Brief paper

High gain observers with updated gain and homogeneous correction terms ${ }^{\text {in }}$

V. Andrieu ${ }^{\text {a,** }}$, L. Praly ${ }^{\text {b }}$, A. Astolfi ${ }^{\mathrm{c}, \mathrm{d}}$
${ }^{\text {a }}$ LAAS-CNRS, University of Toulouse, 31077 Toulouse, France
${ }^{\mathrm{b}}$ CAS, École des Mines de Paris, Fontainebleau, France
${ }^{\text {c }}$ EEE Department, Imperial College, London, UK
${ }^{\text {d }}$ DISP, University of Rome Tor Vergata, Roma, Italy

ARTICLE INFO

Article history:

Received 30 May 2007
Received in revised form
4 February 2008
Accepted 11 July 2008
Available online 8 January 2009

Keywords:

High-gain observers
Homogeneity in the bi-limit
Dynamic scaling

Abstract

Exploiting dynamic scaling and homogeneity in the bi-limit, we develop a new class of high gain observers which incorporate a gain update law and nonlinear output error injection terms. A broader class of systems can be addressed and the observer gain is better fitted to the incremental rate of the nonlinearities. The expected improved performance is illustrated.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

We extend the standard high-gain observer (see Gauthier and Kupka (2001) and references therein) in two directions: homogeneity and gain adaptation. Our motivation comes from considering the system:
$\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}, u\right), \quad y=x_{1}$,
with
$f_{2}\left(x_{1}, x_{2}, u\right)=g\left(x_{1}\right) x_{2}+x_{2}^{1+p}+u$,
where $p \geq 0$ is a real number, g is a locally Lipschitz function and u is a known input.

When $p=0$, we have:

$$
\begin{equation*}
\left|f_{2}\left(x_{1}, x_{2}, u\right)-f_{2}\left(x_{1}, \hat{x}_{2}, u\right)\right| \leq\left|g\left(x_{1}\right)+1\right|\left|x_{2}-\hat{x}_{2}\right| . \tag{2}
\end{equation*}
$$

The term $\left|g\left(x_{1}\right)+1\right|$ is the output dependent incremental rate of the non-linearity. Systems with nonlinearities satisfying inequalities like (2) have already been studied in Praly (2003) (see also Krishnamurthy, Khorrami and Chandra (2003)) and we know that a high gain observer can be used provided the gain is updated.

[^0]When p is in the interval $(0,1)$, inequality (2) becomes:

$$
\begin{align*}
& \left|f_{2}\left(x_{1}, x_{2}, u\right)-f_{2}\left(x_{1}, \hat{x}_{2}, u\right)\right| \\
& \quad \leq\left(\left|g\left(x_{1}\right)\right|+(1+p)\left|\hat{x}_{2}\right|^{p}\right)\left|x_{2}-\hat{x}_{2}\right|+\left|x_{2}-\hat{x}_{2}\right|^{1+p} \tag{3}
\end{align*}
$$

The term, $\left|x_{2}-\hat{x}_{2}\right|^{1+p}$ is a rational power of the norm of the error $\left|x_{2}-\hat{x}_{2}\right|$. To deal with this term we use the homogeneous in the bi-limit observer introduced in Andrieu, Praly, and Astolfi (2008b).

In the following, we address the problem of state observation for systems whose dynamics admit a global explicit observability canonical form (Gauthier \& Kupka, 2001, Equation (20)) in which the nonlinearities have increments bounded as in (3). However, we restrict our attention to estimating the state only of those solutions which are bounded in positive time.

Our new observer uses a less conservative estimate of the nonlinearities increments. From this we expect the possibility of achieving better performance. This is confirmed via simulations of an academic model of a bioreactor.

2. Main theoretical result

We consider systems whose dynamics are:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=f_{1}(u, y)+a_{1}(y) x_{2}+\delta_{1}(t) \tag{4}\\
\vdots \\
\dot{x}_{i}=f_{i}\left(u, y, x_{2}, \ldots, x_{i}\right)+a_{i}(y) x_{i+1}+\delta_{i}(t), \\
\vdots \\
\dot{x}_{n}=f_{n}\left(u, y, x_{2}, \ldots, x_{n}\right)+\delta_{n}(t) \\
y=x_{1}+\delta_{y}(t)
\end{array}\right.
$$

where y is the measured output in \mathbb{R} and the functions a_{i} and f_{i} are locally Lipschitz. u is a vector in \mathbb{R}^{m} representing the known inputs and a finite number of their derivatives. The vector $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ represents the unknown inputs and δ_{y} is a measurement of noise.

To simplify notations, let:
$w^{r}=\operatorname{sign}(w)|w|^{r}$
so that, for instance, to recover the usual quadratic function we must write $\left|x^{2}\right|$ or $|x|^{2}$. We also let:
$s \cdot x=\left(x_{2}, \ldots, x_{n}, 0\right)^{\mathrm{T}}$,
$f(u, y, x)=\left(f_{1}(u, y, x), \ldots, f_{n}(u, y, x)\right)$,
$A(y)=\operatorname{diag}\left(a_{1}(y), \ldots, a_{n}(y)\right)$,
where a_{n} is to be selected so that (5) holds.
Theorem 1. Suppose there exists a continuous function \mathfrak{a} satisfying, with ρ, \mathfrak{A} and $\overline{\mathfrak{A}}$ constant and for j in $\{1, \ldots, n\}$,
$0<\rho \leq \mathfrak{a}(y), \quad 0<\underline{\mathfrak{A}} \leq \frac{a_{j}(y)}{\mathfrak{a}(y)} \leq \overline{\mathfrak{A}} \quad \forall y \in \mathbb{R}$,
a real number d_{∞} in $\left[0, \frac{1}{n-1}\right)$, a positive real number c_{∞}, a continuous function Γ and real numbers v_{j} in $\left[0, \frac{1}{j-1}\right)$, for $j=2, \ldots n$, such that, for all i in $\{2, \ldots, n\}$ and all (\hat{x}, x, y, u) in $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}^{m}$, we have:

$$
\begin{align*}
& \left|f_{i}\left(u, y, \hat{x}_{2}, \ldots, \hat{x}_{i}\right)-f_{i}\left(u, y, x_{2}, \ldots, x_{i}\right)\right| \\
& \quad \leq \Gamma(u, y)\left(1+\sum_{j=2}^{n}\left|\hat{x}_{j}\right|^{v_{j}}\right) \sum_{j=2}^{i}\left|\hat{x}_{j}-x_{j}\right| \\
& \quad+c_{\infty} \sum_{j=2}^{i}\left|\hat{x}_{j}-x_{j}\right|^{\frac{1-d_{\infty}(n-i-1)}{1-d_{\infty}(n-j)}} . \tag{6}
\end{align*}
$$

