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as in [8, Sec. 7], [11, Sec. 6.3], [3, Ch. 7], or [16], [15], or 2for wherep = n + m, x in R*™™ collects then componenty;s andm

instance, or that is a constant as in [7] and [4]. components; s and the functiong;s are thef;s or h;s respectively.
Actually, for (1), if we have an observer leading to an error systefrom (2) and (3) on the increments, we have, foi all, + and¢

with a state independent error Lyapunov function (see [13]) then we

know how to get a controller from the observer dynamics, with robukfli (71+ 72 F &2 - @i+ & u) = g1, w20 s i, )]

tification to the observation error. This design is based on the tech- <) (&l +---+1&)). (6)

niqug of robust packstepping, tackling With.th.e obser.vation errors Vﬁe observer we propose is

nonlinear damping (see [8, Sec. 7.1.2]), via interlacing (see [8, Sec. o

7.4.1]) or by propagating an ISS property through integrators (see [f, 1 = 91(y1) + &2 + kir[yr — @1]

Cor. 2.3]). Such a design allows us to deal with error structures mote

intricate than those obtained with the linearity or constaassump- 5

. . . . . el = (p— Toyeuo, Tp_1, U 2y 4 kp_qrP! -
tion. In particular it makes possible to take advantage of some signpr'”~" ~ 7 1 B2 Byt w) By Epmy P [y — ]

gain margin in the observer. The sign margin property for instance has &, = ¢p(y1, &2,..., &p, w) + kprPlyr — 21]
been used in [1] for systems exhibiting a monotonicity property. .
I - L . 7= L(r, y1)
The objective of this note, whose preliminary version can be foun @)

in [14], is to use a gain margin property. This leads us to use a high gaifierer is an extra stat, is an + 1 times continuously differentiable
like observer. For such observers, itis known (see [7]. for instance) thefaction to be defined below and tites are constant chosen such that

at least locally around the true state, the value of the gain is dictated@yvays possible) there exist strictly positive real numheasda and
the global Lipschitz constant of the non linearities if it exists. Here, thig symmetric matrix) satisfying

Lipschitz “constant” is not constant but depends on the output. This ) . )

forces us to modify the gain on line. This creates some resemblance QO+0 Q< —aQ, ¢I<Q<IT ®
with the adapted high-gain observers used typically in universal cQfpere

trollers for (perturbed) linear systems (see [5] for a survey or [19] for a

more recent contribution for instance). However, there is an important —k 10 -0

difference since our gain up date law depends on the increments of the : ) ) :

nonlinearities and not on the nonlinearities themselves. Actually, our 0= — ' )

update law is a Riccatti equation and, for this reason, we view our ob-
server more something like a Kalman filter (compare with [15]) than —kp—r 0 o 0 1
an adapted high-gain observer. —kp 0 e o 0

Unfortunately, as all the previous results for the class of systems (1),
we do require a “minimum phase” assumption for the inverse dynamit8€ corresponding observation error
which we phrase as follows. E=u— & (10)
Minimum-Phase AssumptionThe system
satisfies the following equation:

S
Z21= hi(viy ooy Uny 21, V0 — 21) + 22 & . & &
/52:h2(1)1,...,7.’7,,2174”2,1)0—21)-1—23 . .

) Eo—1t = [gp—1(y1, 22, ..oy Zp—1, u)
Emo = hai(vi, oo, Un, 21, ool 2, U0 — 21) ~Ip1 (Y T2 = o 1 = Gy 0]
+£p - kp*ll’pilgl
with input (vo, ..., v,) and state(zi, ..., z,) is Input-to-State & = lon(yr, @2, ooy wp, w) ,
Stable (see [17]). = p(y1, ¥2 = &2, ooy 1y — &y )] = RprP &
The dynamic output feedback controller we propose has the struc- (11)

ture of an observer-controller. The observer is high-gain like but wiq:b go further, we want to make sure that the observer state component

an on-line adapted gain. Its design is given in Section Il. The controllerrstays bounded away from 0, say larger than 1. For this we impose to
presented in Section ll1, is derived with the observer backstepping te?ﬁé function( to satisfy, for ally;

nique. In Section IV, we analyze the behavior of the closed-loop system.

