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Abstract

We study certainty-equivalence design of observer-based controllers, and present a new stability condition that ex-
ploits state-dependent convergence properties of observers. This result eliminates the conservatism of treating the observer
error as an exogeneous disturbance. As an application, we show that the reduced-order variant of the class of observers in
[Automatica 37 (2001) 9231] preserves global asymptotic stability in a certainty-equivalence implementation. In another
application we study a nonminimum phase system, which cannot be stabilized with the existing output-feedback designs.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

One of the major di=culties for nonlinear
output-feedback design is the absence of a controller–
observer separation property. Even when a nonlinear
observer is available, the certainty-equivalence imple-
mentation of a state-feedback control law may lead
to severe forms of instability, including >nite escape
time. Stability of certainty-equivalence designs has
been established under restrictive assumptions on the
growth of nonlinearities, such as the global Lipschitz
condition in [16]. With less restrictive assumptions,
only local [16,3] and semi-global [12,15] stability re-
sults have been achieved. Other designs depart from
certainty-equivalence, and either modify the control
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design as in [10,5,7], or the observer design as in
[9,10].
This paper presents a new stability condition for

certainty-equivalence designs. The conservatism of
earlier results is eliminated with two key ingredients
in our analysis. First, rather than treat the observer
error as an exogenous disturbance, we exploit its de-
pendence on the plant trajectories. Indeed, for several
classes of nonlinear observers, the convergence speed
of the observer error depends critically on the mag-
nitude of the plant states. To take into account this
interplay between the plant and the observer, we for-
mulate an assumption that allows the observer error
convergence to be state-dependent. Next, to further
relax our conditions, we pursue the stability analysis
neither with the plant states nor with their estimates,
but with a combination of the two. We illustrate with
several examples that the resulting stability condition
allows severe nonlinearities in the observer-based
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controller. We also show that, in contrast to the con-
trol redesigns in [10,5,7], this certainty-equivalence
result may be applicable to nonminimum phase sys-
tems. Finally, we apply the main result to the class
of observers introduced in [2], and show that a
reduced-order variant of this design preserves global
asymptotic stability (GAS) in a certainty-equivalence
design, under mild assumptions on the underlying
state-feedback controller.
Although we mainly address certainty-equivalence

designs, our result also gives guidelines for a redesign
of controllers and observers. Among the examples
where we pursue such a redesign is the system

ẋ1 = −x1 + x2x21 + u; ẋ2 = −x2 + x21 ; y = x1 (1)

which admits the globally asymptotically stabilizing
state-feedback

u= �(x1; x2) = −x2x21 : (2)

However, as shown in [4], the certainty-equivalence
controller

u= �(x1; x̂2) (3)

leads to >nite escape time when implemented with the
reduced-order observer

˙̂x2 = −x̂2 + y2: (4)

In contrast, it follows from our result that the same
feedback achieves global asymptotic stability with
an alternative observer construction presented in
Section 2, Example 1.
The paper is organized as follows: Section 2 gives

the main result (Theorem 1), followed by an illustra-
tion on system (1) above. Section 3 shows that the as-
sumptions of Theorem 1 are tight, and proceeds with a
certainty-equivalence design for a nonminimum phase
example. Section 4 studies certainty-equivalence de-
sign with the class of observers introduced in [2].
Conclusions are given in Section 5.

2. Main result

We consider the system

ẋ = f(x; u); y = h(x); (5)

where f and h are locally Lipschitz functions, which
are zero at the origin, u in Rm is the control input,

x inRn is the state, and y inRp is the measured output.
Our problem is to design a globally asymptotically
stabilizing observer-based controller. We >rst assume
that the system is stabilizable via full-state feedback.

