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Stabilization of Nonlinear Systems via Forwarding Forwarding builds upon this basic idea to stabilize cascaded systems
mod{L,V} of the form
Laurent Praly, Romeo Ortega, and Georgia Kaliora ¥ { 4 - h(m;) , 4
= f(x)+g(x)u.

Abstract—Forwardingis a tool for constructing stabilizers for nonlinear In this case, the derivative 6% yields

systems. A key step in this design technique is to find an explicit solution to o ; 7 — (= — MVL. M

a partial differential equation(PDE), which may be hard to find—actually, W= LV +[Ls7 ( M)LyM]u

the PDE may even not be solvable at all. In this brief note we show thatitis \hich clearly suggests the control law

possible to provide an additional degree of freedom for the solution of the

aforementioned PDE, hence effectively extending the realm of application w=—[LyV — (2= M)L,M]. (5)
of the forwarding methodology. Our contribution is illustrated with the ex-

ample of an inverted pendulum with a disk inertia. .
) ) ) Il. FORWARDING mod{L,V'}
Index Terms—Control of mechanical systems, forwarding, nonlinear

control, stabilization of NL systems. The main stumbling block of the forwarding procedure is therefore the
solvability of the PDE (2), a question which is difficult to answer in gen-
eral. The main objective of this note is to provide an additional degree of
freedom for the solution of the PDE, consequently enlarging the class of
In this section, we will briefly review the basic forwarding techniqugystems that can be explicitly stabilized with the forwarding procedure.
for stabilization of nonlinear systems from a geometric perspectivioward this end we show that we can add to the right-hand side of the
For further details on this technique the reader is referred to [6], [RDE a“free” term, and still be able to synthesize a stabilizing controller.
To motivate the developments, let us first consider a cascade of twdProposition 1: Consider the system (4) with the following assump-

|. BACKGROUND

systems of the form tions.
A.1) (Stability of thee-subsystemJhere exists a positive—definite
Z =h(x) Lyapunov functionV () such thatZ ;V'(x) < 0 for all « #
i =f(r) (@) 0; _ _ _
A.2)  We know aC° functionk(x) and aC* function M (), with
wherez is scalar and andh are Lipschitz continuous functions and the M(0) = 0, such that
origin of thex-subsystem is asymptotically stable, namely there exists i) (New PDE)[compare (6) with (2)]
a positive definite Lyapunov functiovi(z) such thatL ;1 < 0 for all .
i . LM =h+kL,V. (6)
x # 0. To study the stability of the cascade we look for the existence ! g
of a stable manifold of the origin described by the graps M (x). i) The following implication holds:
That is, we want to find & function M (z), with M (0) = 0, such () LV (2)?
that the following implication is true {L,M(z)# 0,2 #0} = L;V(x) - % <0. (7)
g+
(2(0),2(0)) €Q £ {(z,2)|z = M(x)} iiiy L,M(0) # 0.
=(z(t)z(t) €Q, Vt>0 Under these conditions, the function

1 .
T =~ Y T [~ — A( 2
where(z(t).z(t)) denotes a solution of (1). With th&* assumption Wi, 2) = V{e) + 2 [e = M(x)]

for M, the existence d2 is equivalent to the solvability of the PDE is aControl Lyapunov Functiosatisfying theSmall Control

Propertyfor the system (4).

A direct consequence of this Proposition is that, under its assump-
tions, we are guaranteed of the existence of an at least continuous global
asymptotic stabilizer. Expressions for such a stabilizer are given by uni-
versal formulae as the ones in [4], [10], e.g., as shown in the equation

LiM=h @)

with boundary condition/(0) = 0. If we can solve the PDE (2) a
Lyapunov function for the overall system is given by

) A 1 ) at the bottom of the next page.However, here we can take advantage of
Wiz, z) =V(z) + 5[2 - M(x)] @) the specificity to propose other expressions (see the proof below).
Proof of Proposition 1: Evaluating the derivative of the Lya-
whose derivative is simplf. s V'. punov function candidate (3) along the trajectories of (4), and using
(6), yields
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This yields
W =L;V—I[L,V - (:—M)L,M]’
whereL sV (x) < 0if « # 0. However, if LV (x) = 0 then
x=0andL,V(x) = M(x) =0 and so with A.2.iii), we have
—[LyV(0) = (2 = M(0))L,M(0)]* < 0if = # 0.
2) If k(x) # 0andL,M(x) = 0, then with A.2.iii), we must have
x # 0. Then we pick
u=k(z)(z— M(z)).
This yields
W =L,V <0.
3) If k(x)L,M(x) > 0, we pick
u=k(x)(z — M(z)).

