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Abstract. We introduce two new tools that can be useful in nonlinear observer and output
feedback design. The first one is a simple extension of the notion of homogeneous approximation
to make it valid both at the origin and at infinity (homogeneity in the bi-limit). Exploiting this
extension, we give several results concerning stability and robustness for a homogeneous in the
bi-limit vector field. The second tool is a new recursive observer design procedure for a chain of
integrator. Combining these two tools, we propose a new global asymptotic stabilization result by
output feedback for feedback and feedforward systems.
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1. Introduction. The problems of designing globally convergent observers and
globally asymptotically stabilizing output feedback control laws for nonlinear systems
have been addressed by many authors following different routes. Many of these ap-
proaches exploit domination ideas and robustness of stability and/or convergence. In
view of possibly clarifying and developing further these techniques we introduce two
new tools. The first one is a simple extension of the technique of homogeneous ap-
proximation to make it valid both at the origin and at infinity. The second tool is a
new recursive observer design procedure for a chain of integrator. Combining these
two tools, we propose a new global asymptotic stabilization result by output feedback
for feedback and feedforward systems.

To place our contribution in perspective, we consider the following system, for
which we want to design a global asymptotic stabilizing output feedback:

(1.1) ẋ1 = x2, ẋ2 = u + δ2(x1, x2), y = x1 ,

where (see notation (1.4))

(1.2) δ2(x1, x2) = c0 x
q
2 + c∞ xp

2, (c0, c∞) ∈ R2, p > q > 0 .

In the domination’s approach, the nonlinear function δ2 is not treated per se in
the design but considered as a perturbation. In this framework the output feedback
controller is designed on the linear system

(1.3) ẋ1 = x2, ẋ2 = u, y = x1,
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and will be suitable for the nonlinear system (1.1), provided the global asymptotic
stability obtained for the origin of the closed-loop system is robust to the nonlinear
disturbance δ2. For instance, the design given in [13, 27] provides a linear output
feedback controller which is suitable for the nonlinear system (1.1) when q = 1 and
c∞ = 0. This result has been extended recently in [26] employing a homogeneous
output feedback controller which allows us to deal with p ≥ 1 and c0 = 0.

Homogeneity in the bi-limit and the novel recursive observer design proposed in
this paper allow us to deal with the case in which c0 #= 0 and c∞ #= 0. In this case,
the function δ2 is such that

1. when |x2| is small and q = 1, δ2(x2) can be approximated by c0 x2 and the
nonlinearity can be approximated by a linear function;

2. when |x2| is large, δ2(x2) can be approximated by c∞ xp
2, and hence we have

a polynomial growth which can be handled by a weighted homogeneous con-
troller as in [26].

To deal with both linear and polynomial terms we introduce a generalization of
weighted homogeneity which highlights the fact that a function becomes homoge-
neous as the state tends to the origin or to infinity but with different weights and
degrees.

The paper is organized as follows. Section 2 is devoted to general properties
related to homogeneity. After giving the definition of homogeneous approximation
we introduce homogeneous in the bi-limit functions and vector fields (section 2.1)
and list some of their properties (section 2.2). Various results concerning stability
and robustness for homogeneous in the bi-limit vector fields are given in section 2.3.
In section 3 we introduce a novel recursive observer design method for a chain of
integrator. Section 4 is devoted to the homogeneous in the bi-limit state feedback.
Finally, in section 5, using the previous tools, we establish new results on stabilization
by output feedback.

Notation.
• R+ denotes the set [0,+∞).
• For any nonnegative real number r the function w %→ wr is defined as

(1.4) wr = sign(w) |w|r ∀ w ∈ R .

According to this definition,

(1.5)
dwr

dw
= r|w|r−1 , w2 = w|w| , (w1 > w2 and r > 0) ⇒ wr

1 > wr
2 .

• The function H : R2
+ → R+ is defined as

(1.6) H(a, b) =
a

1 + a
[1 + b] .

• Given r = (r1, . . . , rn)T in Rn
+ and λ in R+, λr ) x = (λr1 x1, . . . , λrn xn)T is

the dilation of a vector x in Rn with weight r. Note that

λr
1 ) (λr

2 ) x) = (λ1 λ2)
r ) x .

• Given r = (r1, . . . , rn)T in (R+ \ {0})n, |x|r = |x1|
1
r1 + · · · + |xn|

1
rn is the

homogeneous norm with weight r and degree 1. Note that

|λr ) x|r = λ |x|r,
∣∣∣∣

(
1

|x|r

)r

) x

∣∣∣∣
r

= 1 .
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• Given r in (R+ \ {0})n, Sr = {x ∈ Rn | |x|r = 1} is the unity homogeneous
sphere. Note that each x in Rn can be decomposed in polar coordinates; i.e.,
there exist λ in R+ and θ in Sr satisfying

(1.7) x = λr ) θ with

{
λ = |x|r,
θ =

(
1

|x|r

)r
) x .

2. Homogeneous approximation.

2.1. Definitions. The use of homogeneous approximations has a long history
in the study of stability of an equilibrium. It can be traced back to the Lyapunov
first order approximation theorem and has been pursued by many authors; see, for
example, Massera [16], Hahn [8], Hermes [9], and Rosier [29]. Similarly, this technique
has been used to investigate the behavior of the solutions of dynamical systems at
infinity; see, for instance, Lefschetz in [14, Chapter IX.5] and Orsi, Praly, and Mareels
in [20]. In this section, we recall the definitions of homogeneous approximation at the
origin and at infinity and restate and/or complete some related results.

Definition 2.1 (homogeneity in the 0-limit).
• A function φ : Rn → R is said to be homogeneous in the 0-limit with asso-

ciated triple (r0, d0, φ0), where r0 in (R+ \ {0})n is the weight, d0 in R+ the
degree, and φ0 : Rn → R the approximating function, if φ is continuous, φ0

is continuous and not identically zero, and, for each compact set C in Rn\{0}
and each ε > 0, there exists λ0 such that

max
x∈C

∣∣∣∣
φ(λr0 ) x)

λd0
− φ0(x)

∣∣∣∣ ≤ ε ∀ λ ∈ (0, λ0] .

• A vector field f =
∑n

i=1 fi
∂

∂xi
is said to be homogeneous in the 0-limit with

associated triple (r0, d0, f0), where r0 in (R+ \ {0})n is the weight, d0 in R
is the degree, and f0 =

∑n
i=1 f0,i

∂
∂xi

is the approximating vector field, if, for
each i in {1, . . . , n}, d0 + r0,i ≥ 0 and the function fi is homogeneous in the
0-limit with associated triple (r0, d0 + r0,i, f0,i).

This notion of local approximation of a function or of a vector field can be found
in [9, 29, 2, 10].

Example 2.2. The function δ2 : R → R introduced in the illustrative system (1.1)
is homogeneous in the 0-limit with associated triple (r0, d0, δ2,0) = (1, q, c0 x

q
2). Fur-

thermore, if q < 2, then the vector field f(x1, x2) = (x2, δ2(x2)) is homogeneous in
the 0-limit with associated triple

(2.1) (r0, d0, f0) =
(
(2 − q, 1), q − 1, (x2, c0 x

q
2)
)
.

Definition 2.3 (homogeneity in the ∞-limit).
• A function φ : Rn → R is said to be homogeneous in the ∞-limit with

associated triple (r∞, d∞, φ∞), where r∞ in (R+ \ {0})n is the weight, d∞ in
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R+ is the degree, and φ∞ : Rn → R is the approximating function, if φ is
continuous, φ∞ is continuous and not identically zero, and, for each compact
set C in Rn \ {0} and each ε > 0, there exists λ∞ such that

max
x∈C

∣∣∣∣
φ(λr∞ ) x)

λd∞
− φ∞(x)

∣∣∣∣ ≤ ε ∀ λ ≥ λ∞ .

• A vector field f =
∑n

i=1 fi
∂

∂xi
is said to be homogeneous in the ∞-limit with

associated triple (r∞, d∞, f∞), where r∞ in (R+ \ {0})n is the weight, d∞ in
R is the degree, and f∞ =

∑n
i=1 f∞,i

∂
∂xi

is the approximating vector field, if,
for each i in {1, . . . , n}, d∞ + r∞,i ≥ 0 and the function fi is homogeneous
in the ∞-limit with associated triple (r∞, d∞ + r∞,i, f∞,i).

Example 2.4. The function δ2 : R → R given in the illustrative system (1.1) is
homogeneous in the ∞-limit with associated triple (r∞, d∞, δ2,∞) = (1, p, c∞ xp

2).
Furthermore, when p < 2, the vector field f(x1, x2) = (x2, δ2(x2)) is homogeneous
in the ∞-limit with associated triple

(2.2) (r∞, d∞, f∞) =
(
(2 − p, 1), p− 1, (x2, c∞ xp

2)
)
.

Definition 2.5 (homogeneity in the bi-limit). A function φ : Rn → R (or a
vector field f : Rn → Rn) is said to be homogeneous in the bi-limit if it is homogeneous
in the 0-limit and homogeneous in the ∞-limit.

Remark 2.6. If a function φ (resp., a vector field f) is homogeneous in the bi-limit,
then the approximating function φ0 or φ∞ (resp., the approximating vector field f0

or f∞) is homogeneous in the standard sense1 (with the same weight and degree).
Example 2.7. As a consequence of Examples 2.2 and 2.4, the vector field f(x1, x2) =

(x2, δ2(x2)) is homogeneous in the bi-limit with the associated triples given in (2.1)
and (2.2) as long as 0 < q < p < 2.

Example 2.8. The function x %→ |x|d0
r0 + |x|d∞

r∞ , where (d0, d∞) are in R2
+ and

(r0, r∞) are in (R+ \ {0})2n, is homogeneous in the bi-limit with associated triples(
r0, d0, |x|d0

r0

)
and

(
r∞, d∞, |x|d∞

r∞

)
, provided that

(2.3)
d∞
r∞,i

>
d0

r0,i
∀ i ∈ {1, . . . , n} .

Example 2.9. We recall (1.6) and consider two homogeneous and positive definite
functions φ0 : Rn → R+ and φ∞ : Rn → R+ with weights (r0, r∞) in (R+\{0})2n and
degrees (d0, d∞) in (R+\{0})2. The function x %→ H(φ0(x), φ∞(x)) is positive definite
and homogeneous in the bi-limit with associated triples (r0, d0, φ0) and (r∞, d∞, φ∞).
This way of constructing a homogeneous in the bi-limit function from two positive
definite homogenous functions is extensively used in this paper.

2.2. Properties of homogeneous approximations. To begin, we note that
the weight and degree of a homogeneous in the 0- (resp., ∞-) limit function are

1This is proved by noting that, for all x in Rn and all µ in R+ \ {0},

φ0(µr0 ! x)

µd0
=

1

µd0
lim
λ→0

φ (λr0 ! (µr0 ! x))

λd0
= lim

λ→0

φ ((λµ)r0 ! x)

(λµ)d0
= φ0(x) ,

and similarly for the homogeneous in the ∞-limit function.
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not uniquely defined. Indeed, if φ is homogeneous in the 0- (resp., ∞-) limit with
associated triple (r0, d0, φ0) (resp., (r∞, d∞, φ∞)), then it is also homogeneous in the
0- (resp., ∞-) limit with associated triple (k r0, k d0, φ0) (resp., (k r∞, k d∞, φ∞)) for
all k > 0. (Simply change λ into λk.)

It is straightforward to show that if φ and ζ are two functions homogeneous in
the 0- (resp., ∞-) limit, with weights rφ,0 and rζ,0 (resp., rφ,∞ and rζ,∞), degrees dφ,0
and dζ,0 (resp., dφ,∞ and dζ,∞), and approximating functions φ0 and ζ0 (resp., φ∞
and ζ∞), then the following hold:

P1: If there exists k in R+ such that k rφ,0 = rζ,0 (resp., k rφ,∞ = rζ,∞), then
the function x %→ φ(x) ζ(x) is homogeneous in the 0- (resp., ∞-) limit with
weight rζ,0, degree k dφ,0+dζ,0 (resp., rζ,∞, k dφ,∞+dζ,∞) and approximating
function x %→ φ0(x) ζ0(x) (resp., x %→ φ∞(x) ζ∞(x)).

P2: If, for each j in {1, . . . , n}, dφ,0

rφ,0,j
< dζ,0

rζ,0,j
(resp., dφ,∞

rφ,∞,j
> dζ,∞

rζ,∞,j
), then

the function x %→ φ(x) + ζ(x) is homogeneous in the 0- (resp., ∞-) limit
with degree dφ,0 and weight rφ,0 (resp., dφ,∞ and rφ,∞) and approximating
function x %→ φ0(x) (resp., x %→ φ∞(x)). In this case we say that the function
φ dominates the function ζ in the 0-limit (resp., in the ∞-limit).

P3: If the function φ0 + ζ0 (resp., φ∞ + ζ∞) is not identically zero and, for each

j in {1, . . . , n}, dφ,0

rφ,0,j
= dζ,0

rζ,0,j
(resp., dφ,∞

rφ,∞,j
= dζ,∞

rζ,∞,j
), then the function

x %→ φ(x) + ζ(x) is homogeneous in the 0- (resp., ∞-) limit with degree
dφ,0 and weight rφ,0 (resp., dφ,∞ and rφ,∞) and approximating function x %→
φ0(x) + ζ0(x) (resp., x %→ φ∞(x) + ζ∞(x)).

Some properties of the composition or inverse of functions are given in the following
two propositions, the proofs of which are given in Appendices A and B.