Then, for all sufficiently small strictly positive real numbers b, there exists a function K such that, for all sufficiently small strictly positive real number φ_{1} and sufficiently large real numbers φ_{2} and φ_{3}, we can find functions β_{W} and β_{L} of class $\mathcal{K} \mathcal{L}$ and functions γ_{W} and γ_{L} of class \mathcal{K} such that the observer
$\dot{\hat{x}}=A(y) f \hat{x}+f(u, y, \hat{x})+L \mathfrak{L} A(y) K\left(\frac{\hat{x}_{1}-y}{L^{b}}\right)$,
$\dot{L}=L\left[\varphi_{1}\left(\varphi_{2}-L\right)+\varphi_{3} \Omega(u, y, \hat{x})\right]$,
with:
$\Omega(u, y, \hat{x})=\Gamma(u, y)\left(1+\sum_{j=2}^{n}\left|\hat{x}_{j}\right|^{v_{j}}\right)$,
$\mathfrak{L}=\operatorname{diag}\left(L^{b}, \ldots, L^{n+b-1}\right)$,
initialized with $L(0) \geq \varphi_{2}$, has the following property: For each solution $t \mapsto x(t)$ of (4) right maximally defined on $[0, \mathcal{T})$, the observer solution is defined on the same interval and the error estimate $\mathfrak{e}=\hat{x}-x$ satisfies:

$$
\begin{align*}
& \left|\mathfrak{L}(t)^{-1} \mathfrak{e}(t)\right| \leq \beta_{W}\left(\mathfrak{L}(0)^{-1} \mathfrak{e}(0), t\right) \\
& \quad+\sup _{s \in[0, t]} \gamma_{W}\left(\left|\binom{\frac{\delta(s)}{\varphi_{2}}}{\mathfrak{a}(y(s)) \delta_{y}(s)}\right|\right) \quad \forall t \in[0, \mathcal{T}) \tag{11}
\end{align*}
$$

where L satisfies:
$L(t) \leq 4 \varphi_{2}+\beta_{L}\left(\binom{\mathfrak{e}(0)}{L(0)}, t\right)$

$$
+\sup _{s \in[0, t]} \gamma_{L}\left(\left.\|\left(\begin{array}{c}
\frac{\delta(s)}{\varphi_{2}} \tag{12}\\
\mathfrak{a}(y(s)) \delta_{y}(s) \\
\Gamma(u(s), y(s)) \\
x(s)
\end{array}\right) \right\rvert\,\right) \text {. }
$$

2.1. Discussion on the assumptions

The form (4) is a particular case of the implicit form obtained in Gauthier and Kupka (2001, Equation (20)). The functions a_{i} and f_{i} in (4), are not uniquely defined. We can get other functions by changing coordinates and, in this way, possibly satisfy conditions (6).

To understand the meaning of (6), we observe that, for any C^{1} function f, there always exist two functions \mho and Δ such that we have:
$|f(a, b+c)-f(a, b)| \leq \mho(a, b)|c|+\Delta(c)$.
Hence, in essence, (6) imposes two restrictions:

- the function Ω, defined in (9), is a bound on the local incremental rate \mho.
- a fractional power limitation, $\frac{1-d_{\infty}(n-i-1)}{1-d_{\infty}(n-j)}$ with d_{∞} in $\left[0, \frac{1}{n-1}\right)$, on the growth of Δ which bounds function increments for large argument increments.
For system (1), inequality (3) is in the form (6) with $d_{\infty}=p$, $\Gamma(u, y)=(|g(y)|+1+p)$ and $v_{2}=p$. Hence, Theorem 1 applies when p is in the interval $[0,1)$. Actually, when $p>1$ and $u=0$, there does not exist any observer guaranteeing convergence of the estimation error within the domain of existence of the solutions (see Astolfi and Praly (2006, Proposition 1)).

2.2. Discussion on the result

With (11) and (12) but with the presence of $\sup _{s}|x(s)|$, Theorem 1 says that the observer (7), (8) gives, at least for bounded solutions, an estimation error converging to a ball centered at the origin and with radius depending on the asymptotic L^{∞}-norm of the disturbances δ and δ_{y}, and therefore converging to the origin if these disturbances are vanishing.

Although we restrict our attention to bounded solutions, we are not back to the global Lipschitz case since the "Lipschitz constant" is solution dependent and therefore unavailable for observer design. It has to be learned online, and this is what L is doing in (8). The update law for L is very similar to the one introduced in Praly (2003) (see also Krishnamurthy et al. (2003)). The difference is in the fact that (8) also depends on \hat{x} and u, and not only on y, and we need the restrictions on v_{j} to deal with this dependence on \hat{x}.

If Ω were differentiable along the solutions, the update law (8) would give:
$\overbrace{L-\left(\varphi_{2}+\frac{\varphi_{3}}{\varphi_{1}} \Omega\right)}=\frac{\varphi_{3}}{\varphi_{1}} \dot{\Omega}-\varphi_{1} L\left[L-\left(\varphi_{2}+\frac{\varphi_{3}}{\varphi_{1}} \Omega\right)\right]$.
This says that L would $\operatorname{track} \varphi_{2}+\frac{\varphi_{3}}{\varphi_{1}} \Omega$ up to an error proportional to the magnitude of $\dot{\Omega}$. We expect improved performance from this tracking property (see Section 3).

2.3. Comparison with published results

High gain observers have a long history. The prototype result is Gauthier and Kupka (2001, Theorem 6.2.2). It deals with systems admitting an observability canonical representation more general than (4) by being implicit in x_{i+1}. But there, the right hand side of inequality (6) is supposed to be $\Gamma \sum_{j=2}^{i}\left|\hat{x}_{j}-x_{j}\right|$ with Γ constant.

The case where Γ may depend on u, and y can be handled with updating the gain as in (8). This extends what can be found in Praly (2003) when the a_{i} are constant, and in Krishnamurthy et al. (2003) when the a_{i} are y-dependent.

The idea of having homogeneous (in the classical weighted sense) correction terms has been introduced in Qian (2005) for a pure chain of integrator, i.e. when the a_{i} 's are constant and the f_{i} are zero.

Another observer is proposed in Lei, Wei, and Lin (2005), for systems with bounded solutions and admitting the same form (4) with the a_{i} 's constant and $f_{1}=\cdots=f_{n-1}=0$ but with no restriction on f_{n}. However, this is obtained by having a gain which grows monotonically with time along the solutions.

3. Discussion and illustration

To illustrate the interest for applications of our observer and the tracking property noticed in (13), we consider the same "academic" bioreactor as the one studied in Gauthier, Hammouri and Othman (1992). Its dynamics are described, in normalized variables and time, by the Contois model:
$\dot{\eta}_{1}=\frac{\eta_{1} \eta_{2}}{\hbar \eta_{1}+\eta_{2}}-u \eta_{1}, \quad \dot{\eta}_{2}=-\frac{\eta_{1} \eta_{2}}{\hbar \eta_{1}+\eta_{2}}+u\left(1-\eta_{2}\right)$
where $y=\eta_{1}$ is measured. The parameter \hbar is a positive real number and the control input u is in the interval $\mathcal{M}_{u}=$ $\left[u_{\min }, u_{\max }\right] \subset(0,1)$. In Gauthier et al. (1992), it is observed that the following set is forward invariant:
$\mathcal{M}_{\eta}=\left\{\left(\eta_{1}, \eta_{2}\right) \in \mathbb{R}^{2}: \eta_{1} \geq \epsilon_{1}, \eta_{2} \geq \epsilon_{2}, \eta_{1}+\eta_{2} \leq 1\right\}$,
where, $\epsilon_{1}=\frac{\left(1-u_{\max }\right) \epsilon_{2}}{h u_{\max }}$, and $u_{\min } \geq \frac{\epsilon_{2}}{h\left(1-\epsilon_{2}\right)+\epsilon_{2}}$. This guarantees that the bioreactor state remains in a known compact set.