This yields

W =L;V —kL,M(z— M)’

which is strictly negative for the same reason as in the first case
above.
4) If k(x)L,M(z) < 0, we pick

E(z)L,V(x) _ / Fig. 1. Schematic representation of the disk inertia pendulum.
u = —# —[LgV(x) — (z — M(x))LyM(x)]. (8)
gM(x)
o MTb + 0, which is a necessary condition for controllability of the
This yields systen? Also, assumption A.2.ii) reduces to
- OR(L,V)? i o kB oy
W= LV - 4(L;M) — [LgV () = (2 = M(2)) L, M(2))” VS aeran) T

o . . which is equivalent to
which is strictly negative for the same reason as above.

To show that the Small Control Property holds, it is sufficient to check _ b' PQPD 4k

that the norm of the contrad exhibited above can be made as small as (bTP2b)2 = 2cTA=1D — kBT A=TQAb’

we want by pickingx| + [z| small enough. This is true for the casesrpis defines the (nonempty) set of values allowedior

1)-3) since we have continuity of the various functions &g (0) = Remark 2 : Using forwardingnod{L,V'} allows us, in some cases,

A/’I_(()) = 0. For the case 4), the result_ follows with A.2.iii) which iM-t0 relax the assumption A.1) of stability of thesubsystem td,V <
plies that, as: goes to zero,L, M (x)| is bounded away from 0, i.e., . This feature is illustrated in the example below.
the functionkL,V/L,M is continuous at the origin and zero at the

origin. I1l. STABILIZATION OF THE DISK INERTIA PENDULUM
Remark 1: To get some further insight into the assumptions of the
proposition it is interesting to consider the linear case In this section, we apply Proposition 1 to design a global asymptotic
stabilizer of the upward position of the pendulum device shownin Fig. 1,

=Ty which consists of a free pendulum with a rotating mass at the end. The
& =Ar 4 bu. 3Controllability being invariant under state feedback, we consider the system

We then havé” = (1/2)z" Pz, with P = P" > 0 the solution of 3=cTy, @= {A - LTbbTP} « + bu.

the algebraic Lyapunov equatidhd + A" P = —Q < 0, and we MTh

can takeM () = M, with M defined asM = A~ (c + kPb).  Then, by replacing by the new coordinates = = — M7z, we getj =

Now, asL,M = MTb, assumption A.2.iii) reduces to assuming that 1/ bu. The claim follows readily.

max {0, L;V — (z = m)kLyV + (LyV — (2 = m)Lg_M)Q}
L,V —(z—m)L,M )

u =
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motor torque produces an angular acceleration of the end-mass which
generates a coupling torque at the pendulum axis. Unfortunately this
motor torque is limited and this input constraint puts a hard bound on
our ability to stabilize the upward position. It is worth mentioning that
the present study was precisely motivated by this example.

First, we show that the problem is not solvable with “standard” for-
warding. In particular we prove that the PDE (2) is not globally solv-
able. To overcome the problem we apply the forwardingl{LZ,V'}
technique to get a controller that “almost” globally stabilizes the up-
ward positiont In [8], the system is stabilized using passivity-based
control, we refer the reader to this reference for further details about
this device.

A. Model
The dynamic equations of the device can be written in standard La-
grangian form as

|:m1 +ma  my :| . |:mgl sin(q1):|
q =

mi mi v

9)

where in particular the contral is the motor torque. In practice, this
torque is limited and this makes the whole difficulty of the stabilization
problem. Without such a limit, a backstepping technique or stabilizing
a particular planned trajectory would lead easily to other global asymp-
totic stabilizers. Here, we assume that this limit is still large enough to
allow the motor torque for compensating the maximal gravity torque
myl. This assumption implies in particular that we can do the prelimi-
nary feedback:

v = 771,gl Sill(ql) - u.