Proposition 2.10 (composition function). If φ : Rn → R and ζ : R → R are
homogeneous in the 0- (resp., ∞-) limit functions, with weights rφ,0 and rζ,0 (resp.,
rφ,∞ and rζ,∞), degrees dφ,0 > 0 and dζ,0 ≥ 0 (resp., dφ,∞ > 0 and dζ,∞ ≥ 0),
and approximating functions φ0 and ζ0 (resp., φ∞ and ζ∞), then ζ ◦ φ is homoge-

neous in the 0- (resp., ∞-) limit with weight rφ,0 (resp., rφ,∞), degree dζ,0 dφ,0

rζ,0
(resp.,

dζ,∞ dφ,∞
rζ,∞

), and approximating function ζ0 ◦ φ0 (resp., ζ∞ ◦ φ∞).

Proposition 2.11 (inverse function). Let φ : R → R be a bijective homogeneous
in the 0- (resp., ∞-) limit function with associated triple

(
1, d0, ϕ0 xd0

)
with ϕ0 #= 0

and d0 > 0 (resp.,
(
1, d∞, ϕ∞ xd∞

)
with ϕ∞ #= 0 and d∞ > 0). Then the inverse

function φ−1 : R → R is a homogeneous in the 0- (resp., ∞-) limit function with

associated triple (1, 1
d0
, ( x

ϕ0
)

1
d0 ) (resp., (1, 1

d∞
, ( x

ϕ∞
)

1
d∞ )).

Despite the existence of well-known results concerning the derivative of a homo-
geneous function, it is not possible to say anything, in general, when dealing with
homogeneity in the limit. For example, the function

φ(x) = x3 + x2 sin(x2) + x3 sin(1/x) + x2, x ∈ R ,

is homogeneous in the bi-limit with associated triples

(
1, 2, x2

)
,

(
1, 3, x3

)
.

However, its derivative is homogeneous in neither the 0-limit nor the ∞-limit. Nev-
ertheless the following result holds, the proof of which is elementary.

Proposition 2.12 (integral function). If the function φ : Rn → R is homoge-
neous in the 0- (resp., ∞-) limit with associated triple (r0, d0, φ0) (resp., (r∞, d∞, φ∞)),
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then the function Φi(x) =
∫ xi

0 φ(x1, . . . , xi−1, s, xi+1, . . . , xn) ds is homogeneous in
the 0- (resp., ∞-) limit with associated triple (r0, d0 + r0,i,Φi,0) (resp., (r∞, d∞ +
r∞,i,Φi,∞)), with Φi,0(x) =

∫ xi

0 φ0(x1, . . . , xi−1, s, xi+1, . . . , xn) ds (resp., Φi,∞(x) =∫ xi

0 φ∞(x1, . . . , xi−1, s, xi+1, . . . , xn) ds).
By exploiting the definition of homogeneity in the bi-limit, it is possible to estab-

lish results which are straightforward extensions of well-known results based on the
standard notion of homogeneity. These results are given as corollaries of the following
key technical lemma, the proof of which is given in Appendix C.

Lemma 2.13 (key technical lemma). Let η : Rn → R and γ : Rn → R+ be two
functions homogeneous in the bi-limit, with weights r0 and r∞, degrees d0 and d∞,
and approximating functions, η0, η∞ and γ0, γ∞ such that the following hold:

{ x ∈ Rn \ {0} : γ(x) = 0 } ⊆{ x ∈ Rn : η(x) < 0 } ,

{ x ∈ Rn \ {0} : γ0(x) = 0 } ⊆{ x ∈ Rn : η0(x) < 0 } ,

{ x ∈ Rn \ {0} : γ∞(x) = 0 } ⊆{ x ∈ Rn : η∞(x) < 0 } .

Then there exists a real number c∗ such that, for all c ≥ c∗ and for all x in Rn \ {0},

η(x) − c γ(x) < 0 , η0(x) − c γ0(x) < 0 , η∞(x) − c γ∞(x) < 0 .(2.4)

Example 2.14. To illustrate the importance of this lemma, consider, for (x1, x2)
in R2, the functions

η(x1, x2) = x1 x2 − |x1|
r1+r2

r1 , γ(x1, x2) = |x2|
r1+r2

r2 ,

with r1 > 0 and r2 > 0. They are homogeneous in the standard sense, and therefore
in the bi-limit, with the same weight r = (r1, r2) and the same degree d = r1 + r2.
Furthermore, the function γ takes positive values, and for all (x1, x2) in {(x1, x2) ∈
R2 \ {0} : γ(x1, x2) = 0} we have

η(x1, x2) = −|x1|
r1+r2

r1 < 0 .

Thus Lemma 2.13 yields the existence of a positive real number c∗ such that for all
c ≥ c∗, we have

(2.5) x1 x2 − |x1|
r1+r2

r1 − c |x2|
r1+r2

r2 < 0 ∀ (x1, x2) ∈ R2 \ {0} .

This is a generalization of the procedure known as the completion of the squares in
which, however, the constant c∗1 is not specified.

Corollary 2.15. Let φ : Rn → R and ζ : Rn → R+ be two homogeneous in the
bi-limit functions with the same weights r0 and r∞, degrees dφ,0, dφ,∞ and dζ,0, dζ,∞,
and approximating functions η0, φ∞ and ζ0, ζ∞. If the degrees satisfy dφ,0 ≥ dζ,0 and
dφ,∞ ≤ dζ,∞, and the functions ζ, ζ0 and ζ∞ are positive definite, then there exists a
positive real number c satisfying

φ(x) ≤ c ζ(x) ∀ x ∈ Rn .

Proof. Consider the two functions

η(x) := φ(x) + ζ(x), γ(x) := ζ(x) .
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By property P2 (or P3)2 in section 2.2, they are homogeneous in the bi-limit with
degrees dζ,0 and dζ,∞. The function γ and its homogeneous approximations being
positive definite, all assumptions of Lemma 2.13 are satisfied. Therefore there exists
a positive real number c such that

c γ(x) > η(x) > φ(x) ∀ x ∈ Rn \ {0} .

Finally, by continuity of the functions φ and ζ at zero, we can obtain the claim.

2.3. Stability and homogeneous approximation. A very basic property of
asymptotic stability is its robustness. This fact was already known to Lyapunov, who
proposed his second method, in which (local) asymptotic stability of an equilibrium is
established by looking at the first order approximation of the system. The case of local
homogeneous approximations of higher degree has been investigated by Massera [16],
Hermes [9], Rosier [29], and Kawski [12].

Proposition 2.16 (see [29]). Consider a homogeneous in the 0-limit vector field
f : Rn → Rn with associated triple (r0, d0, f0). If the origin of the system

ẋ = f0(x)

is locally asymptotically stable, then the origin of

ẋ = f(x)

is locally asymptotically stable.
Consequently, a natural strategy to ensure local asymptotic stability of an equi-

librium of a system is to design a stabilizing homogeneous control law for the homo-
geneous approximation in the 0-limit (see [9, 12, 5], for instance).

Example 2.17. Consider the system (1.1), with q = 1 and p > q, and the linear
control law

u = −(c0 + 1)x2 − x1 .

The closed-loop vector field is homogeneous in the 0-limit with degree d0 = 0,
weight (1, 1) (i.e., we are in the linear case), and associated vector field f0(x1, x2) =

(x2,−x1 − x2)
T . Selecting the Lyapunov function of degree 2,

V0(x1, x2) =
1

2
|x1|2 +

1

2
|x2 + x1|2 ,

yields

∂V0

∂x
(x) f0(x) = −|x1|2 − |x2 + x1|2 .

It follows, from Lyapunov’s second method, that the control law locally asymptotically
stabilizes the equilibrium of the system. Furthermore, local asymptotic stability is
preserved in the presence of any perturbation which does not change the approximat-
ing homogeneous function, i.e., in the presence of perturbations which are dominated
by the linear part (see P2 in section 2.2).

2If φ0(x) + ζ0(x) = 0 (resp., φ∞(x) + ζ∞(x) = 0), the proof can be completed by replacing ζ
with 2ζ.
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In the context of homogeneity in the ∞-limit, we have the following result.
Proposition 2.18. Consider a homogeneous in the ∞-limit vector field f :

Rn → Rn with associated triple (r∞, d∞, f∞). If the origin of the system

ẋ = f∞(x)

is globally asymptotically stable, then there exists an invariant compact subset of Rn,
denoted C∞, which is globally asymptotically stable3 for the system

ẋ = f(x) .

The proof of the proposition is given in Appendix D.
As in the case of homogeneity in the 0-limit, this property can be used to design

a feedback, ensuring boundedness of solutions.
Example 2.19. Consider the system (1.1) with 0 < q < p < 2 and the control

law

(2.6) u = − 1

2 − p
x

p−1
2−p

1 x2 − x
p

2−p

1 − c∞ xp
2 −

(
x2 + x

1
2−p

1

)p

.

This control law is such that the closed-loop vector field is homogeneous in the ∞-limit
with degree d∞ = p − 1, weight (2 − p, 1), and associated vector field f∞(x1, x2) =

(x2,− 1
2−p x

p−1
2−p

1 x2 − x
p

2−p

1 −(x2 + x
1

2−p

1 )p)T . For the homogeneous Lyapunov function
of degree 2,

V∞(x1, x2) =
2 − p

2
|x1|

2
2−p +

1

2

∣∣∣∣x2 + x
1

2−p

1

∣∣∣∣
2

,

we get

∂V∞
∂x

(x) f∞(x) = −|x1|
p+1
2−p −

∣∣∣∣x2 + x
1

2−p

1

∣∣∣∣
p+1

.

It follows that the control law (2.6) guarantees boundedness of the solutions of the
closed-loop system. Furthermore, boundedness of solutions is preserved in the pres-
ence of any perturbation which does not change the approximating homogeneous
function in the ∞-limit, i.e., in the presence of perturbations which are negligible
with respect to the dominant homogeneous part (see P2 in section 2.2).

The key step in the proof of Propositions 2.16 and 2.18 is the converse Lyapunov
theorem given by Rosier in [29]. This result can also be extended to the case of
homogeneity in the bi-limit.

Theorem 2.20 (homogeneous in the bi-limit Lyapunov functions). Consider
a homogeneous in the bi-limit vector field f : Rn → Rn, with associated triples
(r∞, d∞, f∞) and (r0, d0, f0) such that the origins of the systems

(2.7) ẋ = f(x), ẋ = f∞(x), ẋ = f0(x)

are globally asymptotically stable equilibria. Let dV∞ and dV0 be real numbers such
that dV∞ > max1≤i≤n r∞,i and dV0 > max1≤i≤n r0,i. Then there exists a C1, positive
definite, and proper function V : Rn → R+ such that, for each i in {1, . . . , n},

3See [34] for the definition of global asymptotical stability for invariant compact sets.
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the function x %→ ∂V
∂xi

is homogeneous in the bi-limit with associated triples (r0,

dV0 − r0,i,
∂V0
∂xi

) and (r∞, dV∞ − r∞,i,
∂V∞
∂xi

), and the functions x %→ ∂V
∂x (x) f(x), x %→

∂V0
∂x (x) f0(x), and x %→ ∂V∞

∂x (x) f∞(x) are negative definite.
The proof is given in Appendix E. A direct consequence of this result is an input-

to-state stability (ISS) property with respect to disturbances (see [31]). To illustrate
this property, consider the system with exogenous disturbance δ = (δ1, . . . , δm) in
Rm,

(2.8) ẋ = f(x, δ) ,

with f : Rn×Rm a continuous vector field homogeneous in the bi-limit with associated
triples (d0, (r0, r0), f0) and (d∞, (r∞, r∞), f∞), where r0 and r∞ in (R+ \ {0})m are
the weights associated with the disturbance δ.

Corollary 2.21 (ISS property). If the origins of the systems

ẋ = f(x, 0), ẋ = f0(x, 0), ẋ = f∞(x, 0)

are globally asymptotically stable equilibria, then under the hypotheses of Theorem
2.20 the function V given by Theorem 2.20 satisfies,4 for all δ = (δ1, . . . , δm) in Rm

and x in Rn,

∂V

∂x
(x) f(x, δ) ≤ −cV H

(
V (x)

dV0
+d0

dV0 , V (x)
dV∞+d∞

dV∞

)

(2.9) + cδ

m∑

j=1

H

(
|δj |

dV0
+d0

r0,j , |δj |
dV∞+d∞

r∞,j

)
,

where cV and cδ are positive real numbers.
In other words, system (2.8) with δ as input satisfies an ISS property. The proof

of this corollary is given in Appendix F.
Finally, we have also the following small-gain result for homogeneous in the bi-

limit vector fields.
Corollary 2.22 (small-gain). Under the hypotheses of Corollary 2.21, there

exists a real number cG > 0 such that, for each class K function γz and KL function
βδ, there exists a class KL function βx such that, for each function t ∈ [0, T ) %→
(x(t), δ(t), z(t)), T ≤ +∞, with x C1 and δ and z continuous, which satisfy (2.8) on
[0, T ) and, for all 0 ≤ s ≤ t ≤ T ,

|z(t)| ≤ max

{
βδ

(
|z(s)|, t− s

)
, sup
s≤κ≤t

γz(|x(κ)|)
}

,(2.10)

|δi(t)| ≤ max

{
βδ

(
|z(s)|, t− s

)
, cG sup

s≤κ≤t

{
H
(
|x(κ)|r0,ir0 , |x(κ)|r∞,i

r∞

)}}
,(2.11)

we have

(2.12) |x(t)| ≤ βx(|(x(s), z(s))|, t− s), 0 ≤ s ≤ t ≤ T .