(1, 41) >0 12)
Il. OBSERVERDESIGN and we choose the initial conditior{0) strictly larger than 1. Then,
To express the observer more easily, we rewrite the system (1) in 8Py now routine in the analysis of error dynamics of high-gain ob-
following more compact form: servers (see [7], for instance), we introduce the following change of
coordinates:
; =t 13
i1 = gi(wr, u) + 2 S g (13)
The novelty here is thdtis not taken as 0 or 1 as usual. Instead, itis a
Tp—1 = gp—1(x1, .on, Tp_1, ) + ap (5) strictly positive real number chosen (sufficiently large) to satisfy
Fp = gp(T1, coey Tp, ) bQ > QD + DQ > —bQ (14)
Yy =

whereD is the diagonal matrix
1In [2], an extra assumption in terms of structure and growth of Lyapunov
functions is used. D =diag(0,....,p—1). (15)
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Actually, we could imposé = 1 and choosgthe gaing:;’s so that (8)
and

QD +bI)+ QD +bI)"Q >0 (16)

hold. However, such a design restricts the choice of observer poles.
For thes; s coordinates, we have (17), as shown at the bottom of the

page. With (8) and (6), we get the inequality«if> 1)

—~
TQe < —areTQ=—2

p
+2v(y1) Z

; QD +bD)e

7'1+b|62|+"'+7'i71+b|6i|

T
€Qi

v i 1tb
(18)
<= <a7' +2b Z) Qe -2 ::”TQDE
r r
P i
+290) Y [ Y Ie] (19)
i=2 j=2
<- <anr + 2b z) fQs—2 ZETQDe
r r
+27(y)(p—1) |27 Q| el (20)
P 2(p-1) r rop
<—|ar -— e Yz —2—¢ €
< <ar vl - A w,(yl)) Q:-2-:'QD
(21)
However, with (14), we have
2! &‘TQDS <b m E:‘TQ&‘. (22)
” "

So, we obtain

<ar+b<2;i—|;;|>_2(p_\/_al)

From here, our idea to choose the functione.,r, is to make the term
in parenthesis negative. For instance, let us pick

_%,(g [r—1] - L\/gl) 'r(yl)> :

Sincev(y1 ) is strictly positive, (12) holds. Also, this yields#f > 0
(if » > 1)

—_
TQe <~ 7(y1)>6TQ€- (23)

P =L(r, y1) (24)

—_

1105
If # < 0, we obtain (ifr > 1)
Ly § r_ 2(1)— 1) o Loy
Tos <= (a2 )0s )
<- (a + —4@\/_{7 L (i )>ETQS (29)
< —asf Qe. (30)

To summarize, for any choice for tlg’'s so that (8) holds, we can ex-
press the functio# in such a way that, at each point in the closed-loop
state space where> 1, we have

/-/"\
STQS < —cw:TQe. (32)
I1l. CONTROLLER DESIGN

To design the controller, we work from a part of the observer equa-
tion (7) rewritten with the coordinates, yi, g2, - .., §x)

_ _% , <% -1 - mvﬁn))

Vi
Filyr) + g2 + P Tle,

o=
'.9-72 = foly1, §2) + g3 + For?the, (32)
Z}n = fn(yh ﬁQ-/ ) 3]71) + v+ kn‘rn—'rbf]
where we have
u=uv— 2. (33)

We follow exactly the same steps as in [8, Sec. 7.1.2] (see the
Appendix for details). This way, we get recursively functions
a;(r, y1, g2, ..., §;) which aren 4+ 1 — ¢ times continuously
differentiable, respectively, and satisfy

ai(r,0,0,....0)=0. (34)
In particulara; 41 is obtained from the gradient of with respectto all
its arguments. So itis in this process of getting these functigasghat
we need to differentiate may be upstatimes the functions appearing
in (32), i.e., thef; and~. Finally, we note that, for getting the nonlinear
damping terms (see [8, p. 289]), we use (31) (which holds onlyzif
1). This construction leads to the control