In the following, any limitation or: can be afforded. Unfortunately,
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and design a controller invoking passivity, i.e., with the Lya-
punov function

Vil s) = (1= cos(rn)) + a5

wherea > 0 is a tuning parameter. This yields
Vi =us [sin(z1) + au]
Hence the first control loop is

1
u=—=sin(x1) — Bxs + v
e

wherev, is a new control to be defined in the next step and
B > 0.

Step 2) We add an integration to the subsystem as

Zo =sin(w1)
& =as
. 1 . )
i3 = — —sin(er) — Jes + 1 (11)
o
and, following [7], look for a functiond; (x1, x3) such
that, withv; = 0, we haveM; = sin(x4). This is tan-

tamount to solving the PDE (2) which, in this case, takes
the form

%Zl T3 — %AII: |:é sin(z1) + ,3;83:| = sin(z1). 12)
A solution is given as\l; = —a(xs + Sx,). The second

controller is defined by the formula (5) and takes the form

vi = —axs +[z2 + alxs + fz1)] (—a) +va.
— —

—LgVp 29— My Lg My

Step 3) We add the last integration to the subsystem as

the specific device in our lab does not meet the above assumption andz; =z

therefore does not allow us to test the following proposed controller.

To proceed with our design in order to avoid cluttering the notation,
we takemgl = m; = my = 1.5 We introduce the new coordinates
1= q1, T3 = q1, 21 = 2q1 + q2, 22 = 2¢1 + ¢2 and as mentioned
above the new contral = sin(x;) — v. Then the dynamics rewrite in
the (block) forwarding form (4) as

i3 =u. (20)

The final control objective is to find a stabilizer of the origin of (10)
satisfying prescribed limitations.

2o =sin(w1)
ry =3

. 1 . . .
#3 = — —sin(z1) — (3 + a4+ a'z) T3 — zo — ﬁazarl + vs.
o

Now, we look for a functionV/z (z2, z1, x3) such that, with

vy = 0, we haveM, = 2. Unfortunately, the associated
PDEdoes nohave a global solution. Indeed, itis clear that a
necessargondition for the existence of a global solution of
the PDE (2) is that the functiol(:) is equal to zero at the
equilibria of the subsysterh= f(z).Thatis,f(z) =0 =
h(z) = 0. In our case, the equilibria of thef“subsystem”
are given by(z., 71, 73) = (afjm, jm,0), with j € Z,
hence the i function”, which is equal ta., is nonzero at
some of the equilibria and we cannot complete our design.

Before presenting a solution to the constrained problem, we solvewe should underscore that the procedure was stymied by the pres-
the nonconstrained problem with the new forwardingd{Z,V}. ence of the ternsa?z; in the “f subsystem”. We will show below that
this term can be removed with the new forwarding technique.
B. Standard Forwarding

. C. Fo di d{L,V
Step 1) We consider the subsystem rwardingmod { L, 17}

Step 1) Is the same as above.
Step 2) Proceeding from the subsystem (11) we look now for a solu-
tion of the new PDE (6), which in this case takes the form

oM, OM,

;I-Jl =3

3-33 =Uu

4The qualifier “almost” is needed because there is a set of initial conditions O T3 O
which do not converge to the upright position, but it has zero Lebesgue measure. ! 3
This stems from the well known fact that if a system with cylindrical configura- + k(1. 23) g .
tion space has an asymptotically stable equilibrium, then it has at least another L\(
equilibrium which is unstable [11]. 7o

5In Section l1I-E, where we present simulation results, we give the expression
of the control law for the general case.

|:l sin(x1) + /3m3:| = sin(x1)
o

Compare with (12). To remove the term dependent:-pmve
propose a solutiodd; = —axs andk = /3.
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Noting thatkL,M; = —3« < 0 we choose the control of the sum of a quadratic function of the state and the potential energy
law (see (8)) term asi¥ in (15). The answer is provided by the following choices:
1 ) c ae b ce
,Ul:—5[224-(1—05/34—(1)1’3]+'l}2. c1 :5 Cco = 7, c3 = |:<d+z>a+ﬁ:|

Remark that we have succeeded in eliminating the trouble-  _ Kd‘ 4 Q) <C_|_ @) n i} = b <C+ @)
some term. c c d? d ¢

The Lyapunov function corresponding to this step is wherea, b, ¢, d,e > 0. One final remark is that it is possible to prove
that there do not exist gains, i = 1...,5, such thaf?” in (15) is a
strict Lyapunov function.