4The function H is defined in (1.6).
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The proof is given in Appendix G.
Example 2.23. An interesting case, which can be dealt with by Corollary 2.22, is

when the δi’s are outputs of auxiliary systems with state zi in Rni , i.e.,

(2.13) δi(t) := δi(zi(t), x(t)), żi = gi(zi, x) .

It can be checked that the bounds (2.11) and (2.10) are satisfied by all the solutions
of (2.8) and (2.13) if there exist positive definite and radially unbounded functions
Zi : Rni → R+; class K functions ω1, ω2, and ω3; and a positive real number ε in
(0, 1) such that for all x in Rn, for all i in {1, . . . ,m}, and zi in Rni , we have

|δi(zi, x)| ≤ ω1(x) + ω2(Zi(zi)),
∂Zi

∂zi
(zi) gi(zi, x) ≤ −Zi(zi) + ω3(|x|) ,

ω1(x) + ω2 ([1 + ε]ω3(|x|)) ≤ cGH
(
|x|r0,ir0 , |x|r∞,i

r∞

)
.

Another important result exploiting Theorem 2.20 deals with finite time conver-
gence of solutions toward a globally asymptotically stable equilibrium (see [4]). It is
well known that when the origin of the homogeneous approximation in the 0-limit
is globally asymptotically stable with a strictly negative degree, then solutions con-
verge to the origin in finite time (see [3]). We extend this result by showing that if,
furthermore, the origin of the homogeneous approximation in the ∞-limit is globally
asymptotically stable with strictly positive degree, then the convergence time doesn’t
depend on the initial condition. This is expressed by the following corollary.

Corollary 2.24 (uniform and finite time convergence). Under the hypotheses
of Theorem 2.20, if we have d∞ > 0 > d0, then all solutions of the system ẋ = f(x)
converge in finite time to the origin, uniformly in the initial condition.

The proof is given in Appendix H.

3. Recursive observer design for a chain of integrators. The notion of
homogeneity in the bi-limit is instrumental in introducing a new observer design
method. Throughout this section we consider a chain of integrators, with state Xn =
(X1, . . . ,Xn) in Rn, namely,

(3.1) Ẋ1 = X2 , . . . , Ẋn = u, or in compact form, Ẋn = Sn Xn + Bn u ,

where Sn is the shift matrix of order n, i.e., Sn Xn = (X2, . . . ,Xn, 0)T and Bn =
(0, . . . , 0, 1)T . By selecting arbitrary vector field degrees d0 and d∞ in (−1, 1

n−1 ), we
see that, to possibly obtain homogeneity in the bi-limit of the associated vector field,
we must choose the weights r0 = (r0,1, . . . , r0,n) and r∞ = (r∞,1, . . . , r∞,n) as

(3.2)
r0,n = 1 , r0,i = r0,i+1 − d0 = 1 − d0 (n− i) ,

r∞,n = 1 , r∞,i = r∞,i+1 − d∞ = 1 − d∞ (n− i) .

The goal of this section is to introduce a global homogeneous in the bi-limit observer
for the system (3.1). This design follows a recursive method, which constitutes one of
the main contributions of this paper.

The idea of designing an observer recursively starting from Xn and going back-
wards towards X1 is not new. It can be found, for instance, in [28, 26, 23, 30, 35] and
in [7, Lemma 6.2.1]. Nevertheless, the procedure we propose is new and extends the
results in [23, Lemmas 1 and 2] to the homogeneous in the bi-limit case.
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Also, as opposed to what is proposed in [28, 26],5 this observer is an exact observer
(with any input u) for a chain of integrators. The observer is given by the system6

(3.3) ˙̂
Xn = Sn X̂n + Bn u + K1(X̂1 − X1) ,

with state X̂n = (X̂1, . . . , X̂n), and where K1 : Rn → Rn is a homogeneous in the
bi-limit vector field with weights r0, r∞ and degrees d0, d∞. The output injection
vector field K1 has to be selected such that the origin is a globally asymptotically
stable equilibrium for the system

(3.4) Ė1 = Sn E1 + K1(e1), E1 = (e1, . . . , en)T ,

and also for its homogeneous approximations. The construction of K1 is performed
via a recursive procedure whose induction argument is as follows.

Consider the system on Rn−i given by

(3.5) Ėi+1 = Sn−i Ei+1 + Ki+1(ei+1), Ei+1 = (ei+1, . . . , en)T ,

with Sn−i the shift matrix of order n − i, i.e., Sn−i Ei+1 = (ei+2, . . . , en, 0)T , and
Ki+1 : Rn−i → Rn−i a homogeneous in the bi-limit vector field, whose associated
triples are ((r0,i+1, . . . , r0,n), d0,Ki+1,0) and ((r∞,i+1, . . . , r∞,n), d∞,Ki+1,∞).

Theorem 3.1 (homogeneous in the bi-limit observer design). Consider the sys-
tem (3.5) and its homogeneous approximation at infinity and around the origin,

Ėi+1 = Sn−i Ei+1 + Ki+1,0(ei+1), Ėi+1 = Sn−i Ei+1 + Ki+1,∞(ei+1) .

Suppose the origin is a globally asymptotically stable equilibrium for these systems.
Then there exists a homogeneous in the bi-limit vector field Ki : Rn−i+1 → Rn−i+1,
with associated triples ((r0,i, . . . , r0,n), d0,Ki,0) and ((r∞,i, . . . , r∞,n), d∞,Ki,∞), such
that the origin is a globally asymptotically stable equilibrium for the systems

Ėi = Sn−i+1 Ei + Ki(ei) ,

Ėi = Sn−i+1 Ei + Ki,0(ei), Ei = (ei, . . . , en)T ,(3.6)

Ėi = Sn−i+1 Ei + Ki,∞(ei) .

Proof. We prove this result in two steps. First, we define a homogeneous in the
bi-limit Lyapunov function. Then we construct the vector field Ki, depending on a
parameter / which, if sufficiently large, renders negative definite the derivative of this
Lyapunov function along the solutions of the system.

Step 1. Definition of the Lyapunov function. Let dW0 and dW∞ be positive real
numbers satisfying

(3.7) dW0 > 2 max1≤j≤n r0,j + d0, dW∞ > 2 max1≤j≤n r∞,j + d∞ ,

and

(3.8)
dW∞

r∞,i
≥ dW0

r0,i
.

5Note the term xi in (3.15) of [28], for instance.
6To simplify the presentation, we use the compact notation K1(X̂1−X1) for K1(X̂1−X1, 0, . . . , 0).
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The selection (3.2) implies r0,j + d0 > 0 and r∞,j + d∞ > 0 for each j in {1, . . . , n}.
Hence,

dW0 > max
1≤j≤n

r0,j , dW∞ > max
1≤j≤n

r∞,j ,

and we can invoke Theorem 2.20 for the system (3.4) and its homogeneous approxima-
tions given in (3.5). This implies that there exists a C1, positive definite, and proper

function Wi+1 : Rn−i → R+ such that, for each j in {i+1, . . . , n}, the function ∂Wi+1

∂ej
is homogeneous in the bi-limit with associated triples

(
(r0,i+1, . . . , r0,n), dW0 − r0,j ,

∂Wi+1,0

∂ej

)
and

(
(r∞,i+1, . . . , r∞,n), dW∞ − r∞,j ,

∂Wi+1,∞
∂ej

)
.

Moreover, for all Ei+1 ∈ Rn−i \ {0}, we have

∂Wi+1

∂Ei+1
(Ei+1) (Sn−i Ei+1 + Ki+1(ei+1)) < 0 ,

∂Wi+1,0

∂Ei+1
(Ei+1) (Sn−i Ei+1 + Ki+1,0(ei+1)) < 0 ,(3.9)

∂Wi+1,∞
∂Ei+1

(Ei+1) (Sn−i Ei+1 + Ki+1,∞(ei+1)) < 0 .

Consider the function qi : R → R defined as

(3.10) qi(s) =






r0,i
r0,i+d0

s
r0,i+d0

r0,i , |s| ≤ 1 ,

r∞,i

r∞,i+d∞
s

r∞,i+d∞
r∞,i + r0,i

r0,i+d0
− r∞,i

r∞,i+d∞
, |s| ≥ 1 .

Since we have 0 < r0,i + d0 and 0 < r∞,i + d∞, this function is well defined and
continuous on R, strictly increasing and onto, and C1 on R \ {0}. Furthermore, it is
by construction homogeneous in the bi-limit with approximating continuous functions

r0,i
r0,i+d0

s
r0,i+d0

r0,i and r∞,i+d∞
r∞,i

s
r∞,i+d∞

r∞,i . The inverse function q−1
i of qi is defined as

q−1
i (s) =






(
r0,i+d0

r0,i
s
) r0,i

r0,i+d0 , |s| ≤ r0,i+d0

r0,i
,

((
s− r0,i

r0,i+d0
+ r∞,i

r∞,i+d∞

)
r∞,i+d∞

r∞,i

) r∞,i
r∞,i+d∞

, |s| ≥ r0,i+d0

r0,i
.

By (3.8), the function

(3.11) s %→ q−1
i (s)

dW0
−r0,i

r0,i + q−1
i (s)

dW∞−r∞,i
r∞,i

is homogeneous in the bi-limit with associated approximating functions

( r0,i+d0

r0,i
s)

dW0
−r0,i

r0,i+d0 and ( r∞,i+d∞
r∞,i

s)
dW∞−r∞,i
r∞,i+d∞ . Furthermore, by (3.7), it is C1 on R, and

its derivative is homogeneous in the bi-limit with continuous approximating functions

s %→ dW0−r0,i
r0,i

∣∣∣dW0−r0,i
r0,i+d0

s
∣∣∣
dW0

−2r0,i−d0
r0,i+d0 and s %→ dW∞−r∞,i

r∞,i

∣∣∣dW∞−r∞,i

r∞,i+d∞
s
∣∣∣
dW∞−2r∞,i−d∞

r∞,i+d∞
.
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Let Wi : Rn−i+1 → R+ be defined by

Wi(Ei+1, s) = Wi+1(Ei+1) +

∫ s

q−1
i (ei+1)

(
h

dW0
−r0,i

r0,i + h
dW∞−r∞,i

r∞,i

)
dh

−
∫ s

q−1
i (ei+1)

(
q−1
i (ei+1)

dW0
−r0,i

r0,i + q−1
i (ei+1)

dW∞−r∞,i
r∞,i

)
dh .

This function is C1, and by (3.8), Proposition 2.12 yields that it is homogeneous in
the bi-limit with weights (r0,i+1, . . . , r0,n) and (r∞,i+1, . . . , r∞,n) for Ei+1, r0,i and
r∞,i for s, and degrees dW0 and dW∞ . Furthermore, for each j in {i + 1, . . . , n}, the
functions ∂Wi

∂ej
(Ei+1, s) are also homogeneous in the bi-limit with the same weights

and with degrees dW0 − r0,j and dW∞ − r∞,j .
Step 2. Construction of the vector field Ki. Given a positive real number /, we

define the vector field Ki : Rn−i → Rn−i as

Ki(ei) =

(
−qi(/ei)

Ki+1(qi(/ei))

)
.

By Proposition 2.10 and the properties we have established for qi, Ki is a homogeneous
in the bi-limit vector field. We show now that selecting / large enough yields the
asymptotic stability properties. To begin with, note that for all Ei = (Ei+1, ei) in
Rn−i,

∂Wi(Ei+1, /ei)

∂Ei
(Ei) (Sn−i+1 Ei + Ki(ei)) ≤ T1(Ei+1, /ei) − / T2(Ei+1, /ei) ,

with the functions T1 and T2 defined as

T1(Ei+1, ϑi) =
∂Wi

∂Ei+1
(Ei+1, ϑi) (Sn−i Ei+1 + Ki+1(qi(ϑi))) ,

T2(Ei+1, ϑi) =

(
ϑ

dW0
−r0,i

r0,i

i − q−1
i (ei+1)

dW0
−r0,i

r0,i + ϑ

dW∞−r∞,i
r∞,i

i − q−1
i (ei+1)

dW∞−r∞,i
r∞,i

)

×(qi(ϑi) − ei+1) .

These functions are homogeneous in the bi-limit with weights (r∞,i, . . . , r∞,n) and
(r0,i, . . . , r0,n), degrees d0 + dW0 and d∞ + dW∞ , and continuous approximating func-
tions

T1,0(Ei+1, ϑi) =
∂Wi,0

∂Ei+1
(Ei+1, ϑi) (Sn−i Ei+1 + Ki+1,0(qi,0(ϑi))) ,

T1,∞(Ei+1, ϑi) =
∂Wi,∞
∂Ei+1

(Ei+1, ϑi) (Sn−i Ei+1 + Ki+1,∞(qi,∞(ϑi))) ,

T2,0(Ei+1, ϑi) =

(
ϑ

dW0
−r0,i

r0,i

i − q−1
i,0 (ei+1)

dW0
−r0,i

r0,i

)
(qi,0(ϑi) − ei+1) ,

and

T2,∞(Ei+1, ϑi) =

(
ϑ

dW∞−r∞,i
r∞,i

i − q−1
i,∞(ei+1)

dW∞−r∞,i
r∞,i

)
(qi,∞(ϑi) − ei+1) .
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As the function q−1
i is continuous, strictly increasing and onto, the function

ϑ

dW0
−r0,i

r0,i

i − q−1
i (ei+1)

dW0
−r0,i

r0,i + ϑ

dW∞−r∞,i
r∞,i

i − q−1
i (ei+1)

dW∞−r∞,i
r∞,i

has a unique zero at qi(ϑi) = ei+1 and has the same sign as qi(ϑi) − ei+1. It follows
that

T2(Ei+1, ϑi) ≥ 0 ∀ (Ei+1, ϑi) ∈ Rn−i ,

T2(Ei+1, ϑi) = 0 ⇒ qi(ϑi) = ei+1 .