T 7 2(p - 1) T~
e Qe < — <anr +b o 7 Y(y1) )e" Qe (25) v = (r, Y1, G2s ey iin) (35)
a
<-3 [2r +1]=" Q= (26) and provides the variables
T . .
S —ac Qu. (27) Q] = (36)
2This choice is always possible has already remarked in [12]. Citr =Fitt —ai(r, Y1, Yo, vy Gi). (37)
. 7
g1 = reg —rkier —b—e
”
U T W) — go1(y1. w9 — 1 T en. iy — P2 ”
Gy = p—1(Y1, T2, oovy Tp_1, U) — gp 1(91/«3%/ €2, s Lp—1 — 7 Ep—1, U) +'r€p—7‘kp71€1—(p—2+b)’—Cp71
rP r
. LN . p—1+b . .
. gp(Y1, T2, ooy Tp, U) — gp(y1, T2 — 1 2y euey Tp — T Ep, U 7
g, = p(y1, T2 ps W) — gp(3n ],pzler 2 ; ps U) —rkyey — (p— 1+ b) = B

17
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It gives also the inequality (if > 1): and, fori € {n+1,....,n+m}
Ty = Zi—n. (42)

y? + Z C+:T0s <yt - Zcf _a T Qe. (38) These dynamics have the following properties.
i=2 i=2 2 2) The right-hand side is defined 96, +o0c) x R*"*™) where it
is continuously differentiable. It follows that, to each initial con-
dition in (0, +o0) x R*"*™) it corresponds a unique solution.
3) The expression of has been chosen such that:

Finally, our output feedback controller is

:__ET o _2(1’_1),‘,,1 ,
T CI SR EE = () U

g, = fHily) +d2+kir(yr — i)

r=1 = #>0. (43)

o R . R It follows that the set1, +oc) x R*"+™) s forward invariant

2 = F2yr: §2) + s + kar”(y1 = Gu) and its boundanf1} x R*"*™) is repellent. Hence, any solu-
: tion initialized in this set remains in it and, if its right maximal

interval of definition is bounded, it is unbounded (since itom-

Yn = Falyrs Gy s ) + 2w ™ (g1 = 41) ponent cannot go to 1). So, for any such solution, (38) holds.
21 = hays, 92, «vny Gus 21, u) + 22 4) We have an interconnection structure. The
+ Eerrr™ gy — 1) (r, €, y1, 92, ..., U ) SUbSystem sends the signals
vo=—r""eitan,  wvi=u
En = R Y1y G2 o s B1e e Ens 1) vo =g+ e, vy = g 47", (44)
n4m 5 i .
Fhntm ™ (1 — 1) to the = subsystem whose dynamics are then given by
w = an(r, Y1, G2, vy Gn) — Z1. (4). Conversely, thez-subsystem sends its state to the
(39) (r, €. Y1, 2. - .., Un) Subsystem via the functiongs. With
(the proof of) [18, Cor.] and our minimum phase assumption,
IV. ANALYSIS OF THE CLOSED-LOOP SYSTEM it follows that asymptotic stability with domain of attraction

(1, +00) x R*"+™) holds if the(r, . y1, G2, ... ) SUb-
system has, uniformly in, an asymptotically stable equilibrium
with (1, +00) x R*™*™ as domain of attraction. (See (49) for
) what we mean by this).

(1 & 91 G2y s G 21 s Zm)- 5) With the help of (31), (34), (37), and (38), we see that
(r, €, Y1, Y25 - - -» Un)-Subsystem has only one equilibrium at
(r*,0, ..., 0)inthe sei(1, +o0) x R**™ with

The dynamics of the closed-loop system can be described using the
coordinates

They satisfy the set of equations shown in (40) at the bottom of the
page, where we have used the notation;jfar{1, ..., n}

. i— =14+ ——+(0). 45
Ti=9;+7r l+b<’:‘,,‘, (41) + a,ﬁ 7( ) ( )
¢ . 1 f(a 2(p—1)
o= _Z’(E [r—1]— 7\/5 v(y1) |, r(0) > 1
5.1 = Tr&y — ’I'Lﬁlfl —-b i 21
r
N 2o W) = Gi(y1. 2o — 1 g, s — :
g = gilys, @2, ooy @ @) = iy, §i1+b7 2o Bl » ) Freip —rhien — (i —14b) -2
r r
1+b p—1+b .
. Ip(Y1, T2, ..oy Tp, ) — gp(y1, X2 — 1 9y euny Tp — T Sps U , 7
¢, = gp (Y1, 22, , Tp, U) = gp(Y1 rp:l-i-b 2 I P >—7’kp€1—(p—l—|—b);€p

