we ignored the effect of the error
between the stabilizer and its estimation (see Praly and Arcak
(2004) and Arcak (2005)). To take care of this effect, we can go
on with a Lyapunov design. Specifically, to the stabilizing state
feedback (3), we can associate the CLF:

U(x1, x2) = x41 + x
2
2. (18)

So following (14), we consider:

V (x1, x2, w) = U(x1, x2)+ (w − x2)2 = x41 + x
2
2 + (w − x2)

2.

With completing the squares, (15) takes the form of the following
inequality:

V̇ ≤ −3x41 − x
2
2 − 2(w − x2)

2
+ [w − x2][4x51 + 2(ẇ + w − x

2
1)]

where we identify dUnom as being:
dUnom(x1, x2) = −

(
3x41 + x

2
2

)
(≤ −U(x1, x2)).

Then V̇ is made negative definite by choosing:

ẇ = −w + y2 − 2y5, (19)

where we see the new term−2y5 when compared to (4).
Unfortunately, in general, even if step 1 gives a CLF, it may not

be appropriate to be used as the U part in the Lyapunov function V
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given in Eq. (14). As a consequence, for getting ẇ, a direct Lyapunov
design based on the Lyapunov function in (14), as above, maybe
intractable (see however Section 2.4). Typically other techniques
such as those relying on a small gain argument are used. To see
how we can proceed in this case and to motivate our next result,
we come back to system (2) again. First, to get some flexibility
we introduce a control reparameterization (v, y) 7→ u = v −
a(y), where the function a is a degree of freedom and v is the
new control. With (3), this implies that the term ψ(x1, x2) to be
estimated byw is:

ψ(x1, x2) = x2 + a(x1).

On the other hand, for the CLF U in (18), with the feedback v =
w = ψ(x1, x2)+ e, and by completing squares, we get:

U̇(x1, x2) ≤ −U(x1, x2)+ 4x51e. (20)

Hence, when implementing the output feedback as v = w, the
effect of e, the error between the stabilizer and its estimation, is
quantified by the term:

x51e = x
5
1(w − x2 − a(x1)).

With inequality (20), we see that the global stabilization problem
is solved provided this term is integrablewhen evaluated along the
solutions of the closed loop system. Hence, we are led to say thatw
is a good estimate ofψ(x1, x2) = x2+ a(x1) if the estimation error
e converges to zero in such a way that this integrability property
holds. Since we have:

˙︷ ︸︸ ︷
w − x2 − a(x1) = −[1+ a′(x1)x21][w − x2 − a(x1)]

+
[
ẇ + w − a(x1)− x21 + a

′(x1)x1
]
,

integrability of x51e is achieved by picking:

a(x1) =
x1|x1|3

4
, ẇ = −w + y2 − y|y|3.

This time, compared to (4), we have the new term−y|y|3.

2.2. Design via ISS or iISS domination

What has been done at the end of the above example can be
done in general. The idea is to exploit the possibility that, maybe
after a control reparameterization, we can find a state feedback
making the system input-to-state stable (ISS) or integral input-to-
state stable (iISS)with respect to an input disturbance (see Andrieu
et al. (2008), Freeman and Kokotović (1993) and Sontag (1990)).
This is formalized in the following statement.

Proposition 1 (ISS or iISS Domination). The output feedback stabi-
lization problem is solved if the integer q and the continuous functions
ν : Rq × R→ Rq and$ : Rq × R→ R are such that the following
holds:

(1) There exist a control reparameterization u = $(v, y) and a
corresponding state feedback ψ making the system:

ẋ = f (x,$(ψ(x)+ e, h(x)))

(γ )-iISS (respectively ISS) with e as input i.e. there exist a
C1, positive definite and radially unbounded function U and a
continuous function γ , zero at zero, satisfying:

U̇(x) ≤ dUnom(x)+ γ (|e|) ∀(x, e),

with dUnom negative definite (respectively, and radially un-
bounded);

(2) The statew of:

ẇ = ν(w, y)
is an estimate of ψ(x) such that γ (|w − ψ(x)|) is integrable
(respectively, bounded and converges to 0) along any solution of
the closed loop system.