On the other hand, for all Ei #= 0,

T1(Ei+1, q
−1
i (ei+1)) =

∂Wi+1

∂Ei+1
(Ei+1) (Sn−i Ei+1 + Ki+1(ei+1)) < 0 .

Hence (3.9) yields

{
(Ei+1, ϑi) ∈ Rn−i+1 \ {0} : T2(Ei+1, ϑi) = 0

}

⊆
{
(Ei+1, ϑi) ∈ Rn−i+1 : T1(Ei+1, ϑi) < 0

}
.

By following the same argument, it can be shown that this property holds also for
the homogeneous approximations, i.e.,

{
(Ei+1, ϑi) ∈ Rn−i+1 \ {0} : T2,0(Ei+1, ϑi) = 0

}

⊆
{
(Ei+1, ϑi) ∈ Rn−i+1 : T1,0(Ei+1, ϑi) < 0

}
,

{
(Ei+1, ϑi) ∈ Rn−i+1 \ {0} : T2,∞(Ei+1, ϑi) = 0

}

⊆
{
(Ei+1, ϑi) ∈ Rn−i+1 : T1,∞(Ei+1, ϑi) < 0

}
.

Therefore, by Lemma 2.13, there exists /∗ such that, for all / ≥ /∗ and all (Ei+1, ϑi) #=
0,

T1(Ei+1, ϑi) − / T2(Ei+1, ϑi) < 0 ,

T1,0(Ei+1, ϑi) − / T2,0(Ei+1, ϑi) < 0 ,

T1,∞(Ei+1, ϑi) − / T2,∞(Ei+1, ϑi) < 0 .

This implies that the origin is a globally asymptotically stable equilibrium of the
systems (3.6), which concludes the proof.

To construct the function K1, which defines the observer (3.3), it is sufficient to
iterate the construction proposed in Theorem 3.1 starting from

Kn(en) = −
{ 1

1+d0
(/nen)1+d0 , |/nen| ≤ 1 ,

1
1+d∞

(/nen)1+d∞ + 1
1+d0

− 1
1+d∞

, |/nen| ≥ 1 ,

where /n is any strictly positive real number. Indeed, Kn is a homogeneous in the
bi-limit vector field with approximating functions Kn,0(en) = 1

1+d0
(/nen)1+d0 and

Kn,∞(en) = 1
1+d∞

(/nen)1+d∞ . This selection implies that the origin is a globally
asymptotically stable equilibrium for the systems ėn = Kn(en), ėn = Kn,0(en),
and ėn = Kn,∞(en).
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Consequently the assumptions of Theorem 3.1 are satisfied for i+ 1 = n. We can
apply it recursively up to i = 1, obtaining the vector field K1.

As a result of this procedure we obtain a homogeneous in the bi-limit observer,
which globally asymptotically observes the state of the system (3.1), and also the
state for its homogeneous approximations around the origin and at infinity. In other
words, the origin is a globally asymptotically stable equilibrium of the systems

(3.12) Ė1 = SnE1 + K1(e1) , Ė1 = SnE1 + K1,0(e1) , Ė1 = SnE1 + K1,∞(e1) .

Remark 3.2. Note that when 0 ≤ d0 ≤ d∞, we have 1 ≤ r0,i+d0

r0,i
≤ r∞,i+d∞

r∞,i
for

i = 1, . . . , n and we can replace the function qi in (3.10) by the simpler function

qi(s) = s
r0,i+d0

r0,i + s
r∞,i+d∞

r∞,i ,

which has been used already in [1].
Example 3.3. Consider a chain of integrators of dimension two, with the following

weights and degrees:

(r0, d0) =
(
(2 − q, 1), q − 1

)
, (r∞, d∞) =

(
(2 − p, 1), p− 1

)
.

When q ≥ p (i.e., d0 ≤ d∞), by following the above recursive observer design we
obtain two positive real numbers /1 and /2 such that the system

˙̂X1 = X̂2 − q1(/1e1) , ˙̂X2 = u− q2(/2 q1(/1e1)) , e1 = X̂1 − y ,

with

(3.13) q2(s) =

{
1
q sq, |s| ≤ 1,
1
ps

p + 1
q − 1

p , |s| ≥ 1,
q1(s) =

{
(2 − q) s

1
2−q , |s| ≤ 1,

(2 − p)s
1

2−p + p− q, |s| ≥ 1,

is a global observer for the system Ẋ1 = X2, Ẋ2 = u, y = X1. Furthermore, its ho-
mogeneous approximations around the origin and at infinity are also global observers
for the same system.

4. Recursive design of a homogeneous in the bi-limit state feedback.
It is well known that the system (3.1) can be rendered homogeneous by using a
stabilizing homogeneous state feedback which can be designed by backstepping (see
[21, 25, 19, 26, 33, 10], for instance). We show in this section that this property can
be extended to the case of homogeneity in the bi-limit. More precisely, we show that
there exists a homogeneous in the bi-limit function φn such that the system (3.1) with
u = φn(Xn) is homogeneous in the bi-limit, with weights r0 and r∞ and degrees d0

and d∞. Furthermore, its origin and the origin of the approximating systems in the
0-limit and in the ∞-limit are globally asymptotically stable equilibria.

To design the state feedback we follow the approach of Praly and Mazenc [25]. To
this end, consider the auxiliary system with state Xi = (X1, . . . ,X i) in Ri, 1 ≤ i < n,
and dynamics

(4.1) Ẋ1 = X2, . . . , Ẋ i = u or in compact form Ẋi = Si Xi + Bi u ,

where u is the input in R, Si is the shift matrix of order i, i.e., Si Xi = (X2, . . . ,X i, 0)T ,
and Bi = (0, . . . , 1)T is in Ri. We show that, if there exists a homogeneous in the
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bi-limit stabilizing control law for the origin of the system (4.1), then there is one for
the origin of the system with state Xi+1 = (X1, . . . ,X i+1) in Ri+1 defined by

(4.2) Ẋ1 = X2, . . . , Ẋ i+1 = u, i.e., Ẋi+1 = Si+1 Xi+1 + Bi+1 u .

Let d0 and d∞ be in (−1, 1
n−1 ) and consider the weights and degrees defined in (3.2).

Theorem 4.1 (homogeneous in the bi-limit backstepping). Suppose there exists
a homogeneous in the bi-limit function φi : Ri → R with associated triples (r0, d0 +
r0,i, φi,0) and (r∞, d∞ + r∞,i, φi,∞) such that the following hold:

1. There exists αi ≥ 1 such that the function ψi(Xi) = φi(Xi)αi is C1 and
for each j in {1, . . . , i} the function ∂ψi

∂Xj
is homogeneous in the bi-limit with

weights (r0,1, . . . , r0,i), (r∞,1, . . . , r∞,i), degrees αi(r0,i + d0)− r0,j, αi(r∞,i +
d∞) − r∞,j, and approximating functions ∂ψi0

∂Xj
, ∂ψi∞

∂Xj
.

2. The origin is a globally asymptotically stable equilibrium of the systems

(4.3)

Ẋi = Si Xi + Bi φi(Xi) , Ẋi = Si Xi + Bi φi,0(Xi) , Ẋi = Si Xi + Bi φi,∞(Xi) .

Then there exists a homogeneous in the bi-limit function φi+1 : Ri+1 → R with
associated triples (r0, d0 + r0,i+1, φi+1,0) and (r∞, d∞ + r∞,i+1, φi+1,∞) such that the
same properties hold, i.e.,

1. there exists a real number αi+1 > 1 such that the function ψi+1(Xi+1) =

φi+1(Xi+1)αi+1 is C1 and for each j in {1, . . . , i + 1} the function ∂ψi+1

∂Xj
is

homogeneous in the bi-limit with weights (r0,1, . . . , r0,i+1), (r∞,1, . . . , r∞,i+1),
degrees αi+1(r0,i+1 +d0)− r0,j, αi+1(r∞,i+1 +d∞)− r∞,j, and approximating

functions ∂ψi+1,0

∂Xj
, ∂ψi+1,∞

∂Xj
;

2. the origin is a globally asymptotically stable equilibrium of the systems

Xi+1 = Si+1 Xi+1 + Bi+1 φi+1(Xi+1) ,

Xi+1 = Si+1 Xi+1 + Bi+1 φi+1,0(Xi+1) ,(4.4)

Xi+1 = Si+1 Xi+1 + Bi+1 φi+1,∞(Xi+1) .

Proof. We prove this result in three steps. First, we construct a homogeneous in
the bi-limit Lyapunov function; then we define a control law parametrized by a real
number k. Finally, we show that there exists k such that the time derivative, along
the trajectories of systems (4.4), of the Lyapunov function and of its approximating
functions is negative definite.

Step 1. Construction of the Lyapunov function. Let dV0 and dV∞ be positive real
numbers satisfying

(4.5) dV0 > max
j∈{1,...,n}

{r0,j}, dV∞ > max
j∈{1,...,n}

{r∞,j} ,

and

(4.6)
dV∞

r∞,i+1
≥ dV0

r0,i+1
> 1 + αi .

With this selection, Theorem 2.20 gives the existence of a C1, proper, and positive
definite function Vi : Ri → R+ such that, for each j in {1, . . . , n}, the function ∂Vi

∂Xj
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is homogeneous in the bi-limit with weights (r0,1, . . . , r0,i), (r∞,1, . . . , r∞,i), degrees

dV0 − r0,j , dV∞ − r∞,j , and approximating functions ∂Vi,0

∂Xj
, ∂Vi,∞

∂Xj
. Moreover, we have

for all Xi ∈ Ri \ {0},

∂Vi

∂Xi
(Xi) [Si Xi + Bi φi(Xi)] < 0 ,

∂Vi,0

∂Xi
(Xi) [Si Xi + Bi φi,0(Xi)] < 0 ,(4.7)

∂Vi,∞
∂Xi

(Xi) [Si Xi + Bi φi,∞(Xi)] < 0 .

Following [21], consider the Lyapunov function Vi+1 : Ri+1 → R+ defined by

Vi+1(Xi+1) = Vi(Xi) +

∫ Xi+1

φi(Xi)

(
h

dV0
−r0,i+1

r0,i+1 − φi(Xi)
dV0

−r0,i+1
r0,i+1

)
dh

+

∫ Xi+1

φi(Xi)

(
h

dV∞−r∞,i+1
r∞,i+1 − φi(Xi)

dV∞−r∞,i+1
r∞,i+1

)
dh .

This function is positive definite and proper. Furthermore, as dV∞ and dV0 satisfy
(4.6), we have

dV∞ − r∞,i+1

r∞,i+1
≥ dV0 − r0,i+1

r0,i+1
> αi ≥ 1 .

Since the function ψi(Xi) = φi(Xi)αi is C1, this inequality yields that the function

Vi+1 is C1 . Finally, for each j in {1, . . . , n}, the function ∂Vi+1

∂Xj
is homogeneous in

the bi-limit with associated triples

(
(r0,1, . . . , r0,i+1), dV0 − r0,j ,

∂Vi+1,0

∂X j

)
,

(
(r∞,1, . . . , r∞,i+1), dV∞ − r∞,j ,

∂Vi+1,∞
∂X j

)
.

Step 2. Definition of the control law. Recall (1.6) and consider the function
ψi+1 : Ri+1 → R defined by

ψi+1(Xi+1) = −k

∫ X
αi
i+1−φi(Xi)

αi

0
H

(
|s|αi+1

d0+r0,i+1
αi r0,i+1

−1
, |s|αi+1

d∞+r∞,i+1
αi r∞,i+1

−1
)

ds ,

where k in R+ is a design parameter and αi+1 is selected as

αi+1 ≥ max

{
αi r0,i+1

d0 + r0,i+1
,

αi r∞,i+1

d∞ + r∞,i+1
, 1

}
.

ψi+1 takes values with the same sign as X i+1 − φi(Xi), is C1, and, by Proposition
2.12, is homogeneous in the bi-limit. Furthermore, by Proposition 2.10, for each j
in {1, . . . , i + 1}, the function ∂ψi+1

∂Xj
is homogeneous in the bi-limit, with weights

(r0,1, . . . , r0,i+1), (r∞,1, . . . , r∞,i+1), degrees αi+1(r0,i+1 + d0) − r0,j , αi+1(r∞,i+1 +

d∞) − r∞,j , and approximating functions ∂ψi+1,0

∂Xj
, ∂ψi+1,∞

∂Xj
. With this at hand, we

choose the control law φi+1 as

φi+1(Xi+1) = ψi+1(Xi+1)
1

αi+1 .
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Step 3. Selection of k. Note that

(4.8)
∂Vi+1

∂Xi+1
(Xi+1) [Si+1 Xi+1 + Bi+1 φi+1(Xi+1)] = T1(Xi+1) − k T2(Xi+1) ,

with the functions T1 and T2 defined as

T1(Xi+1) =
∂Vi+1

∂Xi
(Xi+1) [Si Xi + BiX i+1)]

T2(Xi+1) =

(
X

dV0
−r0,i+1

r0,i+1

i+1 − φi(Xi)
dV0

−r0,i+1
r0,i+1

+ X

dV∞−r∞,i+1
r∞,i+1

i+1 − φi(Xi)
dV∞−r∞,i+1

r∞,i+1

)
φi+1(Xi+1) .

