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Stabilization of Nonlinear Systems via Forwarding

Laurent Praly, Romeo Ortega, and Georgia Kaliora

Abstract—Forwardingis a tool for constructing stabilizers for nonlinear
systems. A key step in this design technique is to find an explicit solution to
a partial differential equation(PDE), which may be hard to find—actually,
the PDE may even not be solvable at all. In this brief note we show that it is
possible to provide an additional degree of freedom for the solution of the
aforementioned PDE, hence effectively extending the realm of application
of the forwarding methodology. Our contribution is illustrated with the ex-
ample of an inverted pendulum with a disk inertia.

Index Terms—Control of mechanical systems, forwarding, nonlinear
control, stabilization of NL systems.

I. BACKGROUND

In this section, we will briefly review the basic forwarding technique
for stabilization of nonlinear systems from a geometric perspective.
For further details on this technique the reader is referred to [6], [7].
To motivate the developments, let us first consider a cascade of two
systems of the form

_z =h(x)

_x =f(x) (1)

wherez is scalar andf andh are Lipschitz continuous functions and the
origin of thex-subsystem is asymptotically stable, namely there exists
a positive definite Lyapunov functionV (x) such that1LfV < 0 for all
x 6= 0. To study the stability of the cascade we look for the existence
of a stable manifold of the origin described by the graphz = M(x).
That is, we want to find aC1 functionM(x), with M(0) = 0, such
that the following implication is true

(z(0); x(0)) 2
 f(z; x)jz = M(x)g

)(z(t)x(t)) 2 
; 8 t � 0

where(z(t); x(t)) denotes a solution of (1). With theC1 assumption
for M , the existence of
 is equivalent to the solvability of the PDE

LfM = h (2)

with boundary conditionM(0) = 0. If we can solve the PDE (2) a
Lyapunov function for the overall system is given by

W (x; z) V (x) +
1

2
[z �M(x)]2 (3)

whose derivative is simplyLfV .
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1We use the standard Lie derivative notationL V (@V=@x)f .

Forwarding builds upon this basic idea to stabilize cascaded systems
of the form

� :
_z = h(x)

_x = f(x) + g(x)u:
(4)

In this case, the derivative ofW yields

_W = LfV + [LgV � (z �M)LgM ]u

which clearly suggests the control law

u = � [LgV � (z �M)LgM ] : (5)

II. FORWARDING modfLgV g

Themainstumblingblockof the forwardingprocedure is therefore the
solvability of the PDE (2), a question which is difficult to answer in gen-
eral. The main objective of this note is to provide an additional degree of
freedom for the solution of the PDE, consequently enlarging the class of
systems that can be explicitly stabilized with the forwarding procedure.
Toward this end we show that we can add to the right-hand side of the
PDE a “free” term, and still be able to synthesize a stabilizing controller.

Proposition 1: Consider the system (4) with the following assump-
tions.

A.1) (Stability of thex-subsystem)There exists a positive–definite
Lyapunov functionV (x) such thatLfV (x) < 0 for all x 6=
0;

A.2) We know aC0 functionk(x) and aC1 functionM(x), with
M(0) = 0, such that

i) (New PDE)[compare (6) with (2)]

LfM = h+ kLgV: (6)

ii) The following implication holds:

fLgM(x) 6= 0; x 6= 0g ) LfV (x)�
k(x)LgV (x)2

LgM(x)
< 0: (7)

iii) LgM(0) 6= 0:

Under these conditions, the function

W (x; z) V (x) +
1

2
[z �M(x)]2

is aControl Lyapunov Functionsatisfying theSmall Control
Propertyfor the system (4).

A direct consequence of this Proposition is that, under its assump-
tions, we are guaranteed of the existence of an at least continuous global
asymptotic stabilizer. Expressions for such a stabilizer are given by uni-
versal formulae as the ones in [4], [10], e.g., as shown in the equation
at the bottom of the next page.However, here we can take advantage of
the specificity to propose other expressions (see the proof below).

Proof of Proposition 1: Evaluating the derivative of the Lya-
punov function candidate (3) along the trajectories of (4), and using
(6), yields

_W = LfV + LgV u� (z �M)[LgMu+ kLgV ]:

To show thatW is a Control Lyapunov Function it is sufficient to find,
for each(z; x) 6= 0, a control2u making _W strictly negative. We con-
sider several cases.