A straightforward application of this design via ISS domination
yields the following result established in Andrieu and Praly (2008)
for systems in the normal form (10).

Proposition 2. If:
(1) the sub-system ż = F(z, y1) is linear in y1 and feedback
linearizable;

(2) there exist functions a1 to an−1, positive, and b1 to bn−1, a
continuous function y 7→ K(y) and a positive definite symmetric
matrix P satisfying, for all (χ, y) (see notation in (11)),7

P
∂(A− KC)

∂χ
(χ, y)+

∂(A− KC)
∂χ

(χ, y)TP < 0; (21)

thenwe can solve the output feedback stabilization problem for system
(10).

The first condition guarantees the existence of a continuous
function φ such that the system (see (11)):

χ̇ = A(χ, y)+ B(y)φ(χ + e, y), ẏ = C(χ, y)

is ISS with e as input. This has been established in Freeman
and Kokotović (1993). The second condition guarantees that, by
selecting:

ẇ = A
(
w +

∫ y

0
K(s)ds, y

)
+ B(y)u

− K(y)C
(
w +

∫ y

0
K(s)ds, y

)
,

we get that e = w +
∫ y
0 K(s)ds − χ is bounded and converges

to 0 along any solution. Hence a direct design via ISS domination
(Proposition 1) can be done with the control reparameterization:

u = $(v, y) = φ
(
v +

∫ y

0
K(s)ds, y

)
and:

ψ(χ, y1) = χ −
∫ y1

0
K(s)ds.

The first condition in Proposition 2 is not satisfactory. It remains
an open problem to know if it could be replaced by the more
‘‘natural’’ one:
There exists a sufficientlymany times differentiable functionφz

such that the system:

ż = F(z, φz(z + d))

is ISS, with d as input.

2.3. Design from the natural stability margin

It is not always possible to render a system ISS or iISS with
respect to an input disturbance (see Chung (1999) and Freeman
(1995)). In general, we only have that, for a given CLF U ,
reparameterization$ and state feedbackψ , there exists a positive
definite function ρ such that we have:
∂U
∂x
(x)f (x,$(ψ(x)+ e, h(x))) < 0 ∀(e, x) : |e| < ρ(|x|).

In this case, the estimation of ψ(x) by w must be done to match
the inequality |w−ψ(x)| < ρ(x) along the solutions as quickly as

7 Sufficient conditions for this assumption to hold can be found for instance
in Arcak and Kokotović (2001) and Krishnamurthy, Khorrami, and Jiang (2002).
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possible and before any possible finite escape time. This estimation
task is more demanding than the one involved in the ISS or iISS
domination design. It has been found practicable for instance if:
(a) ψ(x) is uniformly completely observable8;
(b) a bound on the norm of x can be estimated.

In this case, it is sufficient to use a ‘‘high gain observer’’ with
a dynamical gain tuned from the bound on the norm of x. For
instance, this bound can be obtained from a state norm estimator
whose existence follows from an Input–Output to State Stability
property. Precisely, we have the following result established
in Praly and Astolfi (2005).

Proposition 3. If system (17) is stabilizable, uniformly completely
observable and state norm detectable9 then we can solve the output
feedback stabilization problem.

This result is not fully satisfactory because of the assumption
of state norm detectability which is too strong as compared to the
one of unboundedness observability (see Mazenc et al. (1994) and
Angeli and Sontag (1999)). It is an open problem to prove that the
latter is sufficient.
Although in this paper we restrict our attention to global

stabilization, it is useful here however to consider also the semi-
global stabilization case. Indeed in this case there is no need of a
state norm observer since a bound on this norm can be derived
from knowing that the initial condition is in a given compact set.
In this case there is even no need to vary the observer gain. For
instance we have the following result established in Teel and Praly
(1994) (see also Atassi andKhalil (1999) and Shim and Teel (2003)).