Proof of Proposition 2: An important preliminary remark is
that the introduction of a non periodic function ©f in the control
(14) forces us to consider the closed-loop system noSbrx R?

Vo = —[22 + (1 + a)as]’. but onR*. And thenW is not a proper function for the coordinates

(21,23, 21, 22). Nevertheless, with the new coordinate
This derivative is not negative definite and therefore does not

satisfy the assumption of Proposition 1. Nevertheless, we go n=xnt+ztors +(1+a)n
on with the design. We will check only at the end that we d¢he system (10) with the control (14) rewrites
get global asymptotic stabilization.

;. 1
Vao(ar,23,22) = (1 — cos(x1)) + %rg + 5(32 + 05.773)2. (13)

It is positive definite and proper of' x R? and, with the
controlv; above withv, = 0, we get

s 2. 2r
Step 3) The last step is classical forwarding similar to Step 3 above, 1 == aty —atz (14 a)a]
with the fundamental difference that the PDE is now Zg =sin(axy)
IMs . oM &1 =3
sin(x) + T3
0z 0x1 :,___l,- ()_ 4 — l_|_ -
oMy 1. ‘ T3 = o sin( w1 iy - ) 2o
— = — [sin(z1) + 22 + (1 + a)z3] = 22
Ors « 1 5
‘ —<—+1+(1+a>;v3 a7
for which we have a solutiof, = —z2 — azs — (14+a)zy. «
We then compute the final outer-loop control which does live ifS' x R*. The functioniV becomes
ve = —afz1 + 222 + (14 a)zy + (1 4 2a)xs]. Wz, 23,91, 22) = (1 = cos(x1))
. o 5 1 s 1 5
We have the following. +5 5+ 5(22 +aws)” + 5(;1/1)

Proposition 2: The system (10) in closed-loop with the static Statsvhich is positive—definite and proper 6% x R®. Then, since we get
feedback control

W= —a®[y1 + [22 + (1+ a)as]]” = [22 + (1 + a)a]?
the solutions of (17) are bounded &1 x R'. Also, by invoking

_ <_ fatld 2a2> s (14) LaSalle’s invariance principle it is easy to check that all the solutions
o converge to

u=- 1 sin(z1) — az — <l + 2(1) 2o — a(l + a)zy
a a

with o > 0, has an asymptotically stable equilibrium at zero with

: (#3,y1,22) =0  cos(x1) = £1.
Lyapunov function

) o, 1 ) Now the linearization at the equilibrium correspondingds(z;) = 1
Wi(xr, 23, 21,22) = (1L = cos(x1)) + 5+ (2 + ars) has its four eigenvalues with strictly negative real §avtlhereas the
1 ) one at the equilibrium correspondingdes(x1 ) = —1 has eigenvalues
+ 5(31 + 22 +aws + (1+a)r)”. with strictly positive real part but also at least one eigenvalue with

(15) strictly negative real partWe conclude with [5] thatxs, y1, 22) = 0,
cos(x1) = 1 is attractive with domain of attraction i%' x R* the
Its domain of attraction is the whole space minus a set of Lebesg}qﬁme set minus a set of zero Lebesgue measure. A|50, for the con-
measure zero. verging solutions;:s converges exponentially and therefore its inte-
Remark 3: It is interesting to note that the controller derived in [8jgral =, is bounded. Hence the solutions of (17) are also bounded on
using passivity considerations is of the form of the controller abovg!. The statement of the Proposition follows in particular with the fact
that is that the countable union of sets of zero Lebesgue measure is a set of
W= —eysin(a1) — c2z1 — c32a — camn — s (16) zero Lebesgue measure.
with ¢;, i = 1....5 some suitably defined positive constants. AlsoP- Saturated Control
the Lyapunov function in that paper is the sum of a quadratic functionWe will consider in this subsection the practically important case
of the state and the potential energy term exactlifas in (15). when the control signal must satisfy a boumgl < w,;. To obtain a
Remark 4: The commissioning of nonlinear controllers on actuadaturated control we take-off from the second step above and evaluate
physical devices is far from obvious. Hence, it is interesting to knotke derivative ofi> (13) (along the trajectories of (10)) as
what are the available degrees of freedom in the tuning parameters. In _— , .
Proposition 2 above we have restricted, for the sake of clarity of the Ve =22 + (L4 aJus]low + sinen)]
presentation, to the single parameteA natural question is thenwhat  erhis follows from the linear counterpart of the above arguments.