Assumption 1 (Stabilizability). There exist a lo-
cally Lipschitz state-feedback control � and a C1,
non-negative radially unbounded function V , both
zero at the origin, such that

@V
@x

(x)f(x; �(x))6 0 ∀x∈Rn; (6)

and such that the origin is a globally asymptotically
stable equilibrium of

ẋ = f(x; �(x)): (7)

Next, we assume we are given an observer of
the form

ż = �(z; u; y);

x̂ = �(z; u; y); (8)

where the functions � and � are locally Lipschitz, z
in Rq, and x̂ is a (possibly partial) estimate of x. To
express our restrictions on this observer, we introduce
an auxiliary variable X in Rn which is made up of
components of the state x of the system and state z of
the observer, i.e.,

X = K(x; z): (9)

The choice of this X should be such that the control
u in the output-feedback is

u= �(X): (10)

As an example, for the second-order system (1) with
the control (3), X must be

X = (x1; x̂2): (11)

For our analysis we rewrite the dynamics of X in
the form

Ẋ = f(X; u) + ‘(x; z; u); (12)

where f(X; u) represents the nominal state-feedback
system, and ‘(x; z; u) represents the perturbation due
to the observer error. We further factorize this term as

‘(x; z; u) = k(x; z; u)�(x; z; u); (13)
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where � is to satisfy the following assumption:

Assumption 2 (Uniform detectability).
1. There exist a locally Lipschitz function K satisfy-

ing

K(0; 0) = 0 (14)

and a continuous function �1, where �1((x; z); ·) is
of class K∞ for each (x; z) in Rn × Rq, such that,
whatever the control u and the initial condition
(x0; z0) are, the corresponding solution (x(t); z(t))
of

ẋ = f(x; u);

ż = �(z; u; h(x)) (15)

is such that, on its right maximal interval of de>-
nition [0; T ), we have

|x(t) − x̂(t)| + |x(t) − X(t)| +
∫ t

0
|�(s)| ds

6 �1((x0; z0); |X0 − x0|) (16)

with

X = K(x; z); x̂ = �(z; u; h(x)): (17)

Moreover, if T =+∞, then

lim
t→+∞ |x(t) − X(t)| = 0: (18)

2. There exists a class K∞ function �2 such that for
each z in Rq, u in Rm, y in Rp, we have

|z|6 �2(|�(z; u; y)| + |u| + |y|): (19)

The inequality (16) characterizes the convergence
properties of the observer. It expresses the dependence
of the observer convergence on the plant state through
the fact that the function �(x; z; u) is L1 along the so-
lutions. We prove GAS for the certainty equivalence
design u= �(X) by studying the auxiliary system

Ẋ = f(X; u) + k(x; z; u)�(t) (20)

with the following restriction on the coupling term
k(x; z; u):

Theorem 1. Assume the stabilizability and uniform
detectability assumptions hold. If there exists a C1,
class-K∞ function L and a positive real number M

satisfying, for all (x; z) in Rn × Rq,

|L′(V (X))|
∣∣∣∣@V@x (X)k(x; z; �(X))

∣∣∣∣6M (21)

with X = K(x; z), then the certainty-equivalent
output-feedback

ż = �(z; u; y);

x̂ = �(z; u; y);

u= �(K(x; z)) (22)

is globally asymptotically stabilizing.

Proof. See Appendix A.

Example 1. We illustrate Theorem 1 on the system
(1), which satis>es our stabilizability assumption with

V (x1; x2) =
x41
4

+
x22
2
; �(x1; x2) = −x2x21 : (23)

To satisfy condition (21), the functionL should have
the smallest possible derivative. With the choice

L(v) = log(1 + v) (24)

we get

@L(V )
@x1

=
x31

1 + x41=4 + x22=2
;

@L(V )
@x2

=
x2

1 + x41=4 + x22=2
; (25)

in which the derivative with respect to x1 is bounded
when multiplied by x1 or

√|x2|. This means that the
>rst component k1 of k in (21) can grow as |x1| or√|x2|. Likewise, k2 can grow as x21 or x2.

For the observer we study two designs. The
reduced-order design

˙̂x2 = −x̂2 + y2 (26)

ensures that x̂2 − x2 exponentially decaying; i.e., it is
an L1 function of time. The full-order design

˙̂x1 = −x̂1 + x̂2y2 + u − y2(x̂1 − x1);

˙̂x2 = −x̂2 + y2 − y2(x̂1 − x1) (27)

ensures L1 for not only (x̂1 − x1; x̂2 − x2), but also for

y2(|̂x1 − x1| + |̂x2 − x2|): (28)
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Indeed, the function