Proposition 4. If the origin is globally asymptotically stabilizable by
a sufficiently smooth feedback and the system state x is completely
uniformly observable, then the origin is semi-globally stabilizable by
dynamic output feedback.

Hence for instance, by tuning the gain k and the level of
saturation function sat in the output feedback:
˙̂x1 = x̂2 + k(y− x̂1), ˙̂x2 = x̂n2 + u+ k

2(y− x̂1),

u = −sat(x̂1 + x̂2 + x̂n2), (22)

we can solve semi-globally the asymptotic stabilization problem
for the system:

ẋ1 = x2, ẋ2 = xn2 + u, y = x1. (23)

Note that this problem is not solvable globally for n > 2.

8 Uniform complete observability: There exist a C1 function Φ and an integer m
such that, for any solution t 7→ (x(t), u0(t), . . . , um−1(t)), maximally defined on
(T−, T+), of:

ẋ = f (x, u0), u̇0 = u1, . . . , u̇m−1 = um, y = h(x),

we have, for each t in (T−, T+),

ψ(x(t)) = Φ(y(t), y(1)(t), . . . , y(m)(t), u0(t), . . . , um−1(t)),

where y(i) denotes the ith time derivative of the output y.
9 State norm detectability: There exist C1 functions W , α and β , such that α is
non-increasing in its first argument, β is non-decreasing in its first argument and
we have:

Ẇ (x) =
∂W
∂x
(x)f (x, u) ≤ α(W (x), u, h(x)) ∀(x, u)

|x| ≤ β(W (x), h(x)) ∀x, α(0, u, y) ≥ 0 ∀(u, y).

Moreover, there exist a continuous function α, two non-negative real numbers c1
andW∗ and four strictly positive real numbers c2 , c3 , σ and α∗ satisfying:

α((1+ c3)W + c1, u, y)+ c2 ≤ [1+ c3]α(W , u, y)

α(W , u, y) ≤ α(u, y), ∀(W , u, y)

α(W , u, y) ≤ −α∗ ∀(W , u, y) : W ≥ W∗, |u| + |y| ≤ σ .
2.4. Without stability margin

There are many cases where the stability margin is unknown,
though it exists. This is typically the case when we have only a
weak CLF. To proceed in such cases a possibility is to apply in a
straightforward manner what we learned in Lemma 1, i.e. to go
with a Lyapunov design for ẇ. This has been done for instance
for the example system (2) to obtain (19). As another illustration,
consider the system (23) with n = 2. A (weak) CLF is given by:

U(x1, x2) = x21 + x
2
2 exp(−2x1).

Following (14), consider the function:

V (x1, x2, w) = x21 + x
2
2 exp(−2x1)+ (w − ψ(x1, x2))

2.

Its time derivative is:

V̇ (y, x2, w) = 2x2[y+ u exp(−2y)] + 2[w − ψ][ẇ − ψ̇].

Our objective is to define ẇ and the function ψ to make this
derivative non-positive. Clearly it is satisfied if, for instance, we
have:(
y+ u exp(−2y)

ẇ − ψ̇

)
= −M(y, x2, w)

(
x2

w − ψ(y, x2)

)
(24)

whereM is any matrix with non-negative symmetric part. Indeed
in this case, we get:

V̇ (y, x2, w) = −
(
x2 w − ψ(y, x2)

)
M
(

x2
w − ψ(y, x2)

)
≤ 0.

The difficulty is that the solution (u, ẇ) of (24) cannot depend on
x2. One possible way to satisfy this constraint is to choose:

ψ(x1, x2) = x1, M(y, x2, w) =
(
0 −1
1 1

)
.

This yields the output feedback:

u = (w − 2y) exp(2y), ẇ = −(w − y).