Following Gauthier et al. (1992), we change the coordinates as:
$\left(\eta_{1}, \eta_{2}\right) \mapsto\left(x_{1}, x_{2}\right)=F\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1}, \frac{\eta_{1} \eta_{2}}{\hbar \eta_{1}+\eta_{2}}\right)$
with x evolving in $\mathcal{M}_{x}=F\left(\mathcal{M}_{\eta}\right)$. In these new coordinates the system is in the explicit observability canonical form:
$\dot{x}_{1}=x_{2}-u x_{1}, \quad \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}, u\right), \quad y=\eta_{1}$,
with,
$f_{2}\left(x_{1}, x_{2}, u\right)=m_{0}+m_{1} x_{2}+m_{2} x_{2}^{2}+m_{3} x_{2}^{3}$
where:
$m_{0}=\frac{u}{\hbar}, \quad m_{1}=-u-\frac{1}{\hbar}-\frac{2 u}{\hbar x_{1}}$,
$m_{2}=\frac{2}{\hbar x_{1}}+\frac{u}{\hbar x_{1}^{2}}, \quad m_{3}=\frac{\hbar-1}{\hbar x_{1}^{2}}$.
Note that, for all $\left(x_{1}, x_{2}, u\right)$ in $\mathcal{M}_{x} \times \mathcal{M}_{u}$, we have:
$\underline{x}_{2}\left(x_{1}\right)=x_{1} \frac{\epsilon_{2}}{\hbar x_{1}+\epsilon_{2}} \leq x_{2} \leq x_{1} \frac{1-x_{1}}{1-x_{1}+\hbar x_{1}}=\bar{x}_{2}\left(x_{1}\right)$.
Hence, without loss of generality, to evaluate f_{2} in (15), we can replace $\left(x_{1}, x_{2}\right)$ by ($x_{1 s}, x_{2 s}$) defined as
$x_{1 s}=\max \left\{\epsilon_{1}, \min \left\{1-\epsilon_{2}, x_{1}\right\}\right\}$,
$x_{2 s}=\max \left\{\underline{\chi}_{2}\left(x_{1 s}\right), \min \left\{\bar{x}_{2}\left(x_{1 s}\right), x_{2}\right\}\right\}$
and therefore assume that f_{2} is globally Lipschitz.
For a nominal high gain observer, as in Gauthier et al. (1992), the nonlinearity increment is bounded as:
$\left|f_{2}\left(x_{1}, x_{2}, u\right)-f_{2}\left(x_{1}, \hat{x}_{2}, u\right)\right| \leq d f_{2 \text { max }}\left|x_{2}-\hat{x}_{2}\right|$
where, from the Mean Value Theorem,
$d f_{2 \max }=\max _{\left(u, x_{1}, x_{2}\right) \in \mathcal{M}_{u} \times \mathcal{M}_{x}}\left|m_{1}+2 m_{2} x_{2}+3 m_{3} x_{2}^{2}\right|$.
For an updated high gain observer, the bound is:
$\left|f_{2}\left(x_{1}, x_{2}, u\right)-f_{2}\left(x_{1}, \hat{x}_{2}, u\right)\right| \leq \Omega_{1}\left(u, x_{1}, \hat{x}_{2}\right)\left|x_{2}-\hat{x}_{2}\right|$,
with
$\Omega_{1}\left(u, x_{1}, \hat{x}_{2}\right)=\max _{x_{2} \in\left[\underline{x}_{2}\left(x_{15}\right), \bar{x}_{2}\left(x_{1 s}\right)\right]}\left|m_{1}+\left[m_{2}+m_{3} \hat{x}_{2}\right]\left(\hat{x}_{2}+x_{2}\right)+m_{3} x_{2}^{2}\right|$.
$\hat{x}_{2 s}=\max \left\{\underline{x}_{2}\left(x_{1 s}\right), \min \left\{\bar{x}_{2}\left(x_{1 s}\right), \hat{x}_{2}\right\}\right\}$.
It follows that Theorem 1 applies with $d_{\infty}=c_{\infty}=0$.
Finally, for our observer with both updated gain and rational power error term, the bound is:
$\left|f_{2}\left(x_{1}, x_{2}, u\right)-f_{2}\left(x_{1}, \hat{x}_{2}, u\right)\right|$
$\leq \Omega_{2}\left(u, x_{1}, \hat{x}_{2}\right)\left|x_{2}-\hat{x}_{2}\right|+c_{\infty}\left|x_{2}-\hat{x}_{2}\right|^{1+p}$,
with p in $(0,1)$ and where
$\Omega_{2}\left(u, x_{1}, \hat{x}_{2}\right)=\max _{x_{2} \in\left[\underline{x}_{2}\left(x_{1 s}\right), \bar{x}_{2}\left(x_{1 s}\right)\right]} \mid m_{1}+\hat{x}_{2}^{p}\left(\left[m_{2}+m_{3} \hat{x}_{2}\right]\left[\hat{x}_{2}^{1-p}+x_{2}^{1-p}\right]\right.$

$$
\left.+m_{3} x_{2}^{2-p}\right)
$$

$c_{\infty}=\max _{\left(u, x_{1}, x_{2}, \hat{x}_{2}\right) \in \mathcal{M}_{4} \times \mathcal{M}_{\times} \times\left[\underline{x}_{2}\left(\epsilon_{1}\right), \bar{x}_{2}\left(1-\epsilon_{2}\right)\right]}\left|\left(m_{2}+m_{3} \hat{x}_{2}\right) x_{2}^{1-p}+m_{3} x_{2}^{2-p}\right|$.
In this case, Theorem 1 gives the following observer:
$\left\{\begin{array}{l}\dot{\hat{x}}_{1}=\hat{x}_{2}-u y-L^{1+b} q_{1}\left(\ell_{1} \frac{\left[\hat{x}_{1}-y\right]}{L^{b}}\right), \\ \dot{\hat{x}}_{2}=f_{2}\left(y, \hat{x}_{2 s}, u\right)-L^{2+b} q_{2}\left(\ell_{2} q_{1}\left(\ell_{1} \frac{\left[\hat{x}_{1}-y\right]}{L^{b}}\right)\right), \\ \dot{L}=L\left[\varphi_{1}\left(\varphi_{2}-L\right)+\varphi_{3} \Omega_{2}\left(u, y, \hat{x}_{2 s}\right)\right],\end{array}\right.$
where $q_{1}(s)=s+s^{\frac{1}{1-p}}, q_{2}(s)=s+s^{1+p}$ and b, φ_{i} and ℓ_{i} are parameters to be chosen.