By the definition of homogeneity in the bi-limit and Proposition 2.10, these functions
are homogeneous in the bi-limit with weights (r0,1, . . . , r0,i+1) and (r∞,1, . . . , r∞,i+1)
and degrees dV0 + d0 and dV∞ + d∞. Moreover, since φi+1(Xi+1) has the same sign as
X i+1 − φi(Xi), T2(Xi+1) is nonnegative for all Xi+1 in Ri+1 and, as φi+1(Xi+1) = 0
only if X i+1 − φi(Xi) = 0, we get

T2(Xi+1) = 0 =⇒ X i+1 = φi(Xi) ,

X i+1 = φi(Xi) =⇒ T1(Xi+1) =
∂Vi

∂Xi
(Xi) [Si Xi + Biφi(Xi)] .

Consequently, equations (4.7) yield
{
Xi+1 ∈ Ri+1 \ {0} : T2(Xi+1) = 0

}
⊆

{
Xi+1 ∈ Ri+1 : T1(Xi+1) < 0

}
.

The same implication holds for the homogeneous approximations of the two functions
at infinity and around the origin, i.e.,

{
Xi+1 ∈ Ri+1 \ {0} : T2,0(Xi+1) = 0

}
⊆

{
Xi+1 ∈ Ri+1 : T1,0(Xi+1) < 0

}
,

{
Xi+1 ∈ Ri+1 \ {0} : T2,∞(Xi+1) = 0

}
⊆

{
Xi+1 ∈ Ri+1 : T1,∞(Xi+1) < 0

}
.

Hence, by Lemma 2.13, there exists k∗ > 0 such that, for all k ≥ k∗, we have for all
Xi+1 #= 0,

∂Vi+1

∂Xi+1
(Xi+1) [Si+1 Xi+1 + Bi+1φi+1(Xi+1)] < 0 ,

∂Vi+1,0

∂Xi+1
(Xi+1) [Si+1 Xi+1 + Bi+1φi+1,0(Xi+1)] < 0 ,

∂Vi+1,∞
∂Xi+1

(Xi+1) [Si+1 Xi+1 + Bi+1φi+1,∞(Xi+1)] < 0 .

This implies that the origin is a globally asymptotically stable equilibrium of the
systems (4.4).

To construct the function φn it is sufficient to iterate the construction in Theorem
4.1 starting from

φ1(X1) = ψ1(X1)
1

α1 , ψ1(X1) = −k1

∫ X1

0
H

(
|s|α1

r0,2
r0,1

−1
, |s|α1

r∞,2
r∞,1

−1
)

ds ,

with k1 > 0.
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At the end of the recursive procedure, we have that the origin is a globally asymp-
totically stable equilibrium of the systems

Xn = Sn Xn + Bn φn(Xn) ,

Xn = Sn Xn + Bn φn,0(Xn) ,(4.9)

Xn = Sn Xn + Bn φn,∞(Xn) .

Remark 4.2. Note that if d0 ≥ 0 and d∞ ≥ 0, then we can select αi = 1 for all
1 ≤ i ≤ n, and if d0 ≤ 0 and d∞ ≥ d0, then we can select αi = r0,1

r0,i+1
. Finally, if

d∞ ≤ 0 and d0 ≥ d∞, then we can select αi = r∞,1

r∞,i+1
.

Remark 4.3. As in the observer design, when d0 ≤ d∞, we have r0,i+1+d0

r0,i+1
≤

r∞,i+1+d∞
r∞,i+1

for i = 1, . . . , n and we can replace the function ψi by the simpler function

(4.10) ψi+1(Xi+1) = −k

(
|Xαi

i+1 − φi(Xi)αi |αi+1
d0+r0,i+1
αi r0,i+1

+|Xαi
i+1 − φi(Xi)αi |αi+1

d∞+r∞,i+1
αi r∞,i+1

)
.

Finally, if 0 ≤ d0 ≤ d∞, then by taking αi = 1 (see Remark 4.2) and φ(Xi+1) =
ψi+1(Xi+1) as defined in (4.10), we recover the design in [1].

Example 4.4. Consider a chain of integrators of dimension two with weights and
degrees

(r0, d0) =
(
(2 − q, 1), q − 1

)
, (r∞, d∞) =

(
(2 − p, 1), p− 1

)
,

with 2 > p > q > 0. Given k1 > 0, using the proposed backstepping procedure we
obtain a positive real number k2 such that the feedback

(4.11) φ2(X1,X2) = −k2

∫ X1−φi(X1)

0
H
(
|s|q−1, |s|p−1

)
ds ,

with φ1(X1) = −k1

∫ X1

0 H(|s|
q−1
2−q , |s|

p−1
2−p ) ds, renders the origin a globally asymptoti-

cally stable equilibrium of the closed-loop system. Furthermore, as a consequence of
the robustness result in Corollary 2.22, there is a positive real number cG such that, if
the positive real numbers |c0| and |c∞| associated with δi in (1.2) are smaller than cG,
then the control law φ2 globally asymptotically stabilizes the origin of system (1.1).

5. Application to nonlinear output feedback design.

5.1. Results on output feedback. The tools presented in the previous sections
can be used to derive two new results on stabilization by output feedback for the
origin of nonlinear systems. The output feedback is designed for a simple chain of
integrators,

(5.1) ẋ = Sn x + Bn u, y = x1 ,

where x is in Rn, y is the output in R, and u is the control input in R. It is then
shown to be adequate to solve the output feedback stabilization problem for the origin
of systems for which this chain of integrators can be considered as the dominant part
of the dynamics.
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Such a domination approach has a long history. It is the cornerstone of the results
in [13] (see also [27] and [24]), where a linear controller was introduced to deal with
nonlinear systems. This approach has also been followed with nonlinear controllers in
[22] and more recently in combination with weighted homogeneity in [35, 26, 28] and
the references therein.

In the context of homogeneity in the bi-limit, we use this approach exploiting the
proposed backstepping and recursive observer designs. Following the idea introduced
by Qian in [26] (see also [27]), the output feedback we proposed is given by

˙̂
Xn = L

(
Sn X̂n + Bnφn(X̂n) + K1(x1 − X̂1)

)
, u = Ln φn(X̂n) ,(5.2)

with X̂n in Rn and where φn and K1 are continuous functions and L is a positive
real number. Employing the recursive procedure given in sections 3 and 4, we get the
following theorem, whose proof is in section 5.2.

Theorem 5.1. For all real numbers d0 and d∞ in (−1, 1
n−1 ), there exists a

homogeneous in the bi-limit function φn : Rn → R with associated triples (r0, 1 +
d0, φn,0) and (r∞, 1 + d∞, φn,∞) and a homogeneous in the bi-limit vector field K1 :
Rn → Rn with associated triples (r0, d0,K1,0) and (r∞, d∞,K1,∞) such that for all
real numbers L > 0 the origin is a globally asymptotically stable equilibrium of the
systems (5.1) and (5.2) and their homogeneous approximations.

We can then apply Corollary 2.22 to get an output feedback result for nonlinear
systems described by

(5.3) ẋ = Sn x + Bn u + δ(t), y = x1 ,

where δ : R+ → Rn is a continuous function related to the solutions as described in
the two corollaries below and proved in section 5.2. Depending on whether d0 ≤ d∞
or d∞ ≤ d0, we get an output feedback result for systems in feedback or feedforward
form.

Corollary 5.2 (feedback form). If, in the design of φn and K1, we select
d0 ≤ d∞, then for all positive real numbers c0 and c∞ there exists a real number
L∗ > 0 such that for every L in [L∗,+∞), the following holds:

• For every class K function γz and class KL function βδ, we can find two class
KL functions βx and βx̂ such that, for each function t ∈ [0, T ) %→ (x(t), X̂n(t), δ(t), z(t)),
T ≤ +∞, with (x, X̂n) C1 and δ and z continuous, which satisfies (5.3), (5.2), and
for i in {1, . . . , n} and 0 ≤ s ≤ t < T ,

|z(t)| ≤ max
{
βδ

(
|z(s)|, t− s

)
, sups≤κ≤t γz(|x(κ)|)

}
,

|δi(t)| ≤ max




βδ

(
|z(s)|, t− s

)
,

(5.4) sup
s≤κ≤t




c0

i∑

j=1

|xj(κ)|
1−d0(n−i−1)
1−d0(n−j) + c∞

i∑

j=1

|xj(κ)|
1−d∞(n−i−1)
1−d∞(n−j)









 ,

we have for all 0 ≤ s ≤ t ≤ T ,

|x(t)| ≤ βx(|(x(s), X̂n(s), z(s))|, t− s), |X̂n(t)| ≤ βx̂(|(x(s), X̂n(s), z(s))|, t− s) .
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Corollary 5.3 (feedforward form). If, in the design of φn and K1, we select
d∞ ≤ d0, then for all positive real numbers c0 and c∞ there exists a real number
L∗ > 0 such that for every L in (0, L∗], the following holds:

• For every class K function γz and class KL function βδ, we can find two class
KL functions βx and βx̂ such that, for each function t ∈ [0, T ) %→ (x(t), X̂n(t), δ(t),
z(t)), T ≤ +∞, with (x, X̂n) C1 and δ and z continuous, which satisfies (5.3), (5.2),
and for i in {1, . . . , n} and 0 ≤ s ≤ t < T ,

|z(t)| ≤ max

{
βδ

(
|z(s)|, t− s

)
, sup

s≤κ≤t
γz(|x(κ)|)

}
,

|δi(t)| ≤ max




βδ(|z(s)|, t− s) ,

(5.5) sup
s≤κ≤t




c0

n∑

j=i+2

|xj(κ)|
1−d0(n−i−1)
1−d0(n−j) + c∞

n∑

j=i+2

|xj(κ)|
1−d∞(n−i−1)
1−d∞(n−j)









 ,

we have for all 0 ≤ s ≤ t ≤ T ,

|x(t)| ≤ βx(|(x(s), X̂n(s), z(s))|, t− s), |X̂n(t)| ≤ βx̂(|(x(s), X̂n(s), z(s))|, t− s) .

Example 5.4. Following Example 2.23, we can consider the case where the δi’s are
outputs of auxiliary systems given in (2.13). Suppose there exist n positive definite
and radially unbounded functions Zi : Rni → R+, three class K functions ω1, ω2, ω3,
and a positive real number ε in (0, 1) such that

|δi(zi, x)| ≤ ω1(x) + ω2(Zi(zi)),
∂Zi

∂zi
(zi) gi(zi, x) ≤ −Zi(zi) + ω3(|x|) ;

then, if there exist two real numbers d0 and d∞ satisfying −1 < d0 ≤ d∞ < 1
n−1 and

(5.6) ω1(x) + ω2 ([1 + ε]ω3(|x|)) ≤




i∑

j=1

|xj |
1−d0(n−i−1)
1−d0(n−j) +

i∑

j=1

|xj |
1−d∞(n−i−1)
1−d∞(n−j)



 ,

then Corollary 5.2 gives L∗ > 0 such that for all L in [L∗,+∞), the output feedback
(5.2) is globally asymptotically stabilizing. Compared to already published results (see
[13] and [26], for instance), the novelty of this case is in the simultaneous presence of

the terms |xj |
1−d0(n−i−1)
1−d0(n−j) and |xj |

1−d∞(n−i−1)
1−d∞(n−j) .

On the other hand, if there exist two real numbers d0 and d∞ satisfying −1 <
d∞ ≤ d0 < 1

n−1 and

ω1(x) + ω2 ([1 + ε]ω3(|x|)) ≤




n∑

j=i+2

|xj |
1−d0(n−i−1)
1−d0(n−j) +

n∑

j=i+2

|xj |
1−d∞(n−i−1)
1−d∞(n−j)



 ,

then Corollary 5.3 gives L∗ > 0 such that for all L in (0, L∗], the output feedback
(5.2) is globally asymptotically stabilizing.
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Example 5.5. Consider the illustrative system (1.1). The bound (5.6) gives the
condition

(5.7) 0 < q < p < 2 .

This is almost the least conservative condition we can obtain with the domination
approach. Specifically, it is shown in [18] that, when p > 2, there is no stabilizing out-
put feedback. However, when p = 2, (5.6) is not satisfied, although the stabilization
problem is solvable (see [18]).

By Corollary 2.24, when (5.7) holds, the output feedback

u = L2φ2(X̂1, X̂2),






˙̂X1 = L X̂2 − Lq1(/1e1) ,

˙̂X2 =
u

L
− Lq2(/2 q1(/1e1)) ,

e1 = X̂1 − y ,

with /1, /2, φ2, q1, and q2 defined in (3.13) and (4.11) and with picking d0 in (−1, q−1]
and d∞ in [p− 1, 1), globally asymptotically stabilizes the origin of the system (1.1),
with L chosen sufficiently large. Furthermore, if d0 is chosen strictly negative and d∞
strictly positive, by Corollary 2.24, convergence to the origin occurs in finite time,
uniformly in the initial conditions.

Example 5.6. To illustrate the feedforward result consider the system7

ẋ1 = x2 + x
3
2
3 + z3 , ẋ2 = x3 , ẋ3 = u , ż = −z4 + x3 , y = x1 .

