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Asymptotic Stabilization via Output Feedback
for Lower Triangular Systems With Output

Dependent Incremental Rate

Laurent Praly

Abstract—We study the global asymptotic stabilization by output feed-
back for systems whose dynamics are in a feedback form and where the
nonlinear terms admit an incremental rate depending only on the measured
output. The output feedback we consider is of the observer-controller type
where the design of the controller follows from standard robust backstep-
ping. The novelty is in the observer which is high-gain such as with a gain
coming from a Riccatti equation.

Index Terms—Backstepping, high-gain nonlinear observer, output non-
linear feedback, Riccatti equation.

I. INTRODUCTION

We consider a nonlinear system for which we can find coordinates
y1 to yn andz1 to zm such that its dynamics can be written as

_y1 = f1(y1) + y2

_y2 = f2(y1; y2) + y3
...

_yn = fn(y1; . . . ; yn) + z1 + u

_z1 = h1(y1; . . . ; yn; z1; u) + z2

_z2 = h2(y1; . . . ; yn; z1; z2; u) + z3
...

_zm = hm(y1; . . . ; yn; z1; . . . ; zm; u)

(1)

wherey1 is the measured output in, u is the input in , the functions
fis aren + 1 times continuously differentiable and zero at the origin,
the functionshis are continuously differentiable and zero at the origin
and, for alli, u, y, z,  , and', we have

jfi(y1; y2 +  2; . . . ; yi +  i)� fi(y1; y2; . . . ; yi)j

� 
(y1) (j 2j+ � � �+ j ij) (2)

jhi(y1; y2 +  2; . . . ; yn +  n; z1 + '1; . . . ; zi + 'i; u)

� hi(y1; y2; . . . ; yn; z1; . . . ; zi; u)j

� 
(y1) (j 2j+ � � �+ j nj + j'1j + � � �+ j'ij) (3)

where
 is an + 1 times continuously differentiable strictly positive
function.

We address the problem of global asymptotic stabilization of the
origin with output feedback.

This problem has received a lot of attention. But until recently, the
contributions were assuming that thefis at least are linear iny2 to yn,
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as in [8, Sec. 7], [11, Sec. 6.3], [3, Ch. 7], or [16], [15], or [2],1 for
instance, or that
 is a constant as in [7] and [4].

Actually, for (1), if we have an observer leading to an error system
with a state independent error Lyapunov function (see [13]) then we
know how to get a controller from the observer dynamics, with robus-
tification to the observation error. This design is based on the tech-
nique of robust backstepping, tackling with the observation errors via
nonlinear damping (see [8, Sec. 7.1.2]), via interlacing (see [8, Sec.
7.4.1]) or by propagating an ISS property through integrators (see [6,
Cor. 2.3]). Such a design allows us to deal with error structures more
intricate than those obtained with the linearity or constant
 assump-
tion. In particular it makes possible to take advantage of some sign or
gain margin in the observer. The sign margin property for instance has
been used in [1] for systems exhibiting a monotonicity property.

The objective of this note, whose preliminary version can be found
in [14], is to use a gain margin property. This leads us to use a high gain
like observer. For such observers, it is known (see [7]. for instance) that,
at least locally around the true state, the value of the gain is dictated by
the global Lipschitz constant of the non linearities if it exists. Here, this
Lipschitz “constant” is not constant but depends on the output. This
forces us to modify the gain on line. This creates some resemblance
with the adapted high-gain observers used typically in universal con-
trollers for (perturbed) linear systems (see [5] for a survey or [19] for a
more recent contribution for instance). However, there is an important
difference since our gain up date law depends on the increments of the
nonlinearities and not on the nonlinearities themselves. Actually, our
update law is a Riccatti equation and, for this reason, we view our ob-
server more something like a Kalman filter (compare with [15]) than
an adapted high-gain observer.

Unfortunately, as all the previous results for the class of systems (1),
we do require a “minimum phase” assumption for the inverse dynamics
which we phrase as follows.

Minimum-Phase Assumption:The system

_z1 = h1(v1; . . . ; vn; z1; v0 � z1) + z2

_z2 = h2(v1; . . . ; vn; z1; z2; v0 � z1) + z3
...