U =
√

(x̂1 − x1)2 − (x̂1 − x1)(x̂2 − x2) + (x̂2 − x2)2

satis>es, for almost all t¿ 0,

U̇6− U − 1
2 Uy

2 (29)

which, when integrated in the maximal interval of def-
inition for y(t), implies that Uy2 is L1 as in Assump-
tion 2. Because U6 |̂x1 − x1| + |̂x2 − x2| it follows
that (28) is also L1.
To build an output-feedback, we can combine the

state-feedback evaluated at (x1; x̂2) or at (x̂1; x̂2) with
the reduced- or the full-order observer. Let us explore
each choice:

1. If we employ the controller

u= −x̂2x21 (30)

then the X vector is

X = (x1; x̂2): (31)

(a) If we combine this control with the reduced
order observer, the dynamics of X is

Ẋ1 =−X1 +X2X
2
1 + u − X2

1 [X2 − x2];

Ẋ2 =−X2 +X2
1 ; (32)

where the function ‘ is

‘(X1;X2; x2) =

(−X2
1 [X2 − x2]

0

)
: (33)

Because the reduced-order observer only en-
sures that X2 − x2 is L1 we factorize ‘ as

k = −
(
X2

1

0

)
; �=X2 − x2: (34)

Condition (21) of Theorem 1 does not hold
because, (25) multiplied with this k is not
bounded. Indeed, the feedback (30) with the
reduced-order observer leads to solutions
which escape in >nite time, as discussed in
Section 1.

(b) If we combine the control (30) with the
full-order observer, the dynamics of X is

Ẋ1 = −X1 +X2X
2
1 + u − X2

1 (X2 − x2);

Ẋ2 = −X2 +X2
1 − X2

1 (x̂1 − X1); (35)

where, because X2
1 (|̂x1 − X1| + |X2 − x2|) is

L1, we can use the factorization

k = 1; �= −X2
1

(
X2 − x2

x̂1 − X1

)
: (36)

With this k, condition (21) is indeed sat-
is>ed, and Theorem 1 guarantees that the
output-feedback

˙̂x1 = −x̂1 + x̂2y2 + u − y2(x̂1 − x1);

˙̂x2 = −x̂2 + y2 − y2(x̂1 − x1);

u= −x̂2x21 (37)

is globally asymptotically stabilizing.
2. If we employ the controller

u= x̂2x̂21 (38)

with the full-order observer, then X is

X = (x̂1; x̂2); (39)

which satis>es

Ẋ1 =−X1 +X2X
2
1 + u

− [X2(X1 + x1) + x1)2](X1 − x1);

Ẋ2 =−X2 +X2
1

− [X1 + x1 + x21](X1 − x1): (40)

Because X1 −x1 is bounded and X2
1 |X1 −x1| is L1,

condition (21) is satis>ed with the choice

k =−
(
X2=(1 + |X1|) 1

1=(1 + |X1|) 1

)
;

�=−
(
(2X1 − [X1 − x1])(1 + |X1|)

(X1 − [X1 − x1])2

)
× (X1 − x1): (41)

It follows that

˙̂x1 = −x̂1 + x̂2y2 + u − y2(x̂1 − x1);

˙̂x2 = −x̂2 + y2 − y2(x̂1 − x1);

u= −x̂2x̂21 (42)

is also a globally asymptotically stabilizing
output-feedback.
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3. Discussion

3.1. About inequality (21)

The main idea in Theorem 1 is to factor out an
L1 term � from ‘(x; z; u) in (12) using observer con-
vergence properties, and to study robustness of the re-
sulting system (20) against this �. Because it is not
known a priori whether the closed-loop solutions ex-
ist for all t¿ 0, � may be de>ned only on [0; T ), with
T >nite. To make sure that, for any initial condition
X0, there is a bounded solution X de>ned on [0; T ),
we assume that @V

@Xk is a bounded function, possibly
after rescaling of V by L. Such a condition is stan-
dard when dealing with boundedness of solutions (see
e.g. [1, Theorem 2], [6, (b) p. 109, Section 23], [17,
Example 10.2]). In particular, [1, Theorem 2] indi-
cates that this assumption is not conservative, because
forward completeness is equivalent to the existence of
a radially unbounded function whose time derivative
is bounded. To show that the boundedness assumption
for @V

@Xk cannot be relaxed, we consider the system

Ẋ = −X +X2�(t); (43)

where � is an exponentially decaying function. No non-
negative radially unbounded function V exists such
that dV

dXX
2 is bounded on R. In fact, this system has

solutions which escape to +∞ in >nite time.
Our boundedness assumption for dV

dXk does not
make use of the stabilizing term −X in (43). It may
appear that a less conservative condition could be
derived when this term is stronger than the coupling
term, as in the input-to-state stable [13] system