For any ε > 0, there exists a class KL function βδ such that

|z(t)|3 ≤ max

{
βδ(|z(s)|, t− s), (1 + ε) sup

s≤κ≤t
|x3(κ)| 34

}
.

Therefore by letting δ1 = x
3
2
3 +z3 we get, for all 0 ≤ s ≤ t < T on the time of existence

of the solutions,

|δ1(t)| ≤ max

{
βδ(|z(s)|, t− s), sup

s≤κ≤t
(1 + ε)|x3(κ)| 34 + |x3(κ)| 32

}
.

This is inequality (5.5) with d0 = − 1
2 and d∞ = 1

4 . Consequently, Corollary 5.3 says
that it is possible to design a globally asymptotically stabilizing output feedback.

5.2. Proofs of output feedback results.
Proof of Theorem 5.1. The homogeneous in the bi-limit state feedback φn and the

homogeneous in the bi-limit vector field K1 involved in this feedback are obtained by
following the procedures given in sections 3 and 4. They are such that the origin is
a globally asymptotically stable equilibrium of the systems given in (4.9) and (3.12).
To this end, as in [26], we write the dynamics of this system in the coordinates
X̂n = (X̂1, . . . , X̂n) and E1 = (e1, . . . , en) and in the time τ defined by

(5.8) ei = X̂ i − xi

Li−1
,

d

dτ
=

1

L

d

dt
.

7Recall the notation (1.4).
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This yields

(5.9)






d

dτ
X̂n = Sn X̂n + Bnφn(X̂n)) + K1(e1) ,

d

dτ
E1 = Sn E1 + K1(e1)

with E1 = (e1, . . . , en), X̂n = (X̂1, . . . , X̂n). The right-hand side of (5.9) is a vector
field which is homogeneous in the bi-limit with weights (r0, r0), (r∞, r∞).

Given dU > maxj{r0,j , r∞,j}, by applying Theorem 2.20 twice, we get two C1,
proper, and positive definite functions V : Rn → R+ and W : Rn → R+ such that
for each i in {1, . . . , n}, the functions ∂V

∂xi
and ∂W

∂ei
are homogeneous in the bi-limit,

with weights r0 and r∞, degrees dU −r0,i and dU −r∞,i, and approximating functions
∂V0
∂X̂j

, ∂V∞
∂X̂j

and ∂W0
∂ej

, ∂W∞
∂ej

. Moreover, for all X̂n #= 0,

∂V

∂X̂
(X̂n)

[
Sn X̂n + Bnφn(X̂n)

]
< 0 ,

∂V0

∂X̂n

(X̂n)
[
Sn X̂n + Bnφn,0(X̂n)

]
< 0 ,(5.10)

∂V∞

∂X̂n

(X̂n)
[
Sn X̂n + Bnφn,∞(X̂n)

]
< 0 ,

and for all E1 #= 0,

∂W

∂E1
(E1) (Sn E1 + K1(e1)) < 0 ,

∂W0

∂E1
(E1) (Sn E1 + K1,0(e1)) < 0 ,(5.11)

∂W∞
∂E1

(E1) (Sn E1 + K1,∞(e1)) < 0 .

Consider now the Lyapunov function candidate

(5.12) U(X̂n, E1) = V (X̂n) + cW (E1) ,

where c is a positive real number to be specified. Let

η(X̂n, E1) =
∂V

∂X̂n

(X̂n)
(
Sn X̂n + Bnφn(X̂n) + K1(e1)

)
,

γ(E1) = − ∂W

∂E1
(E1) (Sn E1 + K1(e1)) .

These two functions are continuous and homogeneous in the bi-limit with associ-
ated triples ((r0, r0), dU + d0, η0), ((r∞, r∞), dU + d∞, η∞) and ((r0, r0), dU + d0, γ0),
((r∞, r∞), dU + d∞, γ∞), where γ0, γ∞ and η0, η∞ are continuous functions. Further-
more, by (5.11), γ(E1) is negative definite. Hence, by (5.10), we have
{

(X̂n, E1) ∈ R2n \ {0} : γ(E1) = 0
}

⊆
{

(X̂n, E1) ∈ R2n : η(X̂n, E1) < 0
}

,
{

(X̂n, E1) ∈ R2n \ {0} : γ0(E1) = 0
}

⊆
{

(X̂n, E1) ∈ R2n : η0(X̂n, E1) < 0
}

,
{

(X̂n, E1) ∈ R2n \ {0} : γ∞(E1) = 0
}

⊆
{

(X̂n, E1) ∈ R2n : η∞(X̂n, E1) < 0
}

.
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Consequently, by Lemma 2.13, there exists a positive real number c∗ such that, for all
c > c∗ and all (X̂n, E1) #= (0, 0), the Lyapunov function U , defined in (5.12), satisfies

∂U

∂X̂n

(X̂n, E1)
(
Sn X̂n + Bnφn(X̂n) + K1(e1)

)

+
∂U

∂E1
(X̂n, E1)(E1) (Sn E1 + K1(e1)) < 0

and the same holds for the homogeneous approximations in the 0-limit and in the
∞-limit; hence the claim.

Proof of Corollary 5.2. We write the dynamics of the system (5.3) in the coordi-
nates X̂n and E1 and in the time τ given in (5.8). This yields

(5.13)






d

dτ
X̂n = Sn X̂n + Bnφn(X̂n)) + K1(e1),

d

dτ
E1 = Sn E1 + K1(e1) + D(L)

with

D(L) =

(
δ1

L
, . . . ,

δn
Ln

)
.

We denote the solution of this system, starting from (X̂n(0), E1(0)) in R2n at time τ ,

by (X̂τ,n(τ), Eτ,1(τ)). We have

(5.14) xi(t) = Li−1 (X̂τ,i (Lt) − eτ,i (Lt)) .

The right-hand side of (5.13) is a vector field which is homogeneous in the bi-limit

with weights (r0, r0), (r∞, r∞) for (X̂n, E1) and (r0, r∞) for D(L), where r0,i = r0,i+d0

and r∞,i = r∞,i + d∞ for each i in {1, . . . , n}.
The time function τ %→ δ( τ

L ) is considered as an input, and when D(L) = 0,
Theorem 5.1 implies global asymptotic stability of the origin of the system (5.13)
and of its homogeneous approximations. To complete the proof we show that there
exists L∗ such that the “input” D(L) satisfies the small-gain condition (2.11) of Corol-
lary 2.22 for all L > L∗. Using (5.8) and (5.14), assumption (5.4) becomes, for all
0 ≤ σ ≤ τ < LT and all i in {1, . . . , n},
∣∣δi

(
τ
L

)∣∣
Li

≤ max

{
1

Li
βδ

(∣∣∣z
(σ

L

)∣∣∣ ,
τ − σ

L

)
,

L−i supσ≤κ≤τ

{
c0

i∑

j=1

∣∣∣L(j−1)(X̂τ,j(κ) − eτ,j(κ))
∣∣∣
1−d0(n−i−1)
1−d0(n−j)

(5.15) + c∞

i∑

j=1

∣∣∣L(j−1)(X̂τ,j(κ) − eτ,j(κ))
∣∣∣
1−d∞(n−i−1)
1−d∞(n−j)

} }
.

Note that when 1 ≤ j ≤ i ≤ n, the function s %→ 1−(n−i−1) s
1−(n−j) s is strictly increas-

ing, mapping (−1, 1
n−1 ) in ( n−i

n+1−j ,
i

j−1 ). As d0 ≤ d∞ < 1
n−1 , we have for all

1 ≤ j ≤ i ≤ n,

1 − d0(n− i− 1)

1 − d0(n− j)
≤ 1 − d∞(n− i− 1)

1 − d∞(n− j)
<

i

j − 1
.
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Hence, selecting L ≥ 1, there exists a real number ε > 0 such that

L−ε ≥ L(j−1) 1−d∞(n−i−1)
1−d∞(n−j) −i ≥ L(j−1) 1−d0(n−i−1)

1−d0(n−j) −i .

This implies

∣∣δi
(
τ
L

)∣∣
Li

≤ max

{
1

Li
βδ

(∣∣∣z
(σ

L

)∣∣∣ ,
τ − σ

L

)
,

L−ε supσ≤κ≤τ

{
c0

i∑

j=1

|(X̂τ,j(κ) − eτ,j(κ))|
1−d0(n−i−1)
1−d0(n−j)

+ c∞

i∑

j=1

|(X̂τ,j(κ) − eτ,j(κ))|
1−d∞(n−i−1)
1−d∞(n−j)

} }
.

On the other hand, the function

(X̂n, E1) %→ c0

i∑

j=1

|X̂ j − ej |
1−d0(n−i−1)
1−d0(n−j) + c∞

i∑

j=1

|X̂ j − ej |
1−d∞(n−i−1)
1−d∞(n−j)

is homogeneous in the bi-limit with weights (r0, r0) and (r∞, r∞) and degrees 1 −
d0(n − i − 1) = r0,i + d0 and 1 − d∞(n − i − 1) = r∞,i + d∞ (see (3.2)). Hence, by
Corollary 2.15, there exists a positive real number c1 such that

c0

i∑

j=1

|X̂ j − ej |
1−d0(n−i−1)
1−d0(n−j) + c∞

i∑

j=1

|X̂ j − ej |
1−d∞(n−i−1)
1−d∞(n−j)

(5.16) ≤ c1 H
(
|(X̂n, E1)|

d0+r0,i
(r0,r0)

, |(X̂n, E1)|
d∞+r∞,i

(r∞,r∞)

)
.

Hence, by Corollary 2.22 (applied in the τ time-scale), there exists cG such that for
any L∗ large enough such that c1L∗−ε ≤ cG, the conclusion holds.

Proof of Corollary 5.3. The proof is similar to the previous one with the only
difference being that, when i and j satisfy 3 ≤ i + 2 ≤ j ≤ n, the function s %→
1−(n−i−1) s
1−(n−j) s is strictly decreasing, mapping (−1, 1

n−1 ) in ( i
j−1 ,

n−i
n+1−j ). Moreover the

condition −1 < d∞ ≤ d0 < 1
n−1 gives the inequalities

1 − d∞(n− i− 1)

1 − d∞(n− j)
≥ 1 − d0(n− i− 1)

1 − d0(n− j)
>

i

j − 1
.

Hence (5.16) holds, and by selecting L < 1 we obtain the existence of a positive real
number ε such that

Lε ≥ L(j−1) 1−d0(n−i−1)
1−d0(n−j) −i ≥ L(j−1) 1−d∞(n−i−1)

1−d∞(n−j) −i .

From (5.5), this yields, for all 0 ≤ σ ≤ τ < LT and all i in {1, . . . , n},
∣∣δi

(
τ
L

)∣∣
Li

≤ max

{
1

Li
βδ

(∣∣∣z
(σ

L

)∣∣∣ ,
τ − σ

L

)
,

Lε supσ≤κ≤τ

{
c0

n∑

j=i+2

|(X̂τ,j(κ) − eτ,j(κ))|
1−d0(n−i−1)
1−d0(n−j)

+ c∞

n∑

j=i+2

|(X̂τ,j(κ) − eτ,j(κ))|
1−d∞(n−i−1)
1−d∞(n−j)

} }
.
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From Corollary 2.22, the result holds for all L∗ small enough to satisfy c1L∗ε ≤
cG.

6. Conclusion. We have presented two new tools that can be useful in nonlinear
control design. The first one is introduced to formalize the notion of homogeneous
approximation valid both at the origin and at infinity. With this formalism we have
given several novel results concerning asymptotic stability, robustness analysis, and
also finite time convergence (uniformly in the initial conditions). The second one is
a new recursive design for an observer for a chain of integrators. The combination of
these two tools allows us to obtain a new result on stabilization by output feedback
for systems whose dominant homogeneous in the bi-limit part is a chain of integrators.

Appendix A. Proof of Proposition 2.10. We give the proof only in the 0-
limit case since the ∞-limit case is similar. Let C be an arbitrary compact subset of
Rn \ {0} and ε any strictly positive real number. By the definition of homogeneity in
the 0-limit, there exists λ1 > 0 such that we have

∣∣∣∣
φ(λrφ,0 ) x)

λdφ,0
− φ0(x)

∣∣∣∣ ≤ 1 ∀ x ∈ C , ∀ λ ∈ (0, λ1] .

Hence, as φ0 is a continuous function on Rn, for all λ in (0, λ1], the function x %→
φ(λr0' x)

λdφ,0
takes its values in a compact set Cφ = φ0(C) + B1, where B1 is the

unity ball.
Now, as ζ0 is continuous on the compact subset Cφ, it is uniformly continuous;

i.e., there exists ν > 0 such that

|z1 − z2| < ν =⇒ |ζ0(z1) − ζ0(z2)| < ε .

Also there exists µε > 0 satisfying
∣∣∣∣
ζ(µrζ,0z)

µdζ,0
− ζ0(z)

∣∣∣∣ ≤ ε ∀ z ∈ Cφ , ∀ µ ∈ (0, µε] ,

or equivalently, since dφ,0 > 0,
∣∣∣∣∣
ζ(λdφ,0z)

λ
dφ,0 dζ,0

rζ,0

− ζ0(z)

∣∣∣∣∣ ≤ ε ∀ z ∈ Cφ , ∀ λ ∈
(

0, µ

rζ,0
dφ,0
ε

]
.