Since we have, for all $\left(x_{1}, x_{2}, u\right)$ in $\mathcal{M}_{x} \times \mathcal{M}_{u}$,
$\frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}, x_{2}, u\right) \leq \Omega_{2}\left(u, x_{1}, x_{2}\right) \leq \Omega_{1}\left(u, x_{1}, x_{2}\right) \leq d f_{2 \text { max }}$
we expect the updated high gain observer to give better performance than the one without adaptation, and the new one proposed in this paper to give even better behavior, in particular, in presence of measurement noise.

3.1. Simulations

We illustrate the behavior of the observers with simulations. But this is no more than an illustration and we do not claim that our observer is the best one for this particular application. ${ }^{1}$

The control input is selected as:

$$
\begin{aligned}
u(t) & =0.410 \quad \text { if } t<10, \quad=0.02 \quad \text { if } 10 \leq t<20 \\
& =0.6 \quad \text { if } 20 \leq t<35,=0.1 \quad \text { if } 35 \leq t
\end{aligned}
$$

From this we have chosen $u_{\text {min }}=0.01$ and $u_{\text {max }}=0.7$ and ϵ_{1} and ϵ_{2} accordingly. Also, we have introduced two disturbances:

- the measurement disturbance is a Gaussian white noise with standard deviation equal to 10% of the η_{1} domain $\left[\epsilon_{1}, 1-\epsilon_{2}\right.$], i.e. $=0.05$.
- a 20% error in \hbar. The value used for the system (14) is 1 , whereas the one in the observers is 0.8 .
For the observers, we have used the following values:
$p=0.9, \quad b=0.410$,
$\varphi_{1}=0.03, \quad \varphi_{2}=1, \quad \varphi_{3}=3, \quad \ell_{1}=0.01, \quad \ell_{2}=0.01$.
Fig. 1 shows the values of the estimates of the local incremental rate of f_{2} (i.e. $\frac{\partial f_{2}}{\partial x_{2}}$), df $f_{2 \text { max }}$ for the high-gain observer, Ω_{1} for

[^1]

Fig. 1. Approximations of the local incremental rates.
an updated high-gain observer, and Ω_{2} for a homogeneous updated high-gain observer. In spite of the measurement noise, the predicted order $d f_{2 \text { max }} \geq \Omega_{1} \geq \Omega_{2} \geq \frac{\partial f_{2}}{\partial x_{2}}$ is observed in the mean.

Fig. 2 displays the plot of the estimation error $\eta_{2}-\hat{\eta}_{2}$, given by the observers with constant gain deduced from $d f_{2 \text { max }}$ (top), with adapted gain deduced from Ω_{1} (middle), and with adapted gain deduced from Ω_{2} and homogeneity (bottom). In the three cases, there is a bias, due to the error in \hbar, which increases with the estimates of the local incremental rate. We see also a strong correlation between the standard deviation of the error $\hat{\eta}_{2}-\eta_{2}$ and the magnitude of these estimates respectively used, i.e. $d f_{2 \text { max }}, \Omega_{1}$ and Ω_{2}. As expected, the best result is given by the new observer based on Ω_{2}.

4. Proof of Theorem 1

Theorem 1 is proved in Section 4.3. It needs some prerequisites, summarized now and which can be found in Andrieu et al. (2008b).

4.1. Homogeneous approximation

Given a vector $r=\left(r_{1}, \ldots, r_{n}\right)$ in $\left(\mathbb{R}_{+} /\{0\}\right)^{n}$, we define the dilation of a vector x in \mathbb{R}^{n} as
$\lambda^{r} \diamond x=\left(\lambda^{r_{1}} x_{1}, \ldots, \lambda^{r_{n}} x_{n}\right)^{\mathrm{T}}$.

Definition 1. - A continuous function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said homogeneous in the 0 -limit (respectively ∞-limit) with associated triple (r_{0}, d_{0}, ϕ_{0}) (resp. $\left(r_{\infty}, d_{\infty}, \phi_{\infty}\right)$), where r_{0} (resp. r_{∞}) in $\left(\mathbb{R}_{+} /\{0\}\right)^{n}$ is the weight, d_{0} (resp. d_{∞}) in \mathbb{R}_{+}the degree and $\phi_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}\left(\right.$ resp. $\phi_{\infty}: \mathbb{R}^{n} \rightarrow \mathbb{R}$) the approximating function, if ϕ_{0} (resp. ϕ_{∞}) is continuous and not identically zero and, for each compact set C in \mathbb{R}^{n} and each $\varepsilon>0$, there exists λ^{*} such that we have:

$$
\begin{aligned}
& \max _{x \in C}\left|\frac{\phi\left(\lambda^{r_{0}} \diamond x\right)}{\lambda^{d_{0}}}-\phi_{0}(x)\right| \leq \varepsilon \quad \forall \lambda \in\left(0, \lambda^{*}\right] \\
& \text { (respectively } \max _{x \in C}\left|\frac{\phi\left(\lambda^{r_{\infty}} \diamond x\right)}{\lambda^{d_{\infty}}}-\phi_{\infty}(x)\right| \leq \varepsilon \\
& \quad \forall \lambda \in\left[\lambda^{*},+\infty\right) . \text {) }
\end{aligned}
$$

- A vector field $f=\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial x_{i}}$ is said homogeneous in the 0 -limit (resp. ∞-limit) with associated triple $\left(r_{0}, d_{0}, f_{0}\right)$ (resp. $\left(r_{\infty}, d_{\infty}, f_{\infty}\right)$), where $f_{0}=\sum_{i=1}^{n} f_{0, i} \frac{\partial}{\partial x_{i}}$ (resp. $f_{\infty}=$ $\left.\sum_{i=1}^{n} f_{\infty, i} \frac{\partial}{\partial x_{i}}\right)$, if, for each i in $\{1, \ldots, n\}$, the function f_{i} is

Fig. 2. Estimation error $\eta_{2}-\hat{\eta}_{2}$ given by each observer.
homogeneous in the 0 -limit (resp. ∞-limit) with associated triple $\left(r_{0}, d_{0}+r_{0, i}, f_{0, i}\right) .{ }^{2}$

Definition 2. A continuous function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (or a vector field f) is said homogeneous in the bi-limit if it is homogeneous in the 0 -limit and in the ∞-limit.

4.2. Homogeneous in the bi-limit observer

Consider the following chain of integrators on \mathbb{R}^{n} :
$\dot{\mathfrak{X}}=\mathfrak{A}(t) \& \mathfrak{X}$,
where $\mathfrak{A}(t)=\operatorname{diag}\left(\mathfrak{A}_{1}(t), \ldots, \mathfrak{A}_{n}(t)\right)$, is a known time varying matrix with the \mathfrak{A}_{i} satisfying, with \mathfrak{A} and $\overline{\mathfrak{A}}$ constant,
$0<\underline{\mathfrak{A}} \leq \mathfrak{A}_{i}(t) \leq \overline{\mathfrak{A}} \quad \forall t$.
With $d_{0}=0$ and d_{∞} arbitrary in $\left[0, \frac{1}{n-1}\right)$, the system (16) is homogeneous in the bi-limit with the weights $r_{0}=\left(r_{0,1}, \ldots, r_{0, n}\right)$ and $r_{\infty}=\left(r_{\infty, 1}, \ldots, r_{\infty, n}\right)$ as:
$r_{0, i}=1, \quad r_{\infty, i}=1-d_{\infty}(n-i)$.