_zm = h1(v1; . . . ; vn; z1; . . . ; zm; v0 � z1)

(4)

with input (v0; . . . ; vn) and state(z1; . . . ; zm) is Input-to-State
Stable (see [17]).

The dynamic output feedback controller we propose has the struc-
ture of an observer-controller. The observer is high-gain like but with
an on-line adapted gain. Its design is given in Section II. The controller,
presented in Section III, is derived with the observer backstepping tech-
nique. In Section IV, we analyze the behavior of the closed-loop system.

II. OBSERVERDESIGN

To express the observer more easily, we rewrite the system (1) in the
following more compact form:

_x1 = g1(x1; u) + x2
...

_xp�1 = gp�1(x1; . . . ; xp�1; u) + xp

_xp = gp(x1; . . . ; xp; u)

y1 = x1

(5)

1In [2], an extra assumption in terms of structure and growth of Lyapunov
functions is used.

wherep = n + m, x in n+m collects then componentsyis andm
componentszis and the functionsgis are thefjs orhls respectively.
From (2) and (3) on the increments, we have, for alli, u, x and�

jgi(x1; x2 + �2; . . . ; xi + �i; u)� gi(x1; x2; . . . ; xi; u)j

� 
(y1) (j�2j + � � �+ j�ij): (6)

The observer we propose is

_̂x1 = g1(y1) + x̂2 + k1r[y1 � x̂1]
...

_̂xp�1 = gp�1(y1; x̂2; . . . ; x̂p�1; u) + x̂p + kp�1r
p�1[y1 � x̂1]

_̂xp = gp(y1; x̂2; . . . ; x̂p; u) + kpr
p[y1 � x̂1]

_r = `(r; y1)
(7)

wherer is an extra state,̀ is an+1 times continuously differentiable
function to be defined below and thekis are constant chosen such that
(always possible) there exist strictly positive real numbersq anda and
a symmetric matrixQ satisfying

QO +OT
Q � �aQ; qI � Q � I (8)

where

O =

�k1 1 0 � � � 0
...

. . .
. . .

...
...

. . .
. . .

�kp�1 0 � � � 0 1

�kp 0 � � � � � � 0

: (9)

The corresponding observation error

� = x� x̂ (10)

satisfies the following equation:

_�1 = �2 � k1r�1
...

_�p�1 = [gp�1(y1; x2; . . . ; xp�1; u)

� gp�1(y1; x2 � �2; . . . ; xp�1 � �p�1; u)]

+ �p � kp�1r
p�1�1

_�p = [gp(y1; x2; . . . ; xp; u)

� gp(y1; x2 � �2; . . . ; xp � �p; u)]� kpr
p�1:

(11)

To go further, we want to make sure that the observer state component
r stays bounded away from 0, say larger than 1. For this we impose to
the function` to satisfy, for ally1,

`(1; y1) > 0 (12)

and we choose the initial conditionr(0) strictly larger than 1. Then,
as by now routine in the analysis of error dynamics of high-gain ob-
servers (see [7], for instance), we introduce the following change of
coordinates:

"i =
�i

ri�1+b
: (13)

The novelty here is thatb is not taken as 0 or 1 as usual. Instead, it is a
strictly positive real number chosen (sufficiently large) to satisfy

bQ � QD +DQ � �bQ (14)

whereD is the diagonal matrix

D = diag(0; . . . ; p� 1): (15)
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Actually, we could imposeb = 1 and choose2 the gainski ’s so that (8)
and

Q(D + bI) +Q(D+ bI)TQ > 0 (16)

hold. However, such a design restricts the choice of observer poles.
For the"is coordinates, we have (17), as shown at the bottom of the

page. With (8) and (6), we get the inequality (ifr � 1)

_

"
T
Q" ��ar"TQ"� 2

_r

r
"
T
Q(D+ bI)"

+ 2
(y1)

p

i=2

"
T
Qi

r1+bj"2j+ � � �+ ri�1+bj"ij
ri�1+b

(18)

�� ar + 2b
_r

r
"
T
Q"� 2

_r

r
"
T
QD"

+ 2
(y1)

p

i=2

"
T
Qi

i

j=2

j"j j (19)

�� ar + 2b
_r

r
"
T
Q"� 2

_r

r
"
T
QD"

+ 2
(y1)(p� 1) "
T
Q j"j (20)