It can be checked, by means of an invariance principle, that it does
solve the output feedback stabilization problem.
More generally, when system (17) is affine in the control, i.e. we

have:

ẋ = f (x)+ g(x)u, (25)

a direct Lyapunov design goes by considering the function:

V (x, w) = U(x)+ |h(w, x)− ψ(x)|2,

where the functions U , h and ψ are to be defined so that U is a
(possibly weak) CLF for (25), with associated state feedback φ(x),
and w 7→ h(w, x) is a diffeomorphism for all x. Here we have
written the term (w−ψ(x))TH(x, w)(w−ψ(x)) of (8)more simply
as |h(w, x)− ψ(x)|2. The derivative is:

V̇ (x, w) = dUnom(x)+ LgU(x) [u− φ(x)]+ [h(w, x)− ψ(x)]T

×

[
∂h

∂w
(w, x)ẇ +

∂h

∂x
(w, x)ẋ− ψ̇(x)

]
.

It is non-positive if we have:(
u− φ(x)

∂h

∂w
(w, x)ẇ +

∂h

∂x
(w, x)ẋ− ψ̇(x)

)

= −M(x, w)
(

LgU(x)
h(w, x)− ψ(x)

)
, (26)

where M is any matrix with non-negative symmetric part. To
complete the design it remains to select the dimension q ofw, the
functions h and ψ , and the matrix M so that the solution (u, ẇ)
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of Eq. (26) depends only on y = h(x) and w. In general such a
selection is very difficult to make and may be even impossible if
U and φ are not appropriately selected. Some conditions under
which it can be done are given in Prieur and Praly (2004). They
are satisfied for instance by passive systems whose output is the
derivative of the measurement y (see Ailon and Ortega (1993) and
Ortega, Loria, Kelly, and Praly (1995)). See also Pomet, Hirschorn,
and Cebuhar (1993).
Unfortunately this route has hardly been followed. We think

that, in spite of its difficulty, it could be very fruitful as the
applicationsmentioned above have shown already and because no
observer is needed a priori.

3. Indirect design = Dynamic error model analysis

3.1. The context

To introduce in a simple way the indirect design based on
dynamic error model analysis, we assume that the output can be
taken as one coordinate. This means that x can be decomposed as
x = (χ, y) and the dynamic is (see (11) for an illustration):

χ̇ = A(χ, y, u), ẏ = C(χ, y, u). (27)

The design is approached by viewing system (1) as system (6) with
the following identification:

ηs = (w, y), ηe = χ (= x (mod y = h(x))).

Lemma 1 says (ignoring again the extra condition) that, if the
stabilization problem is solved then there exists a Lyapunov
function V admitting the decomposition:

V ((w, y), χ) = U(w, y)+ (χ − ψ(w, y))T

×H(χ, (w, y))(χ − ψ(w, y)).

Considering χ − ψ(w, y) as an estimation error leads us to
interpret the equations:

ẇ = ν(w, y), χ̂ = ψ(w, y), (28)

as those of an observer of the unmeasured state components χ .
Lemma1 says also thatU is a CLF for theηs = (w, y) sub-system

when χ = ψ(w, y). This sub-system is:

ẇ = ν(w, y), ẏ = C(χ, y,$(w, y)), (29)

with therefore χ as control and χ = ψ(w, y) as a stabilizing state
feedback.
To get a better grasp on the above two comments, it is

informative to rewrite (28) and (29) as:

ẇ = ν(w, y),
ẏ = C(χ̂ , y,$(w, y))+ dy(χ,w, y),
χ̂ = ψ(w, y).

(30)

This shows a system with χ̂ as both input and output, and
disturbed by:

dy(χ,w, y) = C(χ, y,$(w, y))− C(χ̂ , y,$(w, y)).