1) If k(x) = 0, we pick:

u = � [LgV (x)� (z �M(x))LgM(x)] :

2Actually, the fact thatW is a Control Lyapunov Function is a direct con-
sequence of A.2.ii) whenL M(x) 6= 0 and cases 1 and 2 below. However,
having expressions foru is useful for establishing the Small Control Property.
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This yields

_W = LfV � [LgV � (z �M)LgM ]2

whereLfV (x) < 0 if x 6= 0. However, ifLfV (x) = 0 then
x = 0 andLgV (x) = M(x) = 0 and so with A.2.iii), we have
�[LgV (0)� (z �M(0))LgM(0)]2 < 0 if z 6= 0.

2) If k(x) 6= 0 andLgM(x) = 0, then with A.2.iii), we must have
x 6= 0. Then we pick

u = k(x)(z �M(x)):

This yields

_W = LfV < 0:

3) If k(x)LgM(x) > 0, we pick

u = k(x)(z �M(x)):

This yields

_W = LfV � kLgM(z �M)2

which is strictly negative for the same reason as in the first case
above.

4) If k(x)LgM(x) < 0, we pick

u = �
k(x)LgV (x)

LgM(x)
� [LgV (x)� (z �M(x))LgM(x)] : (8)

This yields

_W = LfV �
k(LgV )2

LgM
� [LgV (x)� (z �M(x))LgM(x)]2

which is strictly negative for the same reason as above.

To show that the Small Control Property holds, it is sufficient to check
that the norm of the controlu exhibited above can be made as small as
we want by pickingjxj + jzj small enough. This is true for the cases
1)–3) since we have continuity of the various functions andLgV (0) =
M(0) = 0. For the case 4), the result follows with A.2.iii) which im-
plies that, asx goes to zero,jLgM(x)j is bounded away from 0, i.e.,
the functionkLgV=LgM is continuous at the origin and zero at the
origin.

Remark 1: To get some further insight into the assumptions of the
proposition it is interesting to consider the linear case

_z =cTx

_x =Ax + bu:

We then haveV = (1=2)xTPx, with P = PT > 0 the solution of
the algebraic Lyapunov equationPA + ATP = �Q < 0, and we
can takeM(x) = MTx, with M defined asM = A�T(c + kPb).
Now, asLgM = MTb, assumption A.2.iii) reduces to assuming that

Fig. 1. Schematic representation of the disk inertia pendulum.

MTb 6= 0, which is a necessary condition for controllability of the
system.3 Also, assumption A.2.ii) reduces to

�
1

2
Q �

k

bTA�1(c+ kPb)
PbbTP

which is equivalent to

�
bTPQPb

(bTP 2b)2
�

4k

2cTA�1b� kbTA�TQAb
:

This defines the (nonempty) set of values allowed fork.
Remark 2 : Using forwardingmodfLgV g allows us, in some cases,

to relax the assumption A.1) of stability of thex-subsystem toLfV �
0. This feature is illustrated in the example below.

III. STABILIZATION OF THE DISK INERTIA PENDULUM

In this section, we apply Proposition 1 to design a global asymptotic
stabilizer of the upward position of the pendulum device shown in Fig. 1,
which consists of a free pendulum with a rotating mass at the end. The

3Controllability being invariant under state feedback, we consider the system

_z = cTx; _x = A�
k

MTb
bbTP x+ bu:

Then, by replacingz by the new coordinatesy = z � M x, we get _y =

�M bu. The claim follows readily.

u = �
max 0; LfV � (z �m)kLgV + (LgV � (z �m)LgM)2

LgV � (z �m)LgM
:
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motor torque produces an angular acceleration of the end-mass which
generates a coupling torque at the pendulum axis. Unfortunately this
motor torque is limited and this input constraint puts a hard bound on
our ability to stabilize the upward position. It is worth mentioning that
the present study was precisely motivated by this example.

First, we show that the problem is not solvable with “standard” for-
warding. In particular we prove that the PDE (2) is not globally solv-
able. To overcome the problem we apply the forwardingmodfLgV g
technique to get a controller that “almost” globally stabilizes the up-
ward position.4 In [8], the system is stabilized using passivity-based
control, we refer the reader to this reference for further details about
this device.