�� ar + 2b
_r

r
� 2(p� 1)p

q

(y1) "

T
Q"� 2

_r

r
"
T
QD":

(21)

However, with (14), we have

�2
_r

r
"
T
QD" � b

j _rj
r

"
T
Q": (22)

So, we obtain

_

"
T
Q" � � ar + b 2

_r

r
� j _rj

r
� 2(p� 1)p

q

(y1) "

T
Q": (23)

From here, our idea to choose the function`, i.e., _r, is to make the term
in parenthesis negative. For instance, let us pick

_r = `(r; y1) = �1

b
r

a

3
[r � 1]� 2(p� 1)p

q

(y1) : (24)

Since
(y1) is strictly positive, (12) holds. Also, this yields if_r � 0
(if r � 1)

_

"
T
Q" �� ar + b

_r

r
� 2(p� 1)p

q

(y1) "

T
Q" (25)

��a

3
[2r + 1]"TQ" (26)

��a"TQ": (27)

2This choice is always possible has already remarked in [12].

If _r � 0, we obtain (ifr � 1)

_

"
T
Q" �� ar + 3b

_r

r
� 2(p� 1)p

q

(y1) "

T
Q" (28)

�� a+
4(p� 1)p

q

(y1) "

T
Q" (29)

��a"TQ": (30)

To summarize, for any choice for theki ’s so that (8) holds, we can ex-
press the functioǹ in such a way that, at each point in the closed-loop
state space wherer � 1, we have

_

"
T
Q" � �a"TQ": (31)

III. CONTROLLER DESIGN

To design the controller, we work from a part of the observer equa-
tion (7) rewritten with the coordinates(r; y1; ŷ2; . . . ; ŷn)

_r = �1

b
r

a

3
[r � 1]� 2(p� 1)p

q

(y1)

_y1 = f1(y1) + ŷ2 + r1+b"2

_̂y2 = f2(y1; ŷ2) + ŷ3 + k2r
2+b"1

...
_̂yn = fn(y1; ŷ2; . . . ; ŷn) + v + knr

n+b"1

(32)

where we have

u = v � ẑ1: (33)

We follow exactly the same steps as in [8, Sec. 7.1.2] (see the
Appendix for details). This way, we get recursivelyn functions
�i(r; y1; ŷ2; . . . ; ŷi) which are n + 1 � i times continuously
differentiable, respectively, and satisfy

�i(r; 0; 0; . . . ; 0) = 0: (34)

In particular�i+1 is obtained from the gradient of�i with respect to all
its arguments. So it is in this process of getting these functions�is that
we need to differentiate may be up ton times the functions appearing
in (32), i.e., thefi and
. Finally, we note that, for getting the nonlinear
damping terms (see [8, p. 289]), we use (31) (which holds only ifr �
1). This construction leads to the control

v = �n(r; y1; ŷ2; . . . ; ŷn) (35)

and provides the variables

�1 = y1 (36)

�i+1 = ŷi+1 � �i(r; y1; ŷ2; . . . ; ŷi): (37)

_"1 = r"2 � rk1"1 � b
_r

r
"1

...

_"p�1 =
gp�1(y1; x2; . . . ; xp�1; u)� gp�1(y1; x2 � r1+b"2; . . . ; xp�1 � rp�2+b"p�1; u)

rp�2+b
+ r"p � rkp�1"1 � (p� 2 + b)

_r

r
"p�1

_"p =
gp(y1; x2; . . . ; xp; u)� gp(y1; x2 � r1+b"2; . . . ; xp � rp�1+b"p; u)

rp�1+b
� rkp"1 � (p� 1 + b)

_r

r
"p:

(17)
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It gives also the inequality (ifr � 1):

_

y
2

1 +

n

i=2

�
2
i + "

T
Q" � �y21 �

n

i=2

�
2
i � a

2
"
T
Q": (38)

Finally, our output feedback controller is

_r = �1

b
r

a

3
[r � 1]� 2(p� 1)p

q

(y1) ; r(0) > 1

_̂y1 = f1(y1) + ŷ2 + k1r(y1 � ŷ1)

_̂y2 = f2(y1; ŷ2) + ŷ3 + k2r
2(y1 � ŷ1)

...
_̂yn = fn(y1; ŷ2; . . . ; ŷn) + ẑ1 + u+ knr

n(y1 � ŷ1)