The presence of dy explains why we call (29) a model with an
error in its dynamic or shortly dynamic error model. As U is a CLF
for the undisturbed part of (30), with the input χ̂ = ψ(w, y)
the associated stabilizing state feedback, one task in designing
the controller functions ν, $ and indirectly ψ , is to achieve
stabilization in spite of the presence of dy. This has motivated
many specific contributions on state feedbacks providing larger
stability margin. See Andrieu and Praly (2008), Freeman and
Kokotović (1993), Kanellakopoulos et al. (1991), Krishnamurthy
and Khorrami (2006), Jiang et al. (2004) and Lin and Qian (2000)
for instance.
On the other hand the disturbance dy is necessary for
guaranteeing the convergence of the output χ̂ of (30) towards χ
which is needed to transfer the stabilization property obtained for
(w, y) to χ . It is because stabilization for χ is obtained in this
indirect way that we call this design indirect.
Furthermore, we remark that, if (28) is indeed an observer of

χ , then the set {(χ, y, w) : χ = ψ(w, y)} should be invariant for
the coupled system (27), (29). In other words, we should have the
identity:

A(ψ(w, y), y,$(w, y)) =
∂ψ

∂w
(w, y)ν(w, y)

+
∂ψ

∂y
(w, y)C(ψ(w, y), y,$(w, y)).

But then this implies that we have (differentiate on both sides the
equation χ̂ = ψ(w, y)):

ẏ = C(χ̂ , y,$(w, y))+ dy(χ,w, y),

˙̂χ = A(χ̂ , y,$(w, y))︸ ︷︷ ︸
Copy of the system

+
∂ψ

∂y
(w, y)dy(χ,w, y)︸ ︷︷ ︸
Dynamic error

. (31)

From all these arguments, we conclude that an output feedback
design according to this indirect approach consists in the following
two steps:
Step 1: Design an observer for the state unmeasured part χ , i.e. a

correction term (dy, ψ) in (31), with the objective that
any good property (e.g. convergence) obtained for χ̂ is
transferred to χ ,

Step 2: Design a control law$ ensuring good properties for χ̂ in
spite of the presence of the correction term.

Most of the publications on global stabilization by output feedback
can be re-interpreted along these lines. In particular this is the case
of Andrieu and Praly (2008), Arcak (2005), Kanellakopoulos et al.
(1991), Krishnamurthy and Khorrami (2004), Marino and Tomei
(1991), Jiang et al. (2004), Marino and Tomei (2005), and Praly and
Arcak (2004).
As opposed to the case of the direct approach, in the indirect

approach, the observer is designed first and then the state
feedback is designed for this observer. But theremay be afterwards
modifications of the observer to ease the state feedback design (see
Praly (1992), Kanellakopoulos, Krstić, and Kokotović (1992), and
Arcak (2005)). See Section 3.3.
To illustrate how the indirect approach works, we consider

again the system in Example 1. As already seen, an observer for
x2 is obtained by simply copying the system, i.e.:
˙̂x2 = −x̂2 + y2. (32)
This gives an error e2 = x̂2 − x2 which is exponentially decaying
along any solution. In this case system (31) takes the form:

ẏ = −y+ (u− x̂2)y2 + dy, ˙̂x2 = −x̂2 + y2, (33)
with dy having the following specific form:

dy = y2e2.
Then, it remains to design:
u = $(x̂2, y).
Actually by choosing:
$(y, x̂2) = x̂2 − y
we get boundedness and convergence to 0 of any solution of (33)
whatever the input t 7→ e2(t) is as long as it is a continuous
bounded function which converges to 0 as t goes to +∞. With
the Lyapunov function y2 + e22, it can be established that the
stabilization problem is solved.
Comparedwith the nominal but unsatisfactory output feedback

(4), here we have modified the expression of $ in (5) by
introducing −y. Recall that, by following a direct approach, the
modification was not in$ but in the estimation of x2.



V. Andrieu, L. Praly / Automatica 45 (2009) 1789–1798 1795
3.2. Design via ISS or iISS domination

What has been done in the above example can be formalized in
the following statement.

Proposition 5 (ISS or iISS Domination). The output feedback
stabilization problem is solved if we can find three functions kl, kr and
$ such that:

(1) the system:

˙̂x = f (x̂,$(x̂, y))+ kl(x̂, y)d

is (γ ) iISS (resp. ISS) with d as input;
(2) along the solutions of:

ẋ = f (x,$(x̂, y)),
˙̂x = f (x̂,$(x̂, y))+ kl(x̂, y)kr(x̂, y),

γ (|kr(x̂, y)|) is integrable (resp. bounded) and x̂ − x converges
to 0.