is the largest range of the constantsi = 1...,5in (16), so asto  7This follows from the fact that the matrix of the Jacobian linearization of
globally stabilize the penduluwith a Lyapunov function consisting (17) has a negative trace and the determinant has the sign(af, ).
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Fig. 2. Swing up response of the pendulum.

Let us define asymptotic stability can then be established, by invoking invariant set
N / arguments. We omit these calculations here, for lack of space.
=2 =M=z 4 22+ aes + (L4 @) (18) Proposition 3: Consider the system (10) with bounded infjt<

us in closed-loop with theaturatedstatic state feedback control (18),
(19) and (20), where, b are odd bounded functions. Fix > 0 such
91 = [z2 + (1 + a)zs] + [au + sin(z1)] that (1/uar) > «, and chooser, b such thatja| < an and|b| <

) ) ) ) un — (1/). Further, select the functidnsuch that
Instead of proceeding with the third forwarding step, we propose a

whose derivative yields

Lyapunov function candidate which is suggested by the computations At <1 - ﬂ) <|b(yo)| if 2a1s < |yol
above o lyol
Y1 |y0| .
Va(z1, 3, 21, 22) = Va1, @3, 22) +/ a(s)ds Ao <[oCyo)l if lyo| < 2am
0

h . . bounded odd f i deed. this vield Under these conditions, zero is an asymptotically stable equilibrium of
wherea is any continuous bounded odd function. Indeed, this yie Sthe closed loop, with domain of attraction the whole space minus a set

Va = a(y) [(1+ a)xs + 2] of Lebesgue measure zero.
L+ a)as + 22 +ays)] [sin(z1) + au] E. Simulations

which leads to the control Repeating the derivations leading to Proposition 3 for the general

1 model (9) we obtain the controller

u=—=—sin(x1) — b(yo)

* u=— sin [ == | — b(yo)

where we have defined T amy mo yo
go 2 (1+ a)es + 22 + a(yr) (20) Yo éma(yl) + mamgl zo + (1 + onng(mgl)z) x3

whereb is, again, any continuous bounded odd function. Notice that " LS 1 - 1+ a'm%(mgl)2 1
the control is bounded by any prescribed bound by choosing ap- a2ym3(mgl)? ™ mamgl
propriatelya > 1/uas, and the functiorb to be bounded in norm by 1 .
un — 1/ oz"/mzmgl”3

Working with the coordinategz:,xs,y1,22) as in the proof
of Proposition 2, we see thaf; is positive definite and proper on
S' x R®. Its derivative can be expressed in the form

where, to provide more tuning flexibility, we have included some addi-
tional gains that were set to one in the procedure described above. Note
also that the change of coordinates is now= mzq, x3 = m2q,

z1 = (m1 + m2)g1 + mige, 22 = (m1 + m2)¢1 + mige2 and

v = mgl sin(z; /m2)—u. We simulated the response of the pendulum
which is a quadratic form in. Because of the negative sign in front ofusing the system parameters of an existing hardware setup , hamely:
the maximum order term, we can ensure negativit?[qﬂayimposing my = 32 x 107°, my = 0.0048, andml = 38.7 x 10~° [kg]. The
some—not very restrictive—constraints on the functibmsda. The controller gains were set at= 700, v = 10. Fig. 2 shows the swing

Va = —a(y1)” + yoa(yr) — ayob(yo)
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up response of the pendulum starting at nearly the vertically downwaider-Queue Stability Analysis of a Random Access System
position, with the remaining initial conditions zero. Notice that the re-
sponse is very fast without any initial swinging of the pendulum. Rocky K. C. Chang and Sum Lam

The following remarks are in order.