_̂z1 = h1(y1; ŷ2; . . . ; ŷn; ẑ1; u) + ẑ2

+ kn+1r
n+1(y1 � ŷ1)

...
_̂zm = hm(y1; ŷ2; . . . ; ŷn; ẑ1; . . . ẑm; u)

+ kn+mr
n+m(y1 � ŷ1)

u = �n(r; y1; ŷ2; . . . ; ŷn) � ẑ1:
(39)

IV. A NALYSIS OF THE CLOSED-LOOPSYSTEM

The dynamics of the closed-loop system can be described using the
coordinates

(r; "; y1; ŷ2; . . . ; ŷn; z1; . . . ; zm):

They satisfy the set of equations shown in (40) at the bottom of the
page, where we have used the notation, fori 2 f1; . . . ; ng

xi = ŷi + r
i�1+b

"i (41)

and, fori 2 fn + 1; . . . ; n + mg
xi = zi�n: (42)

These dynamics have the following properties.

2) The right-hand side is defined on(0; +1)� 2(n+m) where it
is continuously differentiable. It follows that, to each initial con-
dition in (0; +1)� 2(n+m), it corresponds a unique solution.

3) The expression of_r has been chosen such that:

r = 1 ) _r > 0: (43)

It follows that the set(1; +1)� 2(n+m) is forward invariant
and its boundaryf1g � 2(n+m) is repellent. Hence, any solu-
tion initialized in this set remains in it and, if its right maximal
interval of definition is bounded, it is unbounded (since itsr com-
ponent cannot go to 1). So, for any such solution, (38) holds.

4) We have an interconnection structure. The
(r; "; y1; ŷ2; . . . ; ŷn) subsystem sends the signals

v0 =�rn+b"n+1 + �n; v1 = y1

v2 = ŷ2 + r
1+b

"2; . . . ; vn = ŷn + r
n�1+b

"n (44)

to the z subsystem whose dynamics are then given by
(4). Conversely, thez-subsystem sends its state to the
(r; "; y1; ŷ2; . . . ; ŷn) subsystem via the functionsgis. With
(the proof of) [18, Cor.] and our minimum phase assumption,
it follows that asymptotic stability with domain of attraction
(1; +1) � 2(n+m) holds if the(r; "; y1; ŷ2; . . . ; ŷn) sub-
system has, uniformly inz, an asymptotically stable equilibrium
with (1; +1) � 2n+m as domain of attraction. (See (49) for
what we mean by this).

5) With the help of (31), (34), (37), and (38), we see that
(r; "; y1; ŷ2; . . . ; ŷn)-subsystem has only one equilibrium at
(r�; 0; . . . ; 0) in the set(1; +1)� 2n+m, with

r
� = 1 +

6(p� 1)

a
p
q


(0): (45)

_r = �1

b
r

a

3
[r � 1]� 2(p� 1)p

q

(y1) ; r(0) > 1

_"1 = r"2 � rk1"1 � b
_r

r
"1

...

_"i =
gi(y1; x2; . . . ; xi; u)� gi(y1; x2 � r1+b"2; . . . ; xi � ri�1+b"i; u)

ri�1+b
+ r"i+1 � rki"1 � (i� 1 + b)

_r

r
"i

...

_"p =
gp(y1; x2; . . . ; xp; u)� gp(y1; x2 � r1+b"2; . . . ; xp � rp�1+b"p; u)

rp�1+b
� rkp"1 � (p� 1 + b)

_r

r
"p

_y1 = f1(y1) + ŷ2 + r1+b"2

_̂y2 = f2(y1; ŷ2) + ŷ3 + k2r
2+b"1

...
_̂yn = fn(y1; ŷ2; . . . ; ŷn) + knr

n+b"1 + �n(r; y1; ŷ2; . . . ; ŷn)
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
_z1 = h1 y1; ŷ2 + r1+b"2; . . . ; ŷn + rn�1+b"n; z1; �z1 � rn+b"n+1 + �n + z2

...