[^2]In Andrieu et al. (2008b), a new observer was proposed for system (16) for the particular case where $\mathfrak{A}_{i}(t)=1$. Its design is done recursively, together with the one of an appropriate error Lyapunov function W which is homogeneous in the bi-limit.

To combine this tool with gain updating, we need an extra property on W which is a counterpart of Praly (2003, Equation (16)) or Krishnamurthy et al. (2003, Lemma A1). We have:

Theorem 2. Let d_{∞} be in $\left[0, \frac{1}{n-1}\right)$, d_{W} in $\left[2+d_{\infty}, \infty\right)$ and $\mathfrak{B}=$ $\operatorname{diag}\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ with $\mathfrak{b}_{j}>0$. If (17) holds, there exist a vector field $K: \mathbb{R} \rightarrow \mathbb{R}^{n}$ which is homogeneous in the bi-limit with associated weights r_{0} and r_{∞}, and a positive definite, proper and C^{1} function $W: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, homogeneous in the bi-limit with associated triples $\left(r_{0}, d_{W}, W_{0}\right)$ and $\left(r_{\infty}, d_{W}, W_{\infty}\right)$, such that
(1) The functions W_{0} and W_{∞} are positive definite and proper and, for each j in $\{1, \ldots, n\}$, the function $\frac{\partial W}{\partial e_{j}}$ is homogeneous in the bi-limit with approximating functions $\frac{\partial W_{0}}{\partial e_{j}}$ and $\frac{\partial W_{\infty}}{\partial e_{j}}$.
(2) There exist two positive real numbers c_{1} and c_{2} such that we have, for all (t, E) in $\mathbb{R} \times \mathbb{R}^{n}$,

$$
\begin{align*}
& \frac{\partial W}{\partial E}(E) \mathfrak{A}(t)\left(\delta E+K\left(e_{1}\right)\right) \\
& \quad \leq-c_{1}\left(W(E)+W(E)^{\frac{d_{W}+d_{\infty}}{d_{W}}}\right), \tag{19}\\
& \frac{\partial W}{\partial E}(E) \mathfrak{B} E \geq c_{2} W(E) . \tag{20}
\end{align*}
$$

For proving this result, the only difference compared with what is done in Andrieu et al. (2008b) is to multiply W_{i} by a sufficiently small positive real number σ_{i} before using it in the definition of W_{i-1}. The proof is omitted due to space limitation. It can be found in Andrieu, Praly, and Astolfi (2008a).

4.3. Proof of Theorem 1

Let \mathfrak{A} and \mathfrak{B} in Theorem 2 be (see Praly (2003)):
$\mathfrak{A}(t)=\frac{A(y(t))}{\mathfrak{a}(y(t))}, \quad \mathfrak{B}=\operatorname{diag}(b, 1+b, \ldots, n-1+b)^{\mathrm{T}}$,
where $y(t)$ is the evaluation of y along a solution and b is a positive real number satisfying, for all $1 \leq j \leq i \leq n$,
$\frac{1-d_{\infty}(n-i-1)}{1-d_{\infty}(n-j)}<\frac{i+b}{j-1+b}<\frac{i}{j-1}$,
and $0<b<\frac{1-v_{j}(j-1)}{v_{j}}$,
with d_{∞} and v_{j} as given in the statement of Theorem 1.
From Theorem 2, we obtain a homogeneous in the bi-limit vector field K and a homogeneous in the bi-limit Lyapunov function W satisfying (19) and (20). This allows us to write the observer as in (7) and (8). Note that if $L(0) \geq \varphi_{2}$ then $L(t) \geq \varphi_{2}$ for all $t \geq 0$ in the domain of definition.

Properties of the estimation error. With \mathfrak{L} given in (10), let $E=$ $\left(e_{1}, \ldots, e_{n}\right)$ and τ be defined as:
$E=\mathfrak{L}^{-1}(\hat{\chi}-x)=\mathfrak{L}^{-1} \mathfrak{e}, \quad \mathrm{~d} \tau=L \mathrm{~d} t$.
Since we have:
$\overparen{\mathfrak{L}^{-1}}=-L^{-1} \dot{L} \mathfrak{B} \mathfrak{L}^{-1}$,
we get:

$$
\begin{align*}
\frac{\mathrm{d} E}{\mathrm{~d} \tau}= & A(y)\left[s E+K\left(e_{1}-\frac{\delta_{y}}{L^{b}}\right)\right]-L^{-1} \mathfrak{L}^{-1} \delta \\
& +\mathfrak{D}(L)-L^{-1} \frac{\mathrm{~d} L}{\mathrm{~d} \tau} \mathfrak{B} E, \tag{24}
\end{align*}
$$

with $\mathfrak{D}(L)$ defined as
$\mathfrak{D}(L)=\left(\ldots, \frac{f_{i}(u, y, \hat{x})-f_{i}(u, y, x)}{L^{i+b}}, \ldots\right)$.
Along the solutions of the system (24) we have:

$$
\begin{align*}
\frac{\mathrm{d} W(E)}{\mathrm{d} \tau}= & \frac{\partial W}{\partial E}(E) \mathfrak{a}(y) \mathfrak{A}(t)\left[\delta E+K\left(e_{1}\right)\right] \\
& +T_{\delta}+T_{y}+T_{G U}+T_{N L} \tag{25}
\end{align*}
$$

with the notations
$T_{\delta}=-\frac{\partial W}{\partial E}(E) L^{-1} \mathfrak{L}^{-1} \delta$,
$T_{y}=\frac{\partial W}{\partial E}(E) \mathfrak{a}(y) \mathfrak{A}(t)\left[K\left(e_{1}-\frac{\delta_{y}}{L^{b}}\right)-K\left(e_{1}\right)\right]$,
$T_{G U}=-L^{-2} \dot{L} \frac{\partial W}{\partial E}(E) \mathfrak{B} E$,
$T_{N L}=\frac{\partial W}{\partial E}(E) \mathfrak{D}(L)$,
and, with (19), we have:
$\frac{\partial W}{\partial E}(E) \mathfrak{a}(y) \mathfrak{A}(t)\left(\delta E+K\left(e_{1}\right)\right) \leq-c_{1} \mathfrak{a}(y)\left(W(E)+W(E)^{\frac{{ }^{d} W+d_{\infty}}{d_{W}}}\right)$
Bounding T_{δ}. With weights 1 and $r_{\infty, i}+d_{\infty}$ for $\frac{\delta_{i}}{L^{i}}$, the function $\left(E, \frac{\delta_{i}}{L^{i}}\right) \mapsto \frac{\partial W}{\partial e_{i}}(E) \frac{\delta_{i}}{L^{i}}$ is homogeneous in the bi-limit with degrees d_{W} and $d_{W}+d_{\infty}$. Also W, W_{0} and W_{∞} are positive definite. Hence (see Andrieu et al. (2008b, Corollary 2.15)) there exists a positive real number c_{3} satisfying, for any E, i and $L \geq \varphi_{2}$,
$\frac{\partial W}{\partial e_{i}}(E) \frac{\delta_{i}}{L^{i+b}} \leq \frac{c_{3}}{n \varphi_{2}^{b}}\left[W(E)+W(E)^{\frac{d_{W}+d_{\infty}}{d_{W}}}\right]+\frac{c_{3}}{n L^{b}} \mathfrak{H}_{i}\left(\frac{\delta_{i}}{L^{i}}\right)$
where $\mathfrak{H}_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is the strictly increasing, homogeneous in bi-limit function defined as
$\mathfrak{H}_{i}(s)=\left(1+|s|^{\frac{d_{W}+d_{\infty}}{r_{\infty}, i^{+}}}\right) \frac{|s|^{d_{W}}}{1+|s|^{d_{W}}}$.
This gives:
$T_{\delta} \leq \frac{c_{3}}{\varphi_{2}^{b}}\left[W(E)+W(E)^{\frac{d_{W}+d_{\infty}}{d_{W}}}\right]+\frac{c_{3}}{n L^{b}} \sum_{i=1}^{n} \mathfrak{H}_{i}\left(\frac{\delta_{i}}{L^{i}}\right)$.
Bounding T_{y}. Let k_{i} be the i th component of K and μ and η be the functions:

$$
\begin{aligned}
\mu(\bar{\delta})= & |\bar{\delta}|^{d_{W}}+|\bar{\delta}|^{\frac{d_{W}+d_{\infty}}{r_{\infty}, 1}} \\
\eta(E, \bar{\delta})= & \frac{c_{1}}{4 n \overline{\mathfrak{A}}}\left[W(E)+W(E)^{\frac{d_{W}+d_{\infty}}{d_{W}}}\right] \\
& -\frac{\partial W}{\partial e_{i}}(E)\left[k_{i}\left(e_{1}+\bar{\delta}\right)-k_{i}\left(e_{1}\right)\right] .
\end{aligned}
$$

From the properties of K, with the weights 1 and $r_{\infty, 1}$ for $\bar{\delta}$, the functions $\bar{\delta} \mapsto \mu(\bar{\delta})$ and $(E, \bar{\delta}) \mapsto \eta(E, \bar{\delta})$ are homogeneous in the bi-limit with degree 1 and $d_{W}+d_{\infty}$ and approximating functions, respectively,
$|\bar{\delta}|^{d_{W}}, \frac{c_{1}}{4 n \overline{\mathfrak{A}}} W_{0}(E)-\frac{\partial W_{0}}{\partial e_{i}}(E)\left[k_{i, 0}\left(e_{1}+\bar{\delta}\right)-k_{i, 0}\left(e_{1}\right)\right]$
and

$$
\begin{aligned}
& |\bar{\delta}|^{\frac{d_{W}+d_{\infty}}{d_{W}}}, \frac{c_{1}}{4 n \overline{\mathfrak{A}}} W_{\infty}(E)^{\frac{d_{W}+d_{\infty}}{d_{W}}} \\
& \quad-\frac{\partial W_{\infty}}{\partial e_{i}}(E)\left[k_{i, \infty}\left(e_{1}+\bar{\delta}\right)-k_{i, \infty}\left(e_{1}\right)\right] .
\end{aligned}
$$

Hence (see Andrieu et al. (2008b, Lemma 2.13)) there exists a positive real number c_{4} satisfying

$$
\begin{aligned}
& \frac{\partial W}{\partial e_{i}}(E)\left[k_{i}\left(e_{1}+\bar{\delta}\right)-k_{i}\left(e_{1}\right)\right] \\
& \quad \leq \frac{c_{1}}{4 n \overline{\mathfrak{A}}}\left[W(E)+W(E)^{\frac{d_{W}+d_{\infty}}{d_{W}}}\right]+\frac{c_{4}}{n}\left[|\bar{\delta}|^{d_{W}}+|\bar{\delta}|^{\frac{d_{W}+d_{\infty}}{r_{\infty}, 1}}\right] .
\end{aligned}
$$

By letting $\bar{\delta}=-\frac{\delta_{y}}{L^{b}}$, this yields:

$$
\begin{aligned}
T_{y} \leq & \frac{c_{1}}{4} \mathfrak{a}(y)\left[W(E)+W(E)^{\frac{d_{W}+d_{\infty}}{d_{W}}}\right] \\
& +c_{4} \overline{\mathfrak{A}} \mathfrak{a}(y)\left[\left|\frac{\delta_{y}}{L^{b}}\right|^{d_{W}}+\left|\frac{\delta_{y}}{L^{b}}\right|^{\frac{d_{W}+d_{\infty}}{r_{\infty}, 1}}\right] .
\end{aligned}
$$

Bounding $T_{G U}$. The function $E \mapsto \frac{\partial W}{\partial E}(E) \mathfrak{B} E$ is homogeneous in the bi-limit with associated weights r_{0} and r_{∞} and degrees $d_{W, 0}=$ $d_{W, \infty}=d_{W}$. Hence (see Andrieu et al. (2008b, Corollary 2.15)) there exists a positive real number c_{5} satisfying:
$\frac{\partial W}{\partial E}(E) \mathfrak{B} E \leq c_{5} W(E)$.
With (20) and the definition of \dot{L} in (8), this yields:
$T_{G U} \leq-c_{2} \varphi_{3} \frac{\Omega(u, y, \hat{x})}{L} W(E)+c_{5} \varphi_{1} W(E)$.
Bounding $T_{N L}$. With (6), (23) and (18)give:
$\left|\mathfrak{D}_{i}(L)\right| \leq \Omega(u, y, \hat{x}) \sum_{j=2}^{i} L^{j-1-i}\left|e_{j}\right|+c_{\infty} L^{-i-b} \sum_{j=2}^{i}\left|L^{b+j-1} e_{j}\right|^{\frac{r_{\infty, i}+d_{\infty}}{r_{\infty, j}}}$.
With the inequalities (21) and (18), we know there exists a strictly positive real number ϵ_{1} satisfying:
$\varphi_{2}^{-\epsilon_{1}} \geq L^{-\epsilon_{1}} \geq L^{(b+j-1) \frac{r_{\infty, i}+d_{\infty}}{r_{\infty, j}}-i-b} \quad \forall L \geq \varphi_{2} \geq 1$.
Consequently, for all $L \geq \varphi_{2} \geq 1$, we have:
$\left|\mathfrak{D}_{i}(L)\right| \leq \frac{\Omega(u, y, \hat{x})}{L} \sum_{j=2}^{i}\left|e_{j}\right|+c_{\infty} \varphi_{2}^{-\epsilon_{1}} \sum_{j=2}^{i}\left|e_{j}\right|^{\frac{r_{\infty, i}+d_{\infty}}{r_{\infty, j}}}$.
On another hand, since (18) and $0=d_{0} \leq d_{\infty}$ imply
$\frac{r_{\infty, i}+d_{\infty}}{r_{\infty, i}} \geq 1 \quad i \in\{1 \ldots n\}$,
the functions
$E \mapsto\left|\frac{\partial W}{\partial e_{i}}(E)\right|\left|e_{j}\right| \quad$ and
$E \mapsto\left|\frac{\partial W}{\partial e_{i}}(E)\right| \sum_{j=2}^{i}\left|e_{j}\right|+\left|e_{j}\right|^{\frac{r_{\infty, i}+d_{\infty}}{r_{\infty}, j}}$
are homogeneous in the bi-limit with weights r_{∞} and r_{0} and degrees d_{W} and $d_{W}+(j-i) d_{\infty}\left(\leq d_{W}\right)$ and d_{W} and $d_{\infty}+d_{W}$ respectively. Hence (see Andrieu et al. (2008b, Corollary 2.15))
there exists positive real numbers c_{6} and c_{7} satisfying, for all E in \mathbb{R}^{n} and i in $\{1, \ldots, n\}$,
$\left|\frac{\partial W}{\partial e_{i}}(E)\right|\left|e_{j}\right| \leq \frac{c_{6}}{n^{2}} W(E) \quad \forall j \in\{1, \ldots, i\}$
$\left|\frac{\partial W}{\partial e_{i}}(E)\right|\left(\sum_{j=2}^{i}\left|e_{j}\right|+\left|e_{j}\right|^{\frac{r_{\infty}, i+d_{\infty}}{r_{\infty, j}}}\right) \leq \frac{c_{7}}{n}\left(W(E)+W(E)^{\frac{d_{\infty}+d_{W}}{d_{W}}}\right)$.
This gives
$\left|T_{N L}\right| \leq c_{6} \frac{\Omega(u, y, \hat{x})}{L} W(E)+c_{\infty} c_{7} \varphi_{2}^{-\epsilon_{1}}\left(W(E)+W(E)^{\frac{d_{\infty}+d_{W}}{d_{W}}}\right)$.
Bound on $\frac{\mathrm{d} W(E)}{\mathrm{d} \tau}$. Using inequality (26), and the bounds on $T_{\delta}, T_{y}, T_{G U}$ and $T_{N L}$, we obtain:

$$
\begin{aligned}
\frac{\mathrm{d} W(E)}{\mathrm{d} \tau} \leq & \left(c_{6}-c_{2} \varphi_{3}\right) \frac{\Omega(u, y, \hat{x})}{L} W(E) \\
& +\left(\frac{c_{3}}{\varphi_{2}^{b}}+\frac{c_{\infty} c_{7}}{\varphi_{2}^{\epsilon_{1}}}+c_{5} \varphi_{1}-\frac{3 c_{1}}{4} \mathfrak{a}(y)\right) \\
& \times\left(W(E)+W(E)^{\frac{d_{W}+d_{\infty}}{d_{W}}}\right) \\
& +\frac{c_{3}}{n L^{b}} \sum_{i=1}^{n} \mathfrak{H}_{i}\left(\frac{\delta_{i}}{L^{i}}\right)+\frac{c_{4} \overline{\mathfrak{A}}}{L^{b}} \mathfrak{a}(y)\left[\left|\delta_{y}\right|^{d_{W}}+\left|\delta_{y}\right|^{\frac{d_{W}+d_{\infty}}{r_{\infty}, 1}}\right] .
\end{aligned}
$$

Therefore, with (5) and $L>\varphi_{2}$, by choosing φ_{2} and φ_{3} sufficiently large and φ_{1} sufficiently small, we get:
$\frac{\mathrm{d} W(E)}{\mathrm{d} t} \leq-\kappa L W(E)+L U$,
where $\kappa=\frac{c_{1} \rho}{2}$ and

$$
\begin{aligned}
U(t)= & \frac{c_{3}}{n \varphi_{2}^{b}} \sum_{i=1}^{n} \mathfrak{H}_{i}\left(\frac{\delta_{i}(t)}{L(t)^{i}}\right)+\frac{c_{4} \overline{\mathfrak{A}} \rho}{\varphi_{2}^{b}}\left[\left|\frac{\mathfrak{a}(y(t)) \delta_{y}(t)}{\rho}\right|^{d_{W}}\right. \\
& \left.+\left|\frac{\mathfrak{a}(y(t)) \delta_{y}(t)}{\rho}\right|^{\frac{d_{W}+d_{\infty}}{r_{\infty, 1}}}\right] .
\end{aligned}
$$

Integrating this inequality, it yields on the time of existence of the solutions:

$$
\begin{aligned}
W(E(t)) \leq & \exp \left(-\kappa \int_{s}^{t} L(s)\right) W(E(s)) \\
& +\int_{s}^{t} \exp \left(-\kappa \int_{r}^{t} L(u) \mathrm{d} u\right) L(r) U(r) \mathrm{d} r
\end{aligned}
$$

And since $L>\varphi_{2} \geq 1$, this implies
$W(E(t)) \leq \exp (-\kappa(t-s)) W(E(s))+\frac{1}{\kappa} \sup _{r \in[s, t]} U(r)$.
The function W being proper, it yields an ISS property between the inputs $\frac{\delta_{i}}{L^{i}}$ s and $\mathfrak{a}(y) \delta_{y}$ and the state E. Hence, inequality (11) follows on the time domain of existence of the solutions from the definition (23) of e_{i}.

Behavior of L. We can rewrite (9) in ${ }^{3}$:
$\Omega(u, y, \hat{x}) \leq \Gamma(u, y)\left(1+\sum_{j=2}^{n}\left|x_{j}\right|^{v_{j}}+L^{v_{j}(b+j-1)}\left|e_{j}\right|^{v_{j}}\right)$.

$$
\begin{align*}
& 3 \text { Since } v_{j} \text { is smaller than } 1 \text {, we have, for all }(a, b) \in \mathbb{R}_{+*}^{2} \\
& \frac{a}{\left(a^{v_{j}}+b^{v_{j}}\right)^{\frac{1}{v_{j}}}} \leq \frac{a^{v_{j}}}{a^{v_{j}}+b^{v_{j}}} \leq 1 \text { and }(a+b)^{v_{j}} \leq a^{v_{j}}+b^{v_{j}} \tag{31}
\end{align*}
$$

Then, with (22) and $L \geq 1$, we get $\epsilon_{2}>0$ satisfying:

$$
\Omega(u, y, \hat{x}) \leq \Gamma(u, y)\left(1+\sum_{j=2}^{n}\left|x_{j}\right|^{v_{j}}+L^{1-\epsilon_{2}}\left|e_{j}\right|^{v_{j}}\right)
$$