In the context of this proposition, we have q = n and:

ν(w, y) = f (w,$(w, y))+ kl(w, y)kr(w, y).

For example, a straightforward application of this design via iISS
domination yields the following result established in Andrieu and
Praly (2008) for systems in the normal form (10).

Proposition 6. If:

(1) there exist functions a1 to an−1, positive, and b1 to bn−1, a
continuous function y 7→ K(y) and a positive definite symmetric
matrix P satisfying, for all (χ, y) (see notation in (11)),

P
∂(A− KC)

∂χ
(χ, y)+

∂(A− KC)
∂χ

(χ, y)TP

< −
∂C
∂χ
(χ, y)T

∂C
∂χ
(χ, y); (34)

(2) there exists a sufficiently many times differentiable function φz
such that the system:

ż = F(z, φz(z))+ Kz(y)d

is (γ ) iISS, with d as input and γ (s) = ks2, and where Kz is the
z-component of K above,

then we can solve the output feedback stabilization problem for
system (10).

The first condition guarantees that:

dy = C(χ, y)− C(χ̂ , y)

is square integrable along any solution of the system

χ̇ = A(χ, y)+ B(y)u, ẏ = C(χ, y),
˙̂χ = A(χ̂ , y)+ B(y)u+ K(y)[C(χ, y)− C(χ̂ , y)]

and for any input t 7→ u(t). The second condition guarantees the
existence of a continuous function φ such that the system:

χ̇ = A(χ, y)+ B(y)φ(χ, y)+ K(y)dy,
ẏ = C(χ, y)+ dy,

is (γ ) iISS, with γ (s) = ks2, and with dy as input. This has been
established in Kanellakopoulos et al. (1991).
Proposition 6 follows the route of domination expressed as

a property of (γ ) iISS, with γ (s) = ks2. We provide now an
illustration of domination with a property of (γ ) iISS, with γ (s) =
ks. Consider the system in normal form10:
ż = 3z + 2z3 + y, ẏ = z + z3 + u.
An observer for z is given by:
ẇ = −ẑ − 2ẑ3 + y− 4u, ẑ = w + 4y.
It yields the disturbance
dy = [z + z3] − [ẑ + ẑ3],

which is L1 integrable along any solution.11 Then we see that, by
selecting:

φz(z) = −4z − 3z3, U(z) =
√
1+ z2 − 1,

gives:
dU
dz
(z)[3z + 2z3 + φz(z)+ d] ≤ −z2

√
1+ z2 + |d|.

It follows from Andrieu and Praly (2008), that there exists a
continuous function φ such that the system:
ż = 3z + 2z3 + y+ 4dy, ẏ = z + z3 + φ(z, y)+ dy
is (γ ) iISS, with γ (s) = ks, and with dy as input. Hence the output
feedback:
ẇ = −ẑ − 2ẑ3 + y− 4u, ẑ = w + 4y, u = φ(ẑ, y)
solves the stabilization problem.

3.3. With an observer re-design

Step 2 may be difficult to do, in particular to cope with the
correction terms or to meet some requirement. In this case, it has
been proposed to redesign the observer of step 1 while executing
step 2. This is done for instance in Kanellakopoulos et al. (1992)
and in Praly (1992) for systems for which we can find coordinates
so that the dynamic is linear in the unmeasured state components,
i.e. when (27) takes the form:
χ̇ = A(u, y)χ + B(u, y), ẏ = C(u, y)Tχ + d(u, y).
To illustrate this approach, we come back to system (2). We

have seen that step 1 is fulfilled with the observer (32). Now, for
some reason, we insist on choosing the state feedback involved in
step 2 as:
u = x̂2.
We know this leads to an unsatisfactory output feedback. So, we
modify the observer in:
˙̂x2 = −x̂2 + y2 +m(x̂2, y)
with the modificationm(x̂2, y) to be designed. For this, we pick12:
V (y, x̂2, e) = y4 + x̂22 − 2x̂2e2 + 2e

2
2.