_zm = hm y1; ŷ2 + r1+b"2; . . . ; ŷn + rn�1+b"n; z1; . . . ; zm; �z1 � rn+b"n+1 + �n

(40)
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6) The functionr�r��r� log(r=r�) isC1, proper and nonnegative
on (0; +1). It is zero if and only ifr = r�. It satisfies

_
r � r� � r� log(r=r�)

= � a

3b
r � 1� 6(p� 1)

a
p
q


(y1) (r � r�) (46)

= � a

3b
(r � r�)2 � 2(p� 1)

b
p
q

(r � r�)(
(0)� 
(y1)) (47)

� � a

6b
(r � r�)2 +

6(p� 1)2

abq
(
(0)� 
(y1))

2: (48)

We conclude that to show the asymptotic stability of the point
(r�; 0; . . . ; 0) with domain of attraction(1; +1) � 2(n+m) uni-
formly in z, it is sufficient to show that for someC1, unbounded and
strictly increasing function�: [0; +1)! [0; +1), the derivative of

V (r; y1; ŷ2; . . . ; ŷn; ")

= [r�r��r� log(r=r�)] + � y21 +

n

i=2

�2i + "TQ" (49)

is negative definite uniformly inz. In view of (38) and (48), we pick
': [0; +1) ! (0; +1) as a continuous non decreasing function
satisfying, for ally1

'(y21) � 2
6(p� 1)2

abq


(0)� 
(y1)

y1

2

: (50)

Such a choice is possible since(
(0) � 
(y1))=y1 is a continuous
function. Then, in the definition ofV , we use

�(s) =
s

0

'(�)d�: (51)

With (38) and (48), we get, in(1; +1)� 2n+m

_V � � a

6b
(r � r�)2 +

6(p� 1)2

abq
(
(0)� 
(y1))

2

�' y21 +

n

i=2

�2i + "TQ" y21 +

n

i=2

�2i +
a

2
"TQ" : (52)

Since' is nondecreasing and satisfies (50), this yields

_V �� a

6b
(r � r�)2 +

6(p� 1)2

abq
(
(0)� 
(y1))

2

� '(y21)y
2
1 � ' y21 +

n

i=2

�2i + "TQ"

�
n

i=2

�2i +
a

2
"TQ" (53)

�� a

6b
(r � r�)2 � 1

2
'(y21)y

2
1

� '

n

i=2

�2i + "TQ"

n

i=2

�2i +
a

2
"TQ" : (54)

The right-hand side of (54) is nonpositive and, with (34) and (37), zero
if and only if we are at(r�; 0; . . . ; 0). Hence, we have established the
asymptotic stability of this point uniformly inz. Also, this inequality
holding everywhere in the set(1; +1) � 2n+m which is forward
invariant, this whole set is the domain of attraction.

To conclude, for (1) satisfying (2), (3), and the minimum phase as-
sumption, the dynamic output feedback we have proposed provides
asymptotic stability of the point(r�; 0; . . . ; 0) with domain of attrac-
tion (1; +1) � 2(n+m).

V. CONCLUSION

We have shown that, by combining an adapted high gain observer
and observer backstepping, we can design globally asymptotically sta-
bilizing output feedbacks for systems admitting the form (1) where the
nonlinearities have an incremental rate depending only on the measured
output as specified by (2) and (3).

The main contribution here is in the observer gain update law. It is
reminiscent from the covariance matrix up date law in the Kalman filter
used in [15]. In particular, our update law is not nominally non negative.
It follows that, to get asymptotic stability of a compact set, there is no
need to add some fix like dead-zone, leakage, or other (see [19] and
[9], for instance).

The key to get such an update law is in the coordinate scaling com-
monly used in the analysis of high gain observer. In our case, without
any extra restriction on the observer poles, this scaling

"i =
�i

ri�1+b
(55)

depends not only on the ranki in the integrator chain, but also onb, a
parameter directly related to the “observer poles” [see (8) and (14)].

APPENDIX

CONSTRUCTION OF THEFUNCTIONS�iS

For the sake of completeness, we reproduce here with some adapta-
tion what can be found in [8, Sec. 7.1.2].