(1]

(2]
(3]
(4
(5]

(6]

(7]

(8]

El

[10]

(11]

Itis clear from the smulatlons t.haF the stablllzqtlon mephanljsm Abstract—n this note, we have extended previous studies of the system
of our controller consists of spinning-up the disk inertia to lifsanility of buffered ALOHA systems to study an individual queue’s sta-
the pendulum, which might impose some unrealistic values bdity, i.e., per-queue stability. The main result obtained in this work is a
the disk speed. This should be contrasted with the alternati@cessary and sufficient per-queue stability condition, which can be com-

method of [9]—also studied in [1], [3]—where the energy is ﬁrsputed analytically only for several cases. For other noncomputable cases,
L . o we have evaluated several inner and outer bounds. They are generally quite

pumped-up through a balancing motion before lifting the Pefight for not-so-asymmetric systems.

dulum. Two drawbacks of the latter approach are the slow con-

vergence and the need to switch the controller close to the upward
position. From the theoretical viewpoint both methods also differ,
our controller (as well as the one reported in [8]) stabilizes the
equilibrium point while the energy-pumping methods stabilizes |. INTRODUCTION
the homoclinic orbit, hence the need for the switching. Stabilit | f sinale- _multiole- t h
Although we have solved the stabilization problem of the system abiiity analyses of single-resource—muttiple-queue systems, suc

(10) with any prescribed saturation of the control, when we co $ random access pf°‘°°°'§ ! poIIing. SChe.meS’ and token-pa.s.sing
back to the original disk inertia pendulum (9), we have to addngs: have been studied quite extensively in the past. By stability,

sin(x1) to the above control. So the above procedure does gE mean that the queue length process of a queue with unlimited

give an answer to the problem where the maximal torque th &lffe.r space possesses a limiting distributi.o.n. Almost all previous
the motor can deliver is smaller than the maximal gravity torqu _udles in this area, however, concern stability of the whole system

Simulations and experiments have shown that stability cannot Sé/stgm stability). Study of an individual queug’s stability (per.-queue
guaranteed if we impose this saturation limit. Stability), on th.e.other hand: has hardly received any attention. The
per-queue stability problem is more general than the system stability
problem, because some gueues may remain stable in an unstable
system. Therefore, system stability, being a special case of per-queue
K. Astrom and K. Furuta, “Swinging up a pendulum by energy control,stability, is inadequate to address the entire stability region of an
273,020' 13th IFAC World Congrvol. E, San Francisco, CA, 1996, pp- ingividual queue. In this note, we consider per-queue stability of
A. Isidbri, Nonlinear Control System&rd ed. New York: Springer- & be_fered ALOHA SyStQm. Our .g.oal is to obtain a necessary and
Verlag, 1995. sufficient per-queue stability condition as well as other related results.
A. Fradkov, “Swinging control of nonlinear oscillationsyit. J. Contro| So far, only system stability has been studied for the buffered
vol. 64, no. 6, pp. 1189-1202, 1996. ALOHA system. Computable system stability conditions are well

R. Freeman and P. KokotoviRobust Nonlinear Control Design: State- : :
Space and Lyapunov Techniquegoston, MA: Birkhauser, 1996. known for two-queue systems and symmetric systems (e.g., see

M. Krstié, R. Sepulchre, and L. Praly, “On The Measure of Global Inf1], [2])- Szpankowski employed Loynes’.theorem and an inﬁuction

variant Manifold for Fixed Points,” University of California, Santa Bar-approach to obtain necessary and sufficient system stability con-
bara, CA, Tech. Rep. CCEC 95-0228, 1995. _ ditions for more than two queues, but the conditions are generally
M. Jankovic R. Sepulchre, and P. KokotdvitConstructive Lyapunov qncomputable [2]. Rao and Ephremides, on the other hand, obtained

stabilization of nonlinear cascade systemHEE Trans. Automat. . . . .
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