We get:
V̇ = −4y4 + 2y2x̂2 − 2x̂22 − 4e

2
2

+ e2
(
4y5 + 4x̂2 − 2y2 + 2m(x̂2, y)

)
which justifies the choice of the modification:
m(x̂2, y) = −2y5 − 2x̂2 + y2.

4. Domination via a dominant model

Up until now, both for the direct and indirect case, we have
mentioned designs following a domination approach where we
exploit the negativeness of dUnom, obtained for a CLF U for the
nominal system:
ẋ = f (x, u).

10 It can be established that condition (34) cannot be satisfied.
11 Achieving this L1 integrability may be difficult in general. It may be useful to
modify the observer as suggested in Arcak (2005).
12 We introduce the cross term −2x̂2e2 to make possible the cancellation of
θ d
dx̂2
x̂22 .
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We can push this strategy further by working only with a
‘‘dominant’’ approximation of this nominal system. In the linear
case, the archetype of such an approach says that, by designing a
high gain linear output feedback for the chain of integrators:
ẋ1 = x2, . . . , ẋn−1 = xn, ẋn = u, y = x1, (35)
and by adjusting the gain, we can solve the stabilization problem
by output feedback for any minimum phase linear system with
relative degree n (see Khalil and Saberi (1987) for instance). This
result holds also for nonlinear systems if we restrict our attention
to semi-global stability (see Esfandiari and Khalil (1992), Teel and
Praly (1995) and Atassi and Khalil (1999), see also Praly and Jiang
(1993) for a first extension to the global case).
A way to extend it to the global case for nonlinear systems is

to preserve the linear structure linked to a vector space but now
with scalars which are no more real numbers but functions of the
output. In this case, the chain of integrators is:
ẋ1 = a1(y)x2,
...

ẋn−1 = an−1(y)xn,
ẋn = an(y)u
y = x1.
For this system,we design again a high gain linear output feedback,
with linearity taken in the new sense. However, because the scalars
vary along the solutions, the high gain has to be dynamical.
The chain above giving the dominant part of the model, the

actual system can take the form:
ẋ1 = a1(y)x2 + δ1,
...

ẋn−1 = an−1(y)xn + δn−1,
ẋn = an(y)u+ δn,
y = x1,
where the perturbations δi are handled via robustness. Typically,
they are considered as outputs of ISS systems with the xi as
inputs. A standard way to formalize this is to assume the following
inequalities hold:

|δi| ≤
√
µ(y)Vi + µ(y)bi(x1, . . . , xn)

with µ(y) ≥ 0 and where, along each solution of the system, Vi
satisfies the differential inequality:
V̇i
αi
≤ −

(
Vi − µ(y)bi(x1, . . . , xn)2

)
,

with αi > 0. For instance, with an indirect approach, the case
where the functions bi are:

• bi(x1, . . . , xn) =
i∑
j=1

|xj|

is considered in Krishnamurthy and Khorrami (2004);

• bi(x1, . . . , xn) =
n∑

j=i+2

|xj|

is considered in Krishnamurthy and Khorrami (2005);

• bi(x1, . . . , xn) =
i∑
j=1

|xj|
1−d0(n−i−1)
1−d0(n−j) + |xj|

1−d∞(n−i−1)
1−d∞(n−j) (36)

or

•

n∑
j=i+2

|xj|
1−d0(n−i−1)
1−d0(n−j) + |xj|

1−d∞(n−i−1)
1−d∞(n−j) (37)

with −1 < d0 ≤ d∞ < 1
n−1 but all the ai are equal to 1 and µ is

only a positive real number considered in Andrieu et al. (2008).
Note that this is still an open problem to unify these results, i.e,
to find an output feedback controller when considering functions
bi as in (36) and (37) with µ(y) and ai(y).
It is also possible to replace the chain of integrators by a chain

of power integrators as in:

ẋ1 = sign(y)|x2|p1 + δ1,
...