Ẋ = −X3 +X2�(t): (44)

However, because � is not guaranteed a priori to be
bounded on its interval of de>nition, we may still get
unbounded solutions for X. This is the case in (44) if
�(t) is generated as a solution of

�̇= �3: (45)

Each such �, although escaping in >nite time, is in L1

in its domain of de>nition. Despite this L1 property,
�−2X¿ 0 is an invariant set and, in this set Ẋ¿X3,
which means that X exhibits >nite escape time.
In the examples above, the unboundedness phenom-

ena are due to the coupling of the L1 disturbance �
with the explosive term k=X2. When k is a bounded

function, our theorem only stipulates the existence of a
Lyapunov function with bounded gradient dV

dX , which
is much less restrictive. However, this is still an ‘as-
sumption’ as shown by Sontag and Krichman [14],
who constructed a second-order example of the form

Ẋ = f(X) + �(t) (46)

in which X = 0 is GAS for the unperturbed system
and yet, a bounded and L1 disturbance �(t) gives rise
to an unbounded solution X(t). This proves that no
nonnegative and radially unbounded V (X) exists with
bounded gradient because, otherwise,Xwould remain
bounded.

3.2. Nonminimum phase systems

As we have discussed in the introduction, one way
to depart from certainty-equivalence is to modify the
control design as in [10,5,7]. This requires a gain as-
signment from the estimation error to the measured
output, which is achieved under a minimum phaseness
assumption. Our result does not rely on this assump-
tion, as we now illustrate with an example.

Example 2. Consider the system

ẋ1 = x2 + u;

ẋ2 = f(x1) + x3 − u;

ẋ3 = −f(x1);

y = x1; (47)

where f is a C1 function which is zero at the ori-
gin. This system is nonminimum phase with inverse
dynamics

ẋ2 = x2 + x3;

ẋ3 = 0: (48)

Except for the presence of f(x1), this system is an
observable linear system and, hence, a full-order ob-
server of the form

˙̂x1 = x̂2 + u − k1(x̂1 − y);

˙̂x2 = f(y) + x̂3 − u − k2(x̂1 − y);

˙̂x3 = −f(y) − k3(x̂1 − y) (49)
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with appropriate coe=cients k1, k2 and k3, gives
boundedness and exponential convergence of the
estimation error. Thus, if we employ the control law

u= �(x̂1; x̂2; x̂3) (50)

condition (16) holds with

X =


x̂1

x̂2

x̂3

 ; k =


k1

k2

k3

 ; �=X1 − x1: (51)

To satisfy the stabilizability assumption and con-
dition (21), it remains to design a state-feedback
controller which admits a Lyapunov function V with
bounded gradient. To this end we introduce the new
coordinates

 3 = x3;  2 = x1 + x2 + x3;  1 = x2 + x3 (52)

and obtain, via a backstepping design for the
( 1;  2)-subsystem, followed by the forwarding mod-
ulo LgV procedure of [11]

V ( 3;  2;  1) = V2( 2) + 1
2 ( 1 +  2)2

+

(
 3 −

∫  2

0

f(2s)
s

ds

)2
; (53)

�(x1; x2; x3) = x3 + ( 2 +  1) +  1 + V ′
2 ( 2)

+

(
 3 −

∫  2

0

f(2s)
s

ds

)

×
(

−f(2 2)
 2

+
f(2 2) − f( 2 −  1)

 2 +  1

)
; (54)

where V2 is any C1, positive de>nite, radially un-
bounded function. We observe that condition (21) of
Theorem 1 holds with

L(v) = log(1 + v); (55)

if f meets a growth condition such that we can >nd
a function V2 with the appropriate properties above

and satisfying

max

{∣∣∣∣f(2 2) 2

∣∣∣∣2 ; |V ′
2 ( 2)|

}
6 c(1 + V2( 2)) (56)

for some real number c. It is satis>ed for instance by

f( ) =  exp( ); V2( ) =  2 exp(4| |): (57)

In this case it follows from Theorem 1 that

˙̂x1 = x̂2 + u − k1(x̂1 − y);

˙̂x2 = f(y) + x̂3 − u − k2(x̂1 − y);

˙̂x3 = −f(y) − k3(x̂1 − y);

u= �(y; x̂2; x̂3) (58)

is a globally asymptotically stabilizing output-
feedback.