(40)
91 = filyr) + g2 + pltle,

9y = f2(yr, G2) + 9 + kar® 0z

Y, = fn(yh ﬁ2, ceny ;l]n) + kn"'n+b51 + ap (7’7 (A ng ceey ;gn)

. ~ 145 ~  —14b . +b
Ho=ha(y de A+ e o G A" T e 2 =" e o) 4 2

n—1+b

- i 1+b i 5 . . b '
<m — hvn(yl-, Y2 +7r + €2y «nvy YUn +r Eny Z1y evny Zmy, —21 — rn+ Sn+l +”n)
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6) The function-—+* —r* log(r/r™)isC", proper and nonnegative V. CONCLUSION

on (0. +o0). Itis zero if and only ifr = »". It satisfies We have shown that, by combining an adapted high gain observer

,; and observer backstepping, we can design globally asymptotically sta-
r—r* —r*log(r/r") bilizing output feedbacks for systems admitting the form (1) where the
a 6(p—1) . nonlinearities have an incremental rate depending only on the measured
=73 <7" -1- W 7(?/1)> (r—r7) (46) output as specified by (2) and (3).

. - 2(1) —1) . The_ main contribution h_ere isin th_e observer ga_in update law. _It is

T (r—r")° - W (r —7")(7v(0) = v(y1)) (47)  reminiscent from the covariance matrix up date law in the Kalman filter

usedin[15]. In particular, our update law is not nominally non negative.

_a (r—r )2+ 6(p — 1) ((0) = v(y1))>. (48) It follows that, to get asymptotic stability of a compact set, there is no
6b ab need to add some fix like dead-zone, leakage, or other (see [19] and

IN

], for instance).

The key to get such an update law is in the coordinate scaling com-
monly used in the analysis of high gain observer. In our case, without
any extra restriction on the observer poles, this scaling

We conclude that to show the asymptotic stability of the poir{?
(r*, 0, ..., 0) with domain of attractior(1, +o00) x R*"*™) yni-
formly in z, it is sufficient to show that for somé"', unbounded and
strictly increasing functio®: [0, +o0) — [0, +o0), the derivative of
&i
V'(Ta Y1, G2, -5 Gn, €) ST pi—1+4b (55)
= [r=r*=r"log(r/r*)] + @[ v} + i E 4" (49) depends not only on the rarmkn the integrator chain, but also éna
il parameter directly related to the “observer poles” [see (8) and (14)].

is negative definite uniformly ire. In view of (38) and (48), we pick
©: 10, +0) — (0, +oc) as a continuous non decreasing function
satisfying, for ally,

APPENDIX
CONSTRUCTION OF THEFUNCTIONS ;S

) For the sake of completeness, we reproduce here with some adapta-
o o 6(p=1)% (¥(0) — v(y) tion what can be found in [8, Sec. 7.1.2].
wlyr) > 2 . (50)

abg Y1 Consider the system
Such a choice is possible sin¢e(0) — ~(y1))/y1 is a continuous PR <g r—1]— 2(p—1) 7(?”)
function. Then, in the definition of’, we use b Va4
B(s) = / o(0) do. (51) i Sl (56)
’ 0 4 Gy = f2(y1, §2) + g3 + kor?tbey
With (38) and (48), we get, ifil, +00) x R*"T™
6(p — 1)* G, = fi(yis di2s ooy 9i) + vi + kiritle

V- =)+ (+(0) = 7(y1))*

abq

—¢ <yf +y G+ éTQE)
=2

where the: ;s are components of a vectorAiming at establishing a
) ", a g result by recurrence, we assume the existence of functigpnshich
Y1 + Z G +5e Q. (52) aren + 1 j times continuously differentiable, respectively, satisfy