A. Model

The dynamic equations of the device can be written in standard La-
grangian form as

m1 +m2 m1

m1 m1

�q =
mgl sin(q1)

v
(9)

where in particular the controlv is the motor torque. In practice, this
torque is limited and this makes the whole difficulty of the stabilization
problem. Without such a limit, a backstepping technique or stabilizing
a particular planned trajectory would lead easily to other global asymp-
totic stabilizers. Here, we assume that this limit is still large enough to
allow the motor torque for compensating the maximal gravity torque
mgl. This assumption implies in particular that we can do the prelimi-
nary feedback:

v = mgl sin(q1)� u:

In the following, any limitation onu can be afforded. Unfortunately,
the specific device in our lab does not meet the above assumption and
therefore does not allow us to test the following proposed controller.

To proceed with our design in order to avoid cluttering the notation,
we takemgl = m1 = m2 = 1.5 We introduce the new coordinates
x1 = q1, x3 = _q1, z1 = 2q1 + q2, z2 = 2 _q1 + _q2 and as mentioned
above the new controlu = sin(x1)� v. Then the dynamics rewrite in
the (block) forwarding form (4) as

_z1 =z2

_z2 =sin(x1)

_x1 =x3

_x3 =u: (10)

The final control objective is to find a stabilizer of the origin of (10)
satisfying prescribed limitations.

Before presenting a solution to the constrained problem, we solve
the nonconstrained problem with the new forwardingmodfLgV g.

B. Standard Forwarding

Step 1) We consider the subsystem

_x1 =x3

_x3 =u

4The qualifier “almost” is needed because there is a set of initial conditions
which do not converge to the upright position, but it has zero Lebesgue measure.
This stems from the well known fact that if a system with cylindrical configura-
tion space has an asymptotically stable equilibrium, then it has at least another
equilibrium which is unstable [11].

5In Section III-E, where we present simulation results, we give the expression
of the control law for the general case.

and design a controller invoking passivity, i.e., with the Lya-
punov function

V1(x1; x3) = (1� cos(x1)) +
�

2
x
2

3

where� > 0 is a tuning parameter. This yields

_V1 = x3 [sin(x1) + �u]

Hence the first control loop is

u = �
1

�
sin(x1)� �x3 + v1

wherev1 is a new control to be defined in the next step and
� > 0.

Step 2) We add an integration to the subsystem as

_z2 =sin(x1)

_x1 =x3

_x3 =�
1

�
sin(x1)� �x3 + v1 (11)

and, following [7], look for a functionM1(x1; x3) such
that, withv1 = 0, we have _M1 = sin(x1). This is tan-
tamount to solving the PDE (2) which, in this case, takes
the form

@M1

@x1
x3 �

@M1

@x3

1

�
sin(x1) + �x3 = sin(x1): (12)

A solution is given asM1 = ��(x3 + �x1). The second
controller is defined by the formula (5) and takes the form

v1 = ��x3

�L V

+[z2 + �(x3 + �x1)

z �M

] (��)

L M

+v2:

Step 3) We add the last integration to the subsystem as

_z1 =z2

_z2 =sin(x1)

_x1 =x3

_x3 =�
1

�
sin(x1)� � + �+ �

2
x3 � �z2 � ��

2
x1 + v2:

Now, we look for a functionM2(z2; x1; x3) such that, with
v2 = 0, we have _M2 = z2. Unfortunately, the associated
PDEdoes nothave a global solution. Indeed, it is clear that a
necessarycondition for the existence of a global solution of
the PDE (2) is that the functionh(x) is equal to zero at the
equilibria of the subsystem_x = f(x). That is,f(�x) = 0)
h(�x) = 0. In our case, the equilibria of the “f subsystem”
are given by(�z2; �x1; �x3) = (��j�; j�; 0), with j 2 ,
hence the “h function”, which is equal toz2, is nonzero at
some of the equilibria and we cannot complete our design.

We should underscore that the procedure was stymied by the pres-
ence of the term��2x1 in the “f subsystem”. We will show below that
this term can be removed with the new forwarding technique.

C. ForwardingmodfLgV g

Step 1) Is the same as above.
Step 2) Proceeding from the subsystem (11) we look now for a solu-

tion of the new PDE (6), which in this case takes the form

@M1

@x1
x3 �

@M1

@x3

1

�
sin(x1) + �x3 = sin(x1)

+ k(x1; x3) �x3

L V

:

Compare with (12). To remove the term dependent onx1 we
propose a solutionM1 = ��x3 andk = �.
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Noting thatkLgM1 = ��� < 0 we choose the control
law (see (8))

v1 = �
1

�
[z2 + (1� �� + �)x3] + v2:

Remark that we have succeeded in eliminating the trouble-
some term.