4. Certainty-equivalence design with the class of
observers in [2]

We now study the observer design introduced in
[2] and prove that its reduced-order variant preserves
GAS in a certainty-equivalence implementation, un-
der mild assumptions on the state-feedback controller.
This reduced-order design is applicable to a class of
systems of the form

y = x1; (59)

ẋ1 = A1x2 + G1%(H1x1 + H2x2) + '1(y; u); (60)

ẋ2 = A2x2 + G2%(H1x1 + H2x2) + '2(y; u); (61)

where H = [H1 H2] is a row vector, %(·) is a non-
linearity of Hx, and '1(y; u) and '2(y; u) include all
terms that do not depend on the unmeasured x2. An
estimate of x2 is obtained with the help of the variable
 = x2 + Nx1, where N ∈R(n−p)×p is to be designed.
From (60)–(61), the derivative of  is

 ̇= (A2 + NA1)x2 + (G2 + NG1)%(H1x1 + H2x2)

+ ['2(y; u) + N'1(y; u)]: (62)

To obtain the estimate

x̂2 = z − Nx1 (63)
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we employ the observer

ż = (A2 + NA1)x̂2 + (G2 + NG1) %(H1x1 + H2x̂2)

+ ['2(y; u) + N'1(y; u)]; (64)

which leads to the observer error system

ė2 = (A2 + NA1)e2 + (G2 + NG1)

× [%(Hx + H2e2) − %(Hx)]; (65)

where e2 := x̂2−x2=z− . In [2] convergence of e2 is
established under two restrictions which allow (65) to
satisfy the circle criterion: First, the nonlinearity %(·)
must be nondecreasing, which implies that [%(Hx +
H2e2) − %(Hx)] is a sector nonlinearity of H2e2, i.e.,

(H2e2)[%(Hx + H2e2) − %(Hx)]¿ 0: (66)

The second restriction is that there exists a matrix
P = PT ¿ 0 such that

(A2 + NA1)TP + P(A2 + NA1)¡ 0; (67)

P(G2 + NG1) + HT
2 = 0 (68)

which means that the system (65) is strictly positive
real (SPR) from the input −[%(Hx + H2e2) − %(Hx)]
to the output H2e2. Under these two restrictions e2
converges to zero exponentially, because (65) is the
feedback interconnection of a sector nonlinearity and
an SPR block as in the circle criterion.
To show that this observer satis>es Assumption 2,

we let X = [xT1 x̂
T
2 ]

T and rewrite its dynamics as in
(12) with

‘(x; z; u)

=

[−A1e2 − G1[%(Hx + H2e2) − %(Hx)]

NA1e2 + NG1[%(Hx + H2e2) − %(Hx)]

]
:

(69)

As we prove in Proposition 2 below, this observer
guarantees that ‘(x; z; u) is integrable, i.e., in the
factorization (13), we can take � = ‘(x; z; u). Global
asymptotic stability of a certainty-equivalence con-
troller is then established under the assumption that a
function L exists as in Theorem 1 with k = 1.

Proposition 2. Consider the system (59)–(61) where
%(·) is a nondecreasing function, and suppose the

observer (63) and (64) has been designed such that
(67) and (68) hold for some matrix P = PT ¿ 0. If
a state-feedback controller u = �(x1; x2) satisfying
Assumption 1 is available, and if there exists a C1,
class-K∞, function L such that

|L′(V (-))|
∣∣∣∣@V@x (-)

∣∣∣∣ (70)

is bounded, then the certainty-equivalence imple-
mentation u = �(x1; x̂2) achieves GAS of the origin
(x; z) = 0.

Proof. The main task is to show that ‘(x; z; u) de>ned
in (69) is an integrable function of time. To prove this,
we note that the derivative of the Lyapunov function
U = 1

2e
T
2Pe2 along the trajectories of (65) satis>es

U̇ = 1
2 e

T
2 [(A2 + NA1)TP + P(A2 + NA1)]e2

+ eT2P(G2 + NG1)[%(Hx + H2e2) − %(Hx)]:

(71)

Using (66)–(68), we can >nd a constant �¿ 0
such that

U̇ 6−�|e2|2 − (H2e2)[%(Hx + H2e2) − %(Hx)]

6−�|e2|2 (72)

which proves that, for all t ∈ [0; tf),

|e2(t)|6 .|e2(0)|exp(−'t) (73)

for some positive constants . and '. It follows from
(73) that, for any T ∈ [0; tf)∫ T

0
|e2| dt6 .