Consider the system

_r = �1

b
r

a

3
[r � 1]� 2(p� 1)p

q

(y1)

_y1 = f1(y1) + ŷ2 + r1+b"2

_̂y2 = f2(y1; ŷ2) + ŷ3 + k2r
2+b"1

...
_̂yi = fi(y1; ŷ2; . . . ; ŷi) + vi + kir

i+b"1

(56)

where the"js are components of a vector". Aiming at establishing a
result by recurrence, we assume the existence of functions�j which
aren+ 1� j times continuously differentiable, respectively, satisfy

�j(r; 0; 0; . . . ; 0) = 0 (57)

and are such that, by letting

�j+1 = ŷj+1 � �j(r; y1; ŷ2; . . . ; ŷj) (58)

we have

_

y21 +

i

j=2

�2j + "TQ" � �y21 �
i

j=2

�2j �
a(2n� i)

2n
"TQ"

+2�i(vi � �i): (59)

Now, we consider the system

_r = �1

b
r

a

3
[r � 1]� 2(p� 1)p

q

(y1)

_y1 = f1(y1) + ŷ2 + r1+b"2

_̂y2 = f2(y1; ŷ2) + ŷ3 + k2r
2+b"1

...
_̂yi = fi(y1; ŷ2; . . . ; ŷi) + ŷi+1 + kir

i+b"1

_̂yi+1 = fi+1(y1; ŷ2; . . . ; ŷi+1) + vi+1 + ki+1r
i+1+b"1

(60)
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and we let

�i+1 = ŷi+1 � �i(r; y1; ŷ2; . . . ; ŷi): (61)

In this case, (59) gives

_

y
2

1 +

i

j=2

�
2

j + "
T
Q"

� �y21 �
i

j=2

�
2

j �
a(2n� i)

2n
"
T
Q"+ 2�i�i+1: (62)

This yields

_

y
2

1 +

i+1

j=2

�
2

j + "
T
Q" ��y21 �

i

j=2

�
2

j �
a(2n� i)

2n
"
T
Q"

+ 2�i+1 �i + _̂yi+1 � _�i (63)

where, in particular, we have

_�i =
@�i

@r
�1

b
r

a

3
[r � 1]� 2(p� 1)p

q

(y1)

+
@�i

@y1
f1(y1) + ŷ2 + r

1+b
"2

...

+
@�i

@ŷi
fi(y1; ŷ2; . . . ; ŷi) + ŷi+1 + kir

i+b
"1 : (64)

We observe that the term�i + _̂yi+1 � _�i admits the following decom-
position

�i + _̂yi+1 � _�i = vi+1 + �i(r; y1; ŷ2; . . . ; ŷi+1)

+ �i(r; y1; ŷ2; . . . ; ŷi)"1 +
@�i

@y1
r
1+b

"2 (65)

with a straightforward identification of the function�i and�i. Also,
note that (57) implies

@�i

@r
(r; 0; 0; . . . ; 0) = 0: (66)

Since thefj ’s are zero at the origin, with (57) and (66), it follows that

�i(r; 0; . . . ; 0) = 0: (67)

Finally, by completing the squares, we get

2�i+1 �i"1 +
@�i

@y1
r
1+b

"2

� 2nq

a
�
2

i+1 �
2

i +
@�i

@y1

2

r
2+2b +

a

2nq
("21 + "

2

2) (68)

� 2nq

a
�
2

i+1 �
2

i +
@�i

@y1

2

r
2+2b +

a

2n
"
T
Q": (69)

Using this inequality in (63), we obtain

_

y
2

1 +

i+1

j=2

�
2

j + "
T
Q"

� �y21 �
i

j=2

�
2

j �
a(2n� (i+ 1))

2n
"
T
Q"

+ 2�i+1 vi+1 + �i(r; y1; ŷ2; . . . ; ŷi+1)

+
nq

a
�i+1 �

2

i +
@�i

@y1

2

r
2+2b

: (70)

So, by defining�i+1 as

�i+1(r; y1; ŷ2; . . . ; ŷi+1) = � �i(r; y1; ŷ2; . . . ; ŷi+1)

+
nq

a
�i+1 �

2

i +
@�i

@y1

2

r
2+2b � 1

2
�i+1 (71)

we get [compare with (59)]

_

y
2

1 +

i+1

j=2

�
2

j + "
T
Q" � �y21 �

i+1

j=2

�
2

j

� a(2n� (i+ 1))

2n
"
T
Q"+ 2�i+1(vi+1 � �i+1): (72)

Note also that�i+1 is n� i times continuously differentiable and sat-
isfies

�i+1(r; 0; . . . ; 0) = 0: (73)
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