Similarly, there exists λν such that
∣∣∣∣
φ(λrφ,0 ) x)

λdφ,0
− φ0(x)

∣∣∣∣ ≤ ν ∀ x ∈ C , ∀ λ ∈ (0, λν ] .

It follows that
∣∣∣∣∣
ζ(φ(λrφ,0 ) x))

λ
dφ,0 dζ,0

rζ,0

− ζ0 (φ0(x))

∣∣∣∣∣ ≤

∣∣∣∣∣
ζ(φ(λrφ,0 ) x))

λ
dφ,0 dζ,0

rζ,0

− ζ0

(
φ(λrφ,0 ) x)

λdφ,0

)∣∣∣∣∣

+

∣∣∣∣ζ0
(

φ(λrφ,0 ) x)

λdφ,0

)
− ζ0 (φ0(x))

∣∣∣∣

≤ 2 ε ∀ x ∈ C , ∀ λ ∈ min

{
λ1, λν , µ

rζ,0
dφ,0
ε

}
.

This establishes homogeneity in the 0-limit of the function ζ ◦ φ.
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Appendix B. Proof of Proposition 2.11. We give the proof only in the 0-
limit case since the ∞-limit case is similar. The function φ being a bijection, we can
assume without loss of generality that it is a strictly increasing function (otherwise we
take −φ). This, together with homogeneity in the 0-limit, implies that ϕ0 is strictly
positive. Moreover, for each δ > 0, there exists t0(δ) > 0 such that

∣∣∣∣
φ(t)

td0
− ϕ0

∣∣∣∣ ≤ δ ∀ t ∈ (0, t0(δ)] .

By letting λ = φ(t), this gives

ϕ0 − δ ≤ λ

φ−1(λ)d0
≤ ϕ0 + δ ∀ λ ∈ (0, φ(t0(δ))] , ∀ δ > 0 .

Since for δ < ϕ0 the term on the left is strictly positive, these inequalities give

(
1

ϕ0 + δ

) 1
d0

≤ φ−1(λ)

λ
1
d0

≤
(

1

ϕ0 − δ

) 1
d0

∀ λ ∈ (0, φ−1(t0(δ))], ∀ δ ∈ (0, ϕ0) .

Then since the function δ %→ ( 1
ϕ0−δ )

1
d0 is continuous at zero, for every ε1 > 0 there

exists δ1(ε1) > 0 satisfying

(
1

ϕ0

) 1
d0

− ε1 ≤
(

1

ϕ0 + δ1(ε1)

) 1
d0

≤
(

1

ϕ0 − δ1(ε1)

) 1
d0

≤
(

1

ϕ0

) 1
d0

+ ε1 .

This yields
∣∣∣∣∣
φ−1(λ)

λ
1
d0

−
(

1

ϕ0

) 1
d0

∣∣∣∣∣ ≤ ε1 ∀ λ ∈ (0, λ−(ε1)] ,

with λ−(ε1) = φ(t0(δ1(ε1))). With a similar argument, we get
∣∣∣∣∣
φ−1(−λ)

λ
1
d0

+

(
1

ϕ0

) 1
d0

∣∣∣∣∣ ≤ ε1 ∀ λ ∈ (0, λ+(ε1)]

for some λ+ > 0. Let λ0 = min{λ−, λ+}.
Now, for x #= 0 and λ > 0, we have

∣∣∣∣∣
φ−1(λx)

λ
1
d0

−
(

x

ϕ0

) 1
d0

∣∣∣∣∣ = |x|
1
d0

∣∣∣∣∣
φ−1(λx)

(xλ)
1
d0

−
(

1

ϕ0

) 1
d0

∣∣∣∣∣ .

Therefore, for any compact set C of R\{0} and any ε > 0, by letting ε1 = ε

maxx∈C |x|
1
d0

,

we have

|x|
1
d0 ε1 ≤ ε, 0 < |λx| ≤ λ0 (ε1) ∀ λ ∈

(
0,

λ0 (ε1)

maxx∈C |x|

]
, ∀ x ∈ C,

and therefore
∣∣∣∣∣
φ−1(λx)

λ
1
d0

−
(

x

ϕ0

) 1
d0

∣∣∣∣∣ ≤ ε ∀ λ ∈
(

0,
λ0 (ε1)

maxx∈C |x|

]
, ∀ x ∈ C .

This establishes homogeneity in the 0-limit of the function φ−1.
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Appendix C. Proof of Lemma 2.13. The proof of this lemma is divided into
three parts.

1. We first show, by contradiction, that there exists a real number c0 satisfying

η0(θ) − c γ0(θ) < 0 ∀ θ ∈ Sr0 , ∀ c ≥ c0 .

Suppose there is no such c0. This means there is a sequence (θi)i∈N in Sr0

which satisfies

η0(θi) − i γ0(θi) ≥ 0 ∀ i ∈ N .

The sequence (θi)i∈N lives in a compact set. Thus we can extract a convergent
subsequence (θi$)/∈N which converges to a point denoted θ∞.
As the functions η0 and γ0 are bounded on Sr0 and γ0 takes nonnegative
values,8 γ0(θi$) must go to 0 as i/ goes to infinity. Since the functions η0 and
γ0 are continuous, we get γ0(θ∞) = 0 and η0(θ∞) ≥ 0, which is impossible.
Consequently, there exist c0 and ε0 > 0 such that

(C.1) η0(θ) − c γ0(θ) ≤ −ε0 < 0 ∀ θ ∈ Sr0 , ∀ c ≥ c0 .

Moreover, since the functions η0 and γ0 are homogeneous in the standard
sense (see Remark 2.6), we have the second inequality in (2.4).
Following the same argument, we can find positive real numbers c∞ and ε∞
such that

(C.2) η∞(θ) − c γ∞(θ) < −ε∞ ∀ θ ∈ Sr∞ , ∀ c ≥ c∞,

and the third inequality in (2.4) holds.
In the rest of the proof, let

c1 = max{c0, c∞}, ε1 = min{ε0, ε∞} .

2. Since η and γ are homogeneous in the 0-limit, there exists λ0 such that, for
all λ ∈ (0, λ0] and all θ ∈ Sr0 , we have

η(λr0 ) θ) ≤ λd0 η0(θ) + λd0
ε1

4
, λd0 γ0(θ) − λd0

ε1

4c1
≤ γ(λr0 ) θ) ,

which readily gives

η(λr0 ) θ) − c1 γ(λr0 ) θ) ≤ λd0 η0(θ) + λd0
ε1

2
− c1λ

d0 γ0(θ) .

Using (C.1), we get

η(λr0 ) θ) − c1 γ(λr0 ) θ) ≤ −λd0
ε1

2
∀ λ ∈ (0, λ0] , ∀ θ ∈ Sr0 ,

and therefore, since γ takes nonnegative values,

η(λr0 ) θ) − c γ(λr0 ) θ) ≤ −λd0
ε1

2
∀ λ ∈ (0, λ0] , ∀ θ ∈ Sr0 , ∀ c ≥ c1 .

8Indeed, if we had γ0(x) < 0 for some x in Rn \ {0}, by letting ε = − γ0(x)
2 , the homogeneity in

the 0-limit of γ would give a real number λ > 0 satisfying γ(λr0$x)

λd0
≤ γ0(x) + ε = γ0(x)

2 < 0. This

contradicts the fact that γ takes nonnegative values only. Also by continuity we have γ0(0) ≥ 0.
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Similarly, there exists λ∞ satisfying

η(λr∞)θ)−c γ(λr∞)θ) ≤ −λd∞
ε1

2
∀ λ ∈ [λ∞,+∞) , ∀ θ ∈ Sr∞ , ∀ c ≥ c1 .

Consequently, for each c ≥ c1, the set

{x ∈ Rn \ {0} | η(x) − c γ(x) ≥ 0} ,

if not empty, must be a subset of

C = {x ∈ Rn : |x|r0 ≥ λ0}
⋃

{x ∈ Rn : |x|r∞ ≤ λ∞} ,

which is compact and does not contain the origin.
3. Suppose now that for all c the first inequality in (2.4) is not true. This means

that, for all integers c larger than c1, there exists xc in Rn satisfying

η(xc) − c γ(xc) ≥ 0 ,

and therefore xc is in C. Since C is a compact set, there is a convergent
subsequence (xc$)/∈N which converges to a point denoted x∗ different from
zero. Also as above, we must have γ(x∗) = 0 and η(x∗) ≥ 0. But this
contradicts the assumption, namely,

{ x ∈ Rn \ {0} , γ(x) = 0 } ⇒ η(x) < 0 .

Appendix D. Proof of Proposition 2.18. Because the vector field f is ho-
mogeneous in the ∞-limit, its approximating vector field f∞ is homogeneous in the
standard sense (see Remark 2.6). Let dV∞ be a positive real number larger than
r∞,i for all i in {1, . . . , n}. Following Rosier [29], there exists a C1, positive definite,
proper, and homogeneous function V∞ : Rn → R+, with weight r∞ and degree dV∞ ,
satisfying

(D.1)
∂V∞
∂x

(x)f∞(x) < 0 ∀ x #= 0 .

From P1 in section 2.2, we know that the function x %→ ∂V∞
∂x (x)f(x) is homogeneous

in the ∞-limit with associated triple
(
r∞, d∞ + dV∞ , ∂V∞

∂x (x)f∞(x)
)
. Let

ε∞ = −1

2
max

θ∈Sr∞

{
∂V∞
∂x

(θ)f∞(θ)

}
,

and note that, by inequality (D.1), ε∞ is a strictly positive real number. By the
definition of homogeneity in the ∞-limit, there exists λ∞ such that

∣∣∣∣∣

∂V∞
∂x (λr∞ ) θ)f(λr∞ ) θ)

λdV∞+d∞
− ∂V∞

∂x
(θ)f∞(θ)

∣∣∣∣∣ ≤ ε∞ ∀ θ ∈ Sr∞ , ∀ λ ≥ λ∞ .

This yields

∂V∞
∂x

(λr∞ ) θ)f(λr∞ ) θ) ≤ λdV∞+d∞

(
∂V∞
∂x

(θ)f∞(θ) + ε∞

)

≤ −λdV∞+d∞ ε∞ ∀ θ ∈ Sr∞ , ∀ λ ≥ λ∞ ,
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or in other words,

(D.2)
∂V∞
∂x

(x) f(x) < 0 ∀x : |x|r∞ ≥ λ∞ .

This establishes global asymptotic stability of the compact set

C∞ = {x : V∞(x) ≤ v∞} ,

where v∞ is given by

v∞ = max
|x|r∞ =λ∞

{V∞(x)} .

Appendix E. Proof of Theorem 2.20. The proof is divided into three steps.
First, we define three Lyapunov functions V0, Vm, and V∞. Then we build another
Lyapunov function V from these three. Finally, we show that its derivative along
the trajectories of the system (2.7) and its homogeneous approximations are negative
definite.

1. As established in the proof of Proposition 2.18, there exist a positive real
number λ∞ and a C1 positive definite, proper, and homogeneous function
V∞ : Rn → R+, with weight r∞ and degree dV∞ satisfying (D.2). Similarly,
there exist a number λ0 > 0 and a C1 positive definite, proper, and homoge-
neous function V0 : Rn → R+, with weight r0 and degree dV0 , satisfying

(E.1)
∂V0

∂x
(x) f(x) < 0 ∀x : 0 < |x|r0 ≤ λ0 .

Finally, the global asymptotic stability of the origin of the system ẋ = f(x)
implies the existence of a C1, positive definite, and proper function Vm :
Rn → R+ satisfying

(E.2)
∂Vm

∂x
(x) f(x) < 0 ∀x #= 0 .

2. Now we build a function V from the functions Vm, V∞, and V0. For this, we
follow a technique used by Mazenc in [17] (see also [15]). Let v∞ and v0 be
two strictly positive real numbers such that v0 < v∞ and

v∞ ≥ max
x: |x|r∞ ≤λ∞

Vm(x), v0 ≤ min
x: |x|r0 ≥λ0

Vm(x) .

This implies

{x ∈ Rn : Vm(x) ≥ v∞} ⊆ {x ∈ Rn : |x|r∞ ≥ λ∞} ,

{x ∈ Rn : Vm(x) ≤ v0} ⊆ {x ∈ Rn : |x|r0 ≤ λ0} .

Let ω0 and ω∞ be defined as

ω0 = min
x : 1

2 v0≤Vm(x)≤v0

Vm(x)

V0(x)
, ω∞ = max

x : v∞≤Vm(x)≤2 v∞

Vm(x)

V∞(x)
.

We have

ω∞ V∞(x) − Vm(x) ≥ 0 ∀x : v∞ ≤ Vm(x) ≤ 2 v∞ ,

Vm(x) − ω0 V0(x) ≥ 0 ∀x :
1

2
v0 ≤ Vm(x) ≤ v0 .
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Let

V (x) = ω∞ ϕ∞(Vm(x))V∞(x)

+ [1 − ϕ∞(Vm(x))]ϕ0(Vm(x))Vm(x) + ω0 [1 − ϕ0(Vm(x))]V0(x) ,

where ϕ0 and ϕ∞ are C1 nondecreasing functions satisfying

ϕ0(s) = 0 ∀ s ≤ 1

2
v0, ϕ0(s) = 1 ∀ s ≥ v0 ,(E.3)

ϕ∞(s) = 0 ∀ s ≤ v∞, ϕ∞(s) = 1 ∀ s ≥ 2v∞ .(E.4)

Then V is C1, positive definite, and proper. Moreover, by construction,

V (x) =






ω0 V0(x) ∀ x : Vm(x) ≤ 1
2v0 ,

ϕ0(Vm(x))Vm(x) + ω0 [1 − ϕ0(Vm(x))]V0(x)
∀ x : 1

2v0 ≤ Vm(x) ≤ v0 ,

Vm(x) ∀ x : v0 ≤ Vm(x) ≤ v∞ ,

ω∞ ϕ∞(Vm(x))V∞(x) + [1 − ϕ∞(Vm(x))] Vm(x)
∀ x : v∞ ≤ Vm(x) ≤ 2 v∞ ,

ω∞ V∞(x) ∀ x : Vm(x) ≥ 2 v∞ .