'
|e2(0)| (74)

and, if tf =∞, then e2(t) → 0 as t → ∞. To obtain a
similar integral bound for %(Hx +H2e2) − %(Hx), we
note from (65) that

d
dt
(H2e2) =H2(A2 + NA1)e2

− h[%(Hx + H2e2) − %(Hx)]; (75)

where the constant h := −H2(G2 + NG1) is positive
because, from (68), −H2(G2+NG1)=H2P−1HT

2 ¿ 0.
Using (75) it is not di=cult to show that, for almost
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all t ∈ [0; tf)
d
dt

|H2e2|6 ‖H2(A2 + NA1)‖ |e2|

− h sgn(H2e2)[%(Hx + H2e2) − %(Hx)]:

(76)

Next, using the nondecreasing property of %(·), we
substitute in (76)

sgn(H2e2) = sgn{%(Hx + H2e2) − %(Hx)}; (77)

and obtain
d
dt

|H2e2|6 ‖H2(A2 + NA1)‖ |e2|

− h|%(Hx + H2e2) − %(Hx)|: (78)

Finally, integrating both sides from 0 to T ∈ [0; tf)
and substituting (74), we get∫ T

0
|%(Hx + H2e2) − %(Hx)| dt

6
1
h

|H2e2(0)| + 1
h

‖H2(A2 + NA1)‖
∫ T

0
|e2| dt

6
1
h

‖H2‖ |e2(0)| + .
h'

|e2(0)|: (79)

Combining (73), (74) and (79), we conclude that the
observer (63) and (64) satis>es Assumption 2 with
� = ‘(x; z; u). Because the controller u = �(x1; x2)
satis>es Assumption 1, and because the bounded-
ness of (70), together with k = 1, implies (21), GAS
of the certainty-equivalence controller follows from
Theorem 1.

Example 3. Consider the system

ẋ1 = x2; ẋ2 = x2 − x52 + u; y = x1 (80)

which admits the state-feedback controller

u= �(x1; x2) = −x1 − 2x2 + x52 (81)

and the quadratic Lyapunov function

V (x) = x21 + x22 : (82)

This Lyapunov function satis>es the assumption of
Proposition 2 because, with L(V ) = log(1 + V )

|L′(V (-))|
∣∣∣∣@V@x (-)

∣∣∣∣6 1
1 + V

2
√
2V (83)

which is bounded. This means that the certainty-
equivalence feedback u=�(x1; x̂2), implemented with
the following observer designed as in [2], achieves
GAS

x̂2 = z + 2y; (84)

ż = −x̂2 − x̂52 + u: (85)

This stability conclusion may be counter-intuitive
because, due to the inexact cancellation of the nonlin-
earity x52 with x̂52, the certainty-equivalence controller
would be non-robust to the observer error e2=x2− x̂2.
Indeed, in the closed-loop system

ẋ1 = x2;

ẋ2 = −x1 − x2 + 2e2 + [(x2 − e2)5 − x52] (86)

e2 appears as a disturbance which is coupled with the
state variable x2 via [(x2 −e2)5 −x52] and, as we prove
in Appendix B, even an exponentially convergent
observer results in >nite escape time. However, the
observer (85) preserves GAS because its error e2
satis>es

ė2 = −e2 + [(x2 − e2)5 − x52]; (87)

where the term [(x2−e2)5−x52] is opposite in sign to e2
and, hence, plays a stabilizing role. This means that, as
x2 grows larger, the dynamics (87) are stiQer and the
convergence of e2 becomes faster than exponential,
thus preventing >nite escape time in (86).