Consequently (8) gives

$$
\begin{aligned}
\dot{L} \leq & L\left(\varphi_{1} \varphi_{2}-\varphi_{1} L+\varphi_{3} \Gamma(u, y)\right. \\
& \left.+\varphi_{3} \Gamma(u, y) \sum_{j=2}^{n}\left|x_{j}\right|^{v_{j}}+L^{1-\epsilon_{2}}\left|e_{j}\right|^{v_{j}}\right) \\
\leq & -\frac{\varphi_{1}}{2} L^{2}-L\left(\frac{\varphi_{1}}{4} L-\varphi_{1} \varphi_{2}-\varphi_{3} \Gamma(u, y)-\varphi_{3} \Gamma(u, y) \sum_{j=2}^{n}\left|x_{j}\right|^{v_{j}}\right. \\
& \left.-\left(\frac{4 n \varphi_{3}}{\varphi_{1}}\right)^{\frac{1}{\epsilon_{2}}} \Gamma(u, y)^{\frac{2}{\epsilon_{2}}}-\left(\frac{4 n \varphi_{3}}{\varphi_{1}}\right)^{\frac{1}{\epsilon_{2}}} \sum_{j=2}^{n}\left|e_{j}\right|^{\frac{2 v_{j}}{\epsilon_{2}}}\right)
\end{aligned}
$$

This implies the existence of a class $\mathcal{K} \mathcal{L}$ function β_{1} and a class \mathcal{K} function γ_{1} such that, along any solution, we have on its domain of existence

$$
\begin{aligned}
\max \left\{L(t)-4 \varphi_{2}, 0\right\} \leq & \beta_{1}(L(0), t) \\
& +\sup _{s \leq t} \gamma_{1}(|(\Gamma(u(s), y(s)), x(s), E(s))|)
\end{aligned}
$$

Hence, having a cascade of two ISS systems, (12) and (11)holds on $[0, \mathcal{T})$.

5. Conclusion

We have presented a modification of the classical high gain observer with the introduction of a gain updating and of a homogeneous in the bi-limit correction term. We have shown that this extends the domain of applicability and proved convergence for bounded solutions. We have also shown, by means of an example, that the modification may improve performance by allowing a better fit of the incremental rate of the nonlinearities.

Acknowledgment

This work has been performed while the first author was a member of the CAP Group of Imperial College London.

References

Andrieu, V., Praly, L., \& Astolfi, A. (2008a). Proof of Theorem 2, Archive HAL, 00229705.

Andrieu, V., Praly, L., \& Astolfi, A. (2008b). Homogeneous approximation, recursive observer design and output feedback. SIAM Journal of Control and Optimization, 47(4), 1814-1850.
Astolfi, A., \& Praly, L. (2006). Global complete observability and output-to-state stability imply the existence of a globally convergent observer. Mathematics of Control, Signals and Systems, 18, 32-65.
Gauthier, J. P., Hammouri, H., \& Othman, S. (1992). A simple observer for nonlinear systems. Application to bioreactors. IEEE Transactions on Automatic Control, 37(6).
Gauthier, J. P., \& Kupka, I. (2001). Deterministic observation theory and applications. Cambridge University Press.
Krishnamurthy, P., Khorrami, F., \& Chandra, R. S. (2003). Global high-gain based observer and backstepping controller for generalized output-feedback canonical form. IEEE Transactions on Automatic Control, 48(12).

Lei, H., Wei, J. F., \& Lin, W. (2005). A global observer for observable autonomous systems with bounded solution trajectories. In Proceedings of the 44th IEEE conference on decision and control and the European control conference.
Praly, L. (2003). Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate. IEEE Transactions on Automatic Control, 48(6).
Qian, C. (2005). A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems. In Proceedings of the 2005 American control conference (pp. 4708-4715): Vol. 7.

V. Andrieu was born in Rouen, France, in 1978. He graduated in mathematics engineering from "INSA de Rouen", France, in 2001. After working in ONERA (French aerospace research company), he obtained a Ph.D. from "Ecole des Mines de Paris" in 2005 for his work on output feedback and observer design for non linear systems. In 2006, he went to Imperial College, London as a research assistant. In 2008, he joined the CNRS-LAAS lab in Toulouse, France, as a "chargé de recherche". His main interests are in feedback stabilization of controlled dynamical nonlinear systems and state estimation problem. He is also interested in practical application of these theoretical problems, and especially in the field of aeronautics.

L. Praly graduated from École Nationale Supérieure des Mines de Paris in 1976. After working in industry for three years, in 1980 he joined the Centre Automatique et Systémes at École des Mines de Paris. From July 1984 to June 1985, he spent a sabbatical year as a visiting assistant professor in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign. Since 1985 he has continued at the Centre Automatique et Systémes where he served as director for two years. In 1993, he spent a quarter at the Institute for Mathematics and its Applications at the University of Minnesota where he was an invited researcher.

His main interest is in feedback stabilization of controlled dynamical systems under various aspects - linear and nonlinear, dynamic, output, under constraints, with parametric or dynamic uncertainty. On these topics he is contributing both on the theoretical aspect with many academic publications, and the practical aspect with applications in power systems, mechanical systems, aerodynamical and space vehicles.

A. Astolfi was born in Rome, Italy, in 1967. He graduated in electrical engineering from the University of Rome in 1991. In 1992 he joined ETH-Zurich where he obtained a M.Sc. in Information Theory in 1995 and the Ph.D. degree with Medal of Honour in 1995 with a thesis on discontinuous stabilization of nonholonomic systems. In 1996 he was awarded a Ph.D. from the University of Rome "La Sapienza" for his work on nonlinear robust control. Since 1996 he has been with the Electrical and Electronic Engineering Department of Imperial College, London (UK), where he is currently Professor in Nonlinear Control Theory. From 1998 to 2003 he was also an Associate Professor at the Dept. of Electronics and Information of the Politecnico of Milano. Since 2005 he has also been Professor at Dipartimento di Informatica, Sistemi e Produzione, University of Rome Tor Vergata. He has been a visiting lecturer in "Nonlinear Control" in several universities, including ETH-Zurich (1995-1996); Terza University of Rome (1996); Rice University, Houston (1999); Kepler University, Linz (2000); SUPELEC, Paris (2001). His research interests are focused on mathematical control theory and control applications, with special emphasis for the problems of discontinuous stabilization, robust stabilization, robust control and adaptive control. He is author of more than 70 journal papers, of 20 book chapters and of over 160 papers in refereed conference proceedings. He is author (with D. Karagiannis and R. Ortega) of the monograph "Nonlinear and Adaptive Control with Applications" (Springer Verlag). He is Associate Editor of Systems and Control Letters, Automatica, IEEE Trans. Automatic Control, the International Journal of Control, the European Journal of Control, the Journal of the Franklin Institute, and the International Journal of Adaptive Control and Signal Processing. He has also served in the IPC of various international conferences.

[^0]: this paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Dragan Nesic under the direction of Editor Hassan K. Khalil.

 * Corresponding author. Tel.: +33 5613363 27; fax: +33 0561553577 .

 E-mail addresses: vincent.andrieu@gmail.com (V. Andrieu), praly@cas.ensmp.fr (L. Praly), a.astolfi@ic.ac.uk (A. Astolfi).

[^1]: 1 A simple copy (without correction term) gives an observer which is not sensitive to measurement noise, but on the other hand we cannot assign its speed of convergence.

[^2]: 2 In the case of a vector field, the degree d_{0} can be negative as long as $d_{0}+r_{0, i} \geq 0$ (resp. $\left(r_{\infty}, d_{\infty}+r_{\infty, i}, f_{\infty, i}\right)$), for all $1 \leq i \leq n$.