Sincey is nondecreasing and satisfies (50), this yields (1, 0,0,...,0)=0 (57)
L. G(p—1) R and are such that, by letting
v <—@('—7' )+ (pb ) Y(0) = ¥(y1))” ) ) )
ad Gt = Gyt — o(r g1, G2y oo §5) (58)
- elyi)yi - <U1 + ZQ £ QS) we have

¢ H5e0e (53)

=2

s

ViHY G e Qe < —yi - ZC} a(z.n, ) e Q=
1 = ’
b (7 -r ) - 599(J1)y1 +2Gi(vi — O(i). (59)

— <Z g Sng> [Z 4l VT ] ) (54) Now, we consider the system
1=2

. 1 a 2(p—1)
R €L = ()
The right-hand side of (54) is nonpositive and, with (34) and (37), zero Vi

if and only if we are atr", 0, ..., 0). Hence, we have established the o= Fiy) g +rTre

asymptotic stability of this point uniformly in. Also, this inequality

| e

< -

(o)

e
v
I

_ S 2+
holding everywhere in the sél, +0c) x R***" which is forward Fo(y1: §2) £ §s + har™ e
invariant, this whole set is the domain of attraction. :
To conclude, for (1) satisfying (2), (3), and the minimum phase as- . . . it
1) fying (2), (3) b Ui = Filyr, Gos ey 03) + Gipr + kir ey

sumption, the dynamic output feedback we have proposed provides |
asymptotic stability of the poirit*, 0, ..., 0) with domain of attrac- Givr = Fira(yn, G2, ooy Gi1) F i + kipar
tion (1, +o0) x R2 ™), (60)

z+1+b€1
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and we let
Git1 = Gig1 — ai(r, y1, G2, o, i) (61)
In this case, (59) gives
v+ G HelQe
j=2
9 2n aZn —i) 4
< -yl - Zc, e Q2 +26iGir1 (62)
This yields
= ‘ a(2n — i)
Y GHeQes—yi =) -5 Qe
j=2 j=2 =n
26 (G i =) (69)
where, in particular, we have
O 1 f(a. 2(p—1)
b= e (-0 -2
8 . ~ D
63 [ﬁ (y1) + g2 4+ 7' 52}
l OJa; " . " itb
T 55 |:.fi(3/1ay'27~~~:yi)+yi+1 + kir 61]. (64)
i

We observe that the terga + g.L_H — &; admits the following decom-
position

G+ ?.ji+1 — & = Vi1 + (v, Y1, G2, ooy Tit1)

Jo; 14
p r
0y1

with a straightforward identification of the functign andwv;. Also,
note that (57) implies

+vi(r, y1, 92, ..., §i)e (65)

£2

90i (1 0,0, ..., 0)=0. (66)
ar
Since thef;’s are zero at the origin, with (57) and (66), it follows that
ui(r, 0, ...,0)=0. (67)
Finally, by completing the squares, we get
2 k,‘ l+b€~
Gt < 0711 2>
< 2nq C 1/ + — Oa;® P20 4 . (62 + c_g) (68)
= 1+1 (9_/1 277(1 1 <2
< Q’ﬂ 2 2y 0ci® a4 + L0 (69)
=g Vi iy ! on - ¢
Using this inequality in (63), we obtain
’ 41 ~
iy G+ Qs
j=2
a(2n—(i4+1)) r
Ul ZC_[ 71 Qe
+ 2¢in1 {le + pilrs Y1, G2y o ooy Gig1)
2
+ 4 Cz+1< Vi % rz+zb)} . (70)
0y1
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So, by definingx; 1 as
(}'i+l(rﬂ Y1, g2a EIEY ?]H*l) = - |:/li(rv Y1, ?}27 ?}i«kl)

n Qi ? 1
+ M <V¢2 o 7“2+2b>] - 5G+ (71
a Ay 2

we get [compare with (59)]

i1 i1
i+ G+ Qe < —yi - ZC?
=2 j=2

_a<zn—<z+1>> ;
2n

Note also thatv; 1 isn — 7 times continuously differentiable and sat-
isfies

Qe+ 2¢ 1 (vipr — aipr). (72)

(}:i+1('r, 0, ey 0) =0. (73)
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