ẋn−1 = sign(xn)|xn|pn−1 + δn−1,
ẋn = u+ δn,
y = x1,

(38)

where the pi are real numbers greater than or equal to 1. This
is done for instance in Polendo and Qian (2005) (see also Qian
(2005)), via a direct approachwith assuming the existence of a pos-
itive real number d and a positive real numberµ such thatwehave:

|δi| ≤ µ

[
i∑
j=1

|xj|
ri+d
rj

]
where:
r1 = 1, ri + d = ri+1pi,
To illustrate this approach via a dominant model, consider the

output feedback13 (compare with (22)):
˙̂x1 = x̂2 + Lq1(`[y− x̂1]), ˙̂x2 = u+ L2q2(q1(`[y− x̂1])),

u = −L2kφ(x̂1, L−1x̂2), (39)
where the functions φ, q1 and q2 are defined as:

φ(x̂1, x̂2) = x̂2 + x̂1 + dx̂1c
1
1−p +

⌈
x̂2 + x̂1 + dx̂1c

1
1−p
⌋1+p

,

q2(s) = s+ dsc1+p, q1(s) = s+ dsc
1
1−p ,

with p is in (0, 1). Given any µ, we can tune the gains k, ` and
L to solve the global stabilization problem for any system whose
dynamic can be described by:
ẋ1 = x2, ẋ2 = δ + u, y = x1, (40)
with δ satisfying:

|δ| ≤ µ
[
|x1| + |x2|1+p

]
. (41)

Actually, following Andrieu et al. (2008), the output feedback (39)
is designed for the chain of integrators:
ẋ1 = x2, ẋ2 = u, y = x1
but in such a way that this chain becomes a dominant model for
systems (40) satisfying (41).

5. Concluding remarks

The literature on output feedback is so rich that there is a need
to clarify and compare the various contributions. To address this
point, we have proposed a framework for studying, in a unified
way, the proposed globally stabilizing output feedback designs.
The core is a classification in direct versus indirect approach
where direct means that the design is done to directly address
the stabilization problem whereas indirect says that this problem
is solved only because some kind of observer converges. By far,
the indirect approach is the most frequently exploited in the
theoretical contributions. Instead the direct approach is likely to be
the most frequently used by control designers. We have also seen
that, within the same class – direct or indirect – a wide variety of
designs is possible depending on how much the stability margin
of a state feedback or the convergence margin of an observer is
exploited. In particular a full exploitation of these margins allows

13 We use the notation dscd = sign(s)|s|d .
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us to develop further the approach tomake it applicable, not to the
given system, but only to a ‘‘dominant’’ approximation of it.
Also it is possible to combine direct and indirect techniques

in the same design. This is done for instance in Karagiannis et al.
(2005) to deal with systems in normal form (10).
Although a lot of effort has been devoted to this output feedback

stabilization problem, there are still many open problems. For
instance, the need of observers is apparent, to reconstruct
only a function of the state (a reparameterized version of the
state feedback) or the state itself. To answer this need new
observers going significantly beyond the linear paradigm have
been proposed. See Arcak and Kokotović (2001), Andrieu et al.
(2008), Krishnamurthy and Khorrami (2006), Praly (2003), Praly
and Astolfi (2005) and Qian and Lin (2006) for instance. However
we are still limited with results like (21) or restricted to chain
of integrators as dominant models, i.e. we are still far from
having fully satisfactory results on observers with convergence
independent of the solution behavior.
Also we have motivated the restriction of our attention here to

the global asymptotic stabilization case in particular for forcing the
designer to address the nonlinear terms as they are. It turns out
that this specific point is hardly addressed by the available designs
and certainly not by those goingwith a dominant approximation as
those mentioned right above. This leads to question their interest
for practice. In this regard, direct designs not relying on any
stability margin are very appealing since they exploit more the
peculiarity of the system. Unfortunately they have received very
little attention up until now.
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