5. Conclusions

We have derived a new stability condition for
certainty-equivalence designs, which eliminates
several conservative assumptions employed in ear-
lier results. This is achieved by >rst taking into
account the state-dependent convergence proper-
ties of the observer and next, by using the vari-
able X which is diQerent from the state estimate
x̂ when the measured output y is used instead of
its estimate ŷ in the control. Among other exam-
ples, we have applied our certainty-equivalence
design to a nonminimum phase system. This ap-
plication is signi>cant because the alternative ap-
proach of assigning an ISS gain from the observer
error to the output relies on a minimum phaseness as-
sumption, which is not required in our design. It would
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be of interest to further explore this research direction
and to develop output-feedback designs for classes
of nonminimum phase systems. Another promising
direction is to pursue observer and controller redesign
methods based on our new stability condition.

Appendix A. Proof of Theorem 1

The state of the closed-loop system is (x; z). By
de>nition, X given by (9) satis>es (12). So, from
the stabilizability assumption and (21), we get, for all
(x; z) and with X = K(x; z)

˙︷ ︷
L(V(X))6M |�(x; z)|: (A.1)

Let (x(t); z(t)) be any solution of the closed-loop
system starting from (x0; z0). Let [0; T (x0; z0)) be its
right maximal interval of de>nition. From (16) and
(A.1), we get, for all t ∈ [0; T (x0; z0))

L(V (X(t)))6L(V (K(x0; z0)))

+M�1((x0; z0); |K(x0; z0) − x0|):
(A.2)

With the properties of K , V and �1, there exist a
class K∞ function �3 such that we have, for all
t ∈ [0; T (x0; z0))

X(t)6 �3(|x0| + |z0|): (A.3)

With (16), this yields, for all t ∈ [0; T (x0; z0))

|̂x(t)| + |x(t)|6 2�3(|x0| + |z0|)
+ 3�1((x0; z0); |K(x0; z0) − x0|)

6 �4(|x0| + |z0|); (A.4)

where �4 is a class K∞ function. This, with (19)
and the properties of � and h, implies the exis-
tence of a class K∞ function �5 satisfying, for all
t ∈ [0; T (x0; z0))

z(t)6 �4(|x0| + |z0|): (A.5)

This implies that T (x0; z0) is in>nite for each pair
(x0; z0) and that the origin is globally stable. So

each solution has a non empty compact connected
!-limit set to which it converges. Also, with (18) and
the continuity of �, we have

lim
t→+∞ |u(t) − �(x(t))| = 0: (A.6)

It follows that in the !-limit set, the dynamics are

ẋ = f(x; �(x));

ż = �(z; �(x); h(x)); (A.7)

where the origin is a globally asymptotically stable
equilibrium of the x part. So, the!-limit set being both
invariant and compact, it is contained in {0} × Rq.
This implies that x(t) converges to the origin as time
goes to in>nity. With (18) and (19), the same property
holds for x̂(t) and z(t). This proves that the origin is
globally attractive.

Appendix B. Proof of *nite escape time in system
(86)

Lemma 3. Consider the system (86) and suppose e2
satis@es

e2(t) = e2(0) exp(−'t) (B.1)

for some '¿ 0. If e2(0)¡ 0 and if x2(0) is suA-
ciently large, then the solutions exhibit @nite escape
time.

Proof. We use the following result from [8]:

Proposition 4. Consider the system

ẋ1 = x2;

ẋ2 = f2(x1; x2; t); (B.2)

where x1; x2 ∈R, and f2 ∈C1. If there exists a
nonempty open set U ⊂ R, and positive constants a,
b, d, s and n¿ 2 such that, for all t ∈ [0; s], x1 ∈U
and x2 ¿d,

bxn2 ¡f2(x1; x2; t)¡axn2 (B.3)

then, for x1(0)∈U and suAciently large x2(0)¿d,
x2(t) escapes to in@nity in @nite time.
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To continue with the proof of Lemma 3, we note
that the system (86) is of the form (B.2) with

f2(x1; x2; t) =−x1 + x2 + 2 exp(−'t)e2(0)

+ [(x2 − exp(−'t)e2(0))5 − x52]:

(B.4)

The leading term of [(x2 − exp(−'t)e2(0))5 − x52] is
−5 exp(−'t)e2(0)x42. So the assumptions of Lemma
4 are satis>ed. This means that, if e2(0)¡ 0, then
for su=ciently large x2, and for x1 belonging to a
bounded set U , inequality (B.3) holds with n = 4.
The assumptions of Proposition 4 being satis>ed, we
conclude that the system (86) exhibits >nite escape
time for large initial conditions x2(0).
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