The Lyapunov function corresponding to this step is

V2(x1; x3; z2) = (1� cos(x1)) +
�

2
x
2

3 +
1

2
(z2 + �x3)

2
: (13)

It is positive definite and proper on1 � 2 and, with the
controlv1 above withv2 = 0, we get

_V2 = �[z2 + (1 + �)x3]
2
:

This derivative is not negative definite and therefore does not
satisfy the assumption of Proposition 1. Nevertheless, we go
on with the design. We will check only at the end that we do
get global asymptotic stabilization.

Step 3) The last step is classical forwarding similar to Step 3 above,
with the fundamental difference that the PDE is now

@M2

@z2
sin(x1) +

@M2

@x1
x3

�
@M2

@x3

1

�
[sin(x1) + z2 + (1 + �)x3] = z2

for which we have a solutionM2 = �z2��x3� (1+�)x1.
We then compute the final outer-loop control

v2 = ��[z1 + 2z2 + (1 + �)x1 + (1 + 2�)x3]:

We have the following.
Proposition 2: The system (10) in closed-loop with the static state

feedback control

u =�
1

�
sin(x1)� �z1 �

1

�
+ 2� z2 � �(1 + �)x1

�
1

�
+ �+ 1 + 2�2 x3 (14)

with � > 0, has an asymptotically stable equilibrium at zero with
Lyapunov function

W (x1; x3; z1; z2) = (1� cos(x1)) +
�

2
x
2

3 +
1

2
(z2 + �x3)

2

+
1

2
(z1 + z2 + �x3 + (1 + �)x1)

2
:

(15)

Its domain of attraction is the whole space minus a set of Lebesgue
measure zero.

Remark 3: It is interesting to note that the controller derived in [8]
using passivity considerations is of the form of the controller above,
that is

u = �c1 sin(x1)� c2z1 � c3z2 � c4x1 � c5x3 (16)

with ci, i = 1 . . . ; 5 some suitably defined positive constants. Also,
the Lyapunov function in that paper is the sum of a quadratic function
of the state and the potential energy term exactly asW is in (15).

Remark 4: The commissioning of nonlinear controllers on actual
physical devices is far from obvious. Hence, it is interesting to know
what are the available degrees of freedom in the tuning parameters. In
Proposition 2 above we have restricted, for the sake of clarity of the
presentation, to the single parameter�. A natural question is then what
is the largest range of the constantsci, i = 1 . . . ; 5 in (16), so as to
globally stabilize the pendulumwith a Lyapunov function consisting

of the sum of a quadratic function of the state and the potential energy
term asW in (15). The answer is provided by the following choices:

c1 =
c

b
c2 =

ae

d
; c3 = d+

b

c
a+

ce

bd2

c4 = d+
b

c
c+

ab

c
+

e

d2
c5 =

e

d
c+

ab

c

wherea; b; c; d; e > 0. One final remark is that it is possible to prove
that there do not exist gainsci, i = 1 . . . ; 5, such thatW in (15) is a
strict Lyapunov function.

Proof of Proposition 2: An important preliminary remark is
that the introduction of a non periodic function ofx1 in the control
(14) forces us to consider the closed-loop system not on1 � 3

but on 4. And thenW is not a proper function for the coordinates
(x1; x3; z1; z2). Nevertheless, with the new coordinate

y1 = z1 + z2 + �x3 + (1 + �)x1

the system (10) with the control (14) rewrites

_y1 =� �
2
y1 � �

2[z2 + (1 + �)x3]

_z2 =sin(x1)

_x1 =x3

_x3 =�
1

�
sin(x1)� �y1 �

1

�
+ � z2

�
1

�
+ 1 + �+ �

2
x3 (17)

which does live in 1 � 3. The functionW becomes

W (x1; x3; y1; z2) = (1� cos(x1))

+
�

2
x
2

3 +
1

2
(z2 + �x3)

2 +
1

2
(y1)

2

which is positive–definite and proper on1 � 3. Then, since we get

_
W = ��2 [y1 + [z2 + (1 + �)x3]]