Thus for each i in {1, . . . , n},

(E.5)
∂V

∂xi
(x) = ω∞

∂V∞
∂xi

(x) ∀ x : Vm(x) > 2 v∞

and

(E.6)
∂V

∂xi
(x) = ω0

∂V0

∂xi
(x) ∀ x : Vm(x) <

1

2
v0 .

Since ∂V∞
∂xi

and ∂V0
∂xi

are homogeneous in the standard sense, this proves that

for each i in {1, . . . , n}, ∂V
∂xi

is homogeneous in the bi-limit, with weights r0
and r∞ and degrees dV0 − r0,i and dV∞ − r∞,i.

3. It remains to show that the Lie derivative of V along f is negative definite.
To this end note that, for all x such that 1

2v0 ≤ Vm(x) ≤ v0,

∂V

∂x
(x)f(x) = ϕ′

0(Vm(x)) [Vm(x) − ω0 V0(x)]
∂Vm

∂x
(x)f(x)

+ ω0 [1 − ϕ0(Vm(x))]
∂V0

∂x
(x)f(x) + ϕ0(Vm(x))

∂Vm

∂x
(x)f(x)

and, for all x such that v∞ ≤ Vm(x) ≤ 2 v∞,

∂V

∂x
(x)f(x) = ϕ′

∞(Vm(x)) [ω∞ V∞(x) − Vm(x)]
∂Vm

∂x
(x)f(x)

+ ω∞ ϕ∞(Vm(x))
∂V∞
∂x

(x)f(x) + [1 − ϕ∞(Vm(x))]
∂Vm

∂x
(x)f(x) .

By (D.2), (E.1), (E.2), (E.3), and (E.4), these inequalities imply

∂V

∂x
(x) f(x) < 0 ∀x #= 0 ,

which proves the claim.
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Appendix F. Proof of Corollary 2.21. Recall (1.6) and consider the functions
η1 : Rn × Rm → R and γ1 : Rn × Rm → R+ defined as

η1(x, δ) =
∂V

∂x
(x)

[
f(x, δ) − 1

2
f(x, 0)

]
, γ1(x, δ) =

m∑

j=1

H

(
|δj |

dV0
+d0

r0,j , |δj |
dV∞+d∞

r∞,j

)
.

These functions are homogeneous in the bi-limit with weights r0 and r∞ for x and r0
and r∞ for δ and degrees dV0 +d0 and dV∞ +d∞. Since the function x %→ ∂V

∂x (x) f(x, 0)
is negative definite, then

{(x, δ) ∈ Rn+m \ {0} : γ1(x, δ) = 0} ⊆{ (x, δ) ∈ Rn+m : η1(x, δ) < 0} .

Moreover, since the homogeneous approximations of η are negative definite, we get

{(x, δ) ∈ Rn+m \ {0} : γ1,0(x, δ) = 0} ⊆{ (x, δ) ∈ Rn+m : η1,0(x, δ) < 0} ,

{(x, δ) ∈ Rn+m \ {0} : γ1,∞(x, δ) = 0} ⊆{ (x, δ) ∈ Rn+m : η1,∞(x, δ) < 0} .

Hence, by Lemma 2.13, there exists a positive real number cδ such that

(F.1)
∂V

∂x
(x)

[
f(x, δ) − 1

2
f(x, 0)

]
≤ cδ

m∑

j=1

H

(
|δj |

dV0
+d0

r0,j , |δj |
dV∞+d∞

r∞,j

)
.

Consider now the functions η2 : Rn → R+ and γ2 : Rn → R+ defined as

η2(x) = H

(
V (x)

dV0
+d0

dV0 , V (x)
dV∞+d∞

dV∞

)
, γ2(x) = −1

2

∂V

∂x
(x) f(x, 0) .

They are homogeneous in the bi-limit with weights r0 and r∞ and degrees dV0 + d0

and dV∞ + d∞. Since γ2 and its homogeneous approximations are positive definite,
by Corollary 2.15 there exists a positive real number cV such that

(F.2)
1

2

∂V

∂x
(x) f(x, 0) ≤ −cV H

(
V (x)

dV0
+d0

dV0 , V (x)
dV∞+d∞

dV∞

)
.

The two inequalities (F.1) and (F.2) yield the claim.

Appendix G. Proof of Corollary 2.22. Let dV0 and dV∞ be such that the
assumption of Theorem 2.20 holds. For each i in {1, . . . ,m}, let µi : R+ → R+ be
the strictly increasing function defined as (see (1.6))

(G.1) µi(s) = H (sqi , spi) ,

where

pi =
d∞ + dV∞

r∞,i
, qi =

d0 + dV0

r0,i
.

We first prove that the inequality given by Corollary 2.21 implies that the system
(2.8), with δ as input and x as output, is ISS with a linear gain between

∑m
i=1 µi(|δi|)

and H(|x|d0+dV0
r0 , |x|d∞+dV∞

r∞ ). To do so we introduce the function α : R+ → R+ as

α(s) = H

(
s

d0+dV0
dV0 , s

d∞+dV∞
dV∞

)
, s ≥ 0 .
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This function is a bijection, strictly increasing, and homogeneous in the bi-limit with

approximating functions s
dV0

+d0
dV0 and s

dV∞+d∞
dV∞ . Moreover, from Proposition 2.10,

the function x %→ α(V (x)) is positive definite and homogeneous in the bi-limit with
associated weights r0 and r∞ and degrees d0 + dV0 and d∞ + dV∞ . Moreover, its

approximating homogeneous functions V0(x)
dV0

+d0
dV0 and V∞(x)

dV∞+d∞
dV∞ are positive

definite as well. Hence, we get from Corollary 2.15 the existence of a positive real
number c1 satisfying

(G.2) H
(
|x|d0+dV0

r0 , |x|d∞+dV∞
r∞

)
≤ c1 α(V (x)) ∀ x ∈ Rn .

On the other hand, from inequality (2.9) in Corollary 2.21, we have the property
{

(x, δ) ∈ Rn × Rm : α(V (x)) ≥ 2
cδ
cV

m∑

i=1

µi(|δi|)
}

(G.3) ⊆
{

(x, δ) ∈ Rn × Rm :
∂V

∂x
(x) f(x, δ) ≤ −cV

2
α(V (x))

}
.

In the following, let t ∈ [0, T ) %→ (x(t), δ(t), z(t)) be any function which satisfies (2.8)
on [0, T ) and (2.10) and (2.11) for all 0 ≤ s ≤ t ≤ T . From [32], we know the inclusion
(G.3) implies the existence of a class KL function βV such that, for all 0 ≤ s ≤ t ≤ T ,

(G.4)

V (x(t)) ≤ max




βV (V (x(s)), t− s) , sup
s≤κ≤t




α−1



2cδ
cV

m∑

j=1

µj(|δj(κ)|)













 .

With α acting on both sides of inequality (G.4), (G.2) gives, for all 0 ≤ s ≤ t ≤ T ,

H
(
|x(t)|d0+dV0

r0 , |x(t)|d∞+dV∞
r∞

)

(G.5) ≤ max




c1 α ◦ βV (V (x(s)), t− s) ,
2c1cδ
cV

sup
s≤κ≤t






m∑

j=1

µj(|δj(κ)|)









 .

This is the linear gain property required. To conclude the proof it remains to show
the existence of cG such that a small gain property is satisfied.

First, note that the function x %→ H(|x|d0+dV0
r0 , |x|d∞+dV∞

r∞ ) is positive definite
and homogeneous in the bi-limit with weights r0 and r∞ and degrees d0 + dV0 and
d∞ + dV∞ . By Proposition 2.10, for i in {1, . . . ,m} the same holds with the function
x %→ µi

(
H
(
|x|r0,ir0 , |x|r∞,i

r∞

))
. Hence, by Corollary 2.15, there exists a positive real

number c2 satisfying

(G.6) µi

(
H
(
|x|r0,ir0 , |x|r∞,i

r∞

))
≤ c2 H

(
|x|d0+dV0

r0 , |x|d∞+dV∞
r∞

)
∀ x ∈ Rn .

Let Ci for i in {1, . . . ,m} be the class K∞ functions defined as

Ci(c) = max{cqi , cpi} + c
piqi

qi+pi + cpi+qi .

From (G.1), we get, for each s > 0 and c > 0,

µi(cs)

µi(s)
= cqi

(1 + sqi)(1 + cpispi)

(1 + spi)(1 + cqisqi)
≤ cqi

[
1 + cpispi+qi

1 + cqispi+qi
+

sqi

1 + cqisqi+pi
+

cpispi

1 + spi

]
,
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where

cqi
1 + cpispi+qi

1 + cqispi+qi
≤ max{cqi , cpi} ,

cqisqi

1 + cqisqi+pi
≤ c

piqi
qi+pi ,

cqicpispi

1 + spi
≤ cpi+qi .

Hence, by continuity at 0, we have

(G.7) µi(c s) ≤ Ci(c)µi(s) ∀ (c, s) ∈ R2
+ .

Consider the positive real numbers c1, c2, cδ, and cV previously introduced, and select
cG in R+ satisfying

(G.8) cG < min
1≤i≤m

C−1
i

(
cV

2mc1 c2 cδ

)
.

To show that such a selection for cG is appropriate, observe that by (G.6) and (G.7)
and µi acting on both sides of the inequality (2.11), we get for each i in {1, . . . ,m}
and all 0 ≤ s ≤ t ≤ T ,

µi(|δi(t)|) ≤ max
{
µi ◦ βδ(|z(s)|, t− s) ,

Ci(cG) c2 sup
s≤κ≤t

{
H
(
|x(κ)|d0+dV0

r0 , |x(κ)|d∞+dV∞
r∞

)}}
.

Consequently
m∑

i=1

µi(|δi(t)|) ≤ max
{
m max

1≤i≤m
{µi ◦ βδ(|z(s)|, t− s)} ,

(G.9) (mmax1≤i≤m Ci(cG) c2) sups≤κ≤t

{
H
(
|x(κ)|d0+dV0

r0 , |x(κ)|d∞+dV∞
r∞

)}}
.

Since (G.8) yields

2c1cδ
cV

m max
1≤i≤m

Ci(cG) c2 < 1 ,

the existence of the function βx follows from (2.10), (G.5), (G.9), and the (proof of
the) small-gain theorem [11].

Appendix H. Proof of Corollary 2.24. First, observe that the continuity of
f0, at least, on Rn \ {0} implies

|d0| = −d0 ≤ min
1≤i≤n

r0,i ≤ max
1≤i≤n

r0,i < dV0 .

Then, let V be the function given in Theorem 2.20 and, since d0 < 0 < d∞, the func-

tion φ(x) = V (x)
dV0

+d0
dV0 + V (x)

dV∞+d∞
dV∞ is homogeneous in the bi-limit with weights

r0 and r∞, degrees dV0 + d0 and dV∞ + d∞, and approximating functions V (x)
dV0

+d0
dV0

and V (x)
dV∞+d∞

dV∞ . Moreover, the function ζ(x) = −∂V
∂x (x) f(x) is homogeneous in

the bi-limit with the same weights and degrees as φ. Furthermore, since the function
ζ and its homogeneous approximations are positive definite, Corollary 2.15 yields a
strictly positive real number c such that

(H.1)
∂V

∂x
(x) f(x) ≤ −c

(
V (x)

dV0
+d0

dV0 + V (x)
dV∞+d∞

dV∞

)
∀ x ∈ Rn .
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Let xic in Rn \ {0} be the initial condition of a solution of the system ẋ = f(x), and
let Vxic : R+ → R+ be the function of time given by the evaluation of V along this
solution. Then

˙︷ ︷
Vxic(t) ≤ −c Vxic(t)

dV∞+d∞
dV∞ ∀ t ≥ 0 ,

from which we get

Vxic(t) ≤ 1
(

d∞
dV∞

ct + V (xic)
− d∞

dV∞

) dV∞
d∞

≤ 1
(

d∞
dV∞

ct
) dV∞

d∞

∀ t > 0 .

Therefore, setting T1 = dV∞
cd∞

, we have

Vxic(t) ≤ 1 ∀ t ≥ T1, ∀ xic ∈ Rn

and

˙︷ ︷
Vxic(t) ≤ −c Vxic(t)

dV0
−|d0|

dV0 ∀ t ≥ 0 .

As a result, we get

Vxic(t) ≤ max






(
−|d0|
dV0

c(t− T1) + Vxic(T1)
|d0|
dV0

) dV0
|d0|

, 0




 ,

≤ max






(
1 − |d0|

dV0

c(t− T1)

) dV0
|d0|

, 0




 ∀ t ≥ T1 .

Therefore, setting T2 =
dV0
c|d0| yields

Vxic(t) = 0 ∀ t ≥ T1 + T2 =
1

c

(
dV∞

d∞
+

dV0

|d0|

)
, ∀ xic ∈ Rn ,

hence the claim.
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