2 � [z2 + (1 + �)x3]
2

the solutions of (17) are bounded on1 � 4. Also, by invoking
LaSalle’s invariance principle it is easy to check that all the solutions
converge to

(x3; y1; z2) = 0 cos(x1) = �1:

Now the linearization at the equilibrium corresponding tocos(x1) = 1
has its four eigenvalues with strictly negative real part.6 Whereas the
one at the equilibrium corresponding tocos(x1) = �1 has eigenvalues
with strictly positive real part but also at least one eigenvalue with
strictly negative real part.7 We conclude with [5] that(x3; y1; z2) = 0,
cos(x1) = 1 is attractive with domain of attraction in1 � 3 the
whole set minus a set of zero Lebesgue measure. Also, for the con-
verging solutions,x3 converges exponentially and therefore its inte-
gral x1 is bounded. Hence the solutions of (17) are also bounded on
4. The statement of the Proposition follows in particular with the fact

that the countable union of sets of zero Lebesgue measure is a set of
zero Lebesgue measure.

D. Saturated Control

We will consider in this subsection the practically important case
when the control signal must satisfy a boundjuj � uM . To obtain a
saturated control we take-off from the second step above and evaluate
the derivative ofV2 (13) (along the trajectories of (10)) as

_V2 = [z2 + (1 + �)x3][�u + sin(x1)]

6This follows from the linear counterpart of the above arguments.
7This follows from the fact that the matrix of the Jacobian linearization of

(17) has a negative trace and the determinant has the sign ofcos(x ).
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Fig. 2. Swing up response of the pendulum.

Let us define

y1 z1 �M2 = z1 + z2 + �x3 + (1 + �)x1 (18)

whose derivative yields

_y1 = [z2 + (1 + �)x3] + [�u+ sin(x1)]

Instead of proceeding with the third forwarding step, we propose a
Lyapunov function candidate which is suggested by the computations
above

V3(x1; x3; z1; z2) = V2(x1; x3; z2) +
y

0

a(s)ds

wherea is any continuous bounded odd function. Indeed, this yields

_V3 = a(y1) [(1 + �)x3 + z2]

+ [(1 + �)x3 + z2 + a(y1)] [sin(x1) + �u]

which leads to the control

u = �
1

�
sin(x1)� b(y0) (19)

where we have defined

y0 (1 + �)x3 + z2 + a(y1) (20)

whereb is, again, any continuous bounded odd function. Notice that
the control is bounded by any prescribed bounduM by choosing ap-
propriately� > 1=uM , and the functionb to be bounded in norm by
uM � 1=�.

Working with the coordinates(x1; x3; y1; z2) as in the proof
of Proposition 2, we see thatV3 is positive definite and proper on
1 � 3. Its derivative can be expressed in the form

_V3 = �a(y1)
2 + y0a(y1)� �y0b(y0)

which is a quadratic form ina. Because of the negative sign in front of
the maximum order term, we can ensure negativity of_V3, by imposing
some—not very restrictive—constraints on the functionsb anda. The

asymptotic stability can then be established, by invoking invariant set
arguments. We omit these calculations here, for lack of space.

Proposition 3: Consider the system (10) with bounded inputjuj �
uM in closed-loop with thesaturatedstatic state feedback control (18),
(19) and (20), wherea, b are odd bounded functions. Fix� > 0 such
that (1=uM) � �, and choosea, b such thatjaj � aM and jbj �
uM � (1=�). Further, select the functionb such that

aM
�

1�
aM
jy0j

�jb(y0)j if 2aM � jy0j

jy0j

4�
<jb(y0)j if jy0j < 2aM

Under these conditions, zero is an asymptotically stable equilibrium of
the closed loop, with domain of attraction the whole space minus a set
of Lebesgue measure zero.

E. Simulations

Repeating the derivations leading to Proposition 3 for the general
model (9) we obtain the controller

u =�
1

�m2

sin
x1
m2

� b(y0)

y0
1

�2m2mgl
a(y1) +m2mgl z2 + 1 + �m2

2(mgl)2 x3

y1 z1 +
1

�2m2

2
(mgl)2

z2 +
1 + �m2

2(mgl)2

m2mgl
x1

+
1

�m2mgl
x3

where, to provide more tuning flexibility, we have included some addi-
tional gains that were set to one in the procedure described above. Note
also that the change of coordinates is nowx1 = m2q1, x3 = m2 _q1,
z1 = (m1 + m2)q1 + m1q2, z2 = (m1 + m2) _q1 + m1 _q2 and
v = mgl sin(x1=m2)�u:We simulated the response of the pendulum
using the system parameters of an existing hardware setup , namely:
m1 = 32 � 10�6, m2 = 0:0048, andml = 38:7 � 10�3 [kg]. The
controller gains were set at� = 700,  = 10. Fig. 2 shows the swing
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up response of the pendulum starting at nearly the vertically downward
position, with the remaining initial conditions zero. Notice that the re-
sponse is very fast without any initial swinging of the pendulum.

The following remarks are in order.

• It is clear from the simulations that the stabilization mechanism
of our controller consists of spinning-up the disk inertia to lift
the pendulum, which might impose some unrealistic values to
the disk speed. This should be contrasted with the alternative
method of [9]—also studied in [1], [3]—where the energy is first
pumped-up through a balancing motion before lifting the pen-
dulum. Two drawbacks of the latter approach are the slow con-
vergence and the need to switch the controller close to the upward
position. From the theoretical viewpoint both methods also differ,
our controller (as well as the one reported in [8]) stabilizes the
equilibrium point, while the energy-pumping methods stabilizes
the homoclinic orbit, hence the need for the switching.

• Although we have solved the stabilization problem of the system
(10) with any prescribed saturation of the control, when we come
back to the original disk inertia pendulum (9), we have to add
sin(x1) to the above control. So the above procedure does not
give an answer to the problem where the maximal torque that
the motor can deliver is smaller than the maximal gravity torque.
Simulations and experiments have shown that stability cannot be
guaranteed if we impose this saturation limit.
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Per-Queue Stability Analysis of a Random Access System

Rocky K. C. Chang and Sum Lam

Abstract—In this note, we have extended previous studies of the system
stability of buffered ALOHA systems to study an individual queue’s sta-
bility, i.e., per-queue stability. The main result obtained in this work is a
necessary and sufficient per-queue stability condition, which can be com-
puted analytically only for several cases. For other noncomputable cases,
we have evaluated several inner and outer bounds. They are generally quite
tight for not-so-asymmetric systems.

Index Terms—ALOHA, multiaccess systems, per-queue stability, queue
stability ordering, system stability.

I. INTRODUCTION

Stability analyses of single-resource–multiple-queue systems, such
as random access protocols, polling schemes, and token-passing
rings, have been studied quite extensively in the past. By stability,
we mean that the queue length process of a queue with unlimited
buffer space possesses a limiting distribution. Almost all previous
studies in this area, however, concern stability of the whole system
(system stability). Study of an individual queue’s stability (per-queue
stability), on the other hand, has hardly received any attention. The
per-queue stability problem is more general than the system stability
problem, because some queues may remain stable in an unstable
system. Therefore, system stability, being a special case of per-queue
stability, is inadequate to address the entire stability region of an
individual queue. In this note, we consider per-queue stability of
a buffered ALOHA system. Our goal is to obtain a necessary and
sufficient per-queue stability condition as well as other related results.

So far, only system stability has been studied for the buffered
ALOHA system. Computable system stability conditions are well
known for two-queue systems and symmetric systems (e.g., see
[1], [2]). Szpankowski employed Loynes’ theorem and an induction
approach to obtain necessary and sufficient system stability con-
ditions for more than two queues, but the conditions are generally
noncomputable [2]. Rao and Ephremides, on the other hand, obtained
lower bounds for the system stability region using a simple concept of
dominance [1]. Luo and Ephremides revisited the same problem and
obtained a tighter bound [3]. Their main approach was based on an
instability rankthat helped construct appropriate dominant systems to
obtain sufficient conditions. An instability rank, or a stability order,
specifies the sequence of queues to become unstable when the system
traffic increases according to a certain pattern.

Unlike previous work, our focus in this note is on per-queue stability.
Besides describing the system, we present, in Section II, two prelimi-
nary results that are essential to obtaining a stability condition, say, for
a target queueqt. We first obtain in Lemma 1qt’s necessary and suf-
ficient stability condition for a path with aknownstability order. We
then use this result to obtain a criterion for comparing stabilities of any
two queues in the system, and the criterion is essentially the same as
the one obtained recently by Luo and Ephremides [3]